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Abstract

We consider the school bus routing and scheduling problem, where transportation demand is
known and bus scheduling can be planned in advance. We present a comprehensive methodol-
ogy designed to support the decision of practitioners. We first propose a modeling framework
where the focus is on optimizing the level of service for a given number of buses. Then, we
describe an automatic procedure generating a solution to the problem. It first builds a feasible
solution, which is subsequently improved using a heuristic.

We analyze two important issues associated with this methodology. On the one hand, we an-
alyze the performance of three types of heuristics both on real and synthetic data. We recom-
mend the use of a simulated annealing technique exploring infeasible solutions, which performs
slightly better than all others. More importantly, we find that the performance of all heuristics
is not globally affected by the choice of the parameters. This is important from a practitioner
viewpoint, as the fine tuning of algorithm parameters is not critical for its performance. On the
other hand, we propose an interactive tool allowing the practitioner to visualize the proposed so-
lution, to test its robustness, and to dynamically rebuild new solutions if the data of the original
problem are modified.
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1 Introduction

Busing systems are common in countries where school assignment is imposed by home lo-
cation, as in Switzerland, France, and Italy for instance. Since the transportation demand is
known in advance, bus schedules can in principle be planned efficiently, however, this results in
an intricate combinatorial optimization problem.

In this paper, we present a decision-aid methodology, combining automatic solution generation
and the expertise of practitioners. We first propose a modeling framework, where the concept of
level of service is captured by two different objective functions. We obtain a nonlinear integer
programming problem which cannot be solved exactly in reasonable time for problems with
realistic size (Section 3). Therefore, we propose and analyze automatic procedures to build a
solution, all of which start by generating an initial feasible solution (see Section 4). In most
cases, that solution is not satisfactory and must be improved, thus in Section 5, we propose
three automatic procedures to improve the quality of the solution: a tabu search heuristic, and
two variants of simulated annealing.

An important drawback of heuristics for practitioners is the choice of a specific heuristic and
the identification of appropriate parameters. We have tested several instances of each proposed
heuristic on a set of 30 problems. The results, presented in Section 6, suggest that the sim-
ulated annealing heuristic exploring infeasible solutions is the most efficient out of the three,
irrespectively of the choice of parameters.

Finally, we present in Section 7 an interactive decision-aid tool. Its main objective is to analyze
the relevance of the solution produced by the automatic procedure and possibly modify it man-
ually. This is specifically important when the conditions for the bus operations are modified.
Indeed, in that case, it is preferable to manually create a new solution from the original one,
instead of relaunching the whole process on the modified problem.

2 Literature review

Bodin et al. (1983) provide a general description of the vehicle routing and scheduling problem.
For the special case of school buses, there are various approaches described in the literature.
They differ in the way of the problem decomposition, in the modeling assumptions and in the
solution algorithms.

With respect to the problem decomposition, we can distinguish a school-based approach and
a home-based approach. In the school-based approach, a separate problem is solved for each
school, and no mixed loads are allowed, in the sense that children attending different schools
are not allowed to travel in the same bus at the same time. The school-based approach is pre-
ferred by many authors, such as Bodin and Berman (1979), Angel et al. (1972), Bennett and
Gazis (1972), Desrosiers et al. (1981), Newton and Thomas (1969), Clarke and Wright (1964),
Rosenkrantz et al. (1974) and Gavish and Shlifer (1979). The home-based approach aims at
solving the problem for each child at a time. It is more flexible as mixed loads are consid-
ered. However, the update of the solution when a child is included is more complicated. This
approach has been proposed by Braca et al. (1994). In this paper, we prefer the school-based
approach, as it greatly simplifies the problem, but we follow Braca et al. (1994) in allowing
mixed loads.
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From the modeling viewpoint, most authors aim at minimizing the costs, that is the number
of buses (Clarke and Wright, 1964, Bodin and Berman, 1979, Desrosiers et al., 1981, Swersey
and Ballard, 1984, Braca et al., 1994), or a combination of the number of buses and the total
travel time (Gavish and Shlifer, 1979). In this paper, we prefer to explicitly optimize the level
of service provided by the bus operator. Such an approach is not usual in the literature, where
the level of service is often captured in the constraints. The only reference we have found is
a paper by Bennett and Gazis (1972) who include the total travel time spent by all children in
their objective function. Bodin and Berman (1979), Gavish and Shlifer (1979), Desrosiers et al.
(1981), and Braca et al. (1994) add an upper bound on the travel time for each child. Desrosiers
et al. (1981), Swersey and Ballard (1984), and Braca et al. (1994) add a time window on the
arrival at school. Desrosiers et al. (1981) add also an upper bound on the waiting time between
school arrival time and school starting time and uppers bounds on the number of students at
stops and on routes. Braca et al. (1994) impose an earliest pick-up time for children. In addition,
they require a minimal number of children to create a route.

Various solution algorithms have been proposed. For school-based approaches, a routing prob-
lem is solved first for each school. Bennett and Gazis (1972) use a method proposed by Clarke
and Wright (1964), assigning a direct depot-stop-school route to each stop, and then merging
those routes to comply with the problem constraints. Finally, a Lin-3-opt procedure (Lin, 1965)
tries to improve the solution. Bodin and Berman (1979) use a method proposed by Newton and
Thomas (1969). They start by solving a Traveling Salesman Problem (TSP) with a Lin-3-opt,
and then split the solution to comply with the problem constraints. Desrosiers et al. (1981)
use adaptations of the methods by Newton and Thomas (1969), Clarke and Wright (1964) and
the insertion technique proposed by Rosenkrantz et al., 1974, followed by a Lin-2-opt. Gavish
and Shlifer (1979) use a different approach, solving the problem for each school by applying a
branch-and-bound procedure in which a sequence of assignment problems are solved.

Once feasible tours have been generated, they must be merged in order to optimize the objective
function. Bodin and Berman (1979) use a Lin-2-opt. Desrosiers et al. (1981) propose a heuristic
based on solving a sequence of transportation problems. Gavish and Shlifer (1979) formulate
this problem as a modified assignment problem. Swersey and Ballard (1984) use a linear integer
program solved using linear or Lagrangian relaxations.

Braca et al. (1994), preferring a home-based approach, solve the whole problem in one stage.
They initially construct a route between a randomly selected home and associated school. Then,
they insert home–school pairs in a greedy procedure, choosing first those pairs that minimize
the total route length, and making sure that all constraints are satisfied. That solution is not
revised, except if it contains buses with very few children.

3 Formulation

In this section we describe notations and give a formulation to school bus routing and scheduling
problem as mathematical program.
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3.1 Notations

The transportation network is given byG = (V; E ; `) whereV is a set of nodes,E a set of edges
and` a weight function associating a non-negative weight to each edge (typically, the travel
time necessary to traverse the edge). Based on`, we denote byd(i; j) the travel time between
nodesi andj, obtained as the travel time of the shortest path (measured in travel time) inG
betweeni andj. We denote byH = fh1; : : : ; hHg � V the set of nodes, called homes, where
children get on the bus. Similarly, we denote byS = fs1; : : : ; sSg � V the set of nodes where
schools are located. Class at schoolsi begins at timeosi.

There arejCj children commuting from home to school. Childc 2 C has home nodeh(c) and
school nodes(c). Each child in a bus takes up some space, denoted byq(c). Note that a “child”
in the model may represent in reality a group of several children with the same characteristics,
that is the same home location and the same school. This simplifies the formulation with a
moderate loss of flexibility, in that children with similar characteristics are sometimes required
to make exactly the same journey on the same bus. We denote byNC (� jCj) the number of
individual children. We also assume that each child performs exactly one trip (without transfer).

For each schoolsi 2 S, we denote byC(si) the setfc 2 C j s(c) = sig of children attending
schoolsi. We denote byH(si) � H the set of nodes[c2C(si)h(c), that is the set of home nodes
of children attending schoolsi. There areB buses to transport the children. Busb 2 B =
f1; : : : ; Bg has a capacityQb (measured as the same unit as the children’s space requirement
q(c)) and is typically a number of seats. Note thatq(c) may be fractional, as some buses may
load more children than the actual number of seats, for example when the bus has benches rather
than individual seats and young children are carried.

A solution to the school bus routing and scheduling problem consists in specifying for each bus
a tour, that is a list of stops, and for each stop, a list of children to pick-up and/or drop. Busb
performsnb stops denoted byab�, with � = 1; : : : ; nb. Eachab� is a quadruplet

ab� = (vb�; t
b
�; C

b

�; C
b
�); (1)

wherevb� 2 V is the node corresponding to the stop,tb� is the time at which the bus is at the

stop,C
b

� is the set of children picked-up by busb at stop� andC b� is the set of children dropped

by the bus at the stop. Note that for each stop eitherC
b

� or Cb� must be non empty. We denote
the tour performed by busb asTb =

�
ab�
�nb
�=1

. A bus tour scheduleP is therefore defined by a
setfTbgBb=1 of bus tours, and�P is the set of all possible bus tour schedules.

We assume, for safety reasons, that each child travels on a single bus, i.e. no bus transfer is
allowed. Consequently, for each busb and each stop(vb�; t

b
�; C

b

�; C
b
�), we impose that children

get on busb only at home, and get off only at school, that is

vb� = h(c); 8c 2 C
b

�; (2)

and
vb� = s(c); 8c 2 Cb�: (3)

The bus carrying childc in tour scheduleP is denoted by�P(c).
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3.2 Performance measures

Ideally, with one bus per child, each child could be picked-up from home and driven directly to
school, this is thetaxi solution. Due to the limited number of buses, each child may experience
a delay due to the fact that the bus must pick-up other children on its way to the school. For
each child, we define thedelayas the difference between its actual journey time and the shortest
possible time between home and school. Also, as buses may have to perform several tours, some
children will be dropped at school early, before the actual class starting time. The time spent by
the child waiting at school for the class to begin is referred to as thewaiting time. The sum of the
delay and the waiting time is called thetime lossof the child. We will consider here two related
performance measures for the bus tour schedules, leading to two different objective functions
to be minimized. The first one istotal time loss summed over all children or equivalently,
the mean time loss over all children. The second measure is themaximumtime loss over all
children. Minimizing this measure aims at balancing time losses.

For stopab� and childc, we define

Æ
b

c� =

�
1 if bus b picks childc during stopab�; i.e. c 2 C

b

�

0 otherwise,
(4)

and

Æbc� =

�
1 if bus b drops childc during stopab�; i.e. c 2 Cb�
0 otherwise:

(5)

The departure time�c of child c is given by

�c =
BX
b=1

nbX
�=1

Æ
b

c�t
b
�: (6)

Note that only one term of the sum will be nonzero, since each child performs exactly one trip.
Similarly, the arrival time�c of child c is defined as

�c =
BX
b=1

nbX
�=1

Æbc�t
b
�: (7)

Therefore, the time lossf(c) of child c is given by

f(c) =
�
os(c) � �c

�
� d (h(c); s(c)) ; (8)

whereos(c) is the starting time of schools(c). Equation (8) is the difference between actual
travel plus waiting time and the shortest possible travel time. Finally, we get for the first objec-
tive functionF1, i.e. total time loss, to be minimized over all tour schedules�P:

F1 =
X
c2C

f(c) q(c); (9)

and the second objective functionF2, i.e. maximum time loss, to be minimized over all tour
schedules�P:

F2 = max
c2C

f(c): (10)
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3.3 Constraints

The following constraints must be verified in the problem. First, each child should arrive at
school on time, that is

�c � os(c); 8c 2 C: (11)

Second, we impose that each child is carried by exactly one bus, that is

BX
b=1

nbX
�=1

Æ
b

c� = 1; 8c 2 C; (12)

and
BX
b=1

nbX
�=1

Æbc� = 1; 8c 2 C; (13)

and that it steps out of the same bus it boarded, that is

nbX
�=1

Æ
b

c� � Æbc� = 0 8b 2 B; 8c 2 C: (14)

Also, departure time from home must obviously precede arrival time at school, that is

�c � �c; 8c 2 C: (15)

Then, no bus can carry more children than its capacity allows for. The occupancy of busb at
stopab� is given by

occ(b; �) =
�X

k=1

jCjX
c=1

q(c)
h
Æ
b

ck � Æbck

i
: (16)

Consequently, we have for each busb the following set of constraints.

occ(b; �) � Qb; 8� = 1; : : : ; nb: (17)

For each tour, the schedule must be such that the bus can complete the trip within time, that is

tb�+1 � tb� � d(vb�; v
b
�+1): (18)

Note that the optimization problem defined above is a nonlinear mixed integer programming

problem, with decision variablesvb�, tb�, Æ
b

c� andÆbc�. The nonlinearity is due to (4) and (5). It
can be transformed into a linear integer program using standard techniques, at the expense of
an increased number of variables and constraints.

4 Construction of a feasible solution

We describe here a heuristic to construct a feasible solution. The idea is to first ignore the num-
ber of available busesB, and use as many of them as needed to verify all other constraints. We
denote byQ the capacity of these virtual buses such thatQ = minb2BQb. Schools are consid-
ered in increasing order of their starting times. For each schools, the associated home nodes in
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fUbgB
+

b=1 =BUILDCHAINS

Init b = 0

School loop For eachs 2 S

Init Ĥ = sort (H(s))

Home loop While Ĥ 6= ?,

Create bus b = b + 1, ŝ(b) = s, occb = 0, Ub = ?

Candidates loop For eachh 2 Ĥ

Check capacity Let c 2 C such thath(c) = h ands(c) = s. If
(occb + q(c)) � Q then

Insert Ub = INSERTNODE(Ub; h)

Update Ĥ = Ĥ n h, occb = occb + q(c)

Figure 1: Building chains for initial tours with many buses

U =INSERTNODE(U ,v�) with U = fv1; : : : ; vp�1g

Empty chain If U = ? thenreturn fv�g

Insert before U0 = fv�; v1; : : : ; vp�1g

Positions loop For i = 1; : : : ; p� 1

Insert after Ui = fv1; : : : ; vi; v�; vi+1; : : : ; vp�1g

Shortest chain return Ui such thati = argminj=0;:::;p L(Uj)

Figure 2: Node insertion in chain

H(s) are sorted in decreasing order of their distance froms. The procedureBUILDCHAINS,
described in Figure 1, builds chainsUb = fvb1; : : : ; v

b
p�1g of lengthL(Ub) =

Pp�2
i=1 d(v

b
i ; v

b
i+1),

describing the sequence of houses visited by “bus”b. Each virtual busb serves a unique school
ŝ(b).

The insertion of a node in the chain is based on a minimal chain length increase principle, as
described in Figure 2.

Finally, for each virtual busb, we insert the node corresponding to schoolŝ(b) in the chain. As
both chain traversals are possible, we consider inserting its school at either one of its extremities,
preferring that resulting in the shortest chain. If needed, the chain is reversed such that the
school appears last (vbp = ŝ(b)). Finally, we define the tourTb associated with the chainUb =
fvb1; : : : ; v

b
pg as

�
ab�
�p
�=1

, with ab� defined by (1) and

� tbp = oŝ(b) (the bus is scheduled to arrive exactly when class starts),

6
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� tb� = tb�+1 � d(vb�; v
b
�+1), � = p� 1; : : : ; 1 (the bus uses the shortest route),

� C
b

� = fc(vb�; ŝ(b))g, � = 1; : : : ; p� 1 (only children going to school̂s(b) step in the bus),

� C
b

p = ? (no pick-up at school),

� Cb� = ?, � = 1; : : : ; p� 1 (no drop off at home),

� Cbp = [p�1
�=1C

b

� (all children that were picked-up are dropped off).

If the solution obtained by applying this procedure is composed ofB+ buses, it is feasible
only if B+ � B, whereB is the number of buses actually available. If it is infeasible, tours
are merged pairwise(B+ � B) times to obtain exactlyB buses. Merging tourTk =

�
ak�
�nk
�=1

performed by busk with tourTj results in a new tourT +, as described in Figure 4. The impact
of merging toursTj andTk is measured bywjk, defined as the starting time ofTk minus the
arrival time of tourTj plus the minimum travel time between last node ofTj and first node of
Tk. If wjk is positive, it means that the starting time of the busj is not affected by the merge.
In that case,wjk represents the waiting time between the two merged tours (see Figure 3(a)). If
wjk is negative, it means that busj had to advance its departure time to be able to perform the
merged tour on time. In that case,�wjk represents the amount of the shift (see Figure 3(b)). We
assume that tourTk is an initial “artificial” tour as built by the procedure described in Figure 1,
while tour Tj already corresponds to a “physical” bus. Consequently, the prior objective in
merging is to avoid modifying starting time of busj (and subsidiary to minimize the driver’s
waiting time between two chains). If this is not possible, we prefer the merger that minimizes
the shift in departure time. Considering a chainj, if there is at least one non-negativewjk, chain
j is merged to the tourk� such that

k� = argmin
k=1;:::;B; wjk�0

wjk; k
� 6= j: (19)

Otherwise, it is merged to the tourk� such that

k� = argmax
k=1;:::;B; wjk<0

wjk; k
� 6= j: (20)

At each merger, the pair(j; k) of tours chosen minimizeswjk, if there existswjk � 0, or
maximizeswjk (if wjk < 0) for all tours1 � j 6= k � B+. Ties are broken arbitrarily.

5 Algorithmic improvement

We now describe an approach to improve an initial solution found, e.g. by the above procedure,
i.e. we try to achieve a better value of the objective function (F1 orF2) while keeping feasibil-
ity. This is the optimization consisting in minimizing objective function (9) or (10) under the
constraints (2) to (8) and (11) to (18). This is a nonlinear integer program.

A formulation of the problem as an integer linear program can be obtained using standard tech-
niques (see Watters, 1967). Unfortunately, its size becomes too large in terms of variables and
constraints for an exact resolution with current software and computers. Instead, we have imple-
mented and compared several local search heuristics to handle the improvement step: simulated
annealing, feasible and infeasible version, described in Section 5.2 and tabu search, described
in Section 5.3. The performance of these methods is analyzed and discussed in Section 6.
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t
t1 t2

Tj

Tk

︸ ︷︷ ︸

w∗
jk

merge

t
t1 t2

T ∗

(a)wjk � 0

t
t1 t2

Tj

Tk

︸︷︷︸

w∗
jk

merge

t
t1 t2

T ∗

(b)wjk < 0

Figure 3: Two possibilities to merge tourTk with tourTj. w�
jk iswjk minus the minimum travel

time between the last node ofTj and the first node ofTk.

T + = MERGE(Tj; Tk) with Tj = (aj�)
nj
�=1 andTk =

�
ak�
�nk
�=1

Shift wjk = tk1 � tjnj

Delay first tour If wjk < 0, thentj� = tj� + wjk for each� = 1; : : : ; nj

Merge T + = (a+� )
n+
�=1, wheren+ = nj + nk, a+� = aj� for � = 1; : : : ; nj and

a+� = ak��nj for � = nj + 1; : : : ; n+.

Figure 4: Merging two tours

5.1 Local search

Local search is a standard approach in combinatorial optimization. It is based on a neighbor-
hood structure with which the set of solutions is endowed resulting in a directed graph with
the solutions as its node set and each node being linked to its neighbors by arcs of the graph.
Applying a local search heuristic corresponds to searching the nodes in this graph according to
some strategy. Here we will propose a neighborhood structure and two such heuristics. First we
describe a variant of simulated annealing (see Kirkpatrick et al., 1983 and Rossier et al., 1986)
with cyclic reheating and then simple tabu search (see Glover, 1977, Hansen, 1986 and Hansen
and Jaumard, 1987).

8
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5.2 Simulated annealing

Recall that simulated annealing can be viewed as a biased random walk on the neighborhood
graph. It starts at a given solutionP, selects a neighbor solutionP 0 at random and moves there
with probability

p = min

�
1; exp

�
�
F(P 0)� F(P)

T

��
;

whereT > 0 is a parameter called “temperature” and stays put with probability(1 � p). The
higherT the more likely it is that a candidate solution be it better or worse than the incumbent
is accepted. The iterations start with a high temperatureT0 allowing the heuristic to escape
from local optima. Then the temperature is gradually decreased (each� iterations) to intensify
the search. Once a given criterion is met,T is reheated to the initial temperatureT0. Thus
T oscillates, successively decreasing and increasing the probability of accepting a candidate
solution. This way phases of local improvement and diversification that escape of local optima
alternate each other.

We consider here two neighborhoods: feasible neighborhoodNf generates only feasible solu-
tions, while infeasible neighborhoodNi enlarges the set of candidate solutions and may gener-
ate solutions violating the capacity constraint (17). In both neighborhoods solutions are modi-
fied by removing one child from a bus and trying to place it in an other one. A childc, which is
to be moved, is randomly selected with probability

f(c)�P
c2C f(c)

�
(21)

wheref(c) is the time loss of childc, defined by (8), and� is a parameter such that0 � � � 1.
A value of� = 0 means that we assign the same probability to all children. A busb 0 is also
randomly selected, with equal probabilities among the buses not carrying childc in the current
solution. The feasible neighborhoodNf solution consists to insert childc in busb 0 resulting
in the largest improvement (or the least deterioration) of the solution, in sense of the objective
function chosenFf 2 fF1;F2g.

The other proposed neighborhoodNi modifies a solution in a similar way asNf , except that
capacity satisfaction is not enforced when childc is inserted in busb0. Therefore,Ni may create
infeasible solutions. In order to restore feasibility, we augment the objective function valueFf

by a penalty on the capacity violation:

Fi = Ff + �
BX
b=1

maxf0; occbmax�Qbg (22)

where� > 1 is the penalty parameter and

occbmax = max
�=1;:::nb

occ(b; �): (23)

The value of the penalty parameter is first initialized to�0 > 1. Then, each time an infeasible
solution is produced,� is multiplied by�0. When a feasible solution is generated, the value of
� is reset to�0.

The general description of this heuristic is shown in Figure 5. The input parameters are: the
initial temperatureT0 to start the heuristic,! the decrease coefficient of the temperature, the

9
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number of consecutive iterations� with the same temperature, a penalty coefficient�0 of ob-
jective functionFi, the maximum number
max of consecutive iterations during which the cur-
rent solution may remain without any change (i.e. simulated annealing stagnation), and the
maximal number�max of consecutive iterations without improvement of the record solution,
that is the best solution met. The heuristic is stopped when�max is reached. Figure 5 captures
the two versions of our simulated annealing heuristic, one for each type of neighborhood (i.e.
N 2 fNf ;Nig). Results on testing these heuristics are described in Section 6.

5.3 Tabu search

Tabu search is an alternate local neighborhood search method. Rather than performing a random
walk, as in simulated annealing, in tabu search the solution space is fathomed by moving from
a given solutionP to its best neighborP 0 (which sometimes can be worse thanP) in the
neighborhood structure. Note that, for the sake of efficiency, we do not necessarily consider the
entire neighborhood ofP to determineP 0, but only a subset of a given size denoted by�. Care
has to be taken to prevent cycling and this is achieved by keeping and updating a fixed length
list of forbidden moves, the tabu list, thus avoiding to return to the same solution after a small
number of iterations.

Here we consider the feasible neighborhoodNf (same as described for simulated annealing)
which consists in removing one childc, randomly selected with probability (21), from its bus
b and trying to place it in an other randomly selected oneb0 6= b, respecting all constraints of
the problem. We say that “childc moves fromb to b0”.This is done repeatedly to find a path to
improve the solution.

To avoid cycling, the following moves are stored in the tabu list: if a child is moved from bus
b to busb0, the opposite move from busb0 to busb is stored. The tabu list moves are forbidden
for � iterations. Note that if a forbidden move gives a neighbor solution better than the best
solution found so far, this move is carried out in spite of its tabu status.

The heuristic is stopped once a maximal number of neighbor solutions� tot has been visited, i.e.
a maximum total iteration number. Tabu search is described in Figure 6. Test results for this
heuristic are described in Section 6.

6 Case studies

In order to validate the heuristic approaches, these were tested on both real world and synthetic
data sets.

The real data comes from two Swiss towns, Savigny and Forel. The network is represented in
Figure 7. It contains 34 nodes, including 12 schools: 4kindergartensstarting at 8.35, 6primary
schoolsstarting at 8.15 and 2high schoolsstarting at 7.40. The maximum travel time between
two nodes is 18 minutes. For the school year 1997–1998, four buses were used to transport 274
children (79 for kindergarten, 162 for primary school and 33 for high school). The capacity of
each bus is 210 units, and each high school child takes up 10 units in the bus, while kindergarten

10
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Figure 7: Savigny and Forel’s network

and primary school children take up 7 units.

The synthetic data has been generated in order to analyze the relative efficiency of the methods
as a function of the network size. For a given number of nodes randomly distributed in a square,
the network is obtained from a Delaunay triangulation, from which links are removed such as
to obtain a realistic degree for each node, while maintaining the connectivity. The distributions
of homes, schools and trips have been chosen to resemble the proportions in the real data set.

The experimental design is based on four variables: the network, the number of buses, the ob-
jective function and the heuristic. In addition to the Savigny–Forel network, we have generated
four artificial networks with 10, 20, 30 and 50 nodes, respectively. For each of the five net-
works, we have run several scenarios for the number of buses (see Table 1), and the two objec-
tive functions (9) and (10), to obtain a total of thirty problems. We have considered three types
of heuristics, that is tabu search and simulated annealing with feasible neighborhood and with
infeasible neighborhood. In each case, simulated annealing has been run using four different
initial temperatures, and five different seeds for the random number generator. The tabu search
algorithm has been run using two different neighborhood sizes (14 and 18 neighbor solutions
visited, resp.), and ten different seeds for the random number generator. Thus, twenty instances
of each type of heuristic, totaling 1800 runs were carried out on a Pentium III 499MHz. On this
machine an instance with 50 nodes and 9 buses took about 10 hours to complete 50’000 solu-
tion evaluations, that is about 0.7 sec. per evaluation. We summarize now the main observations
from these runs.

Clearly, the quality of the solution depends on the specific heuristics used and the choice of its
parameters. In order to compare the overall quality of the heuristics, we adopt a variant of the
performance profiles analysis proposed by Dolan and Mor´e (2002).

If fp;a;i is the performance index of instancei of algorithma solving problemp, then theper-
formance ratiois defined by

rp;a;i =
fp;a;i

mina;iffp;a;ig
: (24)
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Network # buses

Savigny-Forel 4 5 6

Artificial jVj = 10 2 3 4 5

Artificial jVj = 20 2 3 4 5

Artificial jVj = 30 3 6

Artificial jVj = 50 9 13

Table 1: Number of buses considered for each network

For any given threshold�, the overall performance of algorithma is given by

�a(�) =
1

n(a)np
�a(�) (25)

wherenp is the number of problems considered,n(a) is the number of instances of algorithm
a which have been run, and�a(�) is the number of problems and instances of algorithma for
which rp;a;i � �. We refer the reader to Dolan and Mor´e (2002) for more details about the
benchmarking method.

The performance indices we have selected are the relative improvements of the objective func-
tion (that is the ratio between the final and initial values of the objective function) after a given
number of candidate evaluations (thecomputation budget). Interestingly, the profiles are qual-
itatively similar for different values of the computation budget. These results are encouraging,
as they indicate that the proposed approach is rather robust and does not depend too heavily on
the tuning of the heuristics parameters. We present here the results for two indices based on a
fixed budget (100 and 500, resp.) and an index where the budget depends on the problem size
(100jVj evaluations).

We compare tabu search, and the two versions of simulated annealing for the problem with ob-
jective functionF1 defined by (9) andF2 defined by (10), for a fixed budget of 100 evaluations
(Figure 8), 500 evaluations (Figure 9) and 100jVj evaluations (Figure 10). In each figure, the
plots in the bottom are just zooms of the top plots, in order to emphasize the profile for small
values of�. For the sake of clarity, the plots forF1 andF2 have been separated, although the
performance profile analysis has been performed over all methods.

The most noticeable performance is achieved by the infeasible version of simulated annealing
when objective functionF1 is considered (see, Figures 8(c), 9(c) and 10(c)).

The slight superiority of simulated annealing over tabu search has been observed for other prob-
lems, such as task scheduling (Glardon et al., 1992) and sequencing (Kurbel, 1998). However,
this may not be generalized, as the contrary has also been observed (see, for instance, Hao and
Pannier, 1998, for constraint solving problems).

It is interesting to note the slope of the profiles for each objective function (compare, for in-
stance, Figures 10(c) and 10(d)). The profile is steeper with objective functionF1, illustrating a
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Figure 8: Performance profiles for budget=100
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Figure 9: Performance profiles for budget=500
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Figure 11: Heuristic improvements withjVj = 50 andB = 9

more robust behavior of the heuristics whenF1 is preferred overF2. This is due to the fact that
the same value of the objective (10) may be achieved for a large number of different solutions,
as only the largest time loss is considered. Therefore, the heuristics are unable to discriminate
among a large class of solutions with the same objective, and are more likely to cycle randomly
among them.

All heuristics exhibit the same type of behavior: a significant improvement of the objective
function in the early iterations, and a slower reduction rate in subsequent iterations. This is
illustrated by Figure 11 where thex-axis represents the number of evaluations of candidate
solutions, and they-axis is the ratio of the objective function for the solution computed by each
heuristic and the objective function of the initial solution. Results forF1=NC are represented on
the left figure, and results forF2 on the right.

After comparing the behavior of various heuristics, we focus now on analyzing the quality of
the produced solutions. The procedure described in Section 4 is designed to generate feasi-
ble solutions, without focusing on any objective function. Consequently, the quality of those
solutions is pretty poor, requiring the subsequent use of the heuristics. We illustrate this with
Table 2, where each column corresponds to an instance of a problem, the last three columns
corresponding to the real case. The first row provides the number of nodes, the second the
number of buses. The quantityF1=NC is the mean of time losses for all children, andF2 is the
maximum time loss among all children.

For the sake of comparison, we present the solutions obtained after 5’000 (Table 3) and 50’000
(Table 4) solution evaluations with the tabu search heuristics.

We compare now our better solutions found with the solution actually implemented by Savigny
and Forel in 1997-1998, where the “no transfer” constraint (see (12), (13) and (14) in our model)
is violated for three children. The significant improvement obtained by the heuristics over the
actual solution is reported in Table 5. The distribution of time loss is reported in Figure 12,
where the black bars represent the Savigny-Forel solution, the dark gray bars represent the
solution obtained when minimizingF1 and the light gray forF2.

We conclude this result analysis by looking at the sensitivity of the solution with regards to the
number of buses. Indeed, it is an important economical information, as it allows to assess the
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Synthetic Real

jVj 20 20 20 20 50 50 34 34 34

B 2 3 4 5 9 13 4 5 6

F1=NC 46.5 28.7 18.2 14.1 32.8 28.5 41.8 33.9 27.7

F2 148 126 79 37 100 181 129 129 80

Table 2: Values of initial solutions, in minutes.

Synthetic Real

jVj 20 20 20 20 50 50 34 34 34

B 2 3 4 5 9 13 4 5 6

F1=NC 13.3 6.2 4.1 2.9 16.4 8.3 10.3 10.6 9.2

F2 37 26 25 22 59 46 47 44 36

Table 3: Values of final solutions (in minutes) after 5’000 evaluations.

Synthetic Real

jVj 20 20 20 20 50 50 34 34 34

B 2 3 4 5 9 13 4 5 6

F1=NC 6.8 4.5 2.4 1.1 11.8 6.1 8.9 6.4 5.5

F2 27 22 17 15 39 35 35 27 22

Table 4: Values of final solutions (in minutes) after 50’000 evaluations.
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Savigny and Optimization Optimization

Forel with F1 with F2

F1=NC

= mean of time loss
16.9 9.2 13.3

F2

= max of time loss
42 40 30

Earliest departure 6.49 7.12 6.56

# children attaining

the min of time loss
22 54 32

# children attaining

the max of time loss
1 3 7

Table 5: Comparison of Savigny and Forel with heuristics best solutions.
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Figure 12: Time loss distribution of three characteristic solutions.
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Figure 13: Best results found forjVj = 10 and jVj = 20 with simulated annealing, and tabu

search.

benefits in terms of level of service for the investment in operating an additional bus. Here, we
have allowed each heuristic to examine 50000 candidates before stopping the iterations. For the
tests we have performed, the marginal benefit of adding one bus in the system decreases with
the number of buses, as expected. This is illustrated by Figure 13.

7 Empirical improvement

The solution obtained by the automatic procedure may not always be completely satisfactory
from a practitioner point of view. Indeed, it is common that additional constraints not included
in the model, have to be satisfied. Therefore, it is important for the practitioner to have a tool
to visualize the proposed solution and possibly to be able to modify it. Moreover, the tool can
be used to adjust the solution when the original conditions are modified (a bus is unavailable
for maintenance, a school is closed, some children do not attend school, etc.) Indeed, a manual
modification can be much faster than running the overall process from the beginning.

We describe here a decision-aid tool (implemented in Python, see Lutz and Ascher, 1999) de-
signed to help practitioners improving the solution. It has two main functionalities: solution
display and edition.

The display contains (i) a graph representing the network, where nodes corresponding to schools
are differentiated and the path of a bus can be dynamically displayed (see Figure 14 top), (ii) a
diagram representing the tour of a bus which consists of anx-axis for time and ay-axis for the
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Figure 14: Evolution of a bus capacity and course bus.

occupancy of the bus (see Figure 14 bottom) and (iii) the description of each bus, its average,
minimum and maximum occupancy, average, minimum and maximum travel times, waiting
times and late arrival of children using it (see Figure 15). Finally, the exact occupancy of a bus
at a given time is also available, for each child travel time and waiting time are reported.

The edition capabilities of the tool enable the user to modify the journey of one child, and
to evaluate the impact of this modification on the solution. For the selected childc, the tool
proposes within each busb the best pick-up time forc, that is the pick-up minimizing time
loss (defined by (8)) of all children carried by busb. The impact of such a change on the
objective function is reported, that is the total and the maximum time loss of all children (F1

andF2 defined by (9) and (10)). The user may then decide to implement one of the proposed
modifications or keep the current solution.

Providing a child-oriented edition capability is motivated by the structure of the feasible solution
described in Section 4. Indeed, the procedure mainly focuses on buses, irrespectively of the
children’s journey. Therefore, it is common for this procedure to generate solutions which are
unsatisfactory for the children, like leaving very early in the morning, or spending a long time
in the bus. The child oriented edition tool helps to fix such aberrations.
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Figure 15: Solution characteristics for a given bus.
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To illustrate the tool, we show how to further improve a solution found with tabu search. We
consider the real problem with 4 buses. The optimum value of the solution given by tabu search
minimizing objective function (10), isF2 = 33 minutes. The value of the other objective
function (9) for the same solution isF1=NC = 17:1 minutes. We were able to improve the tabu
solution as illustrated by Figure 16. We decide to move child 246, currently getting in bus 0 at
7.13 AM. The decision-aid tool proposes us to move it to take bus 1 at 7.18 AM. Departing 5
minutes later, the child’s time lossf(246) comes down from 20 to 15 minutes. This modification
has no impact on the maximum time lossF2, because the maximum is reached for another child.
The mean time lossF1=NC decreases from 17.1 down to 15.9. The gain of 1.2 minutes is due
to the fact that bus 0 can now start its tour at 7.13 AM instead of 6.58 AM, which has an impact
on several children.

8 Conclusions and future developments

We have proposed a new modeling approach for the school bus routing and scheduling problem,
and analyzed several heuristics to solve the problem. The model focuses on optimizing the
service level of the bus system, as it aims at minimizing the children time losses either within the
bus or at school before class starts. Contrarily to previous models proposed in the literature, we
consider the number of buses as given, as it seems to be more consistent with real applications.

We have designed a procedure to generate a feasible solution of the problem. In general, that
solution appears to be unrealistic, and not operational. Therefore, it is required to apply some
heuristics in order to optimize it. We have compared two versions of simulated annealing (with
feasible and infeasible neighborhoods), and tabu search. The infeasible version of simulated
annealing appears to be the best performing heuristic, but the others are also performing well.
Most importantly, it appeared from our tests that the behavior of all heuristics seems robust with
respect to their design parameters. This is critical in a real context, where practitioner cannot
afford to tune the parameters of a given heuristics in order to obtain a satisfactory solution. Also,
it appeared that all heuristics perform better when the level of service is computed based on an
average value, instead of an extreme value. Actually, the use of an extreme value is relevant
from an application point of view, but requires an additional discrimination criteria to allow the
heuristics to perform efficiently.

Finally, we have implemented a decision-aid tool designed to evaluate local improvements sug-
gested by a human expert. This tool turns out to be effective not only for evaluation, but also to
discover better solutions that heuristics may not have found.

Several improvements must be investigated in the future. Firstly, the model can be refined by
adding further characteristics, such as allowing some transfers, allowing children with same
origin and destination to use different buses, or weighting differently the time loss as a function
of the children’s age. Also, the optimization criteria can be extended, and combined. They may
include the number of buses, or the total time spent by the drivers. In some cases, it is also
conceivable to adjust the school starting time on the bus schedule. A multi-objective approach
could then be considered, and filter methods would be good candidate approaches in this con-
text. Secondly, the methods to identify the solutions can be improved. We strongly advocate
a better cooperation between systematic heuristics and human-driven tools, in order to keep
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Figure 16: Moving a child from a bus 0 to bus 1
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control on the solution generation. Also, procedures based on infeasible solutions deserve more
investigation, as they would allow to skip the algorithm described in Section 4. Stress must then
be put on feasibility restoration techniques, based for example on Lagrangian approaches. Fi-
nally, a strong collaboration with practitioners would be likely to initiate new ideas for efficient
heuristics dedicated for this specific problem.
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2(3): 199–219.

Glover, F. (1977). Heuristic for integer programming using surrogate constraints,Decision
Sciences8: 156–166.

Hansen, P. (1986). The steepest ascent mildest descent heuristic for combinatorial program-
ming,Technical report, Congress on Numerical Methods in Combinatorial Optimization,
Capri,Italy.

Hansen, P. and Jaumard, B. (1987). Algorithms for the maximum satisfiability problem,Tech-
nical report, Rutgers University.

Hao, J.-K. and Pannier, J. (1998). Simulated annealing and tabu search for constraint solving,
Proceedings of the fifth international symposium on artificial intelligence and mathemat-
ics.

Kirkpatrick, S., Gelatt, C. D. J. and Vecchi, M. P. (1983). Optimization by simulated annealing,
Science220: 671–680.

Kurbel, K. (1998). The trade-off between solution quality and computing times of intelligent
algorithms - a computational study on the role of parameters and time budgets,in Kasabov,
N. et al. (ed.),Progress in Connectionist-Based Information Systems Proceedings of the
1997 International Conference on Neural Information Processing and Intelligent Systems,
Vol. 1, pp. 604–607.

Lin, S. (1965). Computer solutions of the traveling salesman problem,Bell System Tech. Journal
44: 2245–2269.

Lutz, M. and Ascher, D. (1999).Learning Python, O’Reilly & Associates.

Newton, R. M. and Thomas, W. H. (1969). Design of school bus routes by computer,Socio-
Economic Planning Science3: 75–85.

Rosenkrantz, D., Stearns, R. and Lewis, P. (1974). Approximate algorithms for the traveling-
salesperson problem,Proceedings of the 15th Annual IEEE Symposium on Switching and
Automata Theory, pp. 33–42.

Rossier, Y., Troyon, M. and Liebling, T. M. (1986). Probabilistic exchange algorithms and
Euclidean traveling salesman problems,OR Spektrum8(3): 151–164.

Swersey, A. J. and Ballard, W. (1984). Scheduling school buses,Management Science
30(7): 844–853.

Watters, L. J. (1967). Reduction of integer polynomial programming problems to zero-one
linear programming problems,Operations Research15: 1171–1174.

27


