## Robust and Recoverable Maintenance Routing Schedules

## N. Eggenberg, M. Salani, M. Bierlaire

Transport and Mobility Laboratory, EPFL, Switzerland

Funded by :

SNSF - Project 200021-118547





N. Eggenberg

Transp-OR, EPFL

#### Introduction











1/32

## Some numbers



Huge economical impact<sup>1</sup>

- \$1.7 billion loss of revenue for first week
- \$400 million a day for the first 4 days
- 1.2 million affected passengers / day

Spill out due to disrupted / blocked passengers

<sup>1</sup> www.iata.org/pressroom, Press release No 15, 21 April 2010



ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

AGIFORS, June 24-25 2010



Why robustness appeals for airline scheduling

□ Airlines have low profitability

< 2% profit margin (US, 2007)</p>

High delays and implied delay costs<sup>2</sup>

- 4.3 Billion hours delay (US, 2008)
- \$41 Billion delay costs (US, 2008)

<sup>2</sup> Your flight has been delayed again (2008), Joint Economic Committee www.jec.senate.gov





3/32

### Worse is still to come

#### Growth:

- 2.5% more flights annually
- Every 1% additional flights incur an additional 5% delays (Schaefer et al., 2005)
- => Yearly increase of delays of 12.5%
- Europe: 50% of flights in 2030 depart or land at congested airports

#### Airlines must react – we try to help

Improve operations in a congested network





4/32

AGIFORS, June 24-25 2010



#### Are these (potential) costs considered at the planning phase?

What would change?





5/32

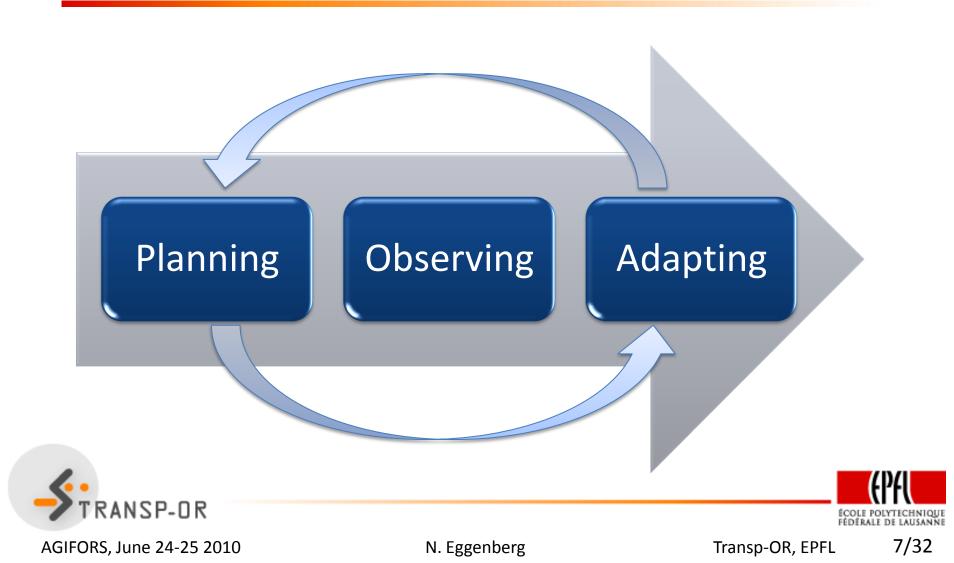
## Outline

Optimization under uncertainty

- In general
- In airline scheduling

Robust Maintenance Routing Problem

- Definitions
- "Robust" and "Recoverable" models


#### Simulation – preliminary results

- Methodology to evaluate and compare robust solutions
- Preliminary a priori and a posteriori results





#### **General Optimization Problems**



## Other meanings of robustness

#### Robustness is also used as a

- "*stability*" measure
  - Absorbs disruptions
  - Does not require recovery
- "flexibility" measure
  - Facilitates recovery
  - Reduces recovery costs

#### UWe differentiate

#### • ROBUSTNESS vs RECOVERABILITY





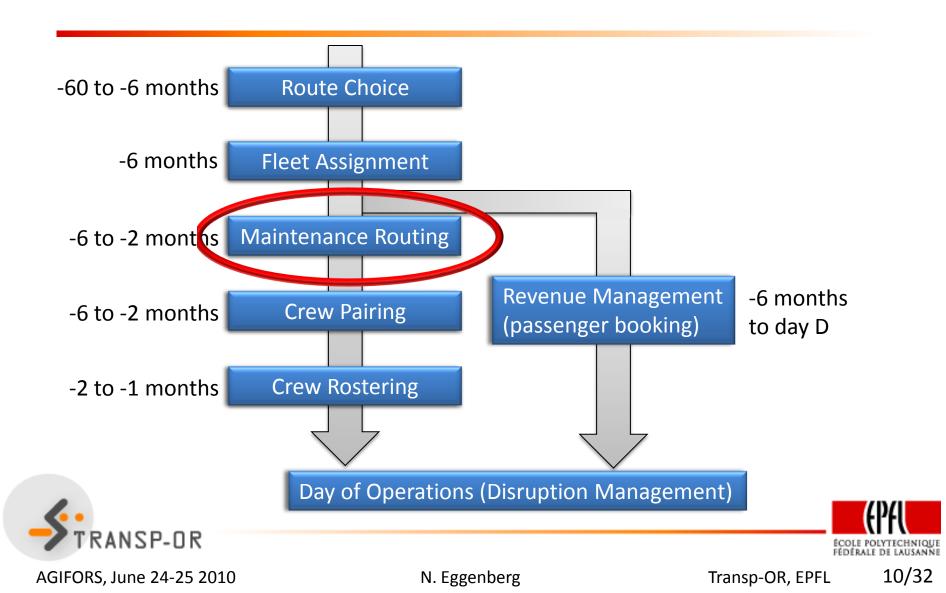
AGIFORS, June 24-25 2010

#### Our objectives

Examine how robustness proxies and performance metrics are correlated

- Robustness proxies are structural a priori properties of the schedule
  - Expected propagated delay
  - Total slack in aircraft routes
  - Total passenger connection time
  - •

Performance metrics are a posteriori metric


- Observed propagated delay
- Total passenger delay
- Recovery costs



ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE



## Airline Scheduling: An iterative Process



## Robust Maintenance Routing Problem (MRP)

#### Deterministically known

- Original schedule (1 maintenance route/aircraft)
- 🖵 To determine
  - New routes for each aircraft
  - And/or new departure times for each flight
- Constraints
  - Maintenance routes are feasible for each aircraft
  - All flights are covered exactly once
  - Each flight is retimed by at most ±15
  - Total retiming of all flights of at most C minutes (500 or 1000)

#### Objective

Optimize robustness proxy





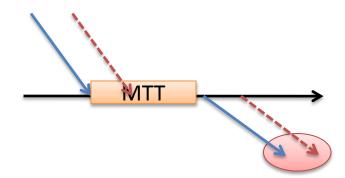
## Used Uncertainty Feature Optimization (UFO)<sup>3</sup> Models

#### Use different UFs:

- IT: maximize total idle time
- MIT: maximize sum of minimal idle time of each route
- CROSS: maximize nbr plane crossings
- PCON: maximize passenger idle connection time
- MinPCON: maximize minimal PCON

#### Solved with CG algorithm (COIN-OR – BCP package)

(Eggenberg et al., 2010)


<sup>3</sup> Eggenberg et al. (2010b), Uncertainty Feature Optimization: a implicit paradigm for problems with noisy data (accepted for publication in Networks in June, 2010)



12/32

# Robustness in airline scheduling – existing approach

- Robust airline schedules are
  - Operationally more efficient
  - Less sensitive to delay
    - o i.e. with reduced delay propagation







13/32

### **Delay Propagation**

#### 2 types of delays for each flight

• Independent delay: generated during a flight

• At any stage (taxi, runway, landing,...)

#### • Propagated delay

- Delay due to previously delayed flight
- Propagation is downstream (possibly to several flights)

## □ Del (f) = ID(f) + PD(f)

Robustness proxy = expected PD

To be minimized



AGIFORS, June 24-25 2010





FÉDÉRALE DE LAUSANN

#### Benchmark

#### Models from literature

- EPD: minimize expected propagated delay (Lan et al., 2006)
  - No retiming
  - Allow only plane swaps
- EPD2: minimize expected propagated delay (AhmadBeygi et al., 2008)
  - No plane swaps
  - Allow for retiming by ± 15 minutes
  - Total retiming bounded (500 or 1000 minutes)

Solved with same CG algorithm (COIN-OR – BCP package) (Eggenberg et al., 2010)





15/32

AGIFORS, June 24-25 2010

## Measuring Recoverability: Methodology

Solve Robust MRP using different robust models

Simulate different disruption scenarios

- Differentiate *independent* and *propagated* delay
- Update propagated delay according to schedule

Solve the recovery problem

Using same recovery algorithm (Eggenberg et al., 2010)

Evaluation with external recovery cost evaluator

 Data and cost-evaluator provided by the ROADEF Challenge 2009 (challenge.roadef.org/2009)



AGIFORS, June 24-25 2010

Planning

Observing

Adapting

#### Scenario Generation

Use historical data of 2 year and separate it by season

- Winter (October March)
- Summer (April September)

For each airport, we have arrival and departure delays

Generate delays for flight f from A to B drawing from empirical distribution by

```
Del = 0.5 * [depDel(A) + arrDel(A)]
```





17/32

#### Generated schedules

#### UFO solutions are the same for Winter and Summer

• UFs are non-predictive models

#### EPD solutions are different

- Solution depends on estimated delay distribution
- Based on average delay of each flight, which is different in Winter and in Summer





## Notation for models

**Model of** Lan et al., 2006 (minimize expected propagated delay)

- EPD\_W: use average delay of Winter
- EPD\_S: use average delay of Summer

**Model of** AhmadBeygi et al., 2008 (minimize expected propagated delay)

- EPD2\_W: use average delay of Winter
- EPD2\_S: use average delay of Summer

#### Model name + "\_XXX"

• XXX is the value of C (maximum allowed retiming in min.)





19/32

#### Simulation Overview – UFO solutions

| Scenario/Schedules | Winter Schedules | Summer Schedules |  |  |
|--------------------|------------------|------------------|--|--|
| Winter Scenarios   | NEUTRAL          | NEUTRAL          |  |  |
| Summer Scenarios   | NEUTRAL          | NEUTRAL          |  |  |





20/32

#### Simulation Overview – EPD and EPD2

| Scenario/Schedules | EPD_W & EPD2_W        | EPD_S & EPD2_S        |  |  |
|--------------------|-----------------------|-----------------------|--|--|
| Winter Scenarios   | ОК                    | WRONG<br>DISTRIBUTION |  |  |
| Summer Scenarios   | WRONG<br>DISTRIBUTION | ОК                    |  |  |





21/32

#### **Comparison Criteria**

Compare a priori AND recovery statistics

- A priori proxies (= objective functions of different models)
  - UF values
  - EPD

#### Recovery statistics

- Recovery costs
- Aircraft statistics
  - Total aircraft delay
  - Canceled flights
- Passenger statistics
  - Total / average passenger delay
  - Rerouted passengers
  - Canceled passengers



ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

22/32

# Used Instance – Derived from instance A01 of the Roadef Challenge 2009



🗆 85 aircraft

36010 passengers

#### 🗆 1 day





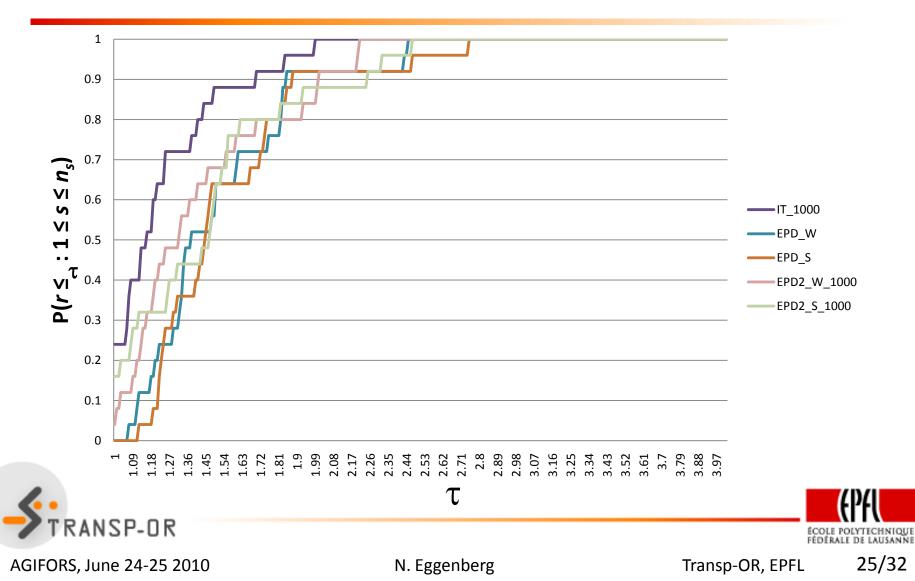
23/32

### **Robustness Proxies: Correlations**

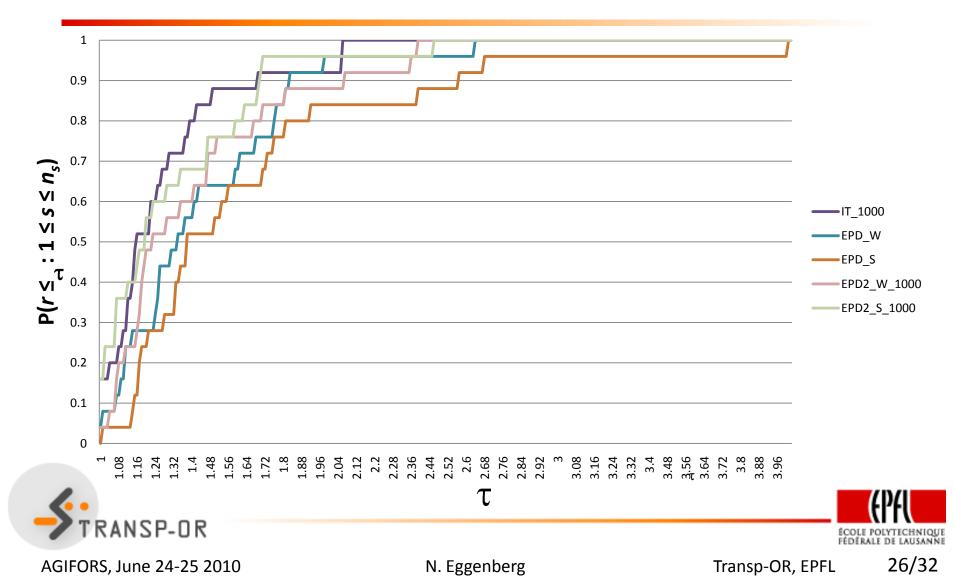
| WINTER | IT     | MIT   | PCON  | EPD | SUMMER | IT     | MIT   | PCON   | EPD |
|--------|--------|-------|-------|-----|--------|--------|-------|--------|-----|
| IT     | Х      |       |       |     | IT     | Х      |       |        |     |
| MIT    | 0.293  | Х     |       |     | MIT    | 0.293  | Х     |        |     |
| PCON   | 0.851  | 0.251 | Х     |     | PCON   | 0.865  | 0.248 | Х      |     |
| EPD    | -0.318 | 0.458 | -0.04 | Х   | EPD    | -0.392 | 0.381 | -0.082 | Х   |

Bold values are significant with confidence level  $\alpha$  = 0.001




N. Eggenberg




24/32

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

## Performance Profiles Over all 25 instances (Winter only)



## Performance Profiles Over all 25 instances (Summer only)



## Recovery Performance Metrics – Overall (Winter + Summer)

|                             | Original | IT_1000 | MIT_500 | PCON_1000 | EPD2_W_10<br>00 | EPD2_S_100<br>0      |
|-----------------------------|----------|---------|---------|-----------|-----------------|----------------------|
| Rec. Costs<br>[k€]          | 249.2    | 197.4   | 241.1   | 249.6     | 248.6           | 239.8                |
| Nbr Canc.<br>Pax            | 137      | 104     | 123     | 137       | 139             | 129                  |
| Avg. Pax<br>delay [min]     | 33.42    | 31.55   | 34.6    | 33.33     | 32.97           | 31.80                |
| Nbr<br>Cancelled<br>Flights | 2.98     | 2.36    | 3.08    | 2.98      | 2.84            | 2.94                 |
| Nbr Delayed<br>Flights      | 53.7     | 50.6    | 55.2    | 53.8      | 53.1            | 45.8                 |
| Propagated<br>Delay [min]   | 9405     | 7632    | 9732    | 9382      | 9069            | 6108                 |
| TRANSP-OR                   | 2        |         |         |           |                 | ÉCOLE PO<br>FÉDÉRALE |

AGIFORS, June 24-25 2010

## **Recovery Performance Metrics: Correlations**

| Overall                | Recovery<br>Costs | # Cancelled<br>Pax | Average Pax<br>Delay | # Cancelled<br>Flights | Propagated<br>Delay |
|------------------------|-------------------|--------------------|----------------------|------------------------|---------------------|
| Recovery<br>Costs      | х                 |                    |                      |                        |                     |
| # Cancelled<br>Pax     | 0.961             | х                  |                      |                        |                     |
| Average Pax<br>Delay   | 0.683             | 0.621              | х                    |                        |                     |
| # Cancelled<br>Flights | 0.786             | 0.779              | 0.469                | х                      |                     |
| Propagated<br>Delay    | 0.548             | 0.467              | 0.815                | 0.427                  | х                   |

Bold values are significant with confidence level  $\alpha$  = 0.001



ECOLE POLYTECHNIQUE

28/32

AGIFORS, June 24-25 2010

N. Eggenberg

Transp-OR, EPFL

# Recoverability: Correlation between a priori proxies and performance metrics

| Overall             | Total Slack | Minimum Slack | Passenger Connection<br>Time<br><b>PCON</b> | Expected Propagated<br>Delay<br>EPD |
|---------------------|-------------|---------------|---------------------------------------------|-------------------------------------|
| Recovery Costs      | -0.135      | -0.021        | -0.135                                      | 0.092                               |
| # Cancelled Pax     | -0.135      | -0.016        | -0.134                                      | 0.082                               |
| Average Pax Delay   | -0.084      | 0.058         | -0.086                                      | 0.137                               |
| # Cancelled Flights | -0.072      | -0.014        | -0.073                                      | 0.056                               |
| Propagated Delay    | -0.155      | 0.171         | -0.152                                      | 0.409                               |

Bold values are significant with confidence level  $\alpha$  = 0.05



AGIFORS, June 24-25 2010

ECOLE POLYTECHNIQUE

29/32



We propose a methodology to evaluate the relevance of robustness proxies

We show that these proxies are inter-correlated and indeed improve the *recoverability* of the schedule

We show that expected propagated delay

- is not a good indicator for recoverability
- is sensitive to errors in the uncertainty model

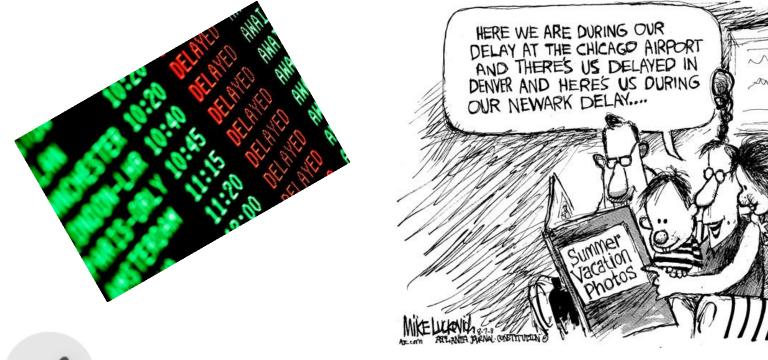




30/32

### **Open Research Directions**

- Exploit the correlation structure to combine the different robustness proxies
- Explore correlations on wider instance set with disruptions including
  - Imposed flight cancellations
  - Aircraft unavailability periods
  - Airport capacity modifications
- Study other proxies
  - Possible way to partially integrate downstream operational decisions
- Evaluate performances using other recovery algorithms
  - To identify whether correlations are due to the recovery algorithm or if they are globally improving recoverability






31/32

The End

## Thank you for your attention!





ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

32/32

On Time Cancelled Cancelled Cancelled

On Time

On Time Cancelled

Cancelled

:15p

15p

AGIFORS, June 24-25 2010