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Motivation

Worldwide 2004 2006 2008

1 Singapore 21’329 24’792 (+16%) 29’918 (+21%)

2 Shanghai 14’557 21’710 (+49%) 27’980 (+29%)

3 Hong Kong 21’984 23’539 (+07%) 24’248 (+03%)

Europe 2004 2006 2008

1 Rotterdam 8’291 9’655 (+17%) 10’784 (+12%)

2 Hamburg 7’003 8’862 (+27%) 9’737 (+10%)

3 Antwerp 6’064 7’019 (+16%) 8’663 (+23%)

Table 1: Container traffic (in thousands TEUs).
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Container terminals
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Container terminals

Scheme of a container terminal system (Steenken et al., 2004).
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Berth Allocation & Quay Crane Assignment

Berth Allocation Problem (BAP)

to assign and to schedule ships to berths over a time horizon, according to an

expected handling time, time windows on the arrival time of ships and availability

of berths.

Quay-Crane Assignment Problem (QCAP)

to assign quay cranes (QC) to ships scheduled by the given berth allocation plan,

over a time horizon, taking into account the QC capacity constraint in terms of

available quay cranes at the terminal.
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Tactical Berth Allocation Problem (TBAP)

Integration of BAP and QCAP

• tactical decision level : we analyze the problem from the terminal point of view,
in order to provide decision support in the context of the negotiation between
the terminal and shipping lines.

• quay-crane profiles and handling time: the handling time becomes a decision
variable, dependent on the assigned quay crane profile (i.e. number of cranes
per shift, ex. 332). Feasible profiles can vary in length (number of shifts
dedicated to the ship) and in size (number of QCs dedicated to the ship in
each active shift).

Housekeeping Yard Costs

in the context of a transshipment container terminal, we take into account the cost

generated by the exchange of containers between ships in terms of traveled

distance quay-yard-quay.

More details in (Giallombardo et al., 2010).
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The concept of QC assignment profile
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Problem definition

Find

• a berth allocation;

• a schedule;

• a quay crane assignment;

Given

• time windows on availability of berths;

• time windows on arrival of ships;

• handling times dependent on QC profiles;

• values of QC profiles;

Objective

• maximize total value of QC assignment;

• minimize housekeeping costs of transshipment flows between ships.
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Notation & data

N set of vessels ;

M set of berths ;

H set of time steps ;

Pi set of quay crane profiles for the vessel i ∈ N ;

t
p
i handling time of ship i ∈ N using QC profile p ∈ Pi;

v
p
i monetary value associated to qc profile p ∈ Pi, i ∈ N ;

q
pu
i number of quay cranes used by profile p ∈ Pi, i ∈ N at time position u;

Qh maximum number of quay cranes available at the time step h ∈ H;

fij flow of containers exchanged between vessels i, j ∈ N ;

gij binary parameter equal to 1 if fij > 0 and 0 otherwise;

dkw unit housekeeping cost between yard slots corresponding to berths k, w ∈ M .
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Column generation for TBAP

• We propose a Dantzig-Wolfe (DW) reformulation of the MILP by Giallombardo
et al. (2010) and we solve it using column generation.

• A column represents the sequence of ships calling at a given berth.

• A quay crane profile is assigned to every ship in the sequence.

• The master problem selects sequences in order to provide a min-cost solution.

• Profitable columns are generated by the pricing subproblem.
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Master problem

Additional notation

Ωk set of all feasible sequences for berth k ∈ M ;

αi
r coefficient equal to 1 if ship i is operated in sequence r, 0 otherwise;

β
ip
r coefficient equal to 1 if ship i is operated in sequence r with profile p, 0 otherwise;

qh
r number of quay cranes used by sequence r at time step h;

vr total value of sequence r ∈ Ωk defined as vr =
∑

i∈N

∑
p∈Pi

β
ip
r v

p
i .

Decision variables

sr equal to 1 if sequence r ∈ Ωk is chosen, 0 otherwise;

zkw
ij equal to 1 if ship i ∈ N is assigned to berth k ∈ M and ship j ∈ N to berth w ∈ M ,

0 otherwise.
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Master problem

Objective function

min
∑

i∈N

∑

j∈N

∑

k∈M

∑

w∈M

fijdkwzkw
ij −

∑

k∈M

∑

r∈Ωk

vrsr (1)

Ship covering & berth assignment

∑

k∈M

∑

r∈Ωk

αi
rsr = 1 ∀i ∈ N, (2)

∑

r∈Ωk

sr ≤ 1 ∀k ∈ M, (3)

Quay-cranes capacity

∑

k∈M

∑

r∈Ωk

qh
r sr ≤ Qh ∀h ∈ H, (4)
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Master problem

Linearization constraints

∑

k∈M

∑

w∈M

zkw
ij = gij ∀i ∈ N, j ∈ N, (5)

∑

r∈Ωk

ai
rsr − zkw

ij ≥ 0 ∀i ∈ N, j ∈ N, k ∈ M, w ∈ M, (6)

∑

r∈Ωw

aj
rsr − zkw

ij ≥ 0 ∀i ∈ N, j ∈ N, k ∈ M, w ∈ M, (7)

Variables’ domain

zkw
ij ≥ 0 ∀i ∈ N, j ∈ N, k ∈ M, w ∈ M, (8)

sr ≥ 0 ∀r ∈ Ωk, k ∈ M. (9)
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Pricing subproblem

Let [π, µ, π0, θ, η] be the dual vector associated to constraints (2), (3), (4), (6) and (7).

Reduced cost of sequence rk ∈ Ωk

c̃rk
= −vrk

− πk
0 −

∑

i∈N

πiαi
r −

∑

h∈H

µhqh
r −

∑

i,j∈N

∑

w∈M

θkw
ij ai

r −
∑

i,j∈N

∑

w∈M

ηkw
ij aj

r

Multiple pricing

• at each iteration, we have |M | subproblems, one for every berth;

• the subproblem identifies the column r∗
k

with the minimum reduced cost.

Column generation

• if c̃r∗
k

< 0 for some k, we add column r∗
k

and we iterate;

• otherwise the current master problem solution is proven to be optimal.
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Pricing subproblem

• The pricing subproblem is an Elementary Shortest Path Problem with Resource
Constraints (ESPP-RC).

• Generated sequences satisfy:

- flow and precedence constraints (scheduling);

- time windows constraints;

- profile assignment constraints.

• The pricing problem is solved via dynamic programming.
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Quality of bounds

Instance Best solution GAP wrt Lin.Rel. GAP wrt Col.Gen. Imp rovement

10Ap10 786’439 1.80% 1.42% 27.07%

10Ap20 785’637 1.94% 1.56% 24.69%

10Ap30 785’888 1.91% 1.56% 22.76%

10Ep10 732’101 1.21% 0.88% 37.38%

10Ep20 729’472 1.65% 1.33% 23.64%

10Ep30 729’173 1.69% 1.40% 20.56%

10Bp10 515’902 0.66% 0.47% 40.50%

10Bp20 515’991 0.65% 0.53% 21.90%

10Bp30 513’731 1.10% 0.98% 11.96%

10Cp10 564’831 0.59% 0.38% 54.83%

10Cp20 561’504 1.19% 0.98% 21.35%

10Cp30 559’389 1.58% 1.39% 13.89%
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Quality of bounds

• the bound provided by the linear relaxation is relatively good;

• however, it is never improved by CPLEX even using cuts and/or the MIP solver;

• the proposed Dantzig-Wolfe reformulation improves the bound, and thus the gap,
already at the root node;

• the further implementation of a problem-specific branching scheme is likely to
close the gap faster than the generic branching scheme implemented in CPLEX;

• ongoing work: branch-and-price-and-cut algorithm for TBAP.
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Pricing subproblem

Issues

• the underlying network has one node for every ship i ∈ N , for every quay crane
profile p ∈ Pi and for every time step h ∈ H;

• with a "standard" implementation, only small-size instances are solved in a
reasonable time.

Accelerating strategies

• bi-directional dynamic programming;

• heuristic pricing;

• for every ship i, definition of the list of non-dominated (h, p) pairs;

• recursive column generation.
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Recursive column generation

• We refer to the MILP by Giallombardo et al. (2010) as compact formulation.

• The decision variables of the TBAP compact formulation are:

yk
i ∈ {0, 1} berth assignment;

λ
p
i ∈ {0, 1} qc profile assignment;

xk
ij ∈ {0, 1} , Tk

i ≥ 0 ship scheduling.

• We focus on variables λ
p
i since the number of profiles has impact on the size of

the network in the pricing problem.
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Recursive column generation

Basic idea

• start solving the problem only with a meaningful subset of qc profiles P̂ ⊂ P ;

• dynamically add the profitable profiles p ∈ P \ P̂ that are missing.

Procedure: Recursive column generation

Input : a meaningful subset of qc profiles P̂ ⊂ P .

repeat

repeat

CG1 add columns sr ∈ Ω̂

until optimal ”partial” master problem ;

CG2 add compact-formulation variables λ
p
i such that p ∈ P \ P̂

until optimal master problem ;
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Recursive column generation

Advantages

• the pricing problem is easier to solve;

• possibly many sub-optimal compact variables are left out from the formulation.

Remarks

• CG1 is standard column generation: the dual optimal vector is known at every
iteration and reduced costs c̃rk

can be computed exactly;

• CG2 does not have any direct information available on the reduced cost of
compact-formulation variables λ

p
i ;

• We need the solution of the full pricing (or a valid bound to it) in order to
compute a valid LB for the problem.
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Main ingredients

Sub-optimal variable detection (Nemhauser and Wolsey, 1988)

If the reduced cost of a non-negative integer variable exceeds a given optimality

gap, the variable must be zero in any optimal integer solution.

LB to reduced cost of compact-formulation variables (Irnich et al., 2010)

If the minimum reduced cost of all path variables of a DW master problem
containing arc (i, j) exceeds a given optimality gap, no path that contains arc (i, j)

can be used in an optimal solution. Hence, the arc (i, j) can be eliminated.

Other methods to compute reduced cost of compact-formulation variables:

• Walker (1969): the pricing problem must be a pure linear program.

• Poggi de Aragão and Uchoa (2003): coupling constraints in the master problem.
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Lower bound to reduced cost of qc profiles

For a given ship i ∈ N and a given profile p ∈ Pi, a lower bound to the reduced cost of
the compact-formulation variable λ

p
i is provided by the minimum over all sequences

r ∈ Ω that use the qc profile p (i.e., λ
p
i = 1). In other words:

LB(rc(λp
i )) = min

r∈Fp

c̃r (10)

where Fp ⊂ Ω represents the set of all feasible sequences that use profile p.

• This bound can be computed using dynamic programming, as proposed by Irnich
et al. (2010).

• However, any lower bound to the minimum reduced cost c̃r of sequences r ∈ Fp

can be used (although it may be weak).
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Recursive column generation

Summing up

• if LB(rc(λp
i )) > GAP then profile p is sub-optimal and can be eliminated;

• if LB(rc(λp
i )) < 0 then profile p is added to the formulation;

• if 0 ≤ LB(rc(λp
i )) ≤ GAP then profile p cannot be classified (eventually it is

added to the formulation too).

Recursive column generation vs variable elimination

• we compare our method to the variable elimination of Irnich et al. (2010);

• in their approach, variable elimination is applied at the end of the root node, in
order to speed up the branch-and-price algorithm;

• on the contrary, we dynamically add compact-formulation variables.
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Preliminary experimental results

Rich VRP with |N | = 25 and compact-formulation variable similar to the TBAP profiles.

Results for the root node.

Irnich et al. 2010 Recursive C.G.

Inst. |P | % sub t(s) # col % sub % act % na # it t(s) # col

A 125 40.80 0.46 409 33.60 20.00 46.40 9 3.03 424

B 125 37.60 0.62 681 36.00 20.80 43.20 8 1.41 446

C 125 31.20 1.53 906 26.40 20.00 53.60 9 3.76 662

D 125 0.00 1.09 872 0.00 20.00 80.00 11 13.91 853

E 175 44.00 1.30 628 36.57 14.29 49.14 8 5.52 403

F 175 40.00 1.60 941 30.29 14.86 54.86 11 8.30 610

G 175 34.86 4.06 1298 32.57 14.29 53.14 11 10.50 747

H 175 0.00 4.48 1542 0.00 14.29 85.71 14 105.00 918

Recursive column generation for the Tactical Berth Allocation Problem – p.26/29



Preliminary experimental results

• Validation of the proposed methodology: instances with sub-optimal
compact-formulation variables are correctly detected.

• Interestingly, the number of columns generated to prove optimality is reduced.

• A lot of variables λ
p
i do not participate to prove optimality of the root node.

• Even with no eliminated variables, the total number of generated columns is
smaller.

• We need to work on the computational time: in particular, # it CG2 should be at
most 2 or 3 (since every CG2 iteration currently requires to solve a full pricing).

• The method is sensitive to initialization: in particular, we observed that only the last
2 iterations of CG2 produced suboptimal variables (when GAP < 6%).
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Conclusion

• The proposed methodology is applicable to column generation itself (and not
necessarily to a branch-and-price algorithm).

• The size of the pricing underlying network is increased at every iteration, but
(almost) never reaches the "full" size.

• It need a faster implementation and it is worth for very complex problems where
already the root node is difficult to solve.
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Thanks for your attention!
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