# The Vehicle Routing Problem with Discrete Split Delivery and Time Windows 

Ilaria Vacca \& Matteo Salani

Transport and Mobility Laboratory, EPFL, Switzerland

9th Swiss Transport Research Conference (STRC)
September 11, 2009

## Outline

- Problem description and applications
- MILP formulation and Column Generation approach
- Branch \& Price algorithm
- Computational experiments
- Conclusion


## The Vehicle Routing Problem (VRP)

## Given

- set of customers with demands to be served (within time windows: VRPTW);
- set of capacitated vehicles available at a single depot;


```
DEPOT
```


## The Vehicle Routing Problem (VRP)

## Objective

- design the optimal minimum-cost routes for vehicles,
- such that every customer is visited exactly once.



## VRP with Split Delivery (SDVRP)

## Splittable demand

- demand can be split and thus served by more than one vehicle;
- customers can be visited more than once.



## VRP with Discrete Split Delivery (DSDVRP)

Nakao \& Nagamochi (2007); Ceselli, Righini \& Salani (2009)

- variant of VRP with split delivery;
- demand is discretized;
- the demand of each customer is represented by a set of items;
- items are grouped and delivered in orders (combinations of items);
- demand can be split but items cannot;
- service times depend on the quantity delivered;
- some combinations of items are not allowed.


## Field Technician Scheduling Problem

## Xu \& Chiu (2001)

## Problem description

- different types of jobs which require different skills;
- each technician is specialized in a field with certain skills;
- time windows on job starting and completion;
- assignment problem (jobs to technicians) + scheduling problem, where the duration of a job depends on the assignment.


## Objective

- maximize the number of jobs completed within a time frame.


## TBAP with QC assignment in container terminals

Giallombardo, Moccia, Salani \& Vacca (2009)

## Problem description

- Tactical Berth Allocation Plan (TBAP): assignment and scheduling of ships to berths;
- Quay-Cranes (QC) assignment: a QC profile (number of QCs per shift) is assigned to each ship;
- feasible profiles can vary in length (number of shifts dedicated to the ship) and in size (number of QCs dedicated to the ship in each active shift);
- time windows on ship arrival and on berth availabilities.


## Objective

- maximize the value of chosen profiles.


## Modeling the Discrete Split Delivery VRPTW



## Modeling the Discrete Split Delivery VRPTW

- $G=(V, E)$ complete graph with $V=\{0\} \cup N$;
- $\left(c_{i j}, t_{i j}\right)$ : cost and travel time of $\operatorname{arc}(i, j) \in E$;
- $N$ : set of customers $\{1, \ldots, n\}$; node $\{0\}$ represents the depot;
- $K$ : set of vehicles with identical capacity $Q$;
- $R$ : set of items; $R=\bigcup_{i \in N} R_{i}, \quad R_{i} \cap R_{j}=\emptyset \forall i \neq j, \quad i, j \in N$;
- $C$ : set of combinations of items; $C=\bigcup_{i \in N} C_{i}, \quad C_{i} \cap C_{j}=\emptyset \forall i \neq j, \quad i, j \in N$;
- $e_{c}^{r}: 1$ if item $r \in R$ belongs to combination $c \in C$;
- $t_{c}$ : service time of combination $c \in C$ such that $\max _{r \in R} e_{c}^{r} t^{r} \leq t_{c} \leq \sum_{r \in R} e_{c}^{r} t_{r}$;
- $q_{c}$ : size of combination $c \in C ; q_{c}=\sum_{r \in R} e_{c}^{r} t^{r}$;
- $\left[a_{i}, b_{i}\right]$ : time window for customer $i \in N$.


## Modeling the Discrete Split Delivery VRPTW

## Decision variables

- $x_{i j}^{k}$ binary: 1 if arc $(i, j) \in E$ is used by vehicle $k \in K, 0$ otherwise;
- $y_{c}^{k}$ binary: 1 if vehicle $k \in K$ delivers combination $c \in C, 0$ otherwise;
- $T_{i}^{k} \geq 0$ : time when vehicle $k \in K$ arrives at customer $i \in N$.


## Objective function

- minimize the total traveling costs: $\quad z^{*}=\min \sum_{k \in K} \sum_{(i, j) \in E} c_{i j} x_{i j}^{k}$


## Constraints

- flow and precedence constraints;
- demand-satisfaction constraints;
- time-windows constraints;
- capacity constraints.


## Modeling the Discrete Split Delivery VRPTW

Flow and linking constraints

$$
\begin{array}{cl}
\sum_{j \in V} x_{0 j}^{k}=1 & \forall k \in K, \\
\sum_{j \in V} x_{i j}^{k}-\sum_{j \in V} x_{j i}^{k}=0 & \forall k \in K, \forall i \in V, \\
\sum_{j \in V} x_{i j}^{k}=\sum_{c \in C_{i}} y_{c}^{k} & \forall k \in K, \forall i \in N, \tag{3}
\end{array}
$$

Covering constraints

$$
\begin{align*}
\sum_{k \in K} \sum_{c \in C} e_{c}^{r} y_{c}^{k}=1 & \forall r \in R,  \tag{4}\\
\sum_{c \in C_{i}} y_{c}^{k} \leq 1 & \forall k \in K, \forall i \in N, \tag{5}
\end{align*}
$$

## Modeling the Discrete Split Delivery VRPTW

## Precedence constraints

$$
\begin{align*}
T_{i}^{k}+\sum_{c \in C_{i}} t_{c} y_{c}^{k}+t_{i j}-T_{j}^{k} \leq\left(1-x_{i j}^{k}\right) M & \forall k \in K, \forall i \in N, \forall j \in V  \tag{6}\\
T_{i}^{k}-t_{0 i} \geq\left(1-x_{0 i}^{k}\right) M & \forall k \in K, \forall i \in N \tag{7}
\end{align*}
$$

Time windows

$$
\begin{align*}
T_{i}^{k} \geq a_{i} \sum_{j \in V} x_{i j}^{k} & \forall k \in K, \forall i \in N,  \tag{8}\\
T_{i}^{k}+\sum_{c \in C_{i}} t_{c} y_{c}^{k} \leq b_{i} \sum_{j \in V} x_{i j}^{k} & \forall k \in K, \forall i \in N, \tag{9}
\end{align*}
$$

Capacity constraints

$$
\begin{equation*}
\sum_{c \in C} q_{c} y_{c}^{k} \leq Q \quad \forall k \in K \tag{10}
\end{equation*}
$$

## Dantzig-Wolfe reformulation

- $\quad P$ : set of feasible routes;
- $c_{p}$ : cost of route $p \in P$;
- $e_{p}^{r}$ : binary parameter equal to 1 if item $r \in R$ is delivered in route $p \in P$;
- $\lambda_{p}$ : binary decision variable equal to 1 if route $p \in P$ is chosen;


## Master problem

$$
\begin{align*}
& \min \sum_{p \in P} c_{p} \lambda_{p}  \tag{11}\\
& \sum_{p \in P} e_{p}^{r} \lambda_{p}=1 \quad \forall r \in R  \tag{12}\\
& \sum_{p \in P} \lambda_{p} \leq|K|  \tag{13}\\
& \lambda_{p} \geq 0 \quad \forall p \in P \tag{14}
\end{align*}
$$

## Column generation scheme

## Pricing subproblem

$$
\begin{equation*}
p^{*}=\arg \min _{p \in P}\left\{\tilde{c}_{p}\right\}=\arg \min _{p \in P}\left\{c_{p}-\sum_{r \in R} \pi_{r} e_{p}^{r}-\pi_{0}\right\} \tag{15}
\end{equation*}
$$

where $\pi_{r}$ are the dual variables associated to constraints (12) and $\pi_{0}$ is the dual variable associated to constraint (13).

## Column generation

- if $\tilde{c}_{p^{*}}<0$, then column $p^{*}$ is added to the (restricted) master problem;
- otherwise, the current master problem solution is proven to be optimal.


## Column generation scheme

## Remarks

- the pricing subproblem is an Elementary Resource Constrained Shortest Path Problem (ERCSPP);
- the underlying network has one node for each order and transit time $\left(t_{i j}+t_{c}\right)$; Ceselli et al. 2009: one node for each item.


## Branch \& Price for the DSDVRPTW

- column generation approach;
- exact algorithm based on Branch\&Price;
- pricing solved using bi-directional dynamic programming (Righini \& Salani, 2006);
- branching rules:

1. total number of vehicles;
2. number of vehicles visiting a customer;
3. flow on arcs.

- no additional cuts at master level.


## Instances

- derived from Solomon's data sets R1, C1 and RC1 for the VRPTW;
- $N=25,50$ customers;
- $Q=30,50,100$;
- the demand of each customer is discretized in 12 items;
- we generated 3 scenarios:

| scenario | orders | description |
| :--- | :--- | :--- |
| A | 3 | full, 50-50\%; |
| B | 5 | full, 50-50\%, 75-25\%; |
| C | 7 | full, 50-50\%, 75-25\%, 90-10\%; |
| O | 1 | full order (unsplit case). |

## Computational results: 25 customers

| class | nb_inst | $Q$ | A |  | B |  | c |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | nb_solved | t | nb_solved | t | nb_solved | t |
| R1 | 12 | 30 | 12 | 87 | 10 | 694 | 6 | 1554 |
|  |  | 50 | 11 | 342 | 6 | 463 | 5 | 522 |
|  |  | 100 | 9 | 16 | 10 | 129 | 9 | 551 |
| C1 | 9 | 50 | 9 | 273 | 0 | x | 0 | x |
|  |  | 100 | 3 | 947 | 0 | x | 0 | x |
| RC1 | 8 | 30 | 8 | 317 | 0 | x | 0 | $x$ |
|  |  | 100 | 8 | 222 | 2 | 1542 | 0 | x |

## Computational results: 50 customers

|  |  |  | $\mathbf{A}$ |  | B | C |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| class | nb_inst | $Q$ | nb_solved | $t$ | nb_solved | $t$ | nb_solved | $t$ |
| R1 | 12 | 30 | 1 | 3011 | 0 | $x$ | 0 | $x$ |
|  |  | 50 | 1 | 1527 | 0 | $x$ | 0 | $x$ |
|  |  | 100 | 2 | 120 | 2 | 509 | 1 | 93 |
| RC1 | 8 | 50 | 7 | 723 | 0 | $x$ | 0 | $x$ |
|  |  | 100 | 1 | 1953 | 0 | $x$ | 0 | $x$ |

## Summing up

- time limit: 1 hour;
- $69 \%$ (A), $32 \%$ (B) and $23 \%$ (C) instances solved for 25 customers;
- $14 \%(A), 2 \%(B)$ and $1 \%$ (C) instances solved for 50 customers;
- difficulty increases with the number of customers and with the number of orders;
- split deliveries are more frequent with small values of $Q$;
- in some cases, split deliveries not only decrease the total traveling costs but also allow to save one vehicle.


## Conclusions

- finding optimal solutions is difficult, already with a small number of orders;
- only a limited number of instances with 50 customers could be solved;
- the bottleneck is the pricing problem:
- the underlying network is huge (one node per each order!)
- how to efficiently handle this feature of the problem?


## Thanks for your attention!

