# How robust are robust schedules in reality?

# N. Eggenberg, M. Salani, M. Bierlaire

Transport and Mobility Laboratory, EPFL, Switzerland

Funded by :

SNSF - Project 200021-118547





Niklaus Eggenberg

Transp-OR, EPFL

#### Introduction







╉





1/31

# Some numbers



Huge economical impact

- Air France-KLM 35 Mio € / day
- Lufthansa 48 Mio € / day
- IATA: \$200 Mio / day to air sector

Spill out due to disrupted / blocked passengers





2/31

Why robustness appeals for airline scheduling

Airlines have low profitability

< 2% profit margin (US, 2007)</p>

High delays and implied delay costs

- 4.3 Billion hours delay (US, 2008)
- \$41 Billion delay costs (US, 2008)





3/31

# Worse is still to come

#### Growth:

- 2.5% more flights annually
- Every 1% additional flights incur an additional 5% delays (Schaefer et al., 2005)
- => Yearly increase of delays of 12.5%
- Europe: 50% of flights in 2030 depart or land at congested airports

#### Airlines must react – we try to help

Improve operations in a congested network



May 10<sup>th</sup> , 2010



# Outline

Optimization under uncertainty

- In general
- In airline scheduling

Robust Maintenance Routing Problem

- Definitions
- "Robust" and "Recoverable" models

#### □ Simulation – preliminary results

- Methodology to evaluate and compare robust solutions
- Preliminary a priori and a posteriori results





5/31

### **General Optimization Problems**



# Robustness: plan for stability and reliability

Optimized solutions have

- Highest "expected" revenue/yield/profit
- Known to be sensitive to noise

Robust solutions have

- Lower expected revenue/yield/profit
- Higher reliability





7/31

# Definition of robustness

#### Unclear in literature

- For more "*stable*" solutions (that remain feasible)
- For more "*flexible*" solutions
- For solutions with lower "*operational costs*"

#### How to determine what "more robust" means?

- What metric to use?
- Should it be a priori or a posteriori?





8/31

# Parallel to Stochastic Programming

What is the equivalent to robustness

- Stochastic optimization
- Stochastic optimization with recourse
- Risk management / chance constraint programming?

#### Or are these robust methods themselves?





9/31

# Airline Scheduling: An iterative Process



# Robustness in airline scheduling

Robust airline schedules are

- Operationally more efficient
- Less sensitive to delay

o i.e. with reduced delay propagation







11/31

Niklaus Eggenberg

Transp-OR, EPFL

### **Delay Propagation**

#### 2 types of delays for each flight

• Independent delay: generated during a flight

• At any stage (taxi, runway, landing,...)

#### • Propagated delay

- Delay due to previously delayed flight
- Propagation is downstream (possibly to several flights)

# □ Del (f) = ID(f) + PD(f)

#### Robustness proxy = expected PD

To be minimized



May 10<sup>th</sup> , 2010

# Other meanings of robustness

Robustness is also used as a "*flexibility*" measure

- Facilitates recovery
- Reduces recovery costs

#### UWe differentiate

• ROBUSTNESS vs RECOVERABILITY





# Robust Maintenance Routing Problem (MRP)

#### Deterministically known

- Original schedule (1 maintenance route/aircraft)
- 🖵 To determine
  - New routes for each aircraft
  - And/or new departure times for each flight
- Constraints
  - Maintenance routes are feasible for each aircraft
  - All flights are covered exactly once
  - Each flight is retimed by at most ±15
  - Total retiming of all flights of at most C minutes (500 or 1000)

#### Objective

• Optimize robustness metric





14/31

# Used Uncertainty Feature Optimization (UFO) Models

#### Use different UFs:

- IT: maximize total idle time
- MIT: maximize sum of minimal idle time of each route
- CROSS: maximize nbr plane crossings
- PCON: maximize passenger idle connection time
- MinPCON: maximize minimal PCON

### Solved with CG algorithm (COIN-OR – BCP package)





### Benchmark

#### Models from literature

- EPD: minimize expected propagated delay (Lan et al., 2006)
  - No retiming
  - Allow only plane swaps
- EPD2: minimize expected propagated delay (AhmadBeygi et al., 2008)
  - No plane swaps
  - Allow for retiming by ± 15 minutes
  - Total retiming bounded (500 or 1000 minutes)

# Solved with same CG algorithm (COIN-OR – BCP package)



May 10<sup>th</sup> , 2010



16/31

# Measuring Recoverability: Methodology

Solve Robust MRP using different models

Apply some disruption scenarios

- Differentiate *independent* and *propagated* delay
- Update propagated delay according to schedule

Solve the recovery problem

Using same recovery algorithm

Evaluation with external recovery cost evaluator

 Data and cost-evaluator provided by the ROADEF Challenge 2009



May 10<sup>th</sup> , 2010

Niklaus Eggenberg



Planning

Observing

Adapting

#### Scenario Generation

EPD and EPD2 require expected delay for each flight

- Generate two distributions using historical data from similar airline (scenarios 1 and 2)
- Generate several scenarios drawing from each scenario

• No variability (perfect information)

$$_{\odot}$$
 Low variability (  $\sigma$  = 0.1  $\hat{\mu}$  )

• High variability (  $\sigma = 0.5 \hat{\mu}$  )

 Evaluate solutions on all scenarios and apply recovery algorithm





#### **Generated schedules**

UFO solutions are the same for both scenarios

• UFs are non-predictive models

#### EPD solutions are different

Solution depends on estimated delay distribution

# Use two "realities" to simulate erroneous predictive models





## Simulation Overview – UFO solutions

| Scenario/Solution | Solutions Sc. 1 | Solutions Sc. 2 |  |  |
|-------------------|-----------------|-----------------|--|--|
| Scenario 1        | NEUTRAL         | NEUTRAL         |  |  |
| Scenario 2        | NEUTRAL         | NEUTRAL         |  |  |





20/31

### Simulation Overview – EPD and EPD2

| Scenario/Solution | Solutions Sc. 1       | Solutions Sc. 2       |
|-------------------|-----------------------|-----------------------|
| Scenario 1        | ОК                    | WRONG<br>DISTRIBUTION |
| Scenario 2        | WRONG<br>DISTRIBUTION | ОК                    |





21/31

### **Comparison Criteria**

#### Compare a priori AND recovery statistics

- 🖵 A priori
  - UF values
  - EPD
- Recovery statistics
  - Recovery costs
  - Aircraft statistics
    - Total aircraft delay
    - Canceled flights
  - Passenger statistics
    - Total passenger delay
    - Rerouted passengers
    - Canceled passengers



May 10<sup>th</sup> , 2010

ECOLE POLYTECHNIQUE

22/31

Niklaus Eggenberg

Transp-OR, EPFL

**Used Instance** 

**608** flights

85 aircraft

36010 passengers

#### 1 day





23/31

Niklaus Eggenberg

Transp-OR, EPFL

# A priori robustness statistics (max retiming = 500 minutes)

|            |               | Original | ІТ    | MIT   | PCON  | EPD   | EPD2  |
|------------|---------------|----------|-------|-------|-------|-------|-------|
| 01         | EPD [min]     | 8453     | 8265  | 8431  | 8496  | 8411  | 7953  |
| nari       | IT [min]      | 12000    | 12185 | 12010 | 12135 | 12010 | 12060 |
| Sce        | PCON<br>[min] | 10815    | 10950 | 10860 | 11815 | 10815 | 10795 |
| Scenario 2 | EPD [min]     | 7282     | 7185  | 7221  | 7221  | 7251  | 6732  |
|            | IT [min]      | 12000    | 12185 | 12010 | 12135 | 12065 | 12110 |
|            | PCON<br>[min] | 10815    | 10950 | 10860 | 11815 | 10815 | 10855 |





### Simulation Overview – EPD and EPD2





Niklaus Eggenberg

# Average Results (25 scenarios in each "reality")

|            |                 | Original | ІТ     | ΜΙΤ    | PCON    | EPD     | EPD2    |
|------------|-----------------|----------|--------|--------|---------|---------|---------|
| 01         | # canc.<br>Flts | 13.2     | 13.2   | 12.3   | 11.8    | 8.5     | 11.2    |
| nari       | P.D. [min]      | 17,738   | 17,352 | 17,692 | 17,843  | 17,827  | 16,866  |
| Sce        | Rec Cost<br>[€] | 872,942  | #      | #      | 714,236 | 676,273 | 866.298 |
| Scenario 2 | # canc.<br>Flts | 9.9      | 9.8    | 9.4    | 8.1     | 6.5     | 7.7     |
|            | P.D. [min]      | 14,115   | 13,973 | 14,029 | 14,052  | 13,967  | 13,310  |
|            | Rec Cost<br>[€] | 548,194  | #      | #      | 422,551 | 423,997 | 449,128 |



Niklaus Eggenberg

### Simulation Overview – EPD and EPD2





Niklaus Eggenberg

27/31

# Average Results (25 scenarios in each "reality")

|            |              | EPD_S1  | EPD_S2  | EPD2_S1 | EPD2_S2 | PCON    |
|------------|--------------|---------|---------|---------|---------|---------|
| 01         | # canc. Flts | 8.5     | 8.6     | 11.2    | 11.6    | 11.8    |
| nari       | P.D. [min]   | 17,827  | 17,697  | 16,866  | 17,186  | 17,843  |
| Sce        | Rec Cost [€] | 676,273 | 684,246 | 866.298 | 915,433 | 714,236 |
| Scenario 2 | # canc. Flts | 6.5     | 6.5     | 7.9     | 7.7     | 8.1     |
|            | P.D. [min]   | 13,971  | 13,967  | 13,624  | 13,310  | 14,052  |
|            | Rec Cost [€] | 428,885 | 423,997 | 461,774 | 449,128 | 422,551 |





28/31

#### Conclusions

#### No absolute meaning of robustness

- How to measure?
- How to evaluate?

Methodology to compare solutions

- A priori using pre-defined proxies
- A posteriori using recovery statistics

#### Preliminary results show that

- Proxies are inter-correlated
- Using evaluation approach allows better understanding of these inter-correlations and their implications





29/31

# **Open Research Directions**

Extend simulations and perform deeper analysis to

- Better understand relations between proxies
- Understand correlations between
  - o a priori proxies
  - o a posteriori proxies (recovery statistics)
  - Structure of the recovery algorithm
- Will this analysis allow to define robustness...
  - ... with respect to a given recovery algorithm?
  - ... with respect to a chosen proxy?





30/31

The End

# Thank you for your attention!





(PA) ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

On Time Cancelled Cancelled Cancelled

On Time

Cancelled

On Time Cancelled

:15p

15p

Niklaus Eggenberg

31/31