Modeling the dynamics of all-day activity plans

Willem Himpe¹ Gunnar Flötteröd, Ricardo Hurtubia, and Michel Bierlaire²

June 22, 2010

¹KU Leuven ²EPF Lausanne

- activity-based travel demand modeling
- personalized services on smartphones

Model estimation

Preliminary validation

Model estimation

Preliminary validation

activity type: home, work, education, leisure, shopping, other activity schedule: temporal sequence of activity types

	home		work		shop	leis	ure	home		
00:0	00	08:0	0 1	7:00	19	:00	22:	:00	24	:00

Dynamics of activity schedules

• timing

- facility (e.g., shop, office) opening times
- avoid exhaustive activities early in the day
- duration
 - being at work for 8 h is desirable, just 2 h are not
 - playing tennis for 2 h is fun, playing for 8 h is not
- sequencing
 - don't go shopping twice per day
 - bring kids to kindergarden \rightarrow pick them up later

home work	???	???	home
-----------	-----	-----	------

- activity schedule consists of N activity slots with fixed timing
- *n*th activity is $a_n \in \{\text{home, work, edu, leisure, shop, other}\}$
- M unknown activities with indices x_m , $m = 1 \dots M$
- objective: model probability distribution of full schedule

$$P(a_{\{x_1...x_M\}}|a_{\{1...N\}\setminus\{x_1...x_M\}})$$

- problem with full model: combinatorial explosion
- assume that only one activity is unknown

 $P(a_x|a_{\{1\ldots N\}\setminus x})$

- one-dimensional distribution, no combinatorial issues
- can be estimated from data

• reconstruct full (multiple-gap) distribution

$$P(a_{\{x_1...x_M\}}|a_{\{1...N\}\setminus\{x_1...x_M\}})$$

from marginals

$$P(a_{x_m}|a_{\{1\ldots N\}\setminus x_m}), m = 1\ldots M$$

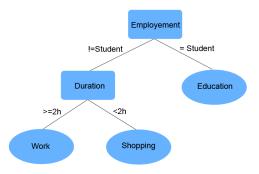
- computational technique: Gibbs sampling
- only requires the estimation of single-gap models

Model estimation

Preliminary validation

- Swiss microcensus 2005
 - overall 33 390 respondents
 - activity and travel behavior for a single day
 - linked to socio-economics of respondents
- consider only canton of Vaud
 - 2157 persons
 - 8508 activities

Study region: canton of Vaud



Model structure

- represent single-gap model through decision tree
- example:

name	values	description	
day	minutes after midnight	first time at which home is left	
activ_start	minutes after midnight	starting time of the activity gap	
duration	minutes	duration of the activity gap	
{tot_ <i>activity</i> }	minutes	total duration of <i>activity</i> outside gap	
employment	full time, part time,	daytime occupation of respondent	
	student, unemployed		
weekday	any weekday	considered day of the week	
prev_act	an activity type	activity conducted before the gap	
next_act	an activity type	activity conducted after the gap	

- use C4.5 learning algorithm (Weka software package)
- incrementally builds a decision tree, then extracts rules
- selects branching conditions that separate the data well
- technically, maximizes entropy of child node distribution
- yields "crisp rules", no probabilities
 ⇒ attach empirical activity distribution to each leaf

Estimation results

- tree with 57 leaves
- > 68 % of data correctly classified (10-fold cross-validation)
- extracted rules are plausible
- example:

IF act_start_time ≤ 532 min (08:52) AND employment ∉ {student, unemployed} THEN Pr(gap=work) = 0.81

work	vork shop leisure		home edu		other	model/data	
1308	57	218	127	22	0	work	
89	568	486	81	5	6	shop	
162	293	2251	295	31	2	leisure	
114	59	259	1277	4	1	home	
13	3	47	15	391	0	education	
32	124	133	23	3	9	other	

Model estimation

Preliminary validation

Smartphone data collection campaign

- joint project with Nokia
- approx. 50 respondents carry smartphones that observe
 - GPS, wireless, Bluetooth
 - actions conduced on phone
 - visual & acoustic samples
- supplementary survey
- \Rightarrow behavioral modeling

- preliminary data base
 - one respondent
 - 45 days

Results - performance measures

• single-gap log-likelihood

$$\mathcal{L}_{single} = \sum_{d=1}^{45} \sum_{x=1}^{N_d} \log P(a_x = y_{dx} | a_{\{1 \dots N_d\} \setminus x})$$

where

- N_d is the number of activities in day d
- y_{dx} is the reported activity in slot x of day d
- multiple-gap log-likelihood

$$\mathcal{L}_{multiple} = \sum_{d=1}^{45} \sum_{x=1}^{N_d} \log P(a_x = y_{dx} | \cdot)$$

Results – performance measures

• null log-likelihood

$$\mathcal{L}_0 = \sum_{d=1}^{45} \sum_{x=1}^{N_d} \log \frac{1}{6}$$

• results

\mathcal{L}_0	-49.802
$\mathcal{L}_{\textit{single}}$	-28.434
$\mathcal{L}_{multiple}$	-36.224

Model estimation

Preliminary validation

- dynamic, non-behavioral model of activity scheduling
- requires estimation only of models for single activities
- draws full activity schedules with Gibbs sampling

Outlook

- replace known activities by activity distributions
- model more degrees of freedom
 - temporal structure
 - number of activities
 - travel episodes
- replace rule set by behavioral model
 - interpretability
 - extrapolation

Outlook

- replace known activities by activity distributions
- model more degrees of freedom
 - temporal structure
 - number of activities
 - travel episodes
- replace rule set by behavioral model
 - interpretability
 - extrapolation

Thank you for your attention.

