Improved estimation of travel demand from traffic counts based on a new linearization of the network loading map

Gunnar Flötteröd, Michel Bierlaire

October 7, 2009
Outline

Introduction

Proportional network loading

Local regression

Global regression

Outlook and summary
Outline

Introduction

Proportional network loading

Local regression

Global regression

Outlook and summary
Problem statement

• microsimulation-based dynamic traffic assignment (DTA)
 – disaggregate demand simulator (one traveler at a time)
 – disaggregate supply simulator (all travelers jointly)

• calibration of DTA microsimulators
 – use, e.g., traffic counts to improve microscopic demand
 – must identify how demand affects link flows

• linearization of network loading map answers “what if” questions
Some notation

- Disaggregate demand consists of travelers $n = 1 \ldots N$
 \[u_{ni}(k) = \begin{cases}
 1 & \text{if } n \text{ plans to enter link } i \text{ in time step } k \\
 0 & \text{otherwise}
\end{cases} \]
 (1)

- Link demand
 \[d_i(k) = \sum_{n=1}^{N} u_{ni}(k). \]
 (2)

- Network loading maps link demands $\{d_i(k)\}$ on link flows $\{q_i(k)\}$
- Linearize this mapping for arbitrary microsimulations
Test case
Test case

- microsimulation: 1800 potential travelers on either path
- simple choice model: prob. of making a trip is 2/3
- avg. demand D_A, D_B for path A, B is 1200 veh
Test case

- demand d_{45} for link 45 is 2120 veh
- capacity of all links is 1800 veh
- realized flow q_{34} on link 34 is 600 veh
Test case

• spillback on link 34, mathematically:

\[
\frac{\partial q_{34}}{\partial D_A} = \frac{\partial q_{34}}{\partial d_{23}} + \frac{\partial q_{34}}{\partial d_{34}} + \frac{\partial q_{34}}{\partial d_{45}} = 0 \\
\frac{\partial q_{34}}{\partial D_B} = \frac{\partial q_{34}}{\partial d_{14}} + \frac{\partial q_{34}}{\partial d_{45}} = -1
\]

(3)
Test case

- calibration scenario: flow of 900 veh is measured on link 34
- $\partial q_{34}/\partial D_A = 0$ and $\partial q_{34}/\partial D_B = -1$ explain this
- cause is demand for path B, which is not 1200 but 900 veh
Calibration

- use Cadyts ("Calibration of dynamic traffic assignment") tool
- free software, http://transp-or2.epfl.ch/cadyts/
- calibrates arbitrary demand dimensions from traffic counts
- relies on a linearized network loading map
Outline

Introduction

Proportional network loading

Local regression

Global regression

Outlook and summary
Proportional network loading: specification

• assume that all link demand is served by the network

\[q_i(k) = d_i(k) \quad \forall i, k. \] \hspace{1cm} (4)

• does not account for spillback
• good approximation only for uncongested conditions
• local scope
Proportional network loading: calibration results

\[\frac{\partial q_{34}}{\partial D_A} \]

\[\frac{\partial q_{34}}{\partial D_B} \]

sensitivities

flows

\[D_A \]

\[D_B \]

iteration

iteration

0 20 40 60 80 100

0 20 40 60 80 100
Outline

Introduction

Proportional network loading

Local regression

Global regression

Outlook and summary
Local regression: specification

• essentially, a parametrized proportional network loading

\[q_i(k) = \alpha_i(k) + \beta_i(k)d_i(k) \] \hspace{1cm} (5)

• coefficients \(\alpha, \beta \) are updated from simulated (demand/flow) tuples

• switches off proportional network loading during spillback

• still local scope
Local regression: calibration results

\[\frac{\partial q_{34}}{\partial D_A} \]

\[\frac{\partial q_{34}}{\partial D_B} \]

sensitivities

flows

iteration

iteration

\[D_B \]

\[D_A \]
Outline

Introduction

Proportional network loading

Local regression

Global regression

Outlook and summary
Global regression: specification 1

- naive approach

\[q_i(k) = \alpha_i(k) + \sum_j \beta_{ij}(k)d_j(k) \] \hspace{1cm} (6)

is cumbersome

- too many parameters
- identifiability issues

- preprocess demand by principal component (PC) analysis
Global regression: specification 2

- assume fixed plan choice distributions and

\[\text{VAR}\{d_i\} \propto \text{E}\{d_i\} \]

(e.g., Poission)

- then,

\[\text{COV}\{d_i, d_j\} \propto \text{E}\{d_{ij}\} \quad (7) \]

where

\[d_{ij} = \sum_{n=1}^{N} u_{ni} u_{nj} \quad (8) \]

is number of travelers that enter both link \(i\) and \(j\)
Global regression: specification 3

- M largest eigenvectors $b_m, m = 1 \ldots M$, of link demand covariance matrix constitute “demand PCs”
- calculation only requires to iterate over plans
- resulting regression model:

$$q_i(k) = \alpha_i(k) + \sum_{m=1}^{M} \beta_{im}(k) \cdot \langle d(k) - E\{d(k)\}, b_m(k) \rangle \quad (9)$$

- example network: 2 non-zero eigenvectors \rightarrow 3 regression parameters
Global regression: calibration results

\[\partial q_{34}/\partial D_A \]

\[\partial q_{34}/\partial D_B \]

sensitivities

flows

\[D_A \]

\[D_B \]
Global regression, $\sigma = 5 \text{ veh}$

\[\frac{\partial q_{34}}{\partial D_A} \]

\[\frac{\partial q_{34}}{\partial D_B} \]

\[D_A \]

\[D_B \]
Global regression, $\sigma = 10$ veh

$$\frac{\partial q_{34}}{\partial D_A}, \quad \frac{\partial q_{34}}{\partial D_B}$$

sensitivities

flows

iteration

D_A, D_B
Global regression, $\sigma = 20$ veh

- $\partial q_{34}/\partial D_A$
- $\partial q_{34}/\partial D_B$

sensitivities

flows

D_A

D_B
Outline

Introduction

Proportional network loading

Local regression

Global regression

Outlook and summary
An aggregate demand representation

coverage

principal demand components

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0
50
100
150
200
250
300
350
400
450
500
Summary

- proportional network loading fails in congested conditions
- local regression switches off local regression when it fails
- global regression captures spillback-induced effects