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Abstract: Map matching algorithms are the conventional way to generate path 
observations from GPS data for route choice models.  The deterministic matching 
may introduce extra biases to parameters of route choice models if the matching 
is wrong. In this paper, a new methodology is proposed to probabilistically 
generate path representation from GPS location data and the underlying network.  
This methodology takes advantage of both spatial and temporal relationships 
existing in the location data and the network. The generated result includes a set 
of potential true paths, along with a probability of each proposed path to have 
been the actual path. An algorithm is designed and applied to a simulated trip. 
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1 INTRODUCTION 

The data describing travellers’ travelled routes is an indispensable input for route choice 
models. Merits of using GPS devices to collect data for transport studies have been 
recognized by comparing the collected data against the data collected from conventional 
survey methods, such as travel diary and telephone retrieval (Murakami and Wagner 
1999; Bellemans, Kochan et al. 2008). However, to serve as an input for the models, the 
discontinuous location data needs to be processed to generate the actual path.  

Deterministic map matching algorithms are the conventional way to generate a unique 
true path from GPS data trace. Significant advancements have been made in this field 
and the advanced algorithms may perform well generally in some applications (White, 
Bernstein et al. 2000; Quddus, Ochieng et al. 2007). However, using deterministic map-
matching algorithms in route choice modelling may introduce extra biases if the location 
data is matched to a wrong path. The wrong matching is unavoidable because neither 
the location data nor the network data is always accurate. Also some map-matching 
algorithms bring systematic errors because, for example, the algorithm prefers to match 
to main roads.  

Route choice modelling frameworks have been adapted to accept a probabilistic 
representation of the actual path (Bierlaire and Frejinger 2008). An observation is no 
longer necessary to be just a unique path in this framework. It can be represented by a 



set of potential paths, along with a probability for each path to have been the actual one.  
Bierlaire, Chen et al. 2009  proposed a theoretical framework for calculating probabilistic 
network mapping of location data to paths. In this paper, we introduce detailed 
techniques of an algorithm proposed by Bierlaire, Newman et al. 2009, which uses the 
framework. This algorithm is different from probabilistic approach used in some map-
matching algorithms, which still generate a unique result from observations (Ochieng, 
Quddus et al. 2003).  

In the next section we will introduce the probabilistic measurement for spatial 
relationship between a single location observation and two kinds of network 
elements, location and arc. In section 3, the algorithm used for calculating the 
path probability will be introduced. This algorithm utilizes the spatial temporal 
relationship reflected in observations. In section 4, an application of the algorithm 
to a synthetic scenario will be demonstrated. Finally, we will discuss some 
conclusions and future works.  

2 SPATIAL MEASUREMENTS  

2.1 The Network Representation 

Let ( , )G N A=  denote a network a network, where N  is the set of all nodes and 
A  the set of all arcs. The horizontal position of each node n N∈  is represented 
by ,{ }n latx lon= , which is a pair of coordinates consisting of latitude and 
longitude. The shape of physical route of arc a  is described by an application 

2:[0 :1]a →  . For a point x  on the arc, its position is given by a unique   

between 0 and 1 such that ( )ax =   . In particular, (0)a  is the coordinates of the 

up-node, and (1)a  is the coordinates of the down-node of arc a . If arc a  is a 
straight line between node u  and node d , we have 

( ) (1 )·a u dx x= − +     (1) 

2.2 The location data 
Location data is recorded by devices which are carried by travellers when they 
are travelling in the transportation network. The device makes observations on 
various kinds of direct and indirect location information sources from its sensors, 
including GPS readings, GSM cell tower information, WLAN base stations, etc. 
These location data sources can be generalized to be an observation of noisy 
location information with non-noisy time stamp information: ˆˆˆˆ ( )ˆ, ,, ˆ,x vg t x vσ σ= , 
which is a tuple containing: 

• t̂ , a time stamp ; 



• x̂ , a coordinates and the standard deviation of the error in the 
measurement of that coordinates, ˆ xσ ; 

• v̂ , a speed measurement and the standard deviation of the error in that 
measurement, ˆ vσ .  

2.3 Location Measurement Errors 

The location measurement is recorded as a pair of coordinates in north and south 
directions with errors late  and lone . We assume that errors are independent on 
directions and they both follow a normal distribution with mean 0 and standard 
deviation σ . Then the error distance between the true location and the observed 
measurement is: 

2 2
lat lonr ee= + , (2) 

which follows Rayleigh distribution. The probability of observing the 
measurement in a location is defined as the probability that the distance between 
the measured point and the location is less than the error distance: 

2

2)
ˆˆ( , ) Pr( ) exp( 2 )

ˆ( xx x r x x r
σ

Λ = ≥ − = −‖‖ , (3) 

in which ˆ xσ  is the root mean square of standard deviations of late  and lone . Note 
that this probability is monotonically decreasing when the distance between the 
observed x̂  and the hypothesized true x  increases. 

2.4 Single Location Measurement 
For a a∀ ∈  in the transportation network, the probability density of recording a 
GPS observation ĝ  is given by 

, ,ˆˆˆ( , ) ( , ( )) ( , ( )).a a af g f g xε = = Λ
ag g x      (4) 

By Bayes, given that a traveller is on some arc in the transportation network 
when a location observation ĝ  is recorded, the probability density of the 
traveller’s location can be expressed as 
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Then Equation (5) becomes 
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 The probability that the traveller is on arc a  when ĝ is recorded is given by 
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For those arcs which are far away from ĝ , the probability value approach zero. 
Hence, we define a domain of data relevance ( D ) for ĝ , which only includes 
those arcs which have probability value greater than a threshold. 

3 THE PATH PROBABILITY ALGORITHM 

In the last section, only spatial relationship between an observation and the 
network is accounted in the measurements for the single observation. However, 
for a trace of location data, there also exist temporal relationships among 
observations and network. Therefore, in this section, a method is presented to 
calculate the probability that the path having been the actual one by accounting 
for both spatial and temporal relationships. 

3.1 The Framework 

We denote a series of GPS location data observed in a trip as 1 1
ˆ , ,ˆˆ{ }, ˆk kg g gG −= ⋅⋅⋅ , 

in which 1ĝ  is the first GPS point observed and ˆkg  is the last. Along a path, 
observing a GPS point is dependent on the previous GPS observation. This 
dependency is considered in the derivation of the measurement equation for 
calculating the probability of making the observations on a path, and we have 

1 1 1 1 1 1ˆˆˆˆˆˆˆˆPr( , , , | ) Pr( | , , , ) Pr( , , | ).j j j j jg g g p g g g p g g p− − −=    (9) 

Therefore the probability that the path is the actual path is given by 
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Since a path is comprised by connecting arcs, we calculate 1 1ˆˆˆPr( | , , , )j jg g g p−   

in the domain of ˆ jg : 
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 where j  denotes the random variable of the true position on an arc where ˆ jg is 

recorded. 1 1ˆˆ( | , , , )a jf g g p−j 


 is the probability density function for the 

distribution of the current position given the trace of previous GPS observations, 
which we term the "state function". At the first observation, there isn't a previous 
observation, so 

1 1
( )

ˆˆPr( | ) Pr( , )
ja D p

g P g a
∈ ∩

= ∑  (12) 

 

4.2 The State Function 
The underlying dependency in Equation (11) is actually resulted from the 
traveller’s movement during the intervening time between the two observations 

1ˆ jg −  and ˆ jg . This movement can be regarded as the travel from the domain of 

1ˆ jg −  to the domain of ˆ jg . Since a domain consists of several relevant arcs, the 

state function can be written as 

1
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 where the probability 1 1ˆˆ( | , , , )jf b g g p−a   is calculated by 
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In Equation (13), 1 1ˆˆ( | , , , , )a jf b g g p−j 


 represents conditional probability of being 

at position a  when ˆ jg is recorded, given that condition that the trace of GPS 



points before ˆ jg  has been observed. For simplification, only the previous 1ˆ jg −  is 

taken into account, and the probability simplifies to 1( , )ˆ|a jf b g −j 
. By considering 

each possible position on arc b it becomes 

1

1 1 10
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,          (15) 

in which 1ˆ( | , )b jf g b− −j 1 
 is the spatial relevance measurement which is calculated 

by Equation (7) . And 1ˆ( | , , )a b jf g b−j  


 is the probability that being at position a  

when ˆ jg is recorded, given the true position of recording 1ˆ jg −  is b , which we term 

the “position transition probability”. It reflects the trajectory of travelling from b  to 

a . 

2.3 Trajectory Between Observations 
We depict the trajectory of travelling from previous position b  to the current 

position a  in Figure (1). There are several segments in the trajectory, and the 

total travel time  b a→t  is the summation of travel times on all segments. For 
instance, if a and b  are different arcs, we have 

1
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∈

= − + + + = −∑t t t t t           (16) 

 where  

• b asp → is the sub-path from the down-node of arc b to the up-node of arc a ; 

• ct  is time cost on an arc c , which is a component arc of b asp → ; 

• wt  is the total waiting time at intersections or other transportation facilities 
which might cause stops. 

 

Figure 1 Position transition between adjacent domains 



The position transition probability can be defined as the total travel time from  b  

to a  is the time difference observed: 

1 1 1
ˆˆˆˆ( | , , ) ( | , , , )

b aa b j j j a b jf g b f t t g b
→− − −= −j t   


        (17) 

 In the following part of this section, the random variables in Equation (16) will be 
discussed. 

Travel time cost on observing arcs a  and b  

We assume that the traveller keeps a constant speed when he is travelling on an 
arc. In the position transition probability measurement, a given condition is that a  
and b are the arcs where the GPS points are observed.  So the observed speeds 
in 1ˆ jg −  and ˆ jg  can be used to estimate the actual speeds of travelling on arcs a  

and b  respectively. The normal distribution is a convenient and applicable 
assumption for the speed, and the mean v̂  and standard deviation ˆ vσ  are given 
in the data. Since traveller’s true speed is constrained by the capability of mean 
of transport which he is using, the speed distribution should be truncated within a 
continuous bound. 

Travel time cost on arcs of intermediate sub-path b asp →  

The information about the travelling in b asp →  is not explicitly observed. However, 
if the traveller’s travelling pattern is stable, the speed data recorded in the nearly 
GPS points can be used to reveal the travelling pattern in the sub-path. Moreover, 
the travelling is also dependent on the underlying transportation network. In traffic 
theory, the free flow speed ratio reflects the traffic conditions. The inverse free 
flow speed ratio is 

v
v

ϖ =  (18) 

where v  is the free flow speed or expected speed given in the network data, and 
v  is the actual speed. Within a certain geographical area and time period, the 
traffic condition is assumed to be stable to some extent. We use normal 
distribution to depict ϖ , 2~ ( , )N ϖϖ ϖ δ . At GPS observation ˆ jg , jΘ is a set of 

GPS points which lie in a certain geographical area around  ˆ jx and a certain time 

period around  ˆ
jt . The inverse free flow speed ratio for ˆ jg is calculated by 
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follows normal distribution. 

Waiting time caused by stops 

During the interval time between adjacent observations, the traveller might be 
stopped due to traffic control devices existing in the network. The spots causing 
the stops are mostly intersections, where the traveller should wait for his green 
light. So if there are intersections between a  and b , the possible waiting time 
should be captured. However, if the observation interval time is small enough, it 
is very possible that a very low speed GPS point is observed during the stop. For 
example, the interval time of recording a observation is set to be 10 seconds, 
then if the traveller has been waiting for 5 seconds, there is at least 50%  
possibility that a stop is observed, and 100%  if 10 seconds. Hence, the meaning 
of the waiting time is introducing a penalty to those unlikely position transitions. 
The incorporation of GPS observations with very low speed is a topic for further 
research. Within this paper, we use uniform distribution to estimate the waiting 
time. 

 

4 NUMERICAL EXAMPLES 

We design a simulation scenario (see Figure (2)) to examine the capability of 
thealgorithm described in this paper. A synthetic network is constructed using two 
parallel horizontal lines, with vertical lines connecting them. Each horizontal line 



contains 10 arcs with length 94m , and we change the length  of vertical lines to 
different value in various scenarios to test the performance of the algorithm at 
various resolutions. All arcs in the network are bidirectional.  

 

Figure 2 Simulated scenario 

We simulate that a traveller drives a car at a constant speed 40 /km h , departing 
from node o , travelling along the bottom line, and arriving at his destination node 
d . Location observations are recorded in every 10s . In Figure (2), the green solid 
points are those true locations where the observations are recorded. Errors are 
introduced to each observation. 

• The errors of latitude and longitude are randomly drawn from normal 
distributions, which both have zero mean and different standard deviations 
randomly and independently selected from [ ]0,30m . The distributions of 

latitude and longitude errors are truncated in [ 13 ,30 ]m m−  and [ 20 ,20 ]m m−  
respectively. And the standard deviation of latitude is multiplied by 1.5. 
These manipulations introduce systematic errors so as to make the 
simulation close to reality by. The root mean square of two standard 
deviations is calculated and recorded as ˆ xσ .  

• Errors of speed is drawn from normal distribution as well, with zero mean, 
and a fixed standard deviation 6 . 

Among a large amount of simulated location measurements, we select a typical 
trace of location measurements of which the accuracy is bad. In Figure (2), the 
red x symbols are the locations observed.  In this scenario, the human intuition 
can hardly recognise the true path. For comparison purpose, we run the 
algorithm with the length of vertical lines being 10m , 15m  and 20m  respectively. 
For each scenario, only 6  most probable paths are presented. The two 
probability values under each path indicate the path probabilities calculated by 
different algorithms. The algorithm for the first value is the one describe above, 



which we term “spatial temporal algorithm”; while the second algorithm uses the 
similar method but without state function, and it basically just reflects the spatial 
relationship between the observations and the network, and we term it “spatial 
algorithm”. 

 

 

Figure 3 Result with 10l m=  

 

Figure 4 Result with 15l m=  

The results in Figure (3) show that when 10l m= , both algorithms fail in giving the 
highest probability to the true path, although the differences between paths are 
not significant. When l  is extended to be 15m  (see Figure (4)), the spatial 
algorithm gives the highest probability values to the wrong paths (3 and 5). But 



the probability of the true path calculated by spatial temporal algorithm is the 
highest. Further, l  is extended to be 20m  (see Figure (5)). The true path gains 
the remarkable likelihood from spatial temporal algorithm, but the spatial 
algorithm fails again. The failure of the spatial temporal algorithm in the first case 
and the only marginally highest result in the second case also show that it is not 
a panacea.  

 

 

Figure 5 Result with 15l m=  

 

5 CONCLUSIONS AND FUTURE WORKS 

In this paper, an algorithm is presented to generate probabilistic representation of 
the path observation from the location data and the transportation network. 
Spatial relationships between single location observation and two basic network 
elements, location and arcs, are measured in a probabilistic fashion. For a series 
of location observations, the underlying spatial temporal relationships are taken 
into account in the calculation of the path likelihood which represents the 
probability that the path is the true path where the location observations are 
observed. Results from synthetic data show the viability of the algorithm in 
recognizing the true path. 

 A data collection campaign will be carried out to collect various kinds of data 
from sensors built in Nokia N95 smart phone, including GPS location data. This 
project is funded by, and collaboration with, the Nokia Research Center in 
Lausanne. About 100 N95 will be given out to respondents with pre-installed data 



recording software. Each respondent will use the device as her regular mobile 
phone, carrying it along with her throughout the day, while the software 
constantly records data and regularly sends the data to a server.  

The algorithm will be improved by better utilizing low speed GPS observations. 
We sill compare it against the advanced map-matching algorithms. This algorithm 
will be used to generate path observations for route choice models. 
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