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ABSTRACT
Discrete choice models are defined conditional to the knowledge of the actual choice set by the
analyst. The common practice for many years is to assume thatindividual-based choice sets can
be deterministically generated based on the choice contextand the characteristics of the decision
maker. There are many situations where this assumption is not valid or not applicable, and proba-
bilistic choice set formation procedures must be considered.

The Constrained Multinomial Logit model (CMNL) has recently been proposed by Mar-
tinez et al. (1) as a convenient way to deal with this issue, as it is also appropriate for models with
a large choice set. In this paper, we analyze how well the implicit choice set generation of the
CMNL approximates to the explicit choice set generation as described by Manski (2).

The results based on synthetic data show that the implicit choice set generation model may
be a poor approximation of the explicit model.
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1. INTRODUCTION
In standard choice models, it is assumed that the alternatives considered by the decision maker can
be deterministically specified by the analyst. The choice set is characterized by deterministic rules
based on the characteristics of the decision maker and the choice context. For example, single-
room apartments are not considered by families with children in a house choice context, car is not
considered as a possible transportation mode if the traveler has no driver license, or no car.

There are, however, many situations where the deterministic choice set generation proce-
dure is not satisfactory, or even possible. Data may be unavailable (the number of children in the
household is unknown to the analyst), or rules are fuzzy by nature. For instance, train is not con-
sidered as a transportation mode if it involves a long walk toreach the train station. But how long
is a “long walk”?

Modeling explicitly the choice set generation process involves a combinatorial complexity,
which makes the models intractable except for some specific instances. Manski (2) defines the
theoretical framework in a two stage process, where the probability that decision makern chooses
alternativei is given by

Pn(i) =
∑

Cm⊆C

Pn(i|Cm)Pn(Cm) (1)

wherePn(i|Cm) is the probability for individualn to choose alternativei conditional to the choice
setCm andPn(Cm) is the probability for individualn to consider choice setCm. The sum runs on
every possible subsetCm of the universal choice setC.

Swait and Ben-Akiva (3) and Ben-Akiva and Boccara (4) build on this framework and use
explicit random constraints to determine the choice set generation probability. The probability of
considering a choice setCm is a function of the consideration of the different alternatives in the
universal choice set:

Pn(Cm) =

∏

i∈Cm
φin

∏

j /∈Cm
(1 − φjn)

1 −
∏

k∈C(1 − φkn)
(2)

whereφin is the probability that alternativei is considered by usern, which may be modeled by a
binary logit model that depends on the alternative’s attributes. Note that (2) assumes independence
of the consideration probabilities across alternatives, which is a restrictive assumption since there
can be correlation in the consideration criteria of different alternatives.

Swait (5) proposes to model the choice set generation as an implicit part of the choice
process in a multivariate extreme value (MEV) framework, requiring no exogenous information.
Here, choice sets are not separate constructs but another expression of preferences. The probability
of considering a choice set is defined as the probability for that choice set to correspond to the
maximum expected utility for an individualn:

Pn(Cm) =
eµIn,Cm

∑

Ck⊆C eµIn,Ck

(3)

whereµ is the scale parameter for the higher level decision (choiceset selection) andIn,Cm
is the

inclusive value (the “logsum” or expected maximum utility)of choice setCm for decision maker
n:

In,Cm
=

1

µm

ln
∑

j∈Cm

eµmVnj . (4)
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Here,µm is the scale parameter andVnj is the deterministic utility of alternativei for decision
makern. Swait’s probabilistic choice set generation approach does not require assumptions by
the analyst about which attributes affect an alternative’savailability. Note that Swait’s model also
needs to account for every possible subsetCm of the universal choice setC.

Clearly, these methods are hardly applicable to medium to large scale choice problems due
to the computational complexity that arises from the combinatorial number of possible choice sets.
If the number of alternatives in the universal choice set isJ , the number of possible choice sets is
(2J − 1).

In the context of route choice, Frejinger et al. (6) assume that all decision makers consider
the universal choice set, so thatPn(Cm) = 0 whenCm 6= C, and only one term remains in (1).
However, this may not be appropriate in other contexts.

Therefore, various heuristics have been proposed in the literature that derive tractable mod-
els by approximating the choice set generation process.

In the quantitative marketing literature, the use of heuristics to model the construction
of the choice set (or consideration set) has been a usual practice; a review of existing models
can be found in Hauser et al. (7). Many heuristics are based on lexicographic preferences rules
(Dieckmann et al. (8)), where the choice set is determined by key attributes of the alternatives on
which the consumers base the construction of their consideration set. This approach is similar
to the elimination by aspects heuristic, proposed by Tversky (9). Models like the one proposed
by Gilbride and Allenby (10) consider the construction of the choice set as a two-stage process,
which is consistent with Manski’s approach but solves the choice set enumeration issue by using
Bayesian and Monte Carlo estimation methods.

Other heuristics use a one stage approach (see for example Elrod et al. (11)) where the
choice set generation process is simulated through direct alternative elimination. This is done by
setting the alternative’s utility to minus infinity when certain attributes reach a threshold value.
The alternative-elimination approach implies a differentbehavioral assumption from the two-stage
approach, where the individual does not observe choice setsexplicitly but, instead, makes a com-
pensatory choice between all the alternatives belonging toa unique choice set of available or “pos-
sible” alternatives, which is a sub-set of the universal choice set.

Following the same one-stage approach, other heuristics assume that the elimination of the
alternatives is not deterministic. These are based on the use of penalties in the utility functions,
and have been proposed by Cascetta and Papola (12) (the Implicit Availability/Perception (IAP)
model) and expanded by Martinez et al. (1) (the Constrained Multinomial Logit or CMNL model).
In the next section, we briefly describe the CMNL model and provide its theoretical background
in the context of choice set generation. In Section 3, we compare the CMNL with the theoretical
framework (1), first through a simple example and, second, byestimating both models on synthetic
data. Section 4 concludes the paper and identifies possible further work.

2. CHOICE SET GENERATION WITH THE CMNL MODEL
Assuming thatCn is the choice set that the decision maker is actually considering, the choice model
is given by

Pn(i|Cn) = Pr (Uin ≥ Ujn, ∀j ∈ Cn) , (5)

whereUin is the random utility associated with alternativei by decision makern. If Cn is known
to the analyst, it can be characterized by indicators of the consideration of each alternative by the
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decision maker:

Ain =

{

1 if alternativei is considered by individualn,
0 otherwise.

(6)

The choice model can be equivalently written as

Pn(i|Cn) = Pr (Uin ≥ Ujn, ∀j ∈ Cn)

= Pr (Uin + ln Ain ≥ Ujn + ln Ajn, ∀j ∈ C) . (7)

For an unconsidered alternative, this addsln 0 = −∞ to its utility, so that the choice probability is
0, whereas the addition ofln 1 = 0 has no effect on the utility of a considered alternative.

In the case of a logit model, the choice probabilities are

Pn(i) =
eVin+ln Ain

∑

j∈C eVjn+lnAjn
. (8)

The heuristics proposed by Cascetta and Papola (12) and Martinez et al. (1) consist in
replacing the indicatorsAin by the probabilityφin that individualn considers alternativei.

Cascetta and Papola (12) introduce the IAP model as a way to incorporate awareness of
paths into route choice modeling without requiring an explicit choice set generation step. A similar
approach that penalizes the utilities of “dominated” alternatives is proposed by Cascetta et al. (13).

Martinez et al. (1) expand the IAP idea and propose the CMNL model. The functional form
for φin is assumed to be a binary logit, considering that the availability of an alternative is related
with bound constraints on its attributes. For example, ifXink is thekth variable of alternativei for
decision makern that influences the consideration ofi, we have

φu
in(Xink; uk, ωk) =

1

1 + exp(ωk(Xink − uk))
(9)

where theuk parameter is the value at which the constraint is most likelyto bind, andωk is the
scale parameter of the binary logit. For instance,Xink may be the walking distance to the train
station, anduk may be the maximum distance that individualn is willing to walk. Bothuk and
ωk are to be estimated. The intuition is that when the attributeXink exceedsuk, the consideration
probabilityφu

in tends to zero, while this availability tends to one when the value of the attribute is
belowuk.

Expression (9) represents an upper value cut-off, whereuk represents the maximum value
that the attributeXink can have in order for alternativei to be considered. To model a lower value
cut-off, we only need to invert the sign of the scale parameter ωk:

φ`
in(Xink; `k, ωk) =

1

1 + exp(−ωk(Xink − `k))
. (10)

Functions (9) and (10) can be generalized to account for morethan one constraint, allowing
for several upper and lower bounds to be included simultaneously:

φin(Xin; `, u, ω) =
∏

k

φu
in(Xink; uk, ωk)φ

`
in(Xink; `k, ωk). (11)
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The CMNL approach has an operational advantage over Manski’s framework since it does
not require enumerating the choice sets, which makes it easier to specify and estimate. However,
the CMNL model is a heuristic that is based on convenient assumptions about the functional form
of the utility function. This is why the CMNL model can at mostbe considered as an approximation
to Manski’s model. The next section evaluates the quality ofthis approximation.

3. COMPARISON OF CMNL WITH MANSKI’S MODEL
This section compares the CMNL model with Manski’s model. For this, we first present a simple
example where we analyze the difference between the choice probabilities obtained using both
models. Second, we estimate the CMNL model and Manski’s model over synthetic data and com-
pare the results. For notational simplicity, we subsequently omit the indexn for the decision
maker.

3.1 Simple example
Consider a logit model with only 2 alternatives, where alternative 1 is always considered (φ1 = 1)
and alternative 2 has probabilityφ2 of being considered by the decision maker. Figure 1 shows
the structure of Manski’s framework if we consider every possible combination of alternatives as
a choice set. This simple situation corresponds to a case where the decision maker is captive to
alternative 1 with probability1 − φ2 (see also the captivity logit model proposed by Gaudry and
Dagenais (14)).

Root

{1} {2} {1,2}

1 2

Choice sets

Alternatives

FIGURE 1 Example of a model in Manski’s framework

The CMNL model defines the probability of choosing alternative 1 as

P (1) =
eV1

eV1 + eV2+lnφ2

. (12)
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Manski’s model (1) defines the probability of choosing alternative 1 as

P (1) = P ({1})
eV1

eV1

+ P ({1, 2})
eV1

eV1 + eV2

(13)

whereP ({1}) is the probability of considering the choice set composed only of alternative 1 and
P ({1, 2}) is the probability of considering the choice set containingboth alternatives. According
to (2), the choice set probabilities are

P ({1}) =
φ1(1 − φ2)

1 − (1 − φ1)(1 − φ2)
= 1 − φ2 (14)

and

P ({1, 2}) =
φ1φ2

1 − (1 − φ1)(1 − φ2)
= φ2. (15)

The probability of considering choice set{2} is zero because alternative 1 is always available.
Therefore, (13) becomes

P (1) = (1 − φ2) + φ2

eV1

eV1 + eV2

(16)

In the deterministic limit (φ2 = 0 or φ2 = 1), both models are equivalent. However,
this is not the case anymore whenφ2 takes values between zero and one. The resulting choice
probabilities are shown in Figure 2, assuming the same utility levelV1 = V2 for both alternatives.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
1

φ2

V1 = V2

CMNL
Manski

FIGURE 2 Choice probability of alternative 1 (V1 = V2)
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This figure shows that the CMNL is a good approximation of Manski’s model only when
φ2 is close to either zero or one, but it underestimates the probability of alternative 1 elsewhere. If
the utility for alternative 1 is larger than the utility for alternative 2 (Figure 3), the approximation
improves. This makes sense since the more an alternative is dominated, the less important it is to
know if it really belongs to the choice set.
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0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
1

φ2

V2 − V1 = −2

CMNL
Manski

FIGURE 3 Probability of alternative 1 (V1 > V2)

However, as the utility of alternative 1 becomes smaller andsmaller compared to the utility
of alternative 2, the CMNL becomes a poorer and poorer approximation of Manski’s model for
intermediateφ2 values, which is demonstrated in Figures 4 and 5.

These results can be interpreted as an unwanted compensatory effect in the CMNL model.
The availability constraint is enforced by modifying the utility of the constrained alternative. How-
ever, when the utility of this alternative is high, it compensates the penalty. This means that the
use of the CMNL model as an efficient choice set generation mechanism requires the assumption
that the consideration probability for an alternative grows with its utility, meaning that the choice
set depends only on the preferences of the individual. But alternatives with a high utility may
be discarded in the presence of constraints such as budget orphysical constraints. In the context
of repetitive choices over a long period the individual may try to change her initial constraints in
order to make the high-utility alternative available (for example, if the train produces high utility,
a user may consider moving his residence closer to the train station), but in an instantaneous or
short-term decision this may not be possible. This motivates to analyze the performance of the
CMNL on synthetic data, which is shown in the next section.
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FIGURE 4 Choice probability of alternative 1 (V1 < V2)

3.2 Synthetic data
This section describes a series of controlled experiments where some of the data is synthetically
generated. We start from a real stated preference data set that was collected for the analysis of a
hypothetical high speed train in Switzerland (Bierlaire etal. (15)). The alternatives are:

1. Driving a car (CAR)

2. Regular train (TRAIN)

3. Swissmetro, the future high speed train (SM)

From this data set, which consists of 5607 observations, we use the attributes of the alternatives
and simulate synthetic choices based on a postulated “true”model: a logit model with linear-in-
parameters utility functions. The specification table as well as the “true” values of the parameters
are reported in Table 1. The values have been obtained by estimating the model on real choices,
and by rounding the estimates.

It is assumed that the TRAIN and the SM alternatives are always considered, whereas the
consideration of the CAR alternative depends on the travel time according to

φCAR =
1

1 + exp(ω(TTCAR/60 − a))
, (17)

which states that the probability of considering CAR as an available alternative decreases with the
travel timeTTCAR, in minutes, and that this probability is 0.5 when the availability thresholda, in
hours, is reached.
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FIGURE 5 Choice probability of alternative 1 (V1 < V2)

This implies that, depending on the availability of the CAR alternative, there are two pos-
sible choice sets: the full choice set and the choice set containing only the TRAIN and the SM
alternative. The random constraints approach (Ben-Akiva and Boccara (4)) defines the probability
of each choice set as follows:

P ({TRAIN, SM}) =
φTRAINφSM(1 − φCAR)

1 − (1 − φCAR)(1 − φTRAIN)(1 − φSM)

= 1 − φCAR (18)

and, accordingly,
P ({CAR, TRAIN, SM}) = φCAR. (19)

The synthetic choices are generated by (i) simulating a choice set for each decision maker
according to (18) and (19), and (ii) simulating a choice for each decision maker using the “true”
model specified in Table 1.

100 choice data sets are simulated for each value ofω. These values generate constraints
with different levels of uncertainty. Figure 6 shows the shape of these constraint functions. Estimation
results for both the Manski and the CMNL model are given in Tables 2 and 3. For each parameter
β, the average valuēβ and the standard errorσ over 100 simulations are computed. In the tables,
bothβ̄ and the t-statistic(β̄ − β)/σ are reported, the latter value being used to test if the estimated
value is significantly different from the true one. Note that, since the tested hypothesis is that the
average estimated value is equal to the “true” one, a low value of the t-statistic indicates that the
estimate is not significantly different from the real parameter.

The estimates of Manski’s model are unbiased. We cannot reject the hypothesis that the
true value of any parameters is equal to the postulated value, at 95% level. Several estimates of
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TABLE 1 Parameter descriptions and values

Parameter Value Car Train Swissmetro

ASCCAR 0.3 1 0 0
ASCSM 0.4 0 0 1
βcost -0.001 Cost (CHF) Cost (CHF) Cost (CHF)

βtt -0.001 In veh. travel time (min-

utes)

In veh. travel time (min-

utes)

In veh. travel time (min-

utes)

βhe -0.005 0 Headway (minutes) Headway (minutes)

a 3 Consideration threshold of car (hours)

ω 1,2,3,5,10 Consideration dispersion of car

0
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0.8

1

0 1 2 3 4 5 6 7

φ
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A
R

TTCAR (hours)
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FIGURE 6 Shape of the constraint for different values ofω
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TABLE 2 Estimation results for Manski’s model

realω value 1 2 3 5 10
parameter real value estimate t-test estimate t-test estimate t-test estimate t-test estimate t-test
ASCCAR 0.3 0.304 0.027 0.288 0.113 0.300 0.010 0.301 0.012 0.314 0.184
ASCSM 0.4 0.396 0.044 0.399 0.010 0.405 0.053 0.401 0.017 0.410 0.151
βcost -0.01 -0.010 0.283 -0.010 0.001 -0.010 0.179 -0.010 0.052 -0.010 0.012
βhe -0.005 -0.005 0.241 -0.005 0.010 -0.005 0.048 -0.005 0.082 -0.005 0.078

βtime -0.01 -0.01 0.074 -0.010 0.050 -0.010 0.049 -0.010 0.003 -0.010 0.001
a 3 2.963 0.019 3.008 0.118 3.000 0.100 2.998 0.081 3.002 0.101
ω see top 1.003 0.028 2.014 0.079 3.066 0.210 5.095 0.170 10.523 0.353
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TABLE 3 Estimation results for CMNL model

realω value 1 2 3 5 10
parameter real value estimate t-test estimate t-test estimate t-test estimate t-test estimate t-test
ASCCAR 0.3 0.503 0.950 0.421 1.153 0.406 1.365 0.380 0.988 0.326 0.313
ASCSM 0.4 0.565 2.013 * 0.550 2.375 * 0.536 1.804 0.506 1.485 0.463 0.872
βcost -0.01 -0.008 4.825 * -0.008 3.580 * -0.009 2.309 * -0.009 1.182 -0.010 0.613
βhe -0.005 -0.005 0.202 -0.005 0.151 -0.005 0.071 -0.005 0.120 -0.005 0.090

βtime -0.01 -0.007 3.929 * -0.008 3.645 * -0.008 2.813 * -0.009 2.316 * -0.009 1.523
a 3 2.186 1.753 2.656 3.073 * 2.773 3.762 * -2.869 3.305 * 2.948 1.864
ω see top 1.043 0.239 2.094 0.403 3.118 0.431 5.238 0.424 12.146 3.149 *

(* indicates a biased parameter)
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the CMNL model are biased (marked with *), the hypothesis that the true value of the parameter is
equal to the postulated value being rejected at the 95% level. The quality of the CMNL estimates
improves with decreasing dispersion (increasingω). This is consistent with the findings of Section
3.1.

Figure 7 shows the t-statistics for the cost and travel time parameter over differentω values
for Manski’s model and the CMNL model. The quality of the estimates is constant across different
values ofω for Manski’s model. The quality of the CMNL estimates increases withω, and their
t-statistics reach acceptable values when the constraint function becomes steep.

4. CONCLUSIONS AND FURTHER WORK
We have shown on simple examples that the Constrained Multinomial Logit (CMNL) model is
not adequate to model the choice set generation process consistently with Manski’s framework.
Consequently, the CMNL model should be considered as a modelon its own, derived from semi-
compensatory assumptions as described by Martinez et al. (1), but not as a way to capture the
choice set generation process. Its complexity is linear with the number of alternatives, while
Manski’s framework exhibits an exponential complexity.

We have started to investigate if a modified version of the CMNL could approximate better
Manski’s framework, but have been unsuccessful so far. The derivation of a good approximation of
Manski’s model with the complexity of the CMNL would be particularly useful to handle models
with a large number of alternatives.
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FIGURE 7 t-statistics for the cost and time parameter overω
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