# Inferring the activities of smartphone users from context measurements using Bayesian inference and random utility models 

Ricardo Hurtubia<br>Michel Bierlaire<br>Gunnar Flötteröd

Transport and mobility laboratory - EPFL

European Transport Conference - October 5, 2009

## Outline

1. Motivation
2. Framework
2.1 Prior model
2.2 Measurements
2.3 Likelihood function
3. Inference
4. Results / Case study
5. Conclusions

## Motivation



## General framework

- Objective: combine general knowledge of population's behavior and individual context variables' measurements into estimates of an individual's activities
- Available data:
- Reported activities in Swiss Transport Microcensus 2005
- Land use data
- Measurements from a smartphone for one user over a two-month period
- Activity survey
- Bayesian inference:


Prior

## General framework

## Prior:



## Likelihood:



## Prior model

- Probability of performing a certain type of activity given a location (zone) and a time of the day
- Structure: Multinomial logit

$$
P_{n}(a \mid i, t)=\frac{\exp \left(U_{n a}\left(z_{i}, z_{n}, \delta_{t}\right)\right)}{\sum_{a^{\prime}} \exp \left(U_{n a^{\prime}}\left(z_{i}, z_{n}, \delta_{t}\right)\right)}
$$

$a$ : type of activity (work, study, leisure, shopping....)
$z_{i}$ : land use attributes of zone $i$
$z_{n}$ : attributes of user $n$
$\delta_{t}$ : indicator of the period of the day $\{$ morning, noon, afternoon, night $\}$

## Time discretization



$$
\delta_{t}=\left(\delta_{t p}\right) \quad p \in\{\text { night, morning, noon, afternoon }\}
$$

## Prior model estimation results



## Measurements

- Measurements from a smartphone (Nokia N95)
- Variables:
- GPS location
- Nearby networks (LAN,GPRS, cell id)
- Nearby Bluetooth devices
- Movement detection (accelerometer)
- ...
- One respondent:

- Two months measuring context variables
- Answering daily activity survey
- Location
- Time
- Type of performed activity
- Transport mode

TRANSP-OR

## Survey

Google Maps Online Survey - TRANS...


## Measurements (Bluetooth devices)

- Aprox 8700 measurements
- Distribution of number of detected devices:



## Measurements

Frequent Bluetooth devices: some devices are mostly observed when performing certain types of activities


## Measurements

- 12 independent devices appear more than 4 times
- Grouped according to activity-type correlation


TRANSP-OR

## Measurements

- Definitions ${ }^{\circ}$

$$
j \in\{\text { group_1,group_2,G,J,L }\}
$$

All devices or groups ( $j$ ) are assumed to be independent

State of all devices $\quad Y=\left(y_{j}\right)$
where

$$
y_{j}= \begin{cases}1 & \text { if device } j \text { is observed } \\ 0 & \text { if not }\end{cases}
$$

## Likelihood

- Probability of measurements given the activity type and period of the day:

$$
\left.P(Y \mid a, t)=\prod_{j}\left(P\left(y_{j}=1 \mid a, t\right)\right) y_{j}+\left(1-P\left(y_{j}=1 \mid a, t\right)\right) \cdot\left(1-y_{j}\right)\right)
$$ FEDIRALE DE LAUSANNE

## Likelihood

- Empirical probability of observing a device given the activity type and period of the day:

$$
P\left(y_{j}=1 \mid a, p\right)=\frac{N_{j a p}+\varepsilon_{a} \cdot \alpha}{N_{a p}+\alpha}
$$

where:

- $N_{a p}$ : number of times activities type $a$ are performed during period $p$
- $N_{j a p}$ : number of activities type $a$, performed during $p$, where device $j$ was detected
- $\varepsilon_{a}$ : expected probability of observing any device while performing activity type $a$
$-\alpha:$ weight of "uninformed prior knowledge"


## Likelihood

For a specific time of the day:

$$
P\left(y_{j}=1 \mid a, t\right)=\sum_{p} \delta_{t p} P\left(y_{j}=1 \mid a, p\right)
$$

## Inference

- We update the prior using the likelihood of the Bluetooth devices' measurements

$$
P(a \mid Y, i, t)=\frac{P(Y \mid a, t) \cdot P(a \mid i, t)}{P(Y \mid i, t)}
$$

where:

$$
P(Y \mid i, t)=\sum_{a^{\prime}} P\left(Y \mid a^{\prime}, t\right) \cdot P\left(a^{\prime} \mid i, t\right)
$$

## Case study

## - A particular event

- Leisure activity performed at work location during afternoon/night
- Detection of devices:
- Group_1 (frequent at work, also observed at leisure)
- Device G (frequent at shopping and leisure, never observed at work)
- Device J (observed only at work)


$$
\begin{aligned}
& \varepsilon=0.01 \\
& \alpha=10
\end{aligned}
$$

## Case study

- Sensibility to $\alpha$ and $\varepsilon$.



## Case study

- If we assume a high value for epsilon, the aggregate fit of the posterior distribution deteriorates



## Conclusions and further work

- Inclusion of likelihood improves the probability distributions
- Bluetooth measurements are useful to infer activity type
- More data is required to build general models
- Link between devices (or other variables) and activities $\rightarrow$ additional information to replace survey


## Thank you

## Correlation of devices

| correl | A | B | C | D | E | F | G | H | I | J | K | L | M | N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 1 | G1 | G1 | G1 | G1 | G1 |  |  | G1 |  |  |  |  |  |
| B | 0.73 | 1 | G1 | G1 | G1 | G1 |  |  | G1 |  |  |  |  |  |
| C | 0.79 | 0.78 | 1 | G1 | G1 | G1 |  |  | G1 |  |  |  |  |  |
| D | 0.81 | 0.80 | 0.80 | 1 | G1 | G1 |  |  | G1 |  |  |  |  |  |
| E | 0.70 | 0.68 | 0.68 | 0.71 | 1 | G1 |  |  | G1 |  |  |  |  |  |
| F | 0.73 | 0.59 | 0.65 | 0.79 | 0.60 | 1 |  |  | G1 |  |  |  |  |  |
| G | -0.27 | -0.25 | -0.25 | -0.25 | -0.23 | -0.23 | 1 |  |  | G2 |  |  |  |  |
| H | 0.51 | 0.61 | 0.48 | 0.57 | 0.40 | 0.49 | -0.19 | 1 |  |  |  | G3 |  |  |
| I | 0.58 | 0.68 | 0.68 | 0.70 | 0.54 | 0.42 | -0.19 | 0.13 | 1 |  |  |  |  |  |
| J | -0.26 | -0.25 | -0.25 | -0.24 | -0.22 | -0.22 | 0.96 | -0.18 | -0.18 | 1 |  |  |  |  |
| K | 0.41 | 0.52 | 0.52 | 0.54 | 0.48 | 0.40 | -0.13 | 0.49 | 0.29 | -0.13 | 1 |  |  |  |
| L | 0.50 | 0.52 | 0.44 | 0.54 | 0.39 | 0.50 | -0.13 | 0.70 | 0.08 | -0.13 | 0.59 | 1 |  |  |
| M | 0.41 | 0.44 | 0.35 | 0.45 | 0.30 | 0.31 | -0.13 | 0.18 | 0.39 | -0.13 | 0.32 | 0.18 | 1 |  |
| N | -0.50 | -0.47 | -0.47 | -0.46 | -0.43 | -0.37 | 0.54 | -0.35 | -0.35 | 0.52 | -0.25 | -0.25 | -0.17 | 1.00 |

