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ABSTRACT
Discrete choice models are defined conditional to the kndgdeof the actual choice set by the
analyst. The common practice for many years is to assumenttigtdual-based choice sets can
be deterministically generated based on the choice coatekthe characteristics of the decision
maker. There are many situations where this assumptiort igatid or not applicable, and proba-
bilistic choice set formation procedures must be consdlere

The Constrained Multinomial Logit model (CMNL) has recgrteen proposed by Mar-
tinez et al. 1) as a convenient way to deal with this issue, as it is alsogpate for models with
a large choice set. In this paper, we analyze how well theiaihmhoice set generation of the
CMNL approximates to the explicit choice set generationecdbed by Manskid).

The results based on synthetic data show that the implioitetset generation model may
be a poor approximation of the explicit model.
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1. INTRODUCTION

In standard choice models, it is assumed that the altessationsidered by the decision maker can
be deterministically specified by the analyst. The choitésseharacterized by deterministic rules
based on the characteristics of the decision maker and theechontext. For example, single-
room apartments are not considered by families with child@nea house choice context, car is not
considered as a possible transportation mode if the tnaliakeno driver license, or no car.

There are, however, many situations where the deternargbbice set generation proce-
dure is not satisfactory, or even possible. Data may be uaala (the number of children in the
household is unknown to the analyst), or rules are fuzzy lbyreaFor instance, train is not con-
sidered as a transportation mode if it involves a long walletech the train station. But how long
is a “long walk”?

Modeling explicitly the choice set generation process ive® a combinatorial complexity,
which makes the models intractable except for some spensitances. Manski2] defines the
theoretical framework in a two stage process, where thegtibty that decision maket chooses
alternativei is given by

Po(i) = Z P (i|Co) P (Cra) 1)
CmCC
whereP, (i|C,,) is the probability for individuah to choose alternativeconditional to the choice
setC,, and P, (C,,) is the probability for individuah to consider choice s&,,. The sum runs on
every possible subséf, of the universal choice sét

Swait and Ben-Akiva3) and Ben-Akiva and Boccard) build on this framework and use
explicit random constraints to determine the choice seeg#ion probability. The probability of
considering a choice sé€t, is a function of the consideration of the different alteived in the

universal choice set:
[Ticc,, @inILigc,, (1 — @jn)
1- erc(l - ¢kn>

whereg;, is the probability that alternativieis considered by user, which may be modeled by a
binary logit model that depends on the alternative’s aiteb. Note that (2) assumes independence
of the consideration probabilities across alternativdschvis a restrictive assumption since there
can be correlation in the consideration criteria of diffgralternatives.

Swait 6) proposes to model the choice set generation as an impécitgs the choice
process in a multivariate extreme value (MEV) frameworkjuigng no exogenous information.
Here, choice sets are not separate constructs but anofiresssion of preferences. The probability
of considering a choice set is defined as the probability Hat thoice set to correspond to the
maximum expected utility for an individuat

Po(Cin) = (2)

6//'In,cm
- an,c .
2 c,ce o

wherey is the scale parameter for the higher level decision (cheéteelection) and, ¢, is the
inclusive value (the “logsum” or expected maximum utilibf)choice set’,, for decision maker
n:

F(Crn) )

1
Lhec,=—1In Z ehmVni, 4)
o j€Cm
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Here, 11, is the scale parameter andl; is the deterministic utility of alternative for decision
makern. Swait’s probabilistic choice set generation approachsdus require assumptions by
the analyst about which attributes affect an alternatisrealability. Note that Swait's model also
needs to account for every possible sulg$ebdf the universal choice sét

Clearly, these methods are hardly applicable to mediunrg¢elacale choice problems due
to the computational complexity that arises from the coratmrial number of possible choice sets.
If the number of alternatives in the universal choice set, ithe number of possible choice sets is
(27 —1).

In the context of route choice, Frejinger et &) &ssume that all decision makers consider
the universal choice set, so th&t(C,,) = 0 whenC,, # C, and only one term remains in (1).
However, this may not be appropriate in other contexts.

Therefore, various heuristics have been proposed in #ratire that derive tractable mod-
els by approximating the choice set generation process.

In the quantitative marketing literature, the use of heimssto model the construction
of the choice set (or consideration set) has been a usudiqaae review of existing models
can be found in Hauser et alf)( Many heuristics are based on lexicographic preferendges r
(Dieckmann et al.g)), where the choice set is determined by key attributes@ftternatives on
which the consumers base the construction of their coratider set. This approach is similar
to the elimination by aspects heuristic, proposed by Twe(8k Models like the one proposed
by Gilbride and Allenby 10) consider the construction of the choice set as a two-stemmeps,
which is consistent with Manski's approach but solves th@aset enumeration issue by using
Bayesian and Monte Carlo estimation methods.

Other heuristics use a one stage approach (see for exampke &lal. (1)) where the
choice set generation process is simulated through dilechative elimination. This is done by
setting the alternative’s utility to minus infinity when t&n attributes reach a threshold value.
The alternative-elimination approach implies a differegihavioral assumption from the two-stage
approach, where the individual does not observe choiceegptiitly but, instead, makes a com-
pensatory choice between all the alternatives belongiagiaique choice set of available or “pos-
sible” alternatives, which is a sub-set of the universalohset.

Following the same one-stage approach, other heurisstevasthat the elimination of the
alternatives is not deterministic. These are based on th@fugenalties in the utility functions,
and have been proposed by Cascetta and Papd)gthe Implicit Availability/Perception (IAP)
model) and expanded by Martinez et 4l (the Constrained Multinomial Logit or CMNL model).
In the next section, we briefly describe the CMNL model and/g®its theoretical background
in the context of choice set generation. In Section 3, we @mphe CMNL with the theoretical
framework (1), first through a simple example and, secon@éstiynating both models on synthetic
data. Section 4 concludes the paper and identifies possitihef work.

2. CHOICE SET GENERATION WITH THE CMNL MODEL
Assuming thaf, is the choice set that the decision maker is actually consigieghe choice model
is given by

P,(i|C,) = Pr (U, > U;,Vj € C,) (5)

whereU,, is the random utility associated with alternativey decision maken. If C,, is known
to the analyst, it can be characterized by indicators of dmsicleration of each alternative by the
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decision maker:

1 if alternatives is considered by individual,
0 otherwise
The choice model can be equivalently written as
= Pr(Uy, +InA;, >U;,+InA;,,Vjiel). )

For an unconsidered alternative, this atlds = —oo to its utility, so that the choice probability is
0, whereas the addition &f 1 = 0 has no effect on the utility of a considered alternative.

In the case of a logit model, the choice probabilities are

Pn(l) = Z - evjn‘HnAjn : (8)
J

The heuristics proposed by Cascetta and Papiitpgnd Martinez et al. 1) consist in
replacing the indicatord;,, by the probabilityp;, that individualn considers alternative

Cascetta and Papola2) introduce the IAP model as a way to incorporate awareness of
paths into route choice modeling without requiring an ex{ptihoice set generation step. A similar
approach that penalizes the utilities of “dominated” al&tives is proposed by Cascetta et &B)(

Martinez et al. {) expand the IAP idea and propose the CMNL model. The funatifmmm
for ¢;, is assumed to be a binary logit, considering that the avétiabf an alternative is related
with bound constraints on its attributes. For exampl&if,. is thekth variable of alternativefor
decision maker that influences the consideration:ipfve have

1

1+ exp(wk(ka — uk)) (9)

i (Xinke; g, wi) =

where theu, parameter is the value at which the constraint is most likelgind, andwy, is the
scale parameter of the binary logit. For instan&g,, may be the walking distance to the train
station, andu;, may be the maximum distance that individwais willing to walk. Bothwu,; and
wy, are to be estimated. The intuition is that when the attribiie exceeds:;, the consideration
probability ¢}, tends to zero, while this availability tends to one when taki@ of the attribute is
belowwy,.

Expression (9) represents an upper value cut-off, whgmepresents the maximum value
that the attributeX;,,, can have in order for alternativéo be considered. To model a lower value
cut-off, we only need to invert the sign of the scale paramete

1
1+ exp(—wi(Xink — L))

O (Xink; U, wi) = (10)

Functions (9) and (10) can be generalized to account for thareone constraint, allowing
for several upper and lower bounds to be included simultasigo

Gin(Xin; 0,1, w) = [ | 6t (K i, i) 0, (Xt i, wi).- (11)
k
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The CMNL approach has an operational advantage over Marfskinework since it does
not require enumerating the choice sets, which makes ieetsspecify and estimate. However,
the CMNL model is a heuristic that is based on convenientrapsions about the functional form
of the utility function. This is why the CMNL model can at maét considered as an approximation
to Manski's model. The next section evaluates the qualithisfapproximation.

3. COMPARISON OF CMNL WITH MANSKI'S MODEL

This section compares the CMNL model with Manski’'s modelr fhas, we first present a simple
example where we analyze the difference between the choot®bilities obtained using both
models. Second, we estimate the CMNL model and Manski’s hma synthetic data and com-
pare the results. For notational simplicity, we subsedueornit the indexn for the decision
maker.

3.1 Simple example

Consider a logit model with only 2 alternatives, where aléive 1 is always considered,(= 1)

and alternative 2 has probabilityy of being considered by the decision maker. Figure 1 shows
the structure of Manski’'s framework if we consider everygbke combination of alternatives as

a choice set. This simple situation corresponds to a caseevithe decision maker is captive to
alternative 1 with probability — ¢, (see also the captivity logit model proposed by Gaudry and
Dagenais 14)).

Choice sets————

Alternatives————

FIGURE 1 Example of a model in Manski’'s framework

The CMNL model defines the probability of choosing altewveti as

eVl

Pl)— (12)

- eV1 + eVetings ’
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Manski's model (1) defines the probability of choosing adtdive 1 as

eV eVl

P(1)=P{1})5 + P({LQ})W (13)
whereP({1}) is the probability of considering the choice set composdyg ohalternative 1 and
P({1,2}) is the probability of considering the choice set contairtogh alternatives. According
to (2), the choice set probabilities are

P({1}) = +— (fl_(ld;)zbf)_ =T (14)
and
P({1,2}) = 9192 = 4. (15)

1= (1—=¢1)(1—¢2)

The probability of considering choice s€} is zero because alternative 1 is always available.
Therefore, (13) becomes

eV

P (1) =(1—¢) +¢2m
In the deterministic limit ¢ = 0 or ¢, = 1), both models are equivalent. However,
this is not the case anymore when takes values between zero and one. The resulting choice
probabilities are shown in Figure 2, assuming the sameyugvel 1, = V; for both alternatives.

(16)

Py

FIGURE 2 Choice probability of alternative 1 (V; = V3)
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This figure shows that the CMNL is a good approximation of M@asnodel only when
¢- is close to either zero or one, but it underestimates thegtmbty of alternative 1 elsewhere. If
the utility for alternative 1 is larger than the utility fot@rnative 2 (Figure 3), the approximation
improves. This makes sense since the more an alternativemsdted, the less important it is to
know if it really belongs to the choice set.

Vo—Vp = -2
1 : . | |
0.8} ]
0.6 | |
A7
0.4} |
0.2} |
CMNL ——
0 . , . Manslki ..........
0 0.2 0.4 0.6 0.8 1
O2

FIGURE 3 Probability of alternative 1 (V; > V)

However, as the utility of alternative 1 becomes smalleramndller compared to the utility
of alternative 2, the CMNL becomes a poorer and poorer apmation of Manski's model for
intermediate), values, which is demonstrated in Figures 4 and 5.

These results can be interpreted as an unwanted compgnstigmt in the CMNL model.
The availability constraint is enforced by modifying thdityt of the constrained alternative. How-
ever, when the utility of this alternative is high, it compates the penalty. This means that the
use of the CMNL model as an efficient choice set generatiorhar@sm requires the assumption
that the consideration probability for an alternative gsamith its utility, meaning that the choice
set depends only on the preferences of the individual. Betradtives with a high utility may
be discarded in the presence of constraints such as budghysical constraints. In the context
of repetitive choices over a long period the individual maytd change her initial constraints in
order to make the high-utility alternative available (femeple, if the train produces high utility,
a user may consider moving his residence closer to the ttaiios), but in an instantaneous or
short-term decision this may not be possible. This mots/ébeanalyze the performance of the
CMNL on synthetic data, which is shown in the next section.
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Py

FIGURE 4 Choice probability of alternative 1 (V; < Va)

3.2 Synthetic data

This section describes a series of controlled experimehtyevsome of the data is synthetically
generated. We start from a real stated preference dataagetals collected for the analysis of a
hypothetical high speed train in Switzerland (Bierlair@le{(15)). The alternatives are:

1. Driving a car (CAR)
2. Regular train (TRAIN)
3. Swissmetro, the future high speed train (SM)

From this data set, which consists of 5607 observations,seethe attributes of the alternatives
and simulate synthetic choices based on a postulated “tnoglel: a logit model with linear-in-
parameters utility functions. The specification table alf asethe “true” values of the parameters
are reported in Table 1. The values have been obtained byasig the model on real choices,
and by rounding the estimates.

It is assumed that the TRAIN and the SM alternatives are awaysidered, whereas the
consideration of the CAR alternative depends on the trawe &iccording to

1

1+ exp(w(TTcar/60 — a))’ (17)

¢CAR -

which states that the probability of considering CAR as ailalile alternative decreases with the
travel timeT T 4r, In minutes, and that this probability is 0.5 when the avaliy thresholda, in
hours, is reached.
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Py

FIGURE 5 Choice probability of alternative 1 (V; < Va)

This implies that, depending on the availability of the CARmative, there are two pos-
sible choice sets: the full choice set and the choice setgung only the TRAIN and the SM
alternative. The random constraints approach (Ben-AkiehBoccara4)) defines the probability
of each choice set as follows:

_ drrANGsM(1 — dcar)
PUTRAIN, SMy) = 1 — (1 — ¢car)(1 — drram) (1 — dsm)
= 1— ¢car (18)

and, accordingly,
P({CAR, TRAIN, SM}) = ¢car. (19)

The synthetic choices are generated by (i) simulating acehset for each decision maker
according to (18) and (19), and (ii) simulating a choice facle decision maker using the “true”
model specified in Table 1.

100 choice data sets are simulated for each value dfhese values generate constraints
with different levels of uncertainty. Figure 6 shows thehaf these constraint functions. Estimation
results for both the Manski and the CMNL model are given inl@al2 and 3. For each parameter
3, the average valug and the standard errerover 100 simulations are computed. In the tables,
both 3 and the t-statisti¢c3 — 3) /o are reported, the latter value being used to test if the estith
value is significantly different from the true one. Note tlahce the tested hypothesis is that the
average estimated value is equal to the “true” one, a lowevafithe t-statistic indicates that the
estimate is not significantly different from the real paréene

The estimates of Manski's model are unbiased. We cannattréje hypothesis that the
true value of any parameters is equal to the postulated vatugb% level. Several estimates of
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TABLE 1 Parameter descriptions and values

Parameter| Value Car Train Swissmetro

ASCcar | 0.3 1 0 0

ASCswm 0.4 0 0 1

Beost -0.001 Cost (CHF) Cost (CHF) Cost (CHF)

Bt -0.001 In veh. travel time (min- In veh. travel time (min- In veh. travel time (min-
utes) utes) utes)

Ohe -0.005 0 Headway (minutes) Headway (minutes)

a 3 Consideration threshold of car (hours)

w 1,2,3,5,10| Consideration dispersion of car

d)CAR

TTcar (hours)

FIGURE 6 Shape of the constraint for different values ofw



TABLE 2 Estimation results for Manski’s model

realw value 1 2 3 5 10
parameter| real value| estimate| t-test | estimate| t-test | estimate| t-test | estimate| t-test | estimate| t-test
ASCcar 0.3 0.304 | 0.027 | 0.288 | 0.113| 0.300 | 0.010| 0.301 |0.012 | 0.314 | 0.184
ASCspm 0.4 0.396 | 0.044 | 0.399 | 0.010 | 0.405 | 0.053 | 0.401 | 0.017 | 0.410 | 0.151
Beost -0.01 -0.010 | 0.283 | -0.010 | 0.001 | -0.010 | 0.1279 | -0.010 | 0.052 | -0.010 | 0.012
Bhre -0.005 -0.005 | 0.241 | -0.005 | 0.010 | -0.005 | 0.048 | -0.005 | 0.082 | -0.005 | 0.078
Btime -0.01 -0.01 | 0.074 | -0.010 | 0.050 | -0.010 | 0.049 | -0.010 | 0.003 | -0.010 | 0.001
a 3 2963 | 0.019 | 3.008 | 0.118 | 3.000 | 0.100 | 2.998 | 0.081 | 3.002 | 0.101
w seetop | 1.003 | 0.028 | 2.014 | 0.079 | 3.066 | 0.210 | 5.095 | 0.170 | 10.523 | 0.353

PQISNQI- PUE ‘BIgNUNH ‘alrejialg

A



TABLE 3 Estimation results for CMNL model

realw value 1 2 3 5 10

parameten real value| estimate| t-test | estimate| t-test | estimate| t-test | estimate| t-test | estimate| t-test
ASCcar 0.3 0.503 | 0.950 0.421 1.153 0.406 1.365 0.380 0.988 0.326 0.313
ASCspm 0.4 0.565 | 2.013* | 0.550 | 2.375* | 0.536 1.804 0.506 1.485 0.463 0.872
Beost -0.01 -0.008 | 4.825* | -0.008 | 3.580* | -0.009 | 2.309* | -0.009 | 1.182 | -0.010 | 0.613
Bhe -0.005 -0.005 | 0.202 | -0.005 | 0.151 | -0.005 | 0.071 | -0.005 | 0.120 | -0.005 | 0.090
Btime -0.01 -0.007 | 3.929* | -0.008 | 3.645* | -0.008 | 2.813* | -0.009 | 2.316* | -0.009 | 1.523

a 3 2.186 | 1.753 2656 | 3.073* | 2.773 | 3.762* | -2.869 | 3.305* | 2.948 1.864
w seetop | 1.043 0.239 2.094 0.403 3.118 0.431 5.238 0.424 | 12.146 | 3.149*

(* indicates a biased parameter)

PQISNQI- PUE ‘BIgNUNH ‘alrejialg

€T
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the CMNL model are biased (marked with *), the hypothesistinratrue value of the parameter is
equal to the postulated value being rejected at the 95%. |&We quality of the CMNL estimates
improves with decreasing dispersion (increasifngThis is consistent with the findings of Section
3.1.

Figure 7 shows the t-statistics for the cost and travel tiaraqmeter over different values
for Manski’s model and the CMNL model. The quality of the esdtes is constant across different
values ofw for Manski's model. The quality of the CMNL estimates ingea withw, and their
t-statistics reach acceptable values when the constraiotibn becomes steep.

4. CONCLUSIONS AND FURTHER WORK

We have shown on simple examples that the Constrained Mutied Logit (CMNL) model is
not adequate to model the choice set generation processteoly with Manski’s framework.
Consequently, the CMNL model should be considered as a noodié$ own, derived from semi-
compensatory assumptions as described by Martinez et)albt not as a way to capture the
choice set generation process. Its complexity is lineah whe number of alternatives, while
Manski’s framework exhibits an exponential complexity.

We have started to investigate if a modified version of the @MbBuld approximate better
Manski’s framework, but have been unsuccessful so far. Engation of a good approximation of
Manski’'s model with the complexity of the CMNL would be partlarly useful to handle models
with a large number of alternatives.



Bierlaire, Hurtubia, and Flotterod

5 T T T T T T

CMNL —
Manski ----------

t-test

2
1t _
0k

(b) Travel time

FIGURE 7 t-statistics for the cost and time parameter overw
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