Highly complex decision issues \Rightarrow tendency to decentralized the management

- Huge number of control parameters
- Feedback (*i.e.* non-linearity) in the underlying dynamics
- Ubiquitous presence of randomness in the dynamics
- ...

\Downarrow

Decisions based on **limited rationality** \Rightarrow Rigid pre-planning offers poor performance

- mutual interactions \Downarrow self-organization

Autonomous agents **might better perform** than an effective central controller

\Downarrow **goal of today’s presentation**

Exhibit a solvable model showing performance of decentralized control
A Simple Model for Competitive Dynamics

$$\dot{X}_k(t) = v_k(t) + \gamma_k \left[\mathbb{1}_k(\bar{X}(t), X_k(t)) \right] + q_k(v_k(t)) dB_{k,t}, \quad k = 1, 2, \ldots, N.$$

Multi-agent interactions:

$$\mathbb{1}_k(\bar{X}(t), X_k(t)) = \frac{1}{\mathcal{N}_k} \sum_{j \neq k} \mathcal{I}_k(X_j(t)), \quad \mathcal{N}_k := \text{neighbourhood of agent } k,$$

$$\mathcal{I}_k(X_j(t)) = \begin{cases} 0 & \text{if } 0 \leq X_j(t) < X_k(t), \quad \text{(velocity unchanged)}, \\ 1 & \text{if } X_k(t) \leq X_j(t) < X_k(t) + U, \quad \text{(accelerate)}, \\ 0 & \text{if } X_j(t) > X_k(t) + U, \quad \text{(velocity unchanged}). \end{cases}$$

(U := "mutual influence" interval)
A Simple Model for Competitive Dynamics - Applications

Logistics

Economy

Human Mimetism

...
Homogeneous Population of Agents

\[dX_k(t) = \left[v(t) + \gamma \Pi(\tilde{X}(t), X_k(t)) \right] dt + q dB_{k,t}. \]

\[\text{diffusion process} \]

Fokker - Planck diffusion equation:

\[\frac{\partial}{\partial t} P(\vec{x}, t) = -\sum_k \frac{\partial}{\partial x_k} \left[D_{k,v}(\vec{x}, t) P(\vec{x}, t) \right] + \frac{1}{2} q^2 \sum_k \frac{\partial^2}{\partial x_k^2} \left[P(\vec{x}, t) \right], \]

\[P(\vec{x}, t) := \text{conditional probability density} \]
Mean-Field Dynamics for Homogeneous Agents

\[\mathcal{N}_k \equiv \mathcal{N} \to \infty \Rightarrow \text{Mean-Field Dynamics (MFD)} \]

\[\downarrow \quad \text{dynamics for a representative effective agent} \]

trajectories point of view

\[\frac{1}{\mathcal{N}} \sum_{j \neq k}^{\mathcal{N}} \mathcal{T}(X_j(t)) \]

\[\approx \int_x^{x+U} P(x, t) \, dx \]

proportion of velocity-active agents acting on \(k \)

proportion of representative agents located in \([x, x+U]\)

\[\downarrow \]

Effective Fokker-Planck equation:

\[\frac{\partial}{\partial t} P(x, t) = -\frac{\partial}{\partial x} \left\{ \left[v(t) + \gamma \left(\int_x^{x+U} P(x, t) \, dx \right) \right] P(x, t) \right\} + \frac{1}{2} q^2 \frac{\partial^2}{\partial x^2} [P(x, t)], \]

non-linear and non-local field equation
Small Influence Region - Burgers’ Equation Dynamics

Small values of U \Rightarrow Taylor expand up to 1st order in U

$$\downarrow \quad \int_{x}^{x+U} P(x, t) dx \simeq U P(x, t)$$

$$\frac{\partial}{\partial t} P(x, t) = - \frac{\partial}{\partial x} \left\{ [v(t) + \gamma U P(x, t)] P(x, t) \right\} + \frac{1}{2} q^2 \frac{\partial^2}{\partial x^2} [P(x, t)]$$

\textit{non-linear but local drift field}

$$t \mapsto \tau = \gamma t \quad \downarrow \quad x \mapsto z = \frac{x - \int_{0}^{t} v(s) \, ds}{2U}$$

Burgers’ Equation (to be solved with initial condition $P(z, t) = \delta(z) \Theta(z)$)

$$\dot{P}(z, t) = \frac{1}{2} \frac{\partial}{\partial z} \left[P(z, t)^2 \right] + \left[\frac{q^2}{8U^2 \gamma} \right] \frac{\partial^2}{\partial z^2} [P(z, t)]$$
Stylized Model for Smart Parts Dynamics

Burgers’ Eq. \iff logarithmic transformation (Hopf - Cole) \implies Heat Eq.

\[P(y, t) = -\frac{q^2}{4\gamma U^2} \frac{\partial}{\partial y} \ln \left[1 + \frac{(e^R - 1)}{2} \text{Erfc} \left(\frac{y}{q\sqrt{t}} \right) \right] = \]

\[= \frac{1}{R} \left[\frac{(e^R - 1)}{\sqrt{\pi q^2 t}} e^{-\frac{y^2}{q^2 t}} \right] \cdot \frac{1 + \frac{(e^R - 1)}{2} \text{Erfc} \left(\frac{y}{q\sqrt{t}} \right)}{1 + \frac{(e^R - 1)}{2} \text{Erfc} \left(\frac{y}{q\sqrt{t}} \right)} := \frac{1}{R} \left(e^R - 1 \right) \mathcal{G}(y, t) \]

Typical shape of $P(y, t)$ for various $R := \frac{4U^2\gamma}{q^2}$ factors (viewed from the relative moving frame)

Normalization and positivity are visually manifest !!
Stylized Model for Smart Parts Dynamics

Benefit of Competition - Noise Induced Transport Enhancement

Position probability distribution: without interaction, with interactions

- Additional traveled distance when \(R = \frac{4\gamma U^2}{q^2} \to \infty \): \(\langle X(t) \rangle_{t \to \infty} \simeq \frac{4U}{3} \sqrt{\gamma t} \),

- Additional traveled distance when \(R = \frac{4\gamma U^2}{q^2} \to 0 \): \(\langle X(t) \rangle_{t \to \infty} \simeq 0 \).
Optimal Effective Centralized Control

Controlled diffusion process:

\[dY_t = c(Y, t) \, dt + q \, dB_t, \quad Y_0 = 0, \quad (0 \leq t \leq T), \]

\[\text{effective central controller} \]

\[\text{initial condition} \]

\[\Downarrow \quad \text{(Fokker-Planck equation)} \]

\[\frac{\partial}{\partial t} P_c(y, t) = -\frac{\partial}{\partial y} [c(y, t) P_c(y, t)] + \frac{q^2}{2} \frac{\partial^2}{\partial y^2} P_c(y, t) \]

Construct a drift controller \(c(Y, t) \) which, for time \(T \), fulfills

\[P_c(y, T) = P(y, T) \]

\[\text{Prob. density with central controller} \]

\[\text{Prob. density due to agent interactions} \]

Burgers’ exact solution
Optimal Effective Centralized Control (continued)

Introduce a utility function $J_{\text{central}, T} [c(y, t; T)]$ defined as:

$$J_{\text{central}, T} [c(y, t; T)] = \langle \int_0^T \frac{c^2(y, s; T)}{2q^2} ds \rangle,$$

where $c(y, s; T)$ is the cost rate and $\rho(y, s)$ is the underlying stochastic process.

(\langle \cdot \rangle := \text{average over the realization of underlying stochastic process})

Optimal Control Problem

Construct an optimal drift $c^*(y, t; T)$ such that:

$$J_{\text{central}, T} [c^*(y, t; T)] \leq J_{\text{central}, T} [c(y, t; T)].$$
The **Dai Pra** Solution of the Optimal Control Problem

Optimal drift controller:

\[
c^* (y, t; T) = \frac{\partial}{\partial y} \ln [h(y, t)],
\]

\[
h(y, t) = \int_{\mathbb{R}} \mathbb{G} [(z - y), (T - t)] \frac{P(z, T)}{G(z, t)} dz.
\]

Minimal cost:

\[
J_{\text{central}, T} [c^* (y, t; T)] = \frac{N}{\# \text{ population}} \cdot \mathcal{D}(P \| \mathcal{G}) = \begin{cases}
0 & \text{for } t = 0, \\
N \frac{R^2}{2} + N \ln \left[\frac{(e^R-1)}{R} \right] & \text{for } t > 0.
\end{cases}
\]
Decentralized Agent Control - Cost Estimation

Cost $J_{\text{agents},T}$ for decentralized evolution during time horizon T:

$$J_{\text{agents},T} := N \cdot \rho \cdot \int_0^T ds \Phi(s)$$

- $\rho = \frac{\gamma^2 U^2}{2q^2}$:= individual cost rate function,
- $\Phi(t) \in [0, 1]$:= proportion of interacting agents at time t.

Cost upper-bound, reached when $\Phi(t) \equiv 1$

$$J_{\text{agents},T} \leq N\rho T$$
Costs Comparison - Centralized vs Decentralized

- Average Costs Estimation
- Costs Comparison - Centralized vs Decentralized
- Time horizon T
- Cumulative costs
- Actual decentralized costs
- Upper-bounded decentralized costs
- Centralized costs
- Time horizons for which agent interactions beat the optimal effective centralized controller
- Kullback-Leibler entropy

Olivier Gallay (EPFL)
To Summarize and to Somehow "Philosophically" Conclude

The stylized model *cartoons basic and somehow "universal" features:*

- **Agents' mimetic interactions produce an emergent structure** - (here a "shock"-like wave),
- **Competition enhances global transport flow** - (here a \sqrt{t}-increase of the traveled distance),
- **Self-organization via autonomous agents interactions can reduce costs.**