
Estimation techniques for MEV models withsampling of alternativesRicardo Hurtubia, Gunnar Flötteröd and Michel BierlaireTransport and Mobility Laboratory (TRANSP-OR), EPFLAbstractEstimation of MEV models with large choice sets requires samplingof alternatives, which might be a di�cult task due to the correlated-structure of the error terms. Standard sampling techniques like theones traditionally used for Multinomial Logit models can not be di-rectly applied in the estimation of more complex MEV models. Stateof the art estimators for MEV models with sampling of alternativeseither require knowledge of the full choice set or produce biased es-timates for small sample sizes. This paper proposes two estimationtechniques for MEV models with sampling of alternatives. The �rsttechnique is based on bootstrapping and allows to reduce the bias forexisting estimators. The second technique introduces a new estimator,based on importance sampling, which generates unbiased parameterestimates for small sample sizes.1 IntroductionIn discrete choice models, sampling of alternatives is commonly used whenthe choice set is large. Typical examples of this are the problems of resi-dential location choice, destination choice or route choice, where the iden-ti�cation of each available alternative becomes di�cult.Sampling a subset of alternatives from the full choice set allows for a simplerestimation of the parameters in the utility function by reducing the com-putational complexity of the estimator. In the case of a Multinomial Logitmodel (MNL), where the error terms of the random utilities are indepen-dent and identically distributed (iid), it is possible to estimate parametersthat are consistent and unbiased by adding a corrective constant to the util-ity of each alternative (McFadden, 1978). However, if the iid assumption isdiscarded, the sampling correction method usually utilized in MNL modelswill generate biased estimates. This is the case for the Nested Logit modelc© Association for European Transport and contributors 2010



(NL), the Cross Nested Logit (CNL) and other members of the MultivariateExtreme Value (MEV) family of models.The estimation of nested-structured MEV models with sampling of alter-natives is di�cult because of the error-correlation structures that makesthe probability of choosing the sampled alternative dependent on the util-ities of all the alternatives in the corresponding nest. For example, in aNested Logit model, the inclusive value (or logsum) will include the fullchoice set in the nest, regardless of the selected alternatives in the samplefor the choice probabilities. Bierlaire et al. (2008) propose an estimator forMEV models with sampling of alternatives. However it assumes that theprobability generating function of the MEV can be computed accurately,which again requires the full choice set. They do not describe how to applysampling to compute it.In the context of route choice models, Frejinger et al. (2009) introduce theconcept of �Extended Path Size�, where the Path Size is computed based ona sample of alternatives, and corrected using an expansion factor. Guevaraand Ben-Akiva (2010) generalize this approach and derive an expansionfactor for a general MEV model. This method generates asymptoticallyunbiased estimates of the unknown parameters; however, the quality ofthe estimates depends on the sample size, generating biased results forrelatively small samples.This paper proposes two improved estimators for MEV models with sam-pling of alternatives. We take as a starting point (and benchmark) themethod proposed by Guevara and Ben-Akiva and develop two estimationprocedures that reduce the bias of the estimates. The �rst procedure uti-lizes bootstrapping techniques to reduce the bias of the estimates generatedby the benchmark method while the second proposes a new approximationof the logsum and an importance sampling strategy to reduce the bias inthe estimates of the parameters. Both procedures are tested over syntheticdata using Monte Carlo experiments; results are compared with those ob-tained when using the method proposed by Guevara and Ben-Akiva.The paper is organized as follows: Section 2 reviews the samplingmethodol-ogy for MEV models and the method proposed by Guevara and Ben-Akiva.Section 3 introduces two techniques for bias reduction in the estimationof MEV model under sampling of alternatives: importance sampling andbootstrapping. Section 4 describes a Monte Carlo experiment using thec© Association for European Transport and contributors 2010



bootstrapping approach. Section 5 shows the results of an experiment us-ing the importance sampling approach. Finally, Section 6 concludes thepaper and identi�es further research.2 Sampling of alternatives in random utilitymodelsIn the following section we analyze methods for sampling of alternatives inMEV models. We start with the simple case of the Multinomial Logit tothen describe the more general method for sampling of alternatives in MEVmodels. The section concludes describing the state of the art for samplingof alternatives in Nested Logit models.2.1 Multinomial LogitIn a MNL model, the probability of decision-maker n choosing alternative
i is given by :

P(i) =
eVni

∑

j∈Cn

eVnj

(1)where Vni = V(xin, β), the systematic part of the utility of alternative ifor decision maker n, is function of the alternative's attributes (xin) anda vector of unknown parameters (β). For notation simplicity the scaleparameter µ is omitted. The term Cn represents the full set of availablealternatives from where the decision-maker can choose.If Cn is large, the analyst might want to sample a smaller subset of al-ternatives Dn. The probability of constructing the subset Dn given thatalternative i was chosen is denoted by π(Dn|i). Following McFadden (1978)the probability of choosing alternative i given a subset Dn is:
P(i|Dn) =

eµVni+lnπ(Dn |i)

∑

j∈Dn

eµVnj+lnπ(Dn |j)
(2)c© Association for European Transport and contributors 2010



where the term lnπ(Dn|i) works like an alternative-speci�c expansion fac-tor. The positive conditioning property (McFadden, 1978) ensures that, ifthe probabilities π(Dn|j) are positive and known for all alternatives j ∈ Dn,consistent estimates of the parameters β can be obtained through maxi-mum log-likelihood estimation, following:max
β

∑

n

lnP(i|Dn)
yin (3)where yin assumes the value of one if n chose alternative i and zero other-wise.The unbiased estimates resulting from solving (3) are possible thanks tothe iid structure of the error terms in the MNL model. More complexmodels, allowing for correlation between alternatives (like the NL or CNLmodels), do not hold this property and therefore correction for samplingcan not be achieved by just adding an alternative speci�c correction, asdone in (2). This issue is reviewed in the next subsection.2.2 MEV ModelsMany random utility models (such as the MNL, NL and CNL models) canbe expressed as particular cases of the (more general) Multivariate ExtremeValue family of models (McFadden, 1978). The error-correlation structurein MEV models (also named Generalized Extreme Value models) is de�nedthrough the generating function G(eV1, ..., eVJ), such that the probability ofchoosing alternative i is:

Pn(i) =
eVinGi

G(eV1, ..., eVJ)
(4)where

Gi =
∂G(eV1n, eV2n, ..., eVJnn)

∂eVin
(5)The choice probability of (4) can be re-written in the form of a multinomiallogit, but keeping the error-correlation structure de�ned by G (Ben-Akivaand Lerman, 1985). c© Association for European Transport and contributors 2010



Pn(i) =
eVin+lnGi

∑

j∈Cn

eVjn+lnGj

(6)Di�erent functional forms for G generate di�erent models. For example aMNL model is obtained if G(y) =
∑

j∈Cn

y
µ
jTaking advantage of the closed form of equation (6), Bierlaire et al. (2008)proposed an estimator over a sample of alternatives for MEV models. Thechoice probabilities in this case are similar to those described by (2):

Pn(i|Dn) =
eVin+lnGi+lnπ(Dn |i)

∑

j∈Dn

eVjn+lnGj+lnπ(Dn |j)
(7)It is important to notice that, unlike the case of (2), the choice probabilitiesof (7) do not depend only on the utilities of the alternatives in subset Dn.This is caused by the term Gi which, with few exceptions like the MNL,depends on the utilities of the alternatives in the full choice set. Therefore,under sampling of alternatives, equation (7) can not be used for a consistentmaximum likelihood estimation of the unknown parameters.Consistent estimation of the unknown parameters requires an unbiasedestimator of the derivative of the generation function (Gi). The feasibilityand complexity of this estimator will depend on the functional form of G.In this paper we analyze the case of the MEV formulation for a Nested Logitmodel and the estimator originally proposed by Guevara and Ben-Akiva.2.3 Sampling correction for the Nested Logit modelThe MEV formulation of a Nested Logit model with M nests considers agenerating function with the following functional form:

G =

M
∑

m=1




∑

i∈Cmn

eµmVin




µ
µm (8)where µm is the scale parameter for nest m and µ is the scale parameterfor the higher level nest. Cmn is the full set of alternatives in nest m.c© Association for European Transport and contributors 2010



The logarithm of the �rst order derivative of (8) is:lnGin =

(
µ

µm(i)

− 1

)
ln ∑

j∈Cm(i)n

eµm(i)Vjn


+ lnµ+ (µm(i) − 1)Vin (9)where m(i) is the nest containing alternative i.Since the logsum depends on all the alternatives in the nest it needs tobe approximated if the probability is to be calculated over a sub-sample

Dmn. Guevara and Ben-Akiva (2010) proposed the following estimator ofthe logsum for nest m(i):

ln ∑

j∈Cm(i)n

eµm(i)Vjn


 ≈


ln ∑

j∈Dm(i)n

wjne
µm(i)Vjn


 (10)where Dm(i)n is a sub-sample of the alternatives in nest m(i). The weights(wjn) are calculated as follows:

wjn =
ñjn

En(j)
(11)where ñjn is the number of times alternative j was sampled and En(j) isthe probability for alternative j to be included in the sample, accordingto the sampling protocol. In their analysis, Guevara and Ben-Akiva usea sampling without replacement protocol for the sampling of alternatives,therefore making ñjn at most equal to one and En(j) equal to the probabilityof drawing alternative j. They also propose to use the same sample for theelements in the logsum and the alternatives in the choice set, this meansthat the chosen alternative is always included in Dm(i)n.Their approximation generates asymptotically unbiased estimates of theutility parameters and the scale parameters for each nest. However, for rel-atively small sample sizes, the approximated logsum is unable to reproducethe full logsum values and, therefore, the estimation results are biased.The best results are obtained when En(j) is calculated using the true choiceprobabilities; this implies the un-realistic assumption of the analyst beingable to observe the probabilities before estimation. Other more realisticc© Association for European Transport and contributors 2010



estimators of the true choice probabilities were tested, generating morebiased coe�cient estimates with the exception of an iterative estimatorwhich generated results statistically equal to those obtained with the trueprobabilities.In the following section we propose techniques to reduce the bias in theestimation results for MEV models with sampling of alternatives.3 Techniques for bias-reductionTwo statistical techniques are proposed for an improved estimation of thelogsum (10): importance sampling and bootstrapping.3.1 Importance SamplingImportance sampling allows to reduce the variance of an average that ap-proximates an expectation. For this, (i) a proposal distribution needs tobe chosen that de�nes how sampling has to take place and (ii) the averageneeds to be corrected for this sampling strategy. Essentially, a proposaldistribution that favors large values (in absolute terms) is more likely todraw elements into the average that substantially contribute to the ap-proximated expectation, and hence it leads to an improved reduction invariance.The bias in the estimator (10) is monotonously increasing with the varianceof the argument of the logarithm: For a zero variance, there is no biasat all. The larger the variance gets, the more the nonlinear form of thelogarithm takes e�ect in distorting the distribution of its argument. Ithence is desirable to estimate this argument with a low variance. In thefollowing, we apply importance sampling for this purpose.De�ning for notational simplicity
zin = µm(i)Vin (12)and omitting the index n as from now, (10) becomesln ∑

j∈Cm(i)

ezj . (13)c© Association for European Transport and contributors 2010



This expression can be rephrased as the logarithm of an expectation:ln ∑

j∈Cm(i)

ezj

g(j)
g(j) = ln(E{

ezj

g(j)

∣∣∣∣∣ j ∼ g(j)

}
)
. (14)In order to compute the argument of the logsum, a proposal distribution

g(j) needs to be de�ned that is strictly positive for all j ∈ Cm(i)n. Based ona set of R independent and identically distributed samples generated fromthis distribution, (14) is then approximated byln ∑

j∈Cm(i)

ezj ≈ ln 1

R

R
∑

r=1

ezj(r)

g(j(r))



 , j(r) ∼ g(j), r = 1 . . . R. (15)A concrete version of the proposal distribution g(j) will be described inSection 5.2 (equation 27).3.2 BootstrappingBootstrap methods were �rst proposed by Efron (1979) as simulation-basedtechniques for statistical inference. Bootstrapping is generally used to inferthe properties of an estimator from a limited sub-sample of observations;this opens the possibility of measuring the bias of an estimator and cor-recting for it.The bootstrapping technique approximates a given distribution by a limitedset of samples and makes further inference about this distribution by re-sampling from this set of samples. Let θg be some statistic of x ∼ g. Thestatistic is estimated from a set of R samples x(r) ∼ g, r = 1 . . . R, using theestimator
θ̂(x(1), . . . , x(R)). (16)The bias of this estimator, which isE{θ̂(x(1), . . . , x(R))|x(r) ∼ g, r = 1 . . . R}− θg, (17)can be estimated using the bootstrap estimator

1

B

B
∑

b=1

θ̂(x(1, b), . . . , x(R, b)) − θ̂(x(1), . . . , x(R)). (18)c© Association for European Transport and contributors 2010



where x(1, b), . . . , x(R, b) is a set of independent and uniform re-samplesfrom the original sample x(1), . . . , x(R). Subtracting this bias from theoriginal estimator θ̂(x(1), . . . , x(R)) results in the corrected estimator
2θ̂(x(1), . . . , x(R)) −

1

B

B
∑

b=1

θ̂(x(1,m), . . . , x(R,m)). (19)In our case, the statistic under consideration is
θg = ln(E{

ezj

g(j)

∣∣∣∣∣ j ∼ g(j)

}
)
, (20)and the respective estimator is

θ̂(i(1), . . . , i(R)) = ln 1

R

R
∑

r=1

ezj(r)

g(j(r))


 , j(r) ∼ g(j), r = 1 . . . R. (21)An improved version of (15) can therefore be obtained by application ofthe corrected estimator (19) using the de�nitions (20) and (21).4 Experiment: bias-correction with bootstrap-ingWe perform a Monte Carlo simulation experiment similar to the one pre-sented in Guevara and Ben-Akiva (2010). This consists in a nested logitmodel with 2 nests; the �rst containing 5 alternatives and the second con-taining 1000 alternatives. All the alternatives of the �rst nest are includedin the estimation while a importance sampling protocol is applied in thesecond nest: for each observation the chosen alternative is included and anadditional set of non-chosen alternatives is sampled without replacementfrom the full choice set.The utilities are linear-in-parameters and depend on 2 variables, a and b,randomly generated from a uniform (-1,1) distribution. The values of thetrue parameters are set to βa = 1, βb = 1, µ1 = 2, µ2 = 3. Choices aresimulated for 1000 observations using the true parameters and the completechoice set for both nests, following the probability distribution de�ned in(6). c© Association for European Transport and contributors 2010



Two experiments are performed. The �rst applies the approximated logsumproposed by Guevara and Ben-Akiva in order to have benchmark resultsfor comparison purposes. The second experiments uses the same approxi-mation for the logsum, but includes a bootstrap correction which is usedin a second estimation instance.4.1 Approximated logsumFirst we attempt to reproduce the original results by using the approxima-tion de�ned in (10). Also, to compare with the best possible results, weuse the �true probabilities� approach for E(j) as a benchmark. For this weuse the following choice probability in the estimation:
Pn(i|Dn) =

e
Vin+lnG ′

i
(Dm(i)n)+ln |Cm(i)|

|Dm(i)n|

∑

j∈Dn

e
Vjn+lnG ′

j
(Dm(j)n)+ln |Cm(j)|

|Dm(j)n|

(22)where G ′

i(Dn) is the derivative of the generating function (9) but replac-ing the full logsum for the approximation de�ned in (10). The samplingcorrection is calculated as the number of alternatives in the full choice set(|Cm(i)|) over the sample size (|Dm(i)|). Since nest 1 considers all the avail-able alternatives (C1(i) = D1(i), ∀i) this correction is only applied in nest 2where C2(i) ⊇ D2(i), ∀i.Table 1: Estimation results - Approximated logsumparameter average value std-error true value t-test
βa 0.831 0.052 1 3.226 *
βb 0.848 0.054 1 2.788 *
µ1 2.982 0.419 2 2.339 *
µ2 3.646 0.189 3 3.428 ** coe�cients statistically di�erent from the true parametersTable 1 shows the results for the Monte Carlo experiment, using a sampleof 10 alternatives for nest 2 (sample size = 1% of |C2|) and estimatingwith the probabilities de�ned by (22). As expected, given the relativelysmall sample size, all the estimates are signi�cantly di�erent from the truec© Association for European Transport and contributors 2010



parameters. This is shown by the t-test against the true values (a t-testbigger than 1.96 indicates a 95% probability of the estimate being di�erentfrom the true parameter).4.2 BootstrappingWe repeat the experiment, but implementing a sequential estimation pro-cedure: the �rst iteration considers a regular estimation using the approx-imated logsum. The second iteration repeats the estimation but incor-porates the bootstrap correction (ρn) in the logsum. This correction iscalculated with the parameters obtained from the �rst estimation (β∗, µ∗),following the method described in Section 3.2
ρn =

1

B

B
∑

b


ln ∑

j∈Db
mn

wjne
µ∗

mVjn(β
∗)


−



ln ∑

j∈Dmn

wjne
µ∗

mVjn(β
∗)



 (23)where B is the number of re-sampling instances of the bootstrap estimatorand Db
mn de�nes the alternatives in the sample at each instance.The parameters are re-estimated using the following choice probability:

Pn(i|Dn) =
e
Vin+lnG ′

i
(Dm(i)n)−ρn+ln |Cm(i)|

|Dm(i)n|

∑

j∈Dn

e
Vjn+lnG ′

j
(Dm(j)n)−ρn+ln |Cm(j)|

|Dm(j)n|

(24)The Monte Carlo experiment is performed with the same sample size usedin Section 4.1 (|D2| = 10); results are shown in Table 2. In this casethe parameters were re-estimated after calculating the bootstrap correctionfor the bias, following the probability distribution de�ned in (24). Theestimated parameters are closer and statistically equal to the true values;therefore the bias has been reduced with respect to the original estimation.The results con�rm the usefulness of the bootstrapping correction in theestimation of MEV models. However, the quality of the bootstrapped pa-rameters depends on the quality (in terms of bias) of the �rst-instancec© Association for European Transport and contributors 2010



Table 2: Estimation results - Bootstrap correctionparameter average value std-error true value t-test
βa 0.949 0.099 1 0.518
βb 0.936 0.095 1 0.672
µ1 2.505 0.732 2 0.690
µ2 3.232 0.285 3 0.811estimates. In the results shown in Table 2 the parameters used for the cal-culation of the bootstrap correction are those obtained in the �rst instancewith the approximated logsum which, in average, have the values shownin Table 1. The unbiased estimates obtained after bootstrapping are onlypossible thanks to the relatively good original estimates, where the biasexists but is not extreme.Therefore bootstrapping is an appropriate tool to reduce the bias of theestimates, but it necessarily requires a good initial approximation of thelogsum. To illustrate this, Figures 1 and 2 show the evolution of the param-eter values in two particular realizations of the Monte Carlo experiment.The realizations were selected as examples of a �good� and a �bad� start-ing point (which depends on the random sampling of alternatives). In bothcases, the iterative estimation process converges very quickly to a stable re-sult. In the case of a good starting point (Figure 1) the values are slightlyshifted, but enough to reduce the bias signi�cantly. In the case of the badstarting point (Figure 2), the bootstrapping and re-estimation technique isunable to move the values close enough to the true parameters.Figure 1: Estimation iterations (good initial point)

c© Association for European Transport and contributors 2010



Figure 2: Estimation iterations (bad initial point)

These results indicate that bootstrapping alone will not solve the bias prob-lems of an estimator: a good estimator is required beforehand. The nextsection proposes a method to obtain unbiased estimators for MEV modelsunder sampling of alternatives.5 Experiment: importance sampling for log-sum estimationThe relevance of the initial estimates for the bootstrapping procedure mo-tivates the search of a new strategy for sampling of alternatives in MEVmodels. As explained in Section 3.1, the quality of the the estimator forthe logsum will depend on the sampling protocol. A new experiment isperformed and the approximated logsum approach is compared with a newmethodology described in Section 5.2The experiment is performed with synthetic data built over a real datasetfrom a stated preferences survey to evaluate a high-speed train in Switzer-land (Bierlaire et al., 2001). The original dataset considers three possiblealternatives: Car (C), Train (T) and High-speed Train (HS). We estimatea model over the original dataset in order to have proper true values forthe parameters in the experiment. The model assumes two nests: an �in-novative� nest including only the high-speed train and a �traditional� nestincluding both car and train. Utilities are linear in parameters with somealternative-speci�c parameters. Results for the estimation over the originalc© Association for European Transport and contributors 2010



Table 3: Estimation results over original datasetparameter a�ected V value std-error t-test
βcost C-T-HS -0.849 0.122 -6.96

βtime_C C -1.760 0.148 -11.84
βtime_T T-HS -1.840 0.173 -10.65
βheadway T-HS -0.496 0.227 -2.19

µ1(innovative) - 1* - -
µ2(traditional) - 1.55 0.201 2.76*** �xed parameter** t-test against 1data are presented in Table 3.Synthetic data is generated by generating new alternatives based on theoriginal ones, introducing a multiplicative disturbance in the attributeswith a uniform distribution (0.5,1.5). We generate 4 new High-speed-basedalternatives, 49 new car-based alternatives and 49 new train-based alter-natives. Therefore, in our synthetic data, the innovative nest has 5 alter-natives and the traditional nest has 100 alternatives. Since the numberof alternatives in each nest is di�erent from the original problem we arbi-trarily de�ne new true values for the scale parameters: µ1 = 2 and µ2 = 4.Simulation of choices is performed over the synthetic dataset using the truechoice probabilities de�ned by (6).Two experiments were performed. The �rst using Guevara and Ben-Akiva'sapproximation for the logsum and the second using importance samplingfor the logsum estimator. In both cases the sample size for nest 2 was of10 alternatives (10% of |C2|).5.1 Approximated logsumThe method proposed by Guevara and Ben-Akiva is applied to the syntheticdataset. Estimation is done using the probability described by (22) andalternatives for both the choice set and the logsum are randomly sampledwithout replacement and including the chosen alternative. Results for thisexperiment are shown in Table 4.c© Association for European Transport and contributors 2010



Table 4: Estimation results: approximated logsumparameter average value std-error true value t-test
βcost -1.033 0.149 -0.849 1.237

βtime_C -2.382 0.302 -1.760 2.055 *
βtime_T -2.264 0.295 -1.840 1.439
βheadway -0.742 0.119 -0.496 2.069 *

µ1(innovative) 1.507 0.269 2 1.838
µ2(traditional) 3.431 0.294 4 1.938* coe�cients statistically di�erent from the true parametersResults show two parameters that are biased with respect to the true ones:

βtime_C and βheadway. The scale parameters, although not statistically bi-ased, have values which are far from the true ones and t-tests that are closeto 1.96.5.2 Importance sampling for the logsum estimatorThe approximated logsum described in Section 2.3 (equation 10) and usedin the previous experiment utilizes the same alternatives that were sampledfor the choice set: the chosen alternative and a set of alternatives that arerandomly sampled, without replacement, from the full choice set. How-ever meaningful for the alternatives in the choice probability, this samplingprocedure is not the best for the estimation of the logsum.The bias of the parameter-estimates will depend on the bias of the es-timated logsum. Importance sampling of alternatives should generate abetter estimate than random sampling, as explained in Section 3.1.We propose a sequential estimation procedure that keeps the sampling pro-tocol for the alternatives in the choice probability, but considers an impor-tance sampling protocol for the alternatives in the approximated logsum.In the �rst instance, since the choice probabilities are unknown, the alterna-tives to be included in the logsum are randomly sampled (with replacement)from the full choice set. The alternatives of the choice set are sampled fol-lowing the same protocol described in Section 5.1. The parameters areestimated using choice probabilities following:c© Association for European Transport and contributors 2010



Pn(i|Dn) =
e
Vin+lnG ′

i(Lm(i)n)+ln |Cm(i)|

|Dm(i)n|

∑

j∈Dn

e
Vjn+lnG ′

i
(Lm(j)n)+ln |Cm(j)|

|Dm(j)n|

(25)where Lm(i)n is the set of sampled alternatives (from the nest containing
i: m(i)) for the logsum and lnG ′

i(Lm(i)n) is the expression described in (9)but using the following approximated logsum:ln ∑

j∈Lm(i)n

w ′

jne
µm(i)Vjn (26)Given the sampling protocol for Lmn, the weights (w ′

jn) are calculated, inthe �rst instance, as the full set size (|Cm(i)|) over the sample size (|Dm(i)|).The parameters obtained in the �rst estimation (β∗, µ∗) are used to cal-culate the importance sampling distribution that will generate the samplefor the logsum in the second estimation. The probability of sampling analternative from a particular nest m is de�ned as a Multinomial Logit:
gn(i|m) =

eVni(β
∗,µ∗)

∑

j∈Cm

eVnj(β
∗,µ∗)

(27)The new sample of alternatives to estimate the logsum (L ′

mn) is done fol-lowing gn(i|m).A new estimation is performed, similar to the �rst one but replacing theapproximated logsum for:ln ∑

j∈L ′

mn

1

|L ′

mn| · gn(j|m)
· eµm(j)Vjn (28)Estimations are repeated until a stable value is achieved for all parameters.Table 5 shows the results for the proposed methodology. The importancesampling procedure generates unbiased estimates for all the parameters,outperforming the results of the approximated logsum shown in Table 4.Also, the bias of the �nal estimates does not depend strongly on the bias ofc© Association for European Transport and contributors 2010



Table 5: Estimation results: importance samplingparameter average value std-error true value t-test
βcost -0.863 0.069 -0.849 0.204

βtime_C -1.805 0.148 -1.760 0.300
βtime_T -1.791 0.160 -1.840 0.309
βheadway -0.590 0.066 -0.496 1.428

µ1(innovative) 2.052 0.187 2 0.280
µ2(traditional) 3.984 0.338 4 0.046the original estimates. As seen in Figure 3, in a particular realization of theMonte Carlo experiment, the estimated parameters in the �rst iteration arefar from the true values. Despite this, in the following estimations, goodestimates are achieved. This implies that the importance sampling methodalso outperforms the bootstrapping method which, as explained in Section4.2, requires good initial estimates.Figure 3: Evolution of the estimates

6 Conclusions and further researchThis paper proposed two method to reduce the bias of the parameterswhen estimating MEV models under sampling of alternatives. The boot-strap method allows to reduce the bias in the parameters of any estimator,c© Association for European Transport and contributors 2010



but depends on the quality of the estimator itself. The importance sam-pling method allows to estimate unbiased parameters with a relatively smallsample size.The main contribution of the importance sampling method is a better sam-pling distribution for the elements in the logsum. The use of a di�erentsample for the choice set and for the logsum allows to reach better resultswhile still having an estimator that is consistent with choice theory.Both methods reach unbiased estimates with small samples sizes, furtherresearch will analyze the e�ect of di�erent sample sizes in the quality of theestimates. The combination on the two methods proposed on this paperis also part of further research. The bias (if any) of the estimates in theimportance sampling method can be reduced by applying bootstrapping.ReferencesBen-Akiva, M. E. and Lerman, S. R. (1985). Discrete Choice Analysis:Theory and Application to Travel Demand, MIT Press, Cambridge,Ma.Bierlaire, M., Axhausen, K. and Abay, G. (2001). Acceptance ofmodal innovation: the case of the Swissmetro, Proceedings of the1st Swiss Transportation Research Conference, Ascona, Switzerland.www.strc.ch.Bierlaire, M., Bolduc, D. and McFadden, D. (2008). The estimation of gen-eralized extreme value models from choice-based samples, Transporta-tion Research Part B: Methodological 42(4): 381�394.Efron, B. (1979). Bootstrap methods: Another look at the jackknife, TheAnnals of Statistics 7(1).Frejinger, E., Bierlaire, M. and Ben-Akiva, M. (2009). Sampling of alter-natives for route choice modeling, Transportation Research Part B:Methodological 43(10): 984�994.Guevara, C. and Ben-Akiva, M. E. (2010). Sampling of alternatives in mul-tivariate extreme value (mev) models, Proceedings of the 12th WorldConference on Transport Research.c© Association for European Transport and contributors 2010
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