Inferring the activities of smartphone users from context measurements using Bayesian inference and random utility models

Ricardo Hurtubia Michel Bierlaire Gunnar Flötteröd

Transport and mobility laboratory - EPFL

European Transport Conference - October 5, 2009

Outline

- 1. Motivation
- 2. Framework
 - 2.1 Prior model
 - 2.2 Measurements
 - 2.3 Likelihood function
- 3. Inference
- 4. Results / Case study
- 5. Conclusions

Motivation

General framework

• Objective: combine general knowledge of population's behavior and individual context variables' measurements into estimates of an individual's activities

• Available data:

- Reported activities in Swiss Transport Microcensus 2005
- Land use data
- Measurements from a smartphone for one user over a two-month period
- Activity survey
- Bayesian inference:

 $P(activity | measurements) \propto P(activity) P(measurements | activity)$ Prior Likelihood

General framework

• Prior:

Likelihood:

p: period

Y: measurement

Prior model

- Probability of performing a certain type of activity given a location (zone) and a time of the day
- Structure: Multinomial logit

$$P_n(a \mid i, t) = \frac{\exp(U_{na}(z_i, z_n, \delta_t))}{\sum_{a'} \exp(U_{na'}(z_i, z_n, \delta_t))}$$

a: type of activity (work, study, leisure, shopping....)

 z_i : land use attributes of zone i

 z_n : attributes of user n

 δ_t : indicator of the period of the day {morning, noon, afternoon, night}

Time discretization

$$\delta_t = (\delta_{tp})$$
 $p \in \{\text{night, morning, noon, afternoon}\}$

Prior model estimation results

	parameter	work	study	shopping	services	leisure	other	
_	constant	-	-0.532	2.031	2.311	3.522	0.656	
$n = \begin{cases} p & = \end{cases}$	male	0.713	•	-0.377	-0.278	•	-	
	employed	2.132	•	-	•	•	-	
	children	-	•	-	•	•	0.379*	
	morning	2.720	•	0.887	1.341	-	-	
	_ <mark>noon</mark>	1.001	•	-			-	
i	industry	0.025	•	-	•	•	-	
	commerce	-	•	0.077	•	•	•	
	services	0.046	•	-	0.055	0.024	-	
	other	0.032	•	-	•	0.053	0.065*	
	retail	-	•	1.074	•	•	-	
	long term retail	-	-	0.554	-	-	-	
	restaurant	-	-	-	-	0.109	-	
	school*age<19	-	1.694	-	•	•	-	
L	high_educ*student	-	1.328	-	•	•	-	
	morning*student	-	6.516	-	•	•	-	
	noon*student	-	4.212	-	1	1	-	
	morning*age>60	-	-	1.114	-	0.836	-	
$\int x n dx$	afternoon*age<19	-	-	-	-	0.813	-	
	afternoon*age>60	-	•	-	-	-0.242	-	
	night*age19_25	-	•	-	-	1.683	-	

- Measurements from a smartphone (Nokia N95)
- Variables:
 - GPS location
 - Nearby networks (LAN,GPRS, cell id)
 - Nearby Bluetooth devices
 - Movement detection (accelerometer)
 - ...
- One respondent:
 - Two months measuring context variables
 - Answering daily activity survey
 - Location
 - Time
 - Type of performed activity
 - Transport mode

Survey

Measurements (Bluetooth devices)

- Aprox 8700 measurements
- Distribution of number of detected devices:

Frequent Bluetooth devices: some devices are mostly observed when performing certain types of activities

- 12 independent devices appear more than 4 times
- Grouped according to activity-type correlation

• Definitions:

$$j \in \{\text{group}_1,\text{group}_2,G,J,L\}$$

All devices or groups (j) are assumed to be independent

State of all devices
$$Y = (y_i)$$

where
$$y_j = \begin{cases} 1 & \text{if device } j \text{ is observed} \\ 0 & \text{if not} \end{cases}$$

Likelihood

• Probability of measurements given the activity type and period of the day:

$$P(Y|a,t) = \prod_{j} (P(y_j = 1|a,t)) y_j + (1 - P(y_j = 1|a,t)) \cdot (1 - y_j))$$

Probability of observing device *j*

Probability of not observing device *j*

Likelihood

• Empirical probability of observing a device given the activity type and period of the day:

$$P(y_j = 1 \mid a, p) = \frac{N_{jap} + \varepsilon_a \cdot \alpha}{N_{ap} + \alpha}$$

where:

- N_{ap} : number of times activities type a are performed during period p
- N_{jap} : number of activities type a, performed during p, where device j was detected
- ε_a : expected probability of observing any device while performing activity type a
- α : weight of "uninformed prior knowledge"

Likelihood

• For a specific time of the day:

$$P(y_j = 1 \mid a, t) = \sum_{p} \delta_{tp} P(y_j = 1 \mid a, p)$$

Inference

• We update the prior using the likelihood of the Bluetooth devices' measurements

$$P(a|Y, i, t) = \frac{P(Y|a, t) \cdot P(a|i, t)}{P(Y|i, t)}$$

where:

$$P(Y|i,t) = \sum_{a'} P(Y|a',t) \cdot P(a'|i,t)$$

Case study

• A particular event

- Leisure activity performed at work location during afternoon/night
- Detection of devices:
 - Group_1 (frequent at work, also observed at leisure)
 - Device G (frequent at shopping and leisure, never observed at work)
 - Device J (observed only at work)

$$\varepsilon = 0.01$$
 $\alpha = 10$

Case study

• Sensibility to α and ε .

Case study

• If we assume a high value for epsilon, the aggregate fit of the posterior distribution deteriorates

$$\sum_{k}^{K} \log \left(\sum_{a} P(a) \cdot 1_{ak} \right)$$

Conclusions and further work

- Inclusion of likelihood improves the probability distributions
- Bluetooth measurements are useful to infer activity type
- More data is required to build general models
- Link between devices (or other variables) and activities
 - → additional information to replace survey

Thank you

Correlation of devices

correl	Α	В	С	D	E	F	G	Н	1	J	К	L	М	N
Α	1	G1	G1	G1	G1	G1			G1					
В	0.73	1	G1	G1	G1	G1			G1					
С	0.79	0.78	1	G1	G1	G1			G1					
D	0.81	0.80	0.80	1	G1	G1			G1					
E	0.70	0.68	0.68	0.71	1	G1			G1					
F	0.73	0.59	0.65	0.79	0.60	1			G1					
G	-0.27	-0.25	-0.25	-0.25	-0.23	-0.23	1			G2				
Н	0.51	0.61	0.48	0.57	0.40	0.49	-0.19	1				G3		
1	0.58	0.68	0.68	0.70	0.54	0.42	-0.19	0.13	1					
J	-0.26	-0.25	-0.25	-0.24	-0.22	-0.22	0.96	-0.18	-0.18	1				
K	0.41	0.52	0.52	0.54	0.48	0.40	-0.13	0.49	0.29	-0.13	1			
L	0.50	0.52	0.44	0.54	0.39	0.50	-0.13	0.70	0.08	-0.13	0.59	1		
M	0.41	0.44	0.35	0.45	0.30	0.31	-0.13	0.18	0.39	-0.13	0.32	0.18	1	
N	-0.50	-0.47	-0.47	-0.46	-0.43	-0.37	0.54	-0.35	-0.35	0.52	-0.25	-0.25	-0.17	1.00

$$correl(j, j^*) = \frac{\sum \mathbf{v}_j - \overline{y}_j \mathbf{v}_{j^*} - \overline{y}_{j^*}}{\sqrt{\sum \mathbf{v}_j - \overline{y}_j^2} \sum \mathbf{v}_{j^*} - \overline{y}_{j^*}}$$

