Metropolis-Hastings sampling of alternatives for route choice models

Michel Bierlaire and Gunnar Flötteröd

August 20, 2010

Motivation

- a route choice model describes what way from an origin to a destination is chosen in a network
- universal set of alternatives is unknown and intractably large
- estimation of route choice models requires selection of a subset

Approaches to route choice set generation

- modeling of consideration sets
- deterministic (e.g., K-SP) or stochastic (randomized SP)
- unrealistic: fail to capture the chosen alternative
- assume that decision maker considers all alternatives
- also unrealistic
- sampling protocol generates operational subset
- correct for sampling in the estimation

Sampling of alternatives

- sample \mathcal{C}_{n} with replacement from \mathcal{C} according to $\{q(i)\}_{i \in \mathcal{C}}$
- add the chosen alternative
- $k_{i n}$ is the number of times alternative i is contained in \mathcal{C}_{n}
- correct for sampling when estimating logit model

$$
P\left(i \mid \mathcal{C}_{n}\right)=\frac{e^{\mu V_{i n}+\ln \left(\frac{k_{i n}}{b(i)}\right)}}{\sum_{j \in \mathcal{C}_{n}} e^{\mu V_{j n}+\ln \left(\frac{k_{k n}}{b(j)}\right)}}
$$

where $\{b(i)\}_{i \in \mathcal{C}}$ is such that $q(i)=b(i) / \sum_{j \in \mathcal{C}} b(j)$
objective: sample paths according to pre-specified $\{b(i)\}_{i \in \mathcal{C}}$

Using Markov chains (MCs)

- finite state space
- discrete time $k=0,1, \ldots$
- at time k, process is in state i^{k}
- $q(i, j)$ is one-step probability to reach state j from state i
- process has a unique stationary distribution if
- every state eventually reaches every other state
- there is at least one state i with $q(i, i)>0$
objective: build MC of routes with stationary distribution $\{q(i)\}_{i \in \mathcal{C}}$

Metropolis-Hastings (MH) algorithm

- given a finite state space, positive weights $\{b(i)\}_{i}$ and "well-mixing" proposal transition distribution $q(i, j), \mathrm{MH}$ generates MC that converges to $q(i)=b(i) / \sum_{j} b(j)$

1. set iteration counter $k=0$
2. select arbitrary initial state i^{k}
3. repeat beyond stationarity
3.1 draw candidate state j from $\left\{q\left(i^{k}, j\right)\right\}_{j}$
3.2 compute acceptance probability $\alpha\left(i^{k}, j\right)=\min \left(\frac{b(j) q\left(j, i^{k}\right)}{b\left(i^{k}\right) q\left(i^{k}, j\right)}, 1\right)$
3.3 with probability $\alpha\left(i^{k}, j\right)$, let $i^{k+1}=j$; else, let $i^{k+1}=i^{k}$
3.4 increase k by one

Application of MH for route choice set generation

- state space comprises \mathcal{C}
- weights $b(i)$ favor plausible paths (importance sampling)
- transition distribution $q(i, j)$ creates local path modifications
- too little variability: slow convergence
- too much variability: random search

State space

- notation
- $\Gamma=$ a path (node sequence)
- Г $(u)=u$ th node of path 「
- $\Gamma(u, v)=$ sub-path from the u th to the v th node of Γ
- $|\Gamma|=$ number of nodes in path Γ
- state $=$ (a path Γ, two SPLICE locations, one SPLICE node)
- SPLICE locations $u, d \in \mathbb{N}$ with $1 \leq u<d \leq|\Gamma|$
- SPLICE node v
- (state expansion helps to compute $q(i, j)$)

Proposal transition distribution

- SPLICE operation
- compute (random) path from $\Gamma(u)$ to v
- compute (random) path from v to $\Gamma(d)$
- replace $\Gamma(u, d)$ by that sequence
- SHUFFLE operation
- re-sample (uniformly) splice locations u and d
- re-sample splice node v near to to $\Gamma(u, d)$
- randomly select one procedure

$$
q(i, j)=\gamma q_{\text {SPLICE }}(i, j)+(1-\gamma) q_{S H U F F L E}(i, j)
$$

with $0<\gamma<1$

Illustrative example

[old status quo]
destination
origin

Illustrative example

[a SHUFFLE event occurs]
destination

Illustrative example

[a SHUFFLE event occurs]
destination

Illustrative example

[a SPLICE event occurs]
destination

Illustrative example

[new status quo]
destination

Discussion

- this eventually draws paths from any distribution
- computationally
- feasible path in every iteration
- need to reach and identify stationarity
- strong auto-correlation of subsequent paths
- behaviorally
- explorative travel behavior?
- occasional intermediate destinations?
- iterated DTA simulations (such as MATSim)
- an all-day plan is a generalized path
- small plan choice set for computational reasons
- challenge: capture distribution in simulated conditions

Shortest path SPLICE reaches every path

Shortest path SPLICE reaches every path

coirale de lausanne
$12 / 12$

Shortest path SPLICE reaches every path

Shortest path SPLICE reaches every path

fedirale de Lausanne

Shortest path SPLICE reaches every path

EDIRALE DE LAUSANNE

Shortest path SPLICE reaches every path

(PPIL
COLE POLYTECHNIQUE
EDIRALE DE LAUSANNE

Shortest path SPLICE reaches every path

Shortest path SPLICE reaches every path

Shortest path SPLICE reaches every path

(PPIL
COLLE POLYTECHNIQUE
tdirale de Lausanne
$12 / 12$

Shortest path SPLICE reaches every path

TRANSP-DR

