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Introduction
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Some numbers

Huge economical impact

• Air France-KLM 35 Mio € / day

• Lufthansa 48 Mio € / day

• IATA: $200 Mio  / day to air sector

Spill out due to disrupted / blocked passengers
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Why robustness appeals for airline scheduling

Airlines have low profitability

• < 2% profit margin (US, 2007)

High delays and implied delay costs

• 4.3 Billion hours delay (US, 2008)

• $41 Billion delay costs (US, 2008)
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Worse is still to come

Growth: 
• 2.5% more flights annually

• Every 1% additional flights incur an additional 5% delays 
(Schaefer et al., 2005)

• => Yearly increase of delays of 12.5%

Europe: 50% of flights in 2030 depart or land at 
congested airports

Airlines must react – we try to help
• Improve operations in a congested network
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Outline

Optimization under uncertainty
• In general

• In airline scheduling

Robust Maintenance Routing Problem
• Definitions

• “Robust” and “Recoverable” models

 Simulation – preliminary results
• Methodology to evaluate and compare robust solutions

• Preliminary a priori and a posteriori results
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General Optimization Problems

Planning Observing Adapting
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Robustness: plan for stability and reliability

Optimized solutions have

• Highest “expected” revenue/yield/profit

• Known to be sensitive to noise

Robust solutions have

• Lower expected revenue/yield/profit

• Higher reliability
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Definition of robustness

Unclear in literature

• For more “stable” solutions (that remain feasible)

• For more “flexible” solutions

• For solutions with lower “operational costs”

How to determine what “more robust” means?

• What metric to use?

• Should it be a priori or a posteriori?
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Parallel to Stochastic Programming

What is the equivalent to robustness

• Stochastic optimization

• Stochastic optimization with recourse

• Risk management / chance constraint programming?

Or are these robust methods themselves?
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Airline Scheduling: An iterative Process

Route Choice

Fleet Assignment

Maintenance Routing

Crew Pairing

Crew Rostering

Revenue Management
(passenger booking)

Day of Operations (Disruption Management)

-60 to -6 months

-6 months

-6 to -2 months

-6 to -2 months

-2 to -1 months

-6 months 
to day D



May 10th , 2010 Niklaus Eggenberg Transp-OR, EPFL 11/31

Robustness in airline scheduling

Robust airline schedules are 

• Operationally more efficient

• Less sensitive to delay
o i.e. with reduced delay propagation

MTT
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Delay Propagation

 2 types of delays for each flight

• Independent delay: generated during a flight
o At any stage (taxi, runway, landing,…)

• Propagated delay
o Delay due to previously delayed flight

o Propagation is downstream (possibly to several flights)

Del (f) = ID(f) + PD(f)

Robustness proxy = expected PD

• To be minimized



May 10th , 2010 Niklaus Eggenberg Transp-OR, EPFL 13/31

Other meanings of robustness

Robustness is also used as a “flexibility” measure

• Facilitates recovery

• Reduces recovery costs

We differentiate

• ROBUSTNESS vs  RECOVERABILITY
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Robust Maintenance Routing Problem (MRP)

Deterministically known
• Original schedule (1 maintenance route/aircraft)

To determine
• New routes for each aircraft
• And/or new departure times for each flight

Constraints
• Maintenance routes are feasible for each aircraft
• All flights are covered exactly once
• Each flight is retimed by at most  ±15
• Total retiming of all flights of at most C minutes (500 or 1000)

Objective
• Optimize robustness metric
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Used Uncertainty Feature Optimization (UFO) 
Models

Use different UFs:

• IT: maximize total idle time

• MIT: maximize sum of minimal idle time of each route

• CROSS: maximize nbr plane crossings

• PCON: maximize passenger idle connection time

• MinPCON: maximize minimal PCON

Solved with CG algorithm (COIN-OR – BCP package)
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Benchmark

Models from literature
• EPD: minimize expected propagated delay (Lan et al., 2006)

o No retiming

o Allow only plane swaps

• EPD2: minimize expected propagated delay (AhmadBeygi et al., 2008)
o No plane swaps

o Allow for retiming by ± 15 minutes

o Total retiming bounded (500 or 1000 minutes)

 Solved with same CG algorithm (COIN-OR – BCP 
package)
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Measuring Recoverability: Methodology

 Solve Robust MRP using different models

 Apply some disruption scenarios
• Differentiate independent and propagated delay
• Update propagated delay according to schedule

 Solve the recovery problem
• Using same recovery algorithm

 Evaluation with external recovery cost evaluator
• Data and cost-evaluator provided by the 

ROADEF Challenge 2009

Planning

Observing

Adapting
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Scenario Generation

EPD and EPD2 require expected delay for each flight

• Generate two distributions using historical data from 
similar airline (scenarios 1 and 2)

• Generate several scenarios drawing from each scenario
o No variability (perfect information)

o Low variability  (        =    0.1      )

o High variability (        =    0.5      )

• Evaluate solutions on all scenarios and apply recovery 
algorithm
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Generated schedules

UFO solutions are the same for both scenarios

• UFs are non-predictive models

EPD solutions are different

• Solution depends on estimated delay distribution

Use two “realities” to simulate erroneous predictive 
models



May 10th , 2010 Niklaus Eggenberg Transp-OR, EPFL 20/31

Simulation Overview – UFO solutions

Scenario/Solution Solutions Sc. 1 Solutions Sc. 2

Scenario 1 NEUTRAL NEUTRAL

Scenario 2 NEUTRAL NEUTRAL
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Simulation Overview – EPD and EPD2

Scenario/Solution Solutions Sc. 1 Solutions Sc. 2

Scenario 1 OK
WRONG

DISTRIBUTION

Scenario 2
WRONG

DISTRIBUTION
OK



May 10th , 2010 Niklaus Eggenberg Transp-OR, EPFL 22/31

Comparison Criteria

Compare a priori AND recovery statistics
A priori

• UF values
• EPD

Recovery statistics
• Recovery costs
• Aircraft statistics

o Total aircraft delay
o Canceled flights

• Passenger statistics
o Total passenger delay
o Rerouted passengers
o Canceled passengers
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Used Instance

608 flights

85 aircraft

36010 passengers

1 day
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A priori robustness statistics 
(max retiming = 500 minutes)

Original IT MIT PCON EPD EPD2

Sc
e

n
ar

io
1 EPD [min] 8453 8265 8431 8496 8411 7953

IT [min] 12000 12185 12010 12135 12010 12060

PCON
[min]

10815 10950 10860 11815 10815 10795

Sc
e

n
ar

io
2 EPD [min] 7282 7185 7221 7221 7251 6732

IT [min] 12000 12185 12010 12135 12065 12110

PCON
[min]

10815 10950 10860 11815 10815 10855
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Simulation Overview – EPD and EPD2

Scenario S1 S2

S1 OK
WRONG

DISTRIBUTION

S2
WRONG

DISTRIBUTION
OK
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Average Results (25 scenarios in each “reality”)

Original IT MIT PCON EPD EPD2

Sc
e

n
ar

io
1 # canc. 

Flts
13.2 13.2 12.3 11.8 8.5 11.2

P.D. [min] 17,738 17,352 17,692 17,843 17,827 16,866

Rec Cost 
[€]

872,942 # # 714,236 676,273 866.298

Sc
e

n
ar

io
2 # canc. 

Flts
9.9 9.8 9.4 8.1 6.5 7.7

P.D. [min] 14,115 13,973 14,029 14,052 13,967 13,310

Rec Cost 
[€]

548,194 # # 422,551 423,997 449,128
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Simulation Overview – EPD and EPD2

Scenario S1 S2

S1 OK
WRONG

DISTRIBUTION

S2
WRONG

DISTRIBUTION
OK
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Average Results (25 scenarios in each “reality”)

EPD_S1 EPD_S2 EPD2_S1 EPD2_S2 PCON

Sc
e

n
ar

io
1 # canc. Flts 8.5 8.6 11.2 11.6 11.8

P.D. [min] 17,827 17,697 16,866 17,186 17,843

Rec Cost [€] 676,273 684,246 866.298 915,433 714,236

Sc
e

n
ar

io
2 # canc. Flts 6.5 6.5 7.9 7.7 8.1

P.D. [min] 13,971 13,967 13,624 13,310 14,052

Rec Cost [€] 428,885 423,997 461,774 449,128 422,551
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Conclusions

No absolute meaning of robustness
• How to measure?
• How to evaluate?

Methodology to compare solutions
• A priori using pre-defined proxies
• A posteriori using recovery statistics

Preliminary results show that
• Proxies are inter-correlated
• Using evaluation approach allows better understanding of 

these inter-correlations and their implications
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Open Research Directions

Extend simulations and perform deeper analysis to

• Better understand relations between proxies

• Understand correlations between
o a priori proxies

o a posteriori proxies (recovery statistics)

o Structure of the recovery algorithm

Will this analysis allow to define robustness…

• … with respect to a given recovery algorithm?

• … with respect to a chosen proxy?
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The End

Thank you for your attention!


