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Motivation
• a route choice model describes what way from an origin to adestination is chosen in a network
• universal set of alternatives is unknown and intractably large
• estimation of route choice models requires selection of a subset
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Approaches to route choice set generation
• modeling of consideration sets� deterministic (e.g., K-SP) or stochastic (randomized SP)� unrealistic: fail to capture the chosen alternative
• assume that decision maker considers all alternatives� also unrealistic� sampling protocol generates operational subset� correct for sampling in the estimation
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Sampling of alternatives
• sample Cn with replacement from C according to {q(i)}i∈C
• add the chosen alternative
• kin is the number of times alternative i is contained in Cn
• correct for sampling when estimating logit modelP(i |Cn) =

eµVin+ln( kinb(i) )
∑j∈Cn eµVjn+ln( kjnb(j))where {b(i)}i∈C is such that q(i) = b(i)/∑j∈C b(j)objective: sample paths according to pre-speci�ed {b(i)}i∈C
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Using Markov chains (MCs)
• �nite state space
• discrete time k = 0, 1, . . .
• at time k , process is in state ik
• q(i , j) is one-step probability to reach state j from state i
• process has a unique stationary distribution if� every state eventually reaches every other state� there is at least one state i with q(i , i) > 0objective: build MC of routes with stationary distribution {q(i)}i∈C
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Metropolis-Hastings (MH) algorithm
• given a �nite state space, positive weights {b(i)}i and�well-mixing� proposal transition distribution q(i , j), MHgenerates MC that converges to q(i) = b(i)/∑j b(j)1. set iteration counter k = 02. select arbitrary initial state ik3. repeat beyond stationarity3.1 draw candidate state j from {q(ik , j)}j3.2 compute acceptance probability α(ik , j) = min( b(j)q(j,ik )b(ik)q(ik ,j) , 1)3.3 with probability α(ik , j), let ik+1 = j ; else, let ik+1 = ik3.4 increase k by one
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Application of MH for route choice set generation
• state space comprises C
• weights b(i) favor plausible paths (importance sampling)
• transition distribution q(i , j) creates local path modi�cations� too little variability: slow convergence� too much variability: random search
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State space
• notation� Γ = a path (node sequence)� Γ(u) = uth node of path Γ� Γ(u, v) = sub-path from the uth to the vth node of Γ� |Γ| = number of nodes in path Γ

• state = (a path Γ, two SPLICE locations, one SPLICE node)� SPLICE locations u, d ∈ N with 1 ≤ u < d ≤ |Γ|� SPLICE node v� (state expansion helps to compute q(i , j))
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Proposal transition distribution
• SPLICE operation� compute (random) path from Γ(u) to v� compute (random) path from v to Γ(d)� replace Γ(u, d) by that sequence
• SHUFFLE operation� re-sample (uniformly) splice locations u and d� re-sample splice node v near to to Γ(u, d)

• randomly select one procedureq(i , j) = γqSPLICE (i , j) + (1− γ)qSHUFFLE (i , j)with 0 < γ < 1
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Illustrative example[old status quo]
origin

destination
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Illustrative example[a SHUFFLE event occurs]
origin

destination
u = 2 d = 4
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Illustrative example[a SPLICE event occurs]
origin

destination
u = 2 d = 4v
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Illustrative example[new status quo]
origin

destination
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Discussion
• this eventually draws paths from any distribution
• computationally� feasible path in every iteration� need to reach and identify stationarity� strong auto-correlation of subsequent paths
• behaviorally� explorative travel behavior?� occasional intermediate destinations?
• iterated DTA simulations (such as MATSim)� an all-day plan is a generalized path� small plan choice set for computational reasons� challenge: capture distribution in simulated conditions
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Shortest path SPLICE reaches every path

origin
destination
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