
Metropolis-Hastings sampling of alternatives for
route choice models

Michel Bierlaire
Gunnar Flötteröd

STRC 2010 September 2010



Metropolis-Hastings sampling of alternatives for route choice models September 2010

STRC 2010

Metropolis-Hastings sampling of alternatives for route choice
models
Michel Bierlaire
Transport and Mobility
Laboratory
Ecole Polytechnique
Fédérale de Lausanne
1015 Lausanne
phone: +41-21-693.25.37
fax: +41-21-693.80.60
michel.bierlaire@epfl.ch

Gunnar Flötteröd
Transport and Mobility
Laboratory
Ecole Polytechnique
Fédérale de Lausanne
1015 Lausanne
phone: +41-21-693.24.29
fax: +41-21-693.80.60
gunnar.floetteroed@epfl.ch

September 2010

Abstract

We describe a new approach to the sampling of route choice sets using the Metropolis-Hastings
algorithm.
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1 Introduction

The objective of a route choice model is to describe along which path an individual travels from
an origin to a destination in a transportation network. A general review on the topic is provided
in Frejinger (2008). The large number of unknown alternatives is one of the facets that renders
route choice modeling a challenging problem.

Frejinger and Bierlaire (2010) identify two classes of approaches to the modeling of route
choice sets: one based on behavioral considerations and one being econometrically motivated.
In the behavioral approach, the analyst tries to identify choice sets that are behaviorally plau-
sible. The main criticism of these methods is their disability to reproduce the actually chosen
route. The econometric approach makes the (behaviorally questionable yet mathematically
convenient) assumption that all elements of the universal set C are considered by the decision
maker and that the elements of the modeled choice set Cn ⊂ C are sampled from C according
to some distribution {q(i)}i∈C specified by the analyst.

Specifically, the econometric approach allows to estimate the parameters of logit models with-
out bias if the choice probabilities are modified according to

P (i|Cn) =
eµVin+ln( kin

q(i))∑
j∈Cn

e
µVjn+ln

(
kjn
q(j)

) (1)

where Cn consists of independent samples with replacement from {q(i)}i∈C , µ is a scale pa-
rameter, Vin is the deterministic utility of alternative i for decision maker n, and kin is the
number of times alternative i is sampled (McFadden, 1978). A generalization of this result to
multivariate extreme value models has recently been presented by Bierlaire et al. (2008).

Frejinger et al. (2009) propose a random walk (RW) algorithm that, starting from the origin,
incrementally and probabilistically adds links to a path until the destination is reached. The
link addition distribution is such that the RW is biased towards the shortest path, resulting in
an importance sampling strategy. The distribution {q(i)}i∈C according to which entire RWs
are generated is derived and used for correction. While being methodologically sound, this
approach is computationally cumbersome for larger networks (Prato, 2009; Schüssler and Ax-
hausen, 2009): often enough, the RW circles through the network and/or fails to reach the
destination in a passable number of iterations.

We propose to replace RW in the approach of Frejinger et al. (2009) by a Metropolis-Hastings
(MH) algorithm (Hastings, 1970). The MH method generates a Markov chain (MC) with a
stationary distribution that coincides with an arbitrary, pre-specified distribution. In our case,
the state of the chain comprises a route, the transition distribution of the MC copmrises a
random variation of that route, and the stationary distribution is the sampling strategy {q(i)}i∈C .
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Algorithm 1 Metropolis-Hastings algorithm

1. set iteration counter k = 0
2. select arbitrary initial state ik

3. repeat beyond stationarity

(a) draw candidate state j from {q(ik, j)}j
(b) compute acceptance probability α(ik, j) = min

(
b(j)q(j,ik)
b(ik)q(ik,j)

, 1
)

(c) with probability α(ik, j), let ik+1 = j; else, let ik+1 = ik

(d) increase k by one

The MH algorithm allows to specify this distribution in un-normalized form {b(i)}i∈C where
the b(i) > 0 are such that q(i) = b(i)/B for all i ∈ C where B =

∑
j∈C b(j). That is, b(i) is an

un-normalized version of q(i). Since B cancels out in (1), it is sufficient to know {b(i)}i∈C in
order to correct for the sampling.

2 Framework

Our approach to choice set generation relies on the MH method. Algorithm 1 defines a generic
MH algorithm with a proposal transition distribution Q = (q(i, j)), and stationary weights
{b(i)}i∈C . Essentially, Q defines a MC that is run in a biased way that enforces the stationary
weights, where the bias is implemented by accepting transitions from a state i to a state j with
a probability α(i, j) that prefers transitions towards higher weights b(j).

We specify the application of Algorithm 1 to route choice set generation in terms of the follow-
ing notation:

Γ a path
|Γ| number of nodes in path Γ

Γ(i) the ith node of path Γ

Γ(a, b) sub-path of Γ between node positions 1 ≤ a ≤ b ≤ |Γ|
Γ1 + Γ2 concatenation of paths Γ1 and Γ2 (eliminates node duplications)
δ(v, w) distance between node v and w (may not be symmetric)

Let {q(i)}i∈C be the distribution from which the elements of the choice set are to be drawn, and
let {b(i)}i∈C be such that q(i) = b(i)/B for all i ∈ C where B =

∑
j∈C b(j). That is, b(i) is a

non-normalized version of q(i). Since B cancels out in (1), it is sufficient to know {b(i)}i∈C in
order to correct for the sampling.

In order to apply the MH algorithm, the state space, the proposal transition matrix Q, and the
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desired stationary distribution need to be specified. The stationary distribution is, apart from
normalization, given by {b(i)}i∈C . The state space and the proposal distribution are defined in
Subsections 2.1 and 2.2, respectively.

2.1 Definition of MC state

For the purpose of choice set generation, the state space of the MC must contain the universal
choice set C. For technical reasons that are clarified further below, we define a state of the MC
as a tuple (Γ, u, d, v) where Γ ∈ C is a path, u, d, are integer numbers with 1 ≤ u < d ≤ |Γ|,
and v ∈ N is a network node. The node v is arbitrary; in particular, it is allowed but not
required to be an element of Γ.

2.2 Definition of MC proposal distribution

Apart from technical requirements verified further below, operational considerations affect the
choice of the proposal distribution Q. If Q generates insufficient variability in that it creates
long sequences of similar states, the MC needs many iterations to cover the relevant part of
the state space (where relevance is defined through the weights b(i)). If Q generates too much
variability, the MC frequently proposes jumps out of the relevant part of the state space, which
results in low acceptance probabilities α and long persistence in the same state.

We define Q in terms of the two operations SPLICE and SHUFFLE described below.

SPLICE. Given a current state (Γ, u, d, v), a new state (Γ′, u′, d′, v′) is generated by (1) draw-
ing a cycle-free path segment Γu that starts at Γ(u) and ends at v from some distribution
P (Γu|Γ(u), v), (2) drawing a cycle-free path segment Γd that starts at v and ends at Γ(d)

from some distribution P (Γd|v,Γ(d)), (3) letting Γ′ = Γ(1, u) + Γu + Γd + Γ(d, |Γ|), (4)
letting u′ = u and v′ = v, and (5) updating d′ = d+ |Γ′| − |Γ|.

This operation randomly replaces the path segment Γ(u, d) by a new one that goes
through v. Given that u and d are not too far apart, v is not too far away from Γ(u, d), and
Γu and Γd are not too circuitous, the newly generated path segment constitutes a local
detour from the original path. The probability of going from a feasible i = (Γ, u, d, v) to
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a feasible i′ = (Γ′, u′, d′, v′) is

qSPLICE(i, i′) =



P (Γ′(u′, z)|Γ(u), v)· if u′ = u and d′ = d+ |Γ′| − |Γ|

. . . P (Γ′(z, d′)|v,Γ(d)) . . . and v′ = v and Γ′(z) = v

. . . and Γ′(1, u′) = Γ(1, u)

. . . and Γ′(d′, |Γ′|) = Γ(d, |Γ|)

0 otherwise.

(2)

SHUFFLE. Given a current state (Γ, u, d, v), a new state (Γ′, u′, d′, v′) is generated by (1)
drawing the indices u′ and d′ from some distribution P (u′, d′|Γ) that ensures1 ≤ u′ <

d′ ≤ |Γ|, (2) drawing the node v′ from some distribution P (v′|u′, d′,Γ), and (3) retaining
the current path without modification in that Γ′ = Γ.

This operation randomly shuffles the splicing positions as well as the splicing node, but
it does not affect the currently generated path. The probability of going from a feasible
i = (Γ, u, d, v) to a feasible i′ = (Γ′, u′, d′, v′) is

qSHUFFLE(i, i′) =

P (u′, d′|Γ)P (v|u′, d′,Γ) if Γ′ = Γ

0 otherwise.
(3)

The proposal distribution Q is such that one of these operations is randomly selected:

q(i, i′) = αqSPLICE(i, i′) + (1− α)qSHUFFLE(i, i′) (4)

where 0 < α < 1 is the probability of selecting the SPLICE operation. We now propose con-
crete implementations of the distributions through which SPLICE and SHUFFLE are defined.

The SPLICE distribution (2) relies on P (Γ|v, w), the probability of generating a path segment
Γ between the nodes v and w. We resort here to the RW algorithm of Frejinger et al. (2009);
the respective definition of P (Γ|v, w) is given in Appendix A. Its main shortcoming, the high
probability of generating circuitous routes that may even fail to reach the destination within a
reasonable number of steps, occurs mainly if the RW is parametrized to generate paths with
high variability. Since we are interested only in local modifications, we avoid this shortcoming
by introducing a strong bias towards the shortest path. With appropriate parametrization, the
RW can even be made to coincide with a shortest path calculation.

The SHUFFLE distribution (3) requires to define P (u′, d′|Γ), the probability of selecting an up-
stream/downstream splice position pair, and P (v|u′, d′,Γ), the probability of selecting a splice
node. We propose to generate u′ and d′ by drawing two uniform numbers without replacement
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from {1, . . . , |Γ|} and to assign the smaller one to u′ and the larger one to d′. Hence,

P (u′, d′|Γ) =
2

|Γ|2 − |Γ|
. (5)

The splice node v′ is selected according to a distribution P (v′|u′, d′,Γ) that prefers nodes that
are near to the path segment Γ(u′, d′). For this, the distance δ(v′,Γ(u′, d′)) of v′ to Γ(u′, d′) is
defined as the average length of a detour through v′ that starts somewhere in Γ(u′, d′) and ends
somewhere later in Γ(u′, d′):

δ(v′,Γ(u′, d′)) =
1

D

d′−1∑
u′′=u′

d′∑
d′′=u′+1

[δ(u′′, v′) + δ(v′, d′′)]

=
d′−1∑
u′′=u′

d′ − u′′

D
δ(u′′, v′) +

d′∑
d′′=u′+1

d′′ − u′

D
δ(v′, d′′)

(6)

where D = |Γ(u′, d′)|(|Γ(u′, d′)| − 1)/2. Based on this, the splice node is selected according
to a logit model

P (v′|u′, d′,Γ) =
e−µSPLICEδ(v

′,Γ(u′,d′))∑
w∈N e

−µSPLICEδ(w,Γ(u′,d′))
(7)

where the non-negative parameter µSPLICE defines the importance of “closeness”: a value of
zero results in a random node selection, a value approaching infinity results in the deterministic
selection of a node that minimizes δ(v′,Γ(u′, d′)).

3 Discussion

The proposed transition distribution (4) has a behavioral interpretation. It may be speculated
that route choice sets are incrementally acquired by real travelers through an exploration step
that takes an existing route as a starting point. This behavior is mimicked by a SHUFFLE/S-
PLICE sequence, where the traveler first decides which part of the known route to replace and
then more or less randomly fills in the gap. A related interpretation is that new routes are
learned by the need to visit intermediate destinations during a trip, which requires to detour
from a habitual route through the intermediate destination node. Again, this process can be
reflected by a SHUFFLE/SPLICE sequence.

The MH algorithm is guaranteed to converge to the desired stationary distribution if the tran-
sition distribution (4) defines an irreducible and aperiodic MC. Irreducibility means that every
state can eventually be reached by every other state with a positive probability. Aperiodic-
ity is guaranteed if there is at least one state i with q(i, i) > 0. Irreducibility of (4) can be
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shown by observing that the following three-step transition from any (Γk, uk, dk, vk) to any
(Γk+3, uk+3, dk+3, vk+3) is possible with nonzero probability:

1. SHUFFLE such that uk+1 = 1 and dk+1 = |Γk| (the splice positions are the origin and
the destination) and vk+1 ∈ Γk+3.

2. SPLICE such that Γk+2 equals Γk+3.
3. SHUFFLE such uk+3, dk+3, and vk+3 are obtained.

Aperiodicity of (4) results immediately from the observation that every SHUFFLE and SPLICE
operation has a nonzero probability of leaving the current state unmodified.

A computationally relevant instance of the proposed algorithm is when the RW collapses into
a shortest path search. Aperiodicity is still guaranteed in this case because the SHUFFLE
operation may still reproduce any given state. To show irreducibility, we introduce an expanded
network that is created from the original network by introducing for every link (v, w) ∈ N ×N
in the network an additional node xvw and by replacing the original link (v, w) by two link
(v, xvw) and (xvw, w). The expanded network is a one-to-one representation of the original
network, and hence every path found in the expanded network can be mapped back on an
element of C.

Given an initial state (Γ0, u0, d0, v0), and an arbitrary target state (Γ′, u′, d′, v′) the following
sequence of transitions is possible with positive probability (all variables refer to the expanded
network):

1. choose initial state (Γ0, u0, d0, v0) and target state (Γ′, u′, d′, v′)

2. for c = 1 . . . |Γ′| − 2 do

(a) k = 2c− 1

(b) SHUFFLE such that uk = c, vk = Γ′(c+ 1)

(c) k = 2c

(d) SPLICE such that Γk(1, c+ 1) = Γ′(1, c+ 1)

3. k = 2|Γ′| − 3

4. SHUFFLE such that uk = u′, dk = d′, vk = v′

This builds the target path incrementally from the origin, and it establishes that it can be reached
with positive probability in 2|Γ′| − 3 transitions. The location of an intermediate node within
each original link guarantees that every link can be reached by the shortest path algorithm
(because the only path from and to an intermediate node goes across its respective link).
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A Random walk probability of a given path

This presentation is taken from Frejinger et al. (2009).

Let (v, w) be the link from node v to node w and use ` as a link variable. The length of link ` is
C` and the shortest path from node v to node s is SP(v, s). The detour made from the shortest
path towards s by selecting link (v, w) is measured by

x(v,w) =
SP(v, s)

C(v,w) + SP(w, s)
, (8)

which is nonlinearly weighted by

ω(`|b1, b2) = 1− (1− xb1` )b2 (9)

with b1 and b2 being real-valued parameters. The probability P (Γ|r, s) of obtaining a path Γ

from origin r to destination s through the random walk of Frejinger et al. (2009) can then be
written as

P (Γ|r, s) =


∏

`∈Γ
ω(`|b1,b2)∑

m∈Ev
ω(m|b1,b2)

if Γ(1) = r and Γ(|Γ|) = s and s /∈ Γ(2, |Γ| − 1)

0 otherwise.
(10)
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