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 Abstract 
 

Stress can have a strong and long lasting effect on the establishment and maintenance 
of dominance hierarchies in rats. When two rats of a pair have not been stressed (non-stressed 
pair) before a first social encounter, they establish a dominance hierarchy, but the rank that is 
obtained during this first encounter is not maintained until a second encounter one week later. 
When one rat of the pair is stressed (stressed pair) before the first encounter, the stressed rat 
becomes subordinate during the first encounter and the hierarchy that is formed is long lasting 
and stable. In this thesis, the neurobiological mechanisms underlying the effects of stress on 
dominance hierarchies were studied. 

In the first study, we investigated the role of increasing corticosterone levels before or 
just after a first encounter between two rats of a pair in the establishment and the long-term 
maintenance of a dominance hierarchy. We show that pre-social encounter corticosterone 
treatment does not affect the outcome of the hierarchy during a first encounter, but induces a 
long-term memory for the hierarchy when the corticosterone-injected rat becomes dominant 
during the encounter, but not when it becomes subordinate. Post-social encounter 
corticosterone leads to a long-term maintenance of the hierarchy only when the subordinate 
rat of the pair is injected with corticosterone. This corticosterone effect implicates 
glucocorticoids in the consolidation of the memory for a recently established hierarchy.  

Next, we investigated the immediate and long-term changes in mRNA levels of 
receptors for oxytocin and vasopressin in medial amygdala and lateral septum. In subordinate 
rats of the stressed pairs, we found a downregulation in oxytocin receptor mRNA in medial 
amygdala at three hours after the first encounter, and a downregulation in vasopressin 1a 
receptor mRNA in lateral septum one week after the first encounter. We show that 
administration of an oxytocin antagonist in the medial amygdala of the subordinate rat 
immediately after a first encounter induces a long-term memory for the established hierarchy. 
Administration of a vasopressin 1a receptor antagonist in the lateral septum of the subordinate 
rat just before a second encounter mimics the effects of exposure to acute stress on the long-
term establishment of a dominance hierarchy. These results suggest a role for oxytocin and 
vasopressin in the effects of stress on the long-term establishment of dominance hierarchies.  

Finally, we investigated the long-term effects of acute stress and hierarchy formation on 
the establishment of a second hierarchy with an unfamiliar opponent. We show that the 
behavior of stressed subordinate rats towards an unfamiliar opponent depends on the previous 
status of the opponent: when paired with a previously dominant rat they become subordinate, 
whereas they become dominant when paired with a previously subordinate rat. Furthermore, 
we show that monoamine oxidase A and androgen receptor mRNA levels are downregulated 
in the lateral septum of stressed subordinate rats at one week after the first encounter; i.e., at 
the time when we have observed their flexible social behavior against unfamiliar opponents. 
The monoamine oxidase A inhibitor clorgyline was injected into the lateral septum to 
examine whether there was a causal relationship between changes in monoamine oxidase A 
mRNA levels and offensive behavior towards an unfamiliar subordinate opponent. However, 
our results did not support this hypothesis. 

Taken together, we have shown that exposure to acute stress and a social encounter 
leads to changes in the mRNA levels of receptors for oxytocin, vasopressin and androgens 
and of monoamine oxidase A. These changes might underlie the effect of stress on the 
formation of a stable and long-lasting dominance hierarchy. Corticosterone plays a role in the 
long-term maintenance of the recently established hierarchy and hence it is an ideal candidate 
to mediate some of the observed neurobiological changes. 
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Key words: dominance hierarchy; aggression; memory; subordinate; corticosterone; 
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rat. 
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Résumé 

Le stress peut avoir un effet important et durable sur l’établissement et le maintien de 
la mémoire des relations hiérarchique (dominance/soumission) chez les rats. En effet, la 
relation de dominance/soumission établie par deux rats non stressés lors d’une première 
rencontre sociale (paire non stressée) n’est pas retenue lors d’une deuxième rencontre une 
semaine plus tard. Cependant, si un des deux rats est stressé (chocs électriques aux pattes) 
immédiatement avant la première rencontre (paire stressée), le rat stressé devient soumis 
pendant la première rencontre. De plus, cette hiérarchie est durable et stable puisque elle est 
toujours présente une semaine plus tard. Le but de cette thèse a été d’étudier les mécanismes 
neurobiologiques impliqués dans l’effet du stress sur les relations de hiérarchie 
(dominance/soumission). 
Dans une première étude, nous avons examiné le rôle d’une augmentation du niveau de 
corticostérone avant où immédiatement après une première rencontre entre deux rats dans 
l’établissement et le maintien d’une hiérarchie de dominance. Nous montrons qu’un 
traitement au corticostérone avant la première rencontre n’a pas d’effet sur le résultat de la 
mise en place de hiérarchie pendant la première rencontre, mais provoque une mémoire de 
cette hiérarchie uniquement lorsque le rat traité avec la corticostérone devient dominant. Le 
même traitement immédiatement après la rencontre provoque une mémoire de la hiérarchie 
seulement quand le rat subordonné est injecté avec de la corticostérone. Cet effet de la 
corticostérone montre donc que les glucocorticoïdes jouent un rôle crucial dans la 
consolidation de la mémoire d’une hiérarchie sociale récemment mise en place. 
Nous avons ensuite étudié les changements immédiats et à long terme des niveaux d’ARNm 
des récepteurs à ocytocine et vasopressine dans l’amygdale médiane et le septum latéral. Nous 
avons montré i) trois heures après la première rencontre, une diminution des ARNm des 
récepteurs à ocytocine dans l’amygdale médiane des rats subordonnés des couples stressés et 
ii) une semaine après la première rencontre, une diminution des ARNm des récepteurs à 
vasopressine dans le septum latéral des rats subordonnés des couples stressés. Par ailleurs, 
nous montrons que l’administration d’un antagoniste aux récepteurs à ocytocine dans 
l’amygdale médiane d’un rat subordonné immédiatement après une première rencontre induit 
une mémoire de cette hiérarchie. De même, l’administration d’un antagoniste aux récepteurs à 
vasopressine 1a dans le septum latéral du rat subordonné juste avant une deuxième rencontre 
imite les effets d’une exposition à un stress aigu, c'est-à-dire que nous avons observé un 
maintien de la hiérarchie précédemment établie. Ces résultats suggèrent un rôle pour 
l'ocytocine et la vasopressine dans les effets du stress sur la mise en place à long terme des 
hiérarchies de dominance. 

Enfin, nous avons étudié les effets à long terme d’un stress aigu sur la formation d’une 
deuxième hiérarchie avec un opposant inconnu. Nous montrons que le comportement des rats 
subordonnés suite à un stress envers un opposant inconnu dépend du statut antérieur de cet 
opposant : quand le rat stressé précédemment est mis en relation avec un opposant qui était 
dominant, il devient soumis. S’il est couplé avec un opposant qui était subordonné (sans être 
stressé), il devient dominant. De plus, nous montrons que les niveaux d’ARNm de la 
monoamine oxydase A et du récepteur androgène sont diminués dans le septum latéral des 
rats subordonnés et stressés une semaine après la première rencontre, à savoir, au moment où 
nous avons observé le comportement social flexible envers un opposant inconnu. Pour tester 
l’existence d’un lien causal entre les changements sur les niveaux de ARNm pour monoamine 
oxydase A et le comportement agressif vers un opposant inconnu qui était subordonné, nous 
avons injecté un inhibiteur de la monoamine oxydase A (clorgyline) dans le septum latéral, 
sans réussir à corroborer cette hypothèse. 
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Dans l’ensemble, nous avons montré qu’une exposition à stress aigu et une rencontre 
sociale entrainent des changements dans les niveaux d’ARNm pour les récepteurs à 
ocytocine, vasopressine et androgène et pour la monoamine oxydase A. Ces changements 
pourraient être à la base de l’effet du stress sur la formation d’une hiérarchie de dominance 
qui est stable et durable. La corticostérone joue un rôle dans le maintien à long terme d’une 
hiérarchie récemment établie et est donc un candidat idéal à la médiation des changements 
neurobiologiques observés. 
 
Mots clés: hiérarchie de dominance, l’agression, la mémoire, soumis, la corticostérone, 
l’ocytocine, la vasopressine, la monoamine oxydase A, récepteurs, l’amygdale médiane, le 
septum latéral, rat. 
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Chapter 1 - Introduction 

Stress can have a strong and long lasting effect on the establishment of dominance 

hierarchies in rats and on the long-term memory that is formed for the established hierarchy. 

In our group, an animal model was developed that allows us to investigate the neurobiological 

mechanisms underlying these effects of stress on dominance hierarchies in adult male rats 

(Cordero and Sandi, 2007). The main characteristic of the model is that when both rats have 

not been stressed before the first encounter (the so called non-stressed pairs - Pns) a clear 

hierarchy is established during the first encounter, but the hierarchy is not stable over a long 

period of time. However, when one of the two rats of a pair is submitted to acute stress just 

before the first encounter (the stressed pairs - Ps), (1) the stressed rat usually becomes the 

subordinate individual in the first encounter and (2) the hierarchy that has been established 

during this first encounter is long lasting and stable, at least until a week after the first 

encounter. 

The final goal is to use this model to progress on the understanding of the mechanisms 

involved in the development and long-term establishment of dominance hierarchies after 

exposure to stress, and to develop interventions that can reduce maladaptive or 

disproportional hierarchical relationships. 

 

1.1 Stress 

Animals maintain a certain dynamic equilibrium or homeostasis in their internal state. 

When an animal is exposed to stress, this homeostasis can be disturbed and physiological and 

behavioral adaptations are made to try to restore the homeostasis. When the exposure to stress 

lasts too long or is too severe, this can lead to deleterious effects on the health of the animal 

(McEwen, 2007). 

Part of the stress response consists of a rapid activation of the sympathetic nervous 

system. This leads to the release of noradrenaline and adrenaline, which prepares the body for 

a ‘fight-flight’ response by increasing heart rate, blood pressure and blood glucose levels. 

Centrally, the hypothalamic-pituitary-adrenal (HPA) axis is activated. This leads to the 

release of corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) from the 

paraventricular nucleus (PVN) of the hypothalamus. The release of CRH and AVP from the 

PVN is stimulated by limbic brain areas such as the amygdala, the hippocampus and the 

prefrontal cortex, which are activated by psychological stressors, and by brain-stem pathways, 

which are activated by sensory stimuli. CRH and AVP stimulate the release of  
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Figure 1. Exposure to stress leads to activation of the 

HPA axis: CRH and AVP are released from the 

hypothalamus, which stimulates release of ACTH 

from the pituitary gland into the peripheral blood 

stream. ACTH leads to glucocorticoid release from the 

adrenal glands. Glucocorticoids exert a negative 

feedback on the HPA axis through GRs in the 

hippocampus, hypothalamus and pituitary gland. 

(Figure from Sandi, 2004) 

 

 

adrenocorticotropic hormone (ACTH) from the pituitary into the peripheral blood stream, 

which eventually leads to the release of glucocorticoids -corticosterone in rats and cortisol in 

humans- from the adrenal glands. These stress hormones reach their peak levels at 15-30 

minutes after the onset of the stress response and return to normal levels after 60-90 minutes. 

Glucocorticoids control the activation of the HPA axis through negative feedback 

mechanisms at the level of the hypothalamus and the pituitary, but also at the level of the 

hippocampus, which has a high density of the intracellular glucocorticoid (GR) and 

mineralocorticoid receptors (MR) (Fig. 1) (reviewed by de Kloet et al., 2005; Sandi and 

Pinelo-Nava, 2007). 

Glucocorticoids can rapidly access the brain due to their lipophilic nature. MRs are 

activated by a low concentration of glucocorticoids and play a role in the onset of the stress 

response. GRs are only activated by a high concentration of glucocorticoids, about 10 times as 

high as necessary for MR activation, and are important for the termination of the stress 

response and for recovery, i.e. through inhibition of CRH and AVP synthesis. GRs are also 

involved in memory formation, which allows for a more efficient stress response when the 

animal is re-exposed to the same situation. Besides in the hippocampus, a high density of GRs 

is found in the PVN and in limbic brain areas that modulate PVN activity. MRs are also 
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expressed in limbic brain areas such as amygdala and septum (de Kloet et al., 2005; Sandi and 

Pinelo-Nava, 2007).  

After entering the cell, glucocorticoids bind to MRs and GRs that form homo- or 

heterodimers and that affect gene expression through their action as transcription factors, 

either by themselves, or through a stimulating or inhibiting interaction with other transcription 

factors, by binding to glucocorticoid response elements (GREs). GREs are sequences in the 

DNA that are located close to gene promoters, and binding of transcription factors to these 

sequences leads to stimulation or inhibition of expression of the gene that is controlled by the 

promoter. Glucocorticoids can affect gene expression for a wide number of genes (Morsink et 

al., 2007). The changes in gene expression can affect memory formation, but also lead to 

molecular changes in cell adhesion molecules (Sandi, 2004) and structural changes in 

dendritic structure and size (McEwen, 2005). Glucocorticoids can also induce fast non-

genomic changes that act to bridge the time until the genomic changes have an effect, and 

possibly prepare the animal for the coming genomic changes. Non-genomic changes occur 

through binding of glucocorticoids to receptors on the cell membrane (Makara and Haller, 

2001). 

Stress has a U-shaped dose-response effect on learning and memory. Exposure to mild 

stress enhances memory formation, but exposure to excessive stress has negative effects on 

learning and memory formation (Joels, 2006; Sandi and Pinelo-Nava, 2007). The 

enhancement of learning and memory due to glucocorticoids has been extensively studied in a 

variety of learning tasks, including spatial learning (Oitzl and de Kloet, 1992; Sandi et al., 

1997; Akirav et al., 2004; Brinks et al., 2009a; Conboy and Sandi, 2009), inhibitory 

avoidance (Sandi and Rose, 1994; Roozendaal and McGaugh, 1996; Sandi and Rose, 1997; 

Roozendaal et al., 2002) , fear conditioning (Cordero et al., 1998; Cordero and Sandi, 1998; 

Cordero et al., 2002), its reconsolidation (Tronel and Alberini, 2007) and extinction (Brinks et 

al., 2009b; Gourley et al., 2009), and object recognition in emotionally aroused, but not in 

non-aroused rats (Okuda et al., 2004; Roozendaal et al., 2006). This body of research has 

emphasized a role for glucocorticoids in the enhancement of memory consolidation of 

emotionally arousing experiences, while pointing at their negative effects on the retrieval of 

information or working memory (Roozendaal, 2000; Sandi and Pinelo-Nava, 2007; de 

Quervain et al., 2009). In our model, stress enhances the long-term memory that is formed for 

the established dominance hierarchy (Cordero and Sandi, 2007). 

 



 10

1.2 The formation of a dominance hierarchy 

Animals that live in groups establish dominance hierarchies in which the dominant 

individual has priority access to limited resources such as water, food, females and space. The 

main function of the establishment of stable dominance hierarchies is to eliminate fighting 

within a group and thus to minimize energy costs (Van Kreveld, 1970). In laboratory rats that 

are kept together in a colony, a hierarchy usually develops in a few days and is stable for the 

time the group exists, as shown in the visible burrow system (Blanchard et al., 1988). Factors 

that determine which individual will become dominant can be divided in intrinsic factors, 

such as size, age, sex, strength, physiology and the level of aggressiveness (Parker, 1974; 

Chase et al., 2002) and extrinsic factors such as the winner and loser effect (reviewed by 

Chase et al., 1994). According to the winner effect, animals that have won an encounter are 

more likely to win future encounters, whereas according to the loser effect animals that have 

lost an encounter are more likely to lose future encounters. The animal model that was 

developed in our group, and that has been used throughout the studies described in the 

following chapters, shows that the extrinsic factor of acute stress can also affect the outcome 

of a dominance hierarchy (Cordero and Sandi, 2007). It has been shown before that 

dominance hierarchies and social defeat can be stressful (Blanchard et al., 1995; Meerlo et al., 

1996), but the contribution of stress (either induced by the social interaction or administered 

exogenously) on the establishment of dominance hierarchies has not been widely studied yet.  

In humans, sociological studies have shown that less egalitarian societies, as expressed 

in the relative difference in socioeconomic gradient, have more health problems such as high 

morbidity and high mortality, obesity, mental illness and homicide than more egalitarian 

societies (Wilkinson, 1999; Sapolsky, 2005; Wilkinson and Pickett, 2006, 2007). In many 

hierarchical groups, for example a class of school children, individuals in higher status 

positions suffer less from malaise (Wilkinson, 1999; Ostberg, 2003), but in some species 

being in possession of the dominant rank can be more stressful, depending on factors such as 

the stability of the hierarchy and resource inequity (Sapolsky, 2005). In rats, being 

subordinate is more stressful than being dominant (de Jong et al., 2005; Arakawa, 2006; 

Hoshaw et al., 2006). The fact that in many cases lower ranked individuals suffer more from 

malaise might be due to a prolonged activation of the HPA axis. Lower ranked individuals 

show social anxiety, which leads to this excessive HPA axis activation (Wilkinson, 1999). 

It is important to understand the mechanisms underlying the establishment of unequal 

dominance hierarchies, since this initial establishment can affect the relationship between two 

individuals and between these individuals and others for a long time after an initial encounter, 
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and could eventually even lead to the development of psychopathologies.  

 

1.3 Brain regions involved in social behavior  

Social recognition and social memory are important for the expression of social 

behavior. Social recognition is the ability to recognize other individuals according to several 

classes, for example parent-offspring recognition, mate recognition and dominant-subordinate 

hierarchies. Social memory is the ability to remember previously learned information about 

other individuals, such as their hierarchical status. The formation of a social memory is thus 

important in the establishment of hierarchies. When animals are not in contact with each other 

after a first encounter, the social memory that is formed is usually not long-lasting, in the 

range of minutes to hours (Ferguson et al., 2002). 

Social memory is different from other types of memory -like spatial memory, for 

example- and involves a specific neural circuit. In this neural circuit, information is mainly 

received in the form of pheromones, chemicals that transmit information about an individual 

and that are detected by the accessory olfactory bulb (AOB). The AOB projects to the medial 

nucleus of the amygdala (MeA), which then projects to the bed nucleus of stria terminalis 

(BNST) and the lateral septum (LS) (see Fig. 2). The LS has an output to the hippocampus 

(De Vries and Buijs, 1983; Caffe et al., 1987; Canteras et al., 1995; Calderazzo et al., 1996; 

Ferguson et al., 2002; Bielsky and Young, 2004). The important role of the hippocampus in 

 
Figure 2. Olfactory information is processed in the olfactory bulb, which has an output to the medial amygdala 

(MEA). The medial amygdala has an output to both the lateral septum (LAS) and bed nucleus of stria terminalis 

(BNST). OFC = orbitofrontal cortex, AHA = anterior hypothalamic area, PVN = paraventricular nucleus, PAG = 

periaquaductal grey. (Figure from Nelson and Trainor, 2007) 
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learning and memory is well known; however, its involvement in social memory is not clear  

(Maaswinkel et al., 1996; Petrulis et al., 2000; Bannerman et al., 2001; Bannerman et al., 

2002). Activation of MeA, BNST and LS was found after aggressive encounters in rats (Ferris 

et al., 2008, Martinez et al., 1998; Fekete et al., 2009), mice (Stork et al., 1997) and hamsters 

(Kollack-Walker and Newman, 1995; Kollack-Walker et al., 1997; Delville et al., 2000). In 

addition, exposure to the non-aggressive social investigation test increased c-fos activation in 

MeA, BNST and LS in mice (Ferguson et al., 2001). Since the MeA, BNST and LS are three 

brain regions that are involved in the regulation of social behavior (reviewed by Nelson and 

Trainor, 2007) and also play a role in the regulation of stress responses or are responsive to 

stress  (Cullinan et al., 1993; Herman et al., 1994; Ebner et al., 2000; Neumann et al., 2000; 

Windle et al., 2004; Ebner et al., 2005; Choi et al., 2007; McElligott and Winder, 2009), they 

are the focus of the studies described in this thesis. 

The MeA is the first of these three brain areas in the pathway that processes social 

information. The MeA shows c-fos activation after exposure to aggressive and non-aggressive 

social encounters in rats, mice and hamsters (Kollack-Walker and Newman 1995; Potegal et 

al., 1996; Kollack-Walker et al., 1997; Martinez et al., 1998; Delville et al., 2000; Ferris et al., 

2008; Fekete et al., 2009). Lesions of the MeA lead to a reduction in social learning when the 

lesions are induced after an aggressive encounter (Vochteloo and Koolhaas, 1987) and to a 

reduction of conditioned avoidance of a dominant opponent after social defeat (Bolhuis et al., 

1984; Luiten et al., 1985). In hamsters, inactivation of the MeA by administration of 

muscimol prevents the acquisition and expression of conditioned defeat (Markham and 

Huhman, 2008). This indicates that the MeA is essential for the formation of a memory for an 

opponent. Mice that are knockout for the neuropeptide oxytocin cannot form social memories, 

but this can be restored by specific infusions of oxytocin into the MeA (Ferguson et al., 2000; 

Ferguson et al., 2001). The MeA also plays a role in the stress response, since it can regulate 

HPA axis activity (Dayas et al., 1999; Mantella et al, 2004).  

The LS has a regulatory function by integrating sensory stimuli and acting as a relay 

station to pass on information to brain areas that are involved in the execution of motivated 

behaviors, such as the hypothalamus. The LS has connections with brain areas that process 

affective information, such as the amygdala, the BNST and the hypothalamus, and with brain 

areas that process cognitive information, such as the hippocampus (reviewed by Sheehan et 

al., 2004). Plasticity of LS synapses is regulated by neuropeptides like AVP. The LS plays a 

role in the regulation of social behavior. Lesions of LS enhance aggression in rats, although 

they have no effect on intraspecific aggression (Albert and Chew, 1980; Albert and Walsh, 
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1982).  Highly aggressive short attack latency (SAL) mice show a lower activation of septum 

than less aggressive low attack latency (LAL) mice, which might be related to the occurrence 

of violent attacks by SAL mice (Albert and Walsh, 1982; Haller et al., 2006). Subordinate 

hamsters show c-fos activation of LS after social defeat (Kollack-Walker et al., 1997). The LS 

is also involved in the regulation of the emotional response to social defeat stress, since 

administration of GR antagonists in LS prevents the usual increase in c-fos positive cells in 

hippocampus after social defeat (Calfa et al., 2007). 

The BNST forms a relay station between the amygdala, the hippocampus and the 

prefrontal cortex on one side, and the PVN on the other side, and is involved in regulation of 

the HPA axis response to stress (Cullinan et al., 1993; Herman et al., 1994; Choi et al., 2007; 

McElligott and Winder, 2009). Stimulation of the BNST increases plasma corticosterone 

levels (Dunn, 1987), whereas lesions of BNST result in reduced CRH levels in the PVN and 

reduced ACTH and corticosterone plasma levels (Gray et al., 1993; Herman et al., 1994). At 

the behavioral level, BNST lesions enhance floating behavior in a forced swim test, 

suggesting that the BNST is involved in the modulation of coping behavior in response to 

stress (Schulz and Canbeyli, 2000). The BNST is also involved in the regulation of social 

behavior. Lesions of the BNST decrease aggression towards a male intruder in rats (Albert et 

al., 1989). The BNST is activated in subordinate hamsters after social defeat (Kollack-Walker 

et al., 1997). The role of the BNST in social behavior involves the neuropeptide AVP. Both 

positive (Bester-Meredith and Marler, 2001) and negative (Compaan et al., 1993; Everts et al., 

1997; Veenema et al., 2010) correlations between AVP and aggression are found in BNST. 

Administration of AVP into the BNST inhibits aggression (Veenema et al., 2010).  

 

1.4 Oxytocin and vasopressin 

Oxytocin (OT) and AVP are two neuropeptides that are closely related and that are 

evolutionary conserved. Both neuropeptides play an important role in various social behaviors 

in many animal species. OT and AVP are nonapeptides with only two amino acids that differ 

between them (Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-GlyNH2 for OT, and Cys-Tyr-Phe-Gln-

Asn-Cys-Pro-Arg-GlyNH2 for AVP, both with a sulphur bridge between the two cysteines, 

see Fig. 3). The neuropeptides are located on the same chromosome, probably due to gene 

duplication, with an intergene region of 3-12 kb in mouse, rat and human. AVP is oriented in 

the opposite transcriptional direction compared to OT. Both genes contain three exons and 

two introns. The exons code for the preprohormone that consists of a signal peptide, the 

nonapeptide and the first nine amino acid residues of the neurophysin hormone on exon 1, the 
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central part of neurophysin on exon 2 and the C-terminal part of neurophysin and a 

glycopeptide on exon 3. Neurophysin is a carrier protein that is transported in vesicles with 

OT or AVP and that plays a role in the targeting, packaging and storage of the neuropeptide 

before release into the blood stream (reviewed by Gimpl and Fahrenholz, 2001; Caldwell et 

al., 2008; Lee et al., 2009). 

OT expression is regulated by estrogens and thyroid hormones through estrogen-

response elements in the promoter of the OT gene (Richard and Zingg, 1990; Mohr and 

Schmitz, 1991), which also contains a cyclic AMP (cAMP) response element (CRE), 

suggesting that protein kinase A and C pathways play a role in OT gene expression too 

(Gimpl and Fahrenholz, 2001). 

 

 
Figure 3. The nonapeptides oxytocin and vasopressin are located on the same chromosome with a small 

intergene region. OT and AVP only differ in two out of nine amino acids. The transcriptional direction of AVP 

is opposite to that of OT. (Figure from Caldwell et al., 2008) 

 

Only one receptor type is known for OT, the OT receptor (OTR). OTRs belong to the 

class I G-protein coupled receptors that are coupled to phospholipase C through Gαq11 and 

finally lead to the release of calcium, which can promote gene transcription and protein 

synthesis (Gimpl and Fahrenholz, 2001; Young and Gainer, 2003). Since OT can be released 

dendritically from neurons in the PVN and supraoptic nucleus (SON), the localization of OT 

release and OTR expression does not always match (Ludwig and Leng, 2006; Leng et al., 

2008). OTR binding and mRNA levels in the rat brain are increased by estrogens and 

testosterone (Tribollet et al., 1990; Stevenson et al., 1994; Larcher et al., 1995; Breton and 

Zingg, 1997). In cell culture, OTRs are internalized within 5-10 minutes after stimulation with 

an OT agonist. OTRs are not recycled back to the cell surface (Gimpl and Fahrenholz, 2001). 

For AVP, three receptor types have been found: the vasopressin receptor 1a (V1aR), 
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the vasopressin receptor 1b (V1bR) and the vasopressin receptor 2 (V2R). V1aR and V1bR 

are coupled to phospholipase C through Gαq11, like the OTR. V2R is couple to Gs and acts 

through the cAMP system (Caldwell et al., 2008). In the current study, we will focus on the 

V1aR, since this receptor is expressed in the brain and has been involved in the regulation of 

social behavior. 

OT and AVP are synthesized in the magnocellular neurons of the PVN and the SON 

of the hypothalamus. From here, the neuropeptides are transported to the posterior lobe of the 

pituitary gland (the neurohypophysis) and released as hormones into the blood stream where 

they exert peripheral effects, e.g. in milk ejection. Part of the OT and AVP that is synthesized 

in the PVN and SON is released centrally as neuropeptides through dendritic release. OT fiber 

endings have been found in various brain areas like MeA, LS, hippocampus, olfactory bulb, 

locus coeruleus and the raphe nucleus. Besides release from the hypothalamus, both OT and 

AVP are released locally from amygdala, BNST, septum, hippocampus and the olfactory bulb 

(Veinante and Freund-Mercier, 1997; Gimpl and Fahrenholz, 2001; Young and Gainer, 2003; 

Landgraf and Neumann, 2004). OTR and V1aR are expressed in MeA, BNST, LS and other 

brain areas (Kremarik, 1991; Yoshimura et al., 1993; Ostrowski et al., 1994; Veinante and 

Freund-Mercier, 1997; Ostrowski, 1998; Vaccari et al., 1998).  

 

1.5 The role of OT and AVP in social behavior 

OT and AVP and their receptors play an important role in the formation of social 

memory and are present in brain areas that are involved both in the formation of social 

memory and in the regulation of aggression (Gimpl and Fahrenholz, 2001). The roles of OT 

and AVP and their receptors in social behavior are largely conserved between species (Gimpl 

and Fahrenholz, 2001; Goodson and Bass, 2001).  

Mice that are knockout for either OT or V1aR are not able to form a social memory 

(Ferguson et al., 2000; Ferguson et al., 2001; Bielsky et al., 2004). Administration of OT to 

OT knockout mice or re-expressing V1aR in mice lacking this receptor restores social 

memory (Ferguson et al., 2000; Bielsky et al., 2005). Substantial evidence indicates that 

administration of either OT or AVP facilitates the formation of social memories, whereas 

AVP antagonists prevent this (Dantzer et al., 1987; Le Moal et al., 1987; Popik and Van Ree, 

1991; Engelmann and Landgraf, 1994; Engelmann et al., 1996; Popik et al., 1996; Landgraf et 

al., 2003). However, OT and AVP seem to have a different timing of expression and are thus 

likely to play a different role in the formation of social memories. Administration of OT to 

OT knockout mice is only effective in restoring social memory when this is done before a 
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social interaction (Ferguson et al., 2000; Ferguson et al., 2001), whereas re-expression of 

V1aR in V1aR knockout mice was shown to have an effect when this takes place after the 

social interaction (Bielsky et al., 2005). This suggests that OT may be critical for the encoding 

or initial processing of social memories, which probably occurs in the MeA, whereas AVP 

may be critical for the retention and recall of social memories, for which the LS and possibly 

also the hippocampus are important (Bielsky and Young, 2004). 

 

1.6 The effect of stress on the establishment and maintenance of dominance hierarchies 

As mentioned above, the contribution of stress to create social imbalance has been 

largely overlooked in studies of hierarchy formation. This occurs despite some suggestions 

that stress exposure can influence dominance-submissive relationships (Mikics et al., 2004). 

Since stress is a potent modulator of cognitive function and memory mechanisms (Sandi et 

al., 1997; Cordero et al., 1998; Cordero and Sandi, 1998; de Kloet et al., 1999; Roozendaal, 

2002; Sandi, 2004), we hypothesized that stress can have important and long-lasting 

influences on social relationships by amplifying the memory for the social status that is 

established in a first encounter between conspecifics. 

Stress and glucocorticoids affect aggressive and defensive behaviors. Treatment with 

glucocorticoids results in an increase in aggressive behavior of residents in a resident-intruder 

test (Haller et al., 1997; Mikics et al., 2004). Administration of the corticosterone synthesis 

inhibitor metyrapone leads to a decrease in aggressive behavior (Mikics et al., 2004). When a 

hierarchy has been established, corticosterone seems to have no effect on intra-colony 

aggression in both dominant and submissive rats (Mikics et al., 2007). This suggests that 

glucocorticoids have an effect particularly on the initial establishment of a dominance 

hierarchy.  

 

1.7 Stress and its relation to OT and AVP 

In rats, exposure to both emotional and physical stressors leads to OT and AVP 

release from the PVN and the SON of the hypothalamus (reviewed by Neumann, 2007). 

Exposure to social defeat increased OT release from the SON (Engelmann et al., 1999) and 

the LS (Ebner et al., 2000) and increased AVP release from the PVN (Wotjak et al., 1996). 

Forced swimming leads to an increase in OT and AVP release in the SON and the PVN 

(Wotjak et al., 1998).  

OT on its turn affects the stress response. Intracerebral infusion of OT was found to 

attenuate the HPA axis response, as measured by the ACTH and corticosterone response to 
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stress and CRF mRNA expression in the PVN (Windle et al., 1997; Windle et al., 2004). 

Infusion of OT antagonists enhances ACTH levels in the blood (Neumann et al., 2000) and 

OT knockout mice show enhanced plasma corticosterone level (Mantella et al., 2004). 

Patchev et al. (1993) showed that glucocorticoids increase OT binding in the amygdala, LS 

and BNST. Increasing OT by intracerebral infusions leads to a more passive stress coping 

strategy and to inhibition of the HPA axis. This is thought to prevent an excessive stress 

response (Neumann et al., 2000; Windle et al., 2004; Ebner et al., 2005). V1aR binding in LS 

was also found to be regulated by glucocorticoids, with adrenalectomy decreasing V1aR 

binding and administration of dexamethasone restoring this effect (Watters et al., 1996). The 

hypothesis has been put forward that interactions between OT, AVP and glucocorticoids 

could provide a mechanism for dynamical changes in social behavior (Gimpl and Fahrenholz, 

2001). 

 

1.8 Monoamine oxidase A, serotonin, and social behavior 

Monoamine oxidase A (MAOA) is a mitochondrial enzyme that is involved in the 

degradation of serotonin (5-HT), dopamine and noradrenaline. Mainly 5-HT has been shown 

to play a role in the regulation of aggression and to be related to the hierarchical status in 

several animal species (Kostowski et al., 1984; Blanchard et al., 1993; McKittrick et al., 1995; 

Ferris, 1996; Dhingra et al., 1997; Ferris et al., 1997; Larson and Summers, 2001).The 

activity of MAOA is related to aggression in animals and humans. MAOA knockout mice are 

more aggressive than their corresponding wild-type mice (Cases et al., 1995). In humans, 

several studies have related MAOA with increased aggression, including observations about 

(i) polymorphisms of the MAOA gene, with a low activity allele more expressed in highly 

aggressive individuals (McDermott et al., 2009); (ii) low activity of MAOA in depressed 

patients (Alia-Klein et al., 2008); and (iii) the lack of a functional MAOA gene linked to 

pathological aggression (Brunner et al., 1993). 

 

1.9 Aim and goals of the study 

The aim of the research presented in this thesis is to elucidate the neurobiological 

mechanisms underlying the effect of acute stress on the establishment and long-term 

maintenance of dominance hierarchies in adult male rats. Different aspects were studied in 

three sets of experiments. 

The first question addressed was whether enhancing corticosterone could mimic the 

effects of acute stress on the establishment and maintenance of a dominance hierarchy. The 
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effect of increasing corticosterone levels around a first social encounter on the establishment 

of a hierarchy and the long-term memory for the established hierarchy was studied. One out 

of the two rats in a dyad was injected with corticosterone either just before (to evaluate effects 

on the establishment of a hierarchy and on the formation of a long-term memory) or 

immediately after (to test for effects on the long-term memory formation) a first encounter 

with an unfamiliar rat. 

Next, we questioned whether OTR and V1aR play a role in the formation and long-

term maintenance of a dominance hierarchy. The immediate and long-term changes in gene 

expression of OTR and V1aR were examined and antagonists of OTR and V1aR were used to 

mimic the effects of acute stress on hierarchy establishment. 

Finally, we investigated the impact that exposure to acute stress and dominance 

hierarchy establishment could have on the formation of a second hierarchy with an unfamiliar 

opponent. Besides the behavior towards the unfamiliar opponent, we studied changes in gene 

expression levels of MAOA and the androgen receptor (AR) that could be involved in the 

neurobiological mechanisms underlying changes in behavior towards an unfamiliar opponent. 

The following three chapters summarize the results that were found in the three sets of 

experiments. In addition, several experiments that were done at different phases of this study 

but not included in the former chapters are included in the Appendix. These experiments 

include the evaluation of (1) the effects of administration of the protein synthesis inhibitor 

anisomycin after the first encounter on memory formation, (2) the changes in Otr and V1ar 

mRNA levels in LS one week after administration of an OT antagonist in MeA, (3) a social 

preference test for a juvenile rat after exposure to acute stress, (4) the difference in offensive 

behavior during the first encounter between rats of non-stressed and stressed pairs, (5) mRNA 

levels of the glucocorticoid receptor (Gr) and neural cell adhesion molecule (Ncam) in MeA, 

LS and BNST, (6) mRNA levels of Otr, V1ar, Ar, Maoa, Gr and Ncam in hippocampus, (7) 

mRNA levels of Otr and V1ar in BNST and (8) plasma corticosterone levels at three hours 

and one week after the first encounter. 
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2.1 Abstract 

Stress can affect the establishment and maintenance of social hierarchies. In the 

present study, we investigated the role of increasing corticosterone levels before or just after a 

first social encounter between two rats of a dyad in the establishment and the long-term 

maintenance of a social hierarchy. We show that pre-social encounter corticosterone treatment 

does not affect the outcome of the hierarchy during a first encounter, but induces a long-term 

memory for the hierarchy when the corticosterone-injected rat becomes dominant during the 

encounter, but not when it becomes subordinate. Post-social encounter corticosterone leads to 

a long-term maintenance of the hierarchy only when the subordinate rat of the dyad is injected 

with corticosterone. This corticosterone effect mimics previously reported actions of stress on 

the same model and, hence, implicates glucocorticoids in the consolidation of the memory for 

a recently established hierarchy.  

 

Key words: corticosterone; social hierarchy; aggression; memory; subordinate; rat. 



 21

2.2 Introduction 

Socially living animals establish dominance hierarchies, in which the dominant 

individual has priority access to limited resources such as water and food, space or females. 

Establishment of a hierarchy has the advantage of cutting down fighting within a group, 

eventually minimizing energy costs (Van Kreveld, 1970). In laboratory rats that are kept 

together in a colony, a hierarchy usually develops within a few days and is usually stable as 

long as the group keeps together (Blanchard et al., 1988). 

In most cases, dominance hierarchies are the result of aggressive contests. We have 

recently shown that, in a dyadic contest between two male rats, stress experienced by one of 

the individuals just before their first encounter can determine the long-term establishment of a 

social hierarchy by influencing both the rank achieved during the social encounter and by 

facilitating a long-term memory for the achieved hierarchy (Cordero and Sandi, 2007). In 

non-stressed pairs, the social rank established during the first interaction is not maintained 

when animals are confronted one week later. The stress-induced potentiation of the hierarchy-

linked recognition memory was blocked by injection of a protein synthesis inhibitor (Cordero 

and Sandi, 2007). Since glucocorticoids are main effectors of the activated stress system 

hypothalamus-pituitary-adrenocortical (HPA) axis and, due to their lipophilic nature, can 

readily enter the brain and affect neural function and cognition (de Kloet et al., 1999; de 

Kloet, 2000; de Kloet et al., 2005; Joels et al., 2006), we hypothesized that elevated 

glucocorticoid levels around the time of a first social encounter between two individuals 

could also affect the long-term establishment of social rank. 

Support for this hypothesis comes from earlier work showing that both aggressive and 

defensive behaviors in rodents can be modulated by elevated corticosterone (Leshner et al., 

1973; Leshner and Moyer, 1975; Leshner et al., 1975; Moyer and Leshner, 1976; Leshner and 

Politch, 1979; Haller et al., 1997; Haller et al., 2000a; Wood et al., 2003; Mikics et al., 2004). 

On its turn, inhibiting glucocorticoid function can, as well, have opposite modulatory actions 

in aggressive behaviors. Thus, treatment with the glucocorticoid synthesis inhibitor 

metyrapone or the mineralocorticoid receptor antagonist spironolactone was shown to 

decrease aggressive behaviors in resident-intruder tests (Haller et al., 2000b; Haller et al., 

2004; Mikics et al., 2004), while glucocorticoid removal through adrenalectomy was found to 

lead to abnormal aggressive behavior (as indexed by increased attack/threat ratio) that could 

be restored with corticosterone injections (Haller et al., 2001). Importantly, once a hierarchy 

is established, corticosterone seems not to affect aggressive behavior in the colony, suggesting 
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that the initial establishment of a hierarchy –but not the stability of a well defined hierarchy- 

might be particularly sensitive to modulation by glucocorticoids (Mikics et al., 2007). 

The long-term establishment of a social hierarchy involves at least the following two 

phases: (i) the determination of the social rank between the individuals involved in the 

specific social group, and (ii) the persistence of the acquired social hierarchy on encounters 

taking place at later time points. If we consider the phenomenon within the framework of 

memory, these two phases can be, respectively, considered equivalent to the ‘acquisition’ and 

‘consolidation’ of newly acquired information (i.e., the new social rank). In this context, it is 

important to note that glucocorticoids have been extensively implicated in the modulation of 

memory in a variety of learning tasks, including spatial learning (Oitzl and de Kloet, 1992; 

Sandi et al., 1997; Oitzl et al., 2001; Akirav et al., 2004; Brinks et al., 2009a; Conboy and 

Sandi, 2009), inhibitory avoidance (Sandi and Rose, 1994; Roozendaal and McGaugh, 1996; 

Sandi and Rose, 1997; Roozendaal et al., 2002), fear conditioning (Cordero et al., 1998; 

Cordero and Sandi, 1998; Cordero et al., 2002), its reconsolidation (Tronel and Alberini, 

2007) and extinction (Brinks et al., 2009b; Gourley et al., 2009), and object recognition in 

emotionally aroused, but not in non-aroused rats (Okuda et al., 2004; Roozendaal et al., 

2006). This body of research has emphasized a role for glucocorticoids in the enhancement of 

memory consolidation of emotionally arousing experiences, while pointing at their negative 

effects on the retrieval of information or working memory (Roozendaal, 2000; Sandi and 

Pinelo-Nava, 2007; de Quervain et al., 2009). 

Therefore, our aim here was to investigate the role of increasing corticosterone levels 

around the time of a first social interaction in the establishment and long-term maintenance of 

a dominance hierarchy. Using a rat model for the establishment of a social hierarchy that we 

recently developed (Cordero and Sandi, 2007), we studied the effects of injecting one, out of 

the two rats in a contest with corticosterone either just before (to evaluate effects on the 

establishment of a hierarchy and on the formation of a long-term memory) or immediately 

after (to test for effects on the long-term memory formation) a first encounter with an 

unfamiliar rat. 
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2.3 Materials and methods 

Animals 

Male Wistar rats (Charles River Laboratories, Lyon, France) weighing 250-275 grams 

at arrival were individually housed with ad libitum access to food and water. Animals were 

kept in a 12h light/dark cycle with lights on at 0700h, and a constant temperature of 22 ± 2 

°C. Animals were left undisturbed for one week after arrival before starting the experiment. 

Rats were weighed once per week. Experiments were performed with approval of the 

Cantonal Veterinary Authorities (Vaud, Switzerland). Experiments were carried out in 

accordance with the European Communities Council Directive of 24 November 1986 

(86/609/EEC). All efforts were made to minimize animal suffering and to reduce the number 

of animals used. 

All experiments took place between 0800h and 1400h, except for the water 

competition test that took place between 1400h and 1900h, after a water deprivation period of 

6h (from 0800h until 1400h). All rats were handled for 2 min per day during three days before 

exposure to the elevated plus maze. 

 

Elevated plus maze 

Before the start of the experiment the ‘elevated plus maze’ (EPM) test was performed 

to measure anxiety-related behavior, in order to subsequently match animals in each dyad 

according to similar scores in this test (data not shown). The EPM consists of two opposing 

open arms (45x10 cm) and two opposing closed arms (45x10 cm with walls of 50 cm high) 

that extend from a central platform (10x10 cm), elevated 65 cm above the floor. The rats were 

placed individually on the central platform facing the same closed arm and were allowed to 

explore the EPM freely during 5 min. The behavior of each rat was video recorded and 

analyzed using a computerized tracking system (Ethovision 3.1.16, Noldus IT, the 

Netherlands). Time spent in the open and closed arms was measured.  

 

Dyads and groups 

Rats were distributed to dyads consisting of two rats that were matched for their body 

weight and levels of anxiety-related behavior (as indexed by the percent time spent in the 

open arms of the EPM). The rationale to pair animals for anxiety-related behavior is based on 

evidence indicating a link between anxiety trait and stress effects on social dominancy 

(Lucion and Vogel, 1994). Thus, the rats in each dyad were considered equal in their 
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probability to become dominant or subordinate during a first encounter. The fur of both rats in 

a dyad was marked on different body parts (i.e. neck and back) to help identifying the 

animals. Rats were habituated to marking during the three day habituation period that took 

place before the first social encounter. Dyads were divided randomly over the different 

groups. Each group consisted of 5-8 dyads. 

 

Food and water competition test 

In order to habituate animals to the rewarding food used in the ‘food competition test’ 

(FCT), they received eight Chocopop flakes (Kellogg’s, Switzerland) in their homecages 

daily, during two days. The rats were habituated to the experimental setup for three days 

during which they were placed in a clean homecage for 20 min and in a food competition box 

for 10 min. The food competition box is a plastic box of 60x40 cm with walls of 32 cm high 

with a feeder containing eight Chocopops on one of the short sides. On day 1 of the 

experiment, the day after the last habituation day, the rats were submitted to a first encounter 

with an unfamiliar rat, consisting of a ‘social interaction test’ in a neutral homecage without 

food and water for 20 min, followed by a ‘food competition test’ (FCT) in which the rats had 

access to Chocopops during 10 min. After the tests each rat was returned to its homecage. The 

group without an encounter on day 1 was exposed to an extra day of habituation on that 

particular day. 

The memory for the formed hierarchy was tested in a ‘water competition test’ (WCT) 

that was performed on day 8 after a preceding water deprivation period of 6 h for all animals 

included in the context. Rats were exposed to the same opponent as on day 1. The WCT was 

performed in a neutral homecage. After 2 min of habituation, a single bottle of water was 

presented and the behavior during the following 10 min was recorded. In addition, one 

experiment was performed to assess the rats’ hierarchy on day 8 in a similar situation as in the 

first encounter (i.e., without former water deprivation and by testing their interactive behavior 

when exposed to a neutral, clean, homecage). 

Behavior was video-recorded and scored blindly using The Observer (v.5.0.25, Noldus 

IT, the Netherlands). The duration and frequency of offensive and defensive behaviors was 

scored. Offensive behaviors were attacks (biting), keeping down (pushing the opponent to the 

floor), offensive upright (standing on the hind legs in upright position) and lateral threat 

(pushing or approaching the opponent showing its side with an arched back). Defensive 

behavior consisted of freezing (immobility), defensive upright (standing on the hind legs in 

response to offensive upright) and submissive posture (lying on the back). In the WCT the 
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time spent drinking was measured. The rat that showed most offensive behavior during each 

interaction was considered the dominant rat, the rat showing least offensive behavior and 

most defensive behavior the subordinate rat. Although, in our initial establishment of the 

model (Cordero and Sandi, 2007), the variable “percentage of passes over the feeder” in the 

FCT was validated as a good index to categorize animals’ dominant–subordinate status, 

according to the scoring of animals’ former behavior in the social interaction test, the results 

in this index were not informative when animals were exposed to different schemes of 

glucocorticoid manipulations in this study. Accordingly, instead of just presenting data based 

on the “percentage of passes over the feeder” index, the social hierarchy resulting from 

interactions on the first day was established according to the totality of behaviors scored 

throughout the whole ‘social interaction test’. 

 

Drugs 

Corticosterone was injected IP as corticosterone-HBC (2-hydroxypropyl-β-

cyclodextrin) complex (Sigma Chemical Co., Switzerland) at a dose of 5 mg/kg. This dose 

was selected because it was previously shown to mimic plasma steroid concentrations 

produced by substantial stress (Venero et al., 1996). The corticosterone-HBC complex was 

dissolved in saline. Saline was used as the vehicle. Rats were injected with corticosterone or 

vehicle either 5 min before the start of the first encounter or the extra habituation period on 

day 1, or immediately after the end of the FCT or the extra habituation period. The pre-social 

encounter corticosterone injections were given randomly to one rat of the dyad. For the post-

social encounter injections either the dominant or the subordinate rat received the 

corticosterone injection. 

Figure 1 gives an overview of the injection time for the different groups. 

 

Statistics 

The percentage of offensive behaviors within each dyad was calculated as the ratio 

between contestants’ scoring in each confronted pair on the total of offensive behaviors 

scored across (i) the social interaction test (day 1) and (ii) the WCT (day 8). All results are 

expressed as the mean ± the standard error of the mean (S.E.M.). A paired two-tailed t-test 

was used to compare the percentage of offensive behaviors within a dyad of rats competing 

together. P<0.05 was considered significant. 

The computer software SPSS for Windows (version 13.0) was used for statistical 

analysis. 
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Figure 1. Overview of the experimental design. On the day of the first encounter the rats are injected with 

vehicle or corticosterone either 5 minutes before the start of a first encounter, or immediately after the first 

encounter. ‘CORT’ = corticosterone 
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2.4 Results 

The effect of vehicle injections around a social encounter on the long-term maintenance of a 

social hierarchy 

We have previously shown that, under the experimental conditions used in the current 

study, the social rank established by control pairs of male rats (not stressed or injected) 

through a first interaction and a food competition test on the first day of an encounter, is not 

maintained when the same animals are confronted 1 week later (Cordero and Sandi, 2007). 

Since the experimental design of the current study required to inject each animal of the dyad 

with either corticosterone or vehicle and either pre- or post-social encounter, we performed a 

first experiment to assess whether the injection procedure, by itself, could affect the long-term 

establishment of the hierarchy. As expected, vehicle-treated pairs formed a dominance 

hierarchy during the first encounter in which the dominant rat shows a higher percentage of 

offensive behaviors than the subordinate rat (t = 3.646, df = 5,  p<0.05), but showed no 

maintenance of the hierarchy when evaluated 1 week later through the WCT: in some cases, 

the same hierarchy was found, in others the opposite hierarchy, leading on average to both 

animals in the pairs (former dominant and subordinate) showing similar levels of offensive 

behavior (n.s.; Fig. 2).  

 
Figure 2. The percentage of offensive behaviors (mean ± S.E.M.) between two opponents shown in the social 

interaction test on day 1 and the water competition test on day 8 in the vehicle-treated group (n=6). The status 

‘dom’ (dominant) or ‘sub’ (subordinate) refers to the status that was obtained during the social interaction test on 

day 1. ‘veh’ = vehicle. * p<0.05. 
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The effects of corticosterone treatment before a social encounter on the establishment and 

long-term maintenance of a social hierarchy 

Pre-social encounter corticosterone treatment did not affect the establishment of the 

hierarchy during a first social encounter (Fig. 3A): five out of 12 rats with pre-social 

encounter corticosterone injections became dominant and seven out of 12 rats became 

subordinate (n.s.). Similarly, no evidence for an effect of corticosterone was observed when 

the same animals were further tested for their dominance hierarchy 7 days after the first 

encounter through the water competition test (n.s.; Fig 3A). Since some of the corticosterone-

injected animals became dominant and others subordinate in the first interaction, we reasoned 

that corticosterone might have influenced the long-term establishment of the particular 

hierarchy established. Thus, we divided the results from this experiment into two categories 

depending on whether the pre-social encounter corticosterone-injected rat became (i) 

dominant or (ii) subordinate, and then analyzed the impact of each condition on the 

establishment of the long-term memory for the hierarchy. In the condition in which pre-social 

encounter corticosterone-injected rats became dominant (Fig. 3B), a hierarchy, in terms of 

differences in the percent of offensive behavior presented by both rats of the pair, was formed 

on day 1 (t = -3.709, 4 d.f., p<0.05). When evaluated 7 days afterwards through the WCT, the 

hierarchy was maintained (t = -5.150, df = 4, p<0.01). In the condition in which pre-social 

 

Figure 3. The percentage of total offensive behavior (mean ± S.E.M.) between two opponents shown in the 

social interaction test on day 1 and the water competition test on day 8 in the pre-social encounter injection 

groups. (A) The hierarchy of rats injected with vehicle or corticosterone before the first encounter (n=12). (B) 

Rats that became dominant after pre-social encounter corticosterone and their vehicle-treated subordinate 

opponents (n=5). (C) Rats that became subordinate after pre-social encounter corticosterone and their vehicle-

treated dominant opponents (n=7). The status ‘dom’ (dominant) or ‘sub’ (subordinate) refers to the status that 

was obtained during the social interaction test on day 1. ‘veh’ = vehicle, ‘CORT’ = corticosterone. * p<0.05, ** 

p<0.01. 
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encounter corticosterone-injected rats became subordinate (Fig. 3C), a hierarchy was also 

evident during the first encounter (t = 4.442, df = 6,  p<0.01), but no memory for the 

hierarchy was found in the WCT (n.s.).  

 

The effect of corticosterone treatment after a social encounter on the long-term maintenance 

of a social hierarchy 

We then investigated whether increasing corticosterone levels after a first social 

encounter in one of the two confronted individuals –either the dominant or the subordinate of 

the recently established hierarchy- would affect the long-term establishment of the social 

hierarchy. Thus, pairs of males were submitted to the first social encounter and one of them, 

half of the times either the dominant or the subordinate animal, was injected with 

corticosterone and the other with vehicle. When the dominant rat of the pair (first social 

encounter, t = 3.363, df = 6,  p<0.05) received a corticosterone injection, no memory for the 

hierarchy was found on the WCT performed 7 days afterwards (n.s.; Fig. 4A). However, 

when the subordinate rat (t = 5.342, df = 6,  p<0.01) was the one injected with corticosterone, 

evidence for the establishment of a long-term memory was observed, with corticosterone-

injected rats behaving again as subordinates in the WCT (t = 5.744, df = 6,  p<0.01, Fig. 4B).  

 

 
Figure 4. The percentage of total offensive behavior (mean ± S.E.M.) between two opponents shown in the 

social interaction test on day 1 and the water competition test on day 8 in the post-social encounter injection 

groups. (A) Post-social encounter corticosterone for dominant rat, post-social encounter vehicle for subordinate 

rat (n=7). (B) Post-social encounter vehicle for dominant rat, post-social encounter corticosterone for 

subordinate rat (n=7). The status ‘dom’ (dominant) or ‘sub’ (subordinate) refers to the status that was obtained 

during the social interaction test on day 1. ‘veh’ = vehicle, ‘CORT’ = corticosterone. * p<0.05, ** p<0.01. 
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The effect of corticosterone injections without exposure to a social encounter on the long-

term maintenance of a social hierarchy 

The results obtained under some of the conditions examined above imply that 

corticosterone injections around the time of the first encounter have an impact on the long-

term maintenance of the hierarchy established on the day of the injection, as evaluated 1 week 

after the injection/encounter. However, the alternative possibility  that corticosterone by itself 

-regardless of the associated social experience– has a long-term effect on the expression of the 

social hierarchy cannot be discarded. Therefore, we set an experiment to specifically test 

whether a corticosterone injection, given to one of the animals in a pair (while the other 

received a vehicle injection) 1 week before their first encounter would affect the emerging 

hierarchy at that later time point. As shown in Figure 5, administration of corticosterone 

without an associated social encounter on day 1 had no long-term effect on the hierarchy that 

was established during the WCT one week later (n.s.).  

 
Figure 5. The percentage of total offensive behavior (mean ± S.E.M.) between two opponents shown in the 

water competition test on day 8 in the group that was not submitted to a social encounter on day 1, but only to 

injection of vehicle or corticosterone (n=7). ‘veh’ = vehicle, ‘CORT’ = corticosterone. 

 

The effect of corticosterone injections administered after a first social encounter on the long-

term maintenance of the acquired hierarchy as evaluated through a social interaction test 

As shown in Figure 4B, administering corticosterone immediately after the first social 

encounter to the animal that had just become subordinate resulted in a long-term potentiation 

of the hierarchy, as evaluated on day 8. This is a particularly relevant finding in this study 

since it resembles previously reported effects of stress leading to a subordinate status and 

facilitating the long-term establishment of the social hierarchy (Cordero and Sandi, 2007). 

However, since the WCT delivered on day 8 differed from the initial social interaction test, it 
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could be argued that the novelty aspects (i.e., water deprivation for 6 h with the potential 

stress associated; novel situation) might have interfered with the expression of the hierarchy 

in the controls, the corticosterone-treated animals, or in both cases. To check for this 

possibility, we performed an additional experiment in which in one group both rats were 

injected with vehicle after the encounter, while in the other group the subordinate rat was 

injected post-encounter with corticosterone and the dominant rat with vehicle. Both the 

vehicle-injected group and the group with post-encounter corticosterone for the subordinate 

rat showed a clear hierarchy on day 1 (t = 2.949, df = 7, p<0.05 for the vehicle group, Fig. 

6A; t = 5.499, df = 7, p<0.001 for the post-encounter corticosterone group, Fig. 6B). On day 

8, the rats were submitted to a second social encounter test, without being submitted to any 

preceding water deprivation. The post-encounter vehicle-treated group showed no memory for 

the hierarchy (n.s.; Fig. 6A). The post-encounter corticosterone-treated group showed the 

same hierarchy as on day 1, with the corticosterone-injected subordinate rat displaying less 

offensive behavior than the vehicle-injected dominant rat (t = 3.275, df = 7, p<0.05, Fig. 6B). 

 

 

 

Figure 6. The percentage of total offensive behavior (mean ± S.E.M.) between two opponents shown in the first 

social interaction test on day 1 and the second social interaction test on day 8 without a preceding water 

deprivation period. (A) Rats that were treated with post-encounter vehicle injections (n=8). (B) Post-social 

encounter vehicle for the dominant rat, post-social encounter corticosterone for the subordinate rat (n=8). The 

status ‘dom’ (dominant) or ‘sub’ (subordinate) refers to the status that was obtained during the social interaction 

test on day 1. ‘veh’ = vehicle, ‘CORT’ = corticosterone. * p<0.05, *** p<0.001. 
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Analyses of the nature of the social interactions maintained during the first encounter in 

animals submitted to either pre- or post-social interaction treatments 

Since corticosterone injections given before the first social encounter had an impact on 

the long-term establishment of the social hierarchy only when given to animals that became 

dominant, but not when applied to those that became subordinate, we hypothetized that the 

corticosterone treatment might have affected differently the social interaction in each of those 

two conditions. Therefore, we analyzed the nature of the social interactions maintained by the 

animals in those pairs and conditions in terms of the percent time spent in the characteristic 

offensive behaviors, as well as the interactions maintained by non-injected animals (i.e., those 

that among the whole study received post-social encounter injections, either saline or 

corticosterone). As can be observed in Figure 7, the nature of the social interactions 

maintained between the pairs in which corticosterone was injected before that particular 

encounter when the corticosterone-injected animal became dominant (Fig. 7A) was markedly 

different than the pattern of interaction observed under conditions in which the corticosterone-

injected male became subordinate (Fig. 7B) or in which none of the animals of the pair had 

yet being injected (Fig. 7C). In both cases, when the corticosterone-treated rats became 

subordinate (Fig. 7B) or had not been injected (Fig. 7C), the subordinate rats displayed 

significantly lower lateral threats (corticosterone-injected: t = 3.021, df = 6, p<0.05; not-

injected: t = 5.696, df = 32, p<0.001) and keeping down behaviors (corticosterone-injected: t 

= 4.490, df = 6, p<0.01; not-injected: t = 4.978, df = 32, p<0.001) than their dominant 

opponents, while the differences in attacks and offensive upright postures while observed in 

both conditions only reached significance for the untreated rats (t = 4.268, df = 32, p<0.001 

for attacks and t = 5.068, df = 32, p<0.001 for offensive upright). On the contrary, when the 

corticosterone-treated rat became dominant, the interaction between the two animals in the 

pair did not differ in terms of attacks (n.s.) , lateral threats (n.s.) or offensive upright postures 

(n.s.). In this case, it was specifically the keeping down behavior what defined that the 

corticosterone-treated animal became dominant in the encounter (t = 3.746, df = 4, p<0.05, 

Fig. 7A).  
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Figure 7. The percentage of the different offensive behaviors (attacks, lateral threat, offensive upright, keeping 

down; mean ± S.E.M.) between two opponents shown in the social interaction test on day 1. (A) The percentage 

of the different offensive behaviors in the pre-social encounter corticosterone group where the corticosterone-

treated rat became dominant (n=5). (B) The percentage of the different offensive behaviors in the pre-social 

encounter corticosterone group where the corticosterone-treated rat became subordinate (n=7). (C) The 

percentage of the different offensive behaviors in the groups that received post-social encounter injections 

(vehicle-treated group and corticosterone-treated group, n=33). ‘dom’ = dominant, ‘sub’ = subordinate, ‘veh’ = 

vehicle, ‘CORT’ = corticosterone. * p<0.05, ** p<0.01, *** p<0.001. 
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2.5 Discussion 

We have recently developed a model for the assessment of a long-term hierarchy 

between a pair of rats that, on their first encounter, have equal opportunities to become either 

dominant of subordinate. Under control conditions, the social rank established through a 

social interaction and food competition test on the first day, is not maintained when the same 

animals are confronted 1 week later. However, if one of the rats is stressed just before their 

first encounter, the dominance hierarchy developed on day 1 is still clearly observed one 

week later, with the stressed animal becoming subordinate in both social interactions. The 

potentiation of memory for the hierarchy by stress during the first encounter was shown to be 

blocked by injection of a protein synthesis inhibitor (Cordero and Sandi, 2007).  

The stress hormone corticosterone has been implicated in the modulation of 

aggressive behavior and on the modulation of memory (see 2.1 Introduction). Thus, in this 

study, we evaluated whether enhancing corticosterone levels in one of the rats in each dyad 

either before or immediately after the first social confrontation would facilitate the 

maintenance of the hierarchy order established on that initial encounter when examined 

through a water competition test one week later. Since corticosterone treatments were given to 

either the dominant or the subordinate animal in each contest, we also evaluated whether 

corticosterone effects might depend on the social rank of the treated animal. Our results show 

that while enhancing corticosterone levels before the first social encounter does not determine 

the social order that is about to be established, such treatment can promote the long-term 

maintenance of the resulting hierarchy when the animal that becomes dominant is the one 

who had been injected with the hormone. Importantly, when the enhancement of 

corticosterone occurs after resolution of the contest, this treatment is effective to promote the 

long-term establishment of the hierarchy when received by the rat that had just become 

subordinate, but not by the dominant. Altogether, these results support a complex, but 

important role of corticosterone in the long-term establishment of social hierarchies.  

First, we performed a control experiment to discard potential unspecific effects of the 

injection procedure, by itself, on the establishment and/or maintenance of the social hierarchy. 

By applying vehicle injections to each rat in the dyad either before or after the first social 

encounter, we confirmed that, as previously observed in untreated animals (Cordero and 

Sandi, 2007), the emergence of a social hierarchy was clear on day 1 (in terms of offensive 

behavior respectively displayed by animals that developed each social status) but it was not 

maintained when the same individuals were confronted one week later.  
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When examining the role of increased corticosterone levels in the establishment of an 

enduring hierarchy, the clearest results were those obtained when the hormone was applied 

after the social contest. Enhancing corticosterone levels after a first social encounter 

facilitated the transfer of the established social hierarchy to a future contest only when the 

hormone was given to the animal that has just become subordinate. No long-term impact was 

observed when the dominant animal was the one that received the treatment. The specificity 

of this effect to the linkage between corticosterone treatment and the emerging subordinate 

status was further confirmed by an experiment in which injecting corticosterone to one of the 

animals in each dyad (without any associated social experience on the same day) had no effect 

on the outcome of a water competition test given one week later. Moreover, it could be argued 

that stress associated with the water deprivation procedure (6 hours) required for the water 

competition test on day 8 might affect the internal milieu of the animals and consequently 

acting on state-dependent mechanisms that could, in turn, interfere with the expression of the 

formerly acquired hierarchy in controls and/or facilitate its expression by mimicking internal 

conditions of day 1 in formerly corticosterone-treated rats. However, results from a further 

experiment including a social interaction test on day 8 without former water deprivation did 

not support the state-dependent hypothesis. Instead, these results further confirmed that the 

potentiation of hierarchy expression by enhancing corticosterone levels in the subordinate 

animal after the social encounter is a robust phenomenon not only circumscribed to testing 

conditions involving acute stress. 

This facilitation of the long-term expression of the hierarchy when subordinate rats 

receive corticosterone post-encounter is reminiscent of the effect induced by stressing one rat 

before the first social encounter; i.e., the stressed rat becomes subordinate and this 

manipulation leads to a long-term expression of the established hierarchy (Cordero and Sandi, 

2007). Our current findings suggest that reinforcing the subordinate rat on its subordinate 

state is a sufficient condition to maintain the initially established hierarchy in future 

encounters. They also fit with the idea that, once a hierarchical relationship is established, the 

subordinate animal will play a central role in the maintenance of the hierarchy by showing 

submissive behavior presumably to avoid repeated physical exchanges with the dominant 

conspecifics (Summers et al., 2005). The fact that glucocorticoid effects were linked to 

keeping memory of a defeat, rather than of a victory, seems also congruent with the 

evolutionary reflection that remembering conditions leading to loss is particularly adaptive. 

Such an effect of glucocorticoids is in line with a wide body of evidence implicating post-

training glucocorticoids in the consolidation of memories for a variety of learning types  
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(Oitzl and de Kloet, 1992; Sandi and Rose, 1994; Roozendaal and McGaugh, 1996; Sandi et 

al., 1997; Sandi and Rose, 1997; Cordero et al., 1998; Cordero and Sandi, 1998; Oitzl et al., 

2001; Cordero et al., 2002; Roozendaal et al., 2002; Akirav et al., 2004; Okuda et al., 2004; 

Roozendaal et al., 2006; Tronel and Alberini, 2007; Brinks et al., 2009a; Brinks et al., 2009b; 

Conboy and Sandi, 2009; Gourley et al., 2009). Particularly relevant in this context are those 

studies in which a long-term memory was potentiated by injecting corticosterone immediately 

after training, including spatial learning acquired at a moderately stressful temperature (Sandi 

et al., 1997; Conboy and Sandi, 2009), fear conditioning involving low intensity shocks 

(Cordero and Sandi, 1998), inhibitory avoidance elicited through mild stressors (Sandi et al., 

1995; Venero and Sandi, 1997), and object recognition (Okuda et al., 2004; Roozendaal et al., 

2006). Interestingly, the corticosterone-induced facilitation of object recognition memory –a 

task which is clearly less stressful than the former three learning challenges- was only evident 

when corticosterone was administered to emotionally aroused, but not to non-aroused rats 

(Okuda et al. 2004; Roozendaal et al. 2006). It is tempting to compare these results with the 

differential effects of post-social encounter corticosterone injections found in our study for 

subordinate and dominant animals. Genomic effects have previously been described for 

delayed effects of both stress (Cordero and Sandi, 2007) and glucocorticoids (Mikics et al., 

2004) in social interactions. 

When corticosterone injections were given before the first social encounter, the 

treatment had no effect on the immediate establishment of the dominance hierarchy (about 

half of the injected rats became dominant and the other half subordinate), and it only led to 

the formation of a long-term memory for the hierarchy when the corticosterone-treated rat 

became the dominant rat of a dyad. Thus, the impact of this pre-social encounter hormonal 

manipulation greatly differs from our published model in which prior stress forces the 

resulting hierarchy, with the stressed male turning into the subordinate status in both the 

immediate and the delayed tests (Cordero and Sandi, 2007). This might be surprising 

according to earlier studies in diverse species reporting a link between increased 

glucocorticoid levels and increased aggressiveness (Brain and Evans, 1977; Heller, 1978; 

Hayden-Hixson and Ferris, 1991a, 1991b; Haller et al., 1997). However, a close examination 

of the literature reveals the existence of several studies in which increasing corticosterone 

levels was found to increase submissive behaviors (Leshner and Moyer, 1975; Leshner et al., 

1975; Moyer and Leshner, 1976; Leshner and Politch, 1979; Leshner et al., 1980). The 

explanation for this apparent discrepancy seems to be explained by the fact that the effects of 

corticosterone treatment are context-dependent: the experimental conditions used in the 
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studies in which corticosterone increased aggressiveness elicited, by themselves, aggressive 

responses (i.e., confrontation with rather passive opponents); conversely, those conditions in 

which corticosterone increased submissiveness elicited, by themselves, aggressive responses 

(i.e., confrontation with rather aggressive opponents). These findings led to the hypothesis 

that corticosterone would act by increasing animals’ arousal (Leshner et al., 1980) and, hence, 

its capability to recognizing the type of opponent it is exposed to. As a result, when exposed 

to an aggressive opponent, the increase in corticosterone would lead to an increase in 

submissive behavior. When exposed to a passive opponent, the increase in corticosterone 

would lead to an increase in aggressive behavior. In our experimental conditions, animals are 

matched for their body weight and anxiety levels with the goal of confronting two animals 

with equal opportunities to become either dominant or subordinate. Therefore, our findings 

that about 50% of the corticosterone-injected animals becomes dominant and the other 50% 

subordinate in this first encounter fit with the idea that enhanced corticosterone levels would 

facilitate the naturally emerging social responses. In this connection, Haller et al. (1997) have 

also proposed an interesting concept of context-specificity for corticosterone actions in 

aggressive behavior related to the prior history of social encounters of the treated animal.  

These results also indicate ‘immediate’ effects of increasing corticosterone levels in 

social behaviors and fit with previously described rapid effects of glucocorticoids in behavior 

(Sandi et al., 1996a, 1996b; Mikics et al., 2005). In particular, they support a growing body of 

evidence indicating that social behaviors are susceptible to be influenced by rapid, non-

genomic effects of increasing glucocorticoid levels (Haller et al., 1997; Makara and Haller, 

2001; Mikics et al., 2004). 

The fact that pre-social encounter corticosterone injections promoted a long-term 

hierarchy for the condition in which the corticosterone-treated was the dominant, rather than 

the subordinate, rat is somehow an unexpected finding. In both stress pre-social encounter 

(Cordero and Sandi, 2007) and corticosterone post-social encounter conditions (this study), 

long-term expression of the hierarchy is evident when the steroid-treated rat was the 

subordinate. Evaluation of the interaction profile in terms of the separate offensive behaviors 

displayed by each of the rats in the dyad (Fig. 7A) reveals a very different pattern to the one 

observed in control animals (Fig. 7C) or in the dyad in which the injected rat became 

subordinate (Fig. 7B). In contrast to control conditions, no differences were found in 

offensive behaviors such as attacks or lateral threats in the dyad in which the corticosterone-

treated rat became dominant, with the dominance hierarchy being defined in this case by a 

very strong difference in keeping down behaviors. Although our data does not allow 
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excluding a direct effect of corticosterone in the rat that became dominant, it is tempting to 

speculate that this difference in the nature of the interaction might have provoked an alteration 

in the stress reactivity and/or perception of the interaction in the animal that became 

subordinate, eventually reinforcing the establishment of a long-term memory for the emerging 

social hierarchy. Since the consolidation of the endurance of the social hierarchy by stress 

was blocked by a protein synthesis inhibitor (Cordero and Sandi, 2007), one way to 

investigate whether a particular individual in the dyad keeps a long-term memory when 

corticosterone is given before the first social encounter could be by injecting a protein 

synthesis inhibitor to either the steroid- or the vehicle-treated rat. In any case, the open 

question still remains as to why pre-encounter corticosterone treatment in animals that 

became subordinate would not have as well facilitated a long-term establishment of the 

hierarchy, as one would have expected from the reported effects of stress (Cordero and Sandi, 

2007).  

It is important to note that the current findings refer to experimental conditions in 

which glucocorticoids are enhanced acutely. Chronic elevation of glucocorticoids have been 

shown to generally inhibit aggression (Summers et al., 2005), while chronic glucocorticoid 

deficiency to promoting abnormal, even pathological, aggression in rats (Haller et al., 2001; 

Haller et al., 2004; Haller and Kruk, 2006). Furthermore, it is important to consider that 

besides its direct effect, acute treatment with corticosterone can also have an effect on other 

parts of the HPA-axis through the negative feedback mechanism, whose potential effects on 

social behavior and long-term memory cannot be discarded. 

In summary, the main finding of this study is that enhancing glucocorticoid levels in 

the rat that has just emerged as subordinate in a dyadic encounter facilitates the long-term 

establishment of the resulting hierarchy that –under control conditions- would not be kept, 

mimicking the effect of stressing one rat in the dyad just before the social confrontation 

(Cordero and Sandi, 2007). These findings support a role for glucocorticoids on the 

consolidation of memories for a recently established hierarchy and, hence, on the induction of 

neuroadaptive changes that mediate the “loser” effects. As opposed to the rapid effects of the 

steroid discussed above, genomic effects are expected to mediate these long-lasting changes. 

This study provides an ideal model to investigate the mechanisms whereby glucocorticoids 

potentiate the long-term establishment of emerging social hierarchies. 
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3.1 Abstract 

Exposure to acute stress can affect the establishment and maintenance of dominance 

hierarchies. When two non-stressed rats are exposed to each other in a social encounter, they 

establish a hierarchy, but the rank obtained during the first encounter in not maintained when 

the rats are re-exposed to each other one week later. When one rat of a pair is stressed before 

a first encounter, the stressed rat becomes subordinate and the hierarchy that is formed is 

stable for at least one week. Oxytocin and vasopressin are two neuropeptides that play an 

important role in the regulation of social behavior. In the present study, we investigated the 

immediate and long-term changes in mRNA levels of receptors for oxytocin and vasopressin 

in medial amygdala and lateral septum. In the medial amygdala of subordinate rats of a 

stressed pair, we found a downregulation in oxytocin receptor mRNA at three hours after the 

first encounter. In the same group, a downregulation in the vasopressin 1a receptor was found 

in lateral septum one week after the first encounter. We show that administration of a 

selective oxytocin antagonist in the medial amygdala of the subordinate rat immediately after 

a first encounter induces a long-term memory for the established hierarchy. Administration of 

a selective vasopressin 1a receptor antagonist in the lateral septum of the subordinate rat just 

before a second encounter mimics the effects of exposure to acute stress on the long-term 

establishment of the dominance hierarchy. These results suggest a role for oxytocin and 

vasopressin in the long-term establishment of dominance hierarchies in adult male rats. The 

effects of acute stress on dominance hierarchy formation and maintenance might be mediated 

by changes in oxytocinergic and vasopressinergic pathways in brain areas that are involved in 

the regulation of social behavior. 

 

Key words: oxytocin; vasopressin; receptors; dominance hierarchy; memory; subordinate; 

rat; medial amygdala, lateral septum. 
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3.2 Introduction 

Most animals that live in groups establish dominance hierarchies in which the 

dominant animal has priority access to limited resources such as water, food, space and 

females. One of the main functions of establishing dominance hierarchies is to eliminate 

fighting in a group and thus to minimize energy costs (Van Kreveld, 1970). In laboratory rats 

that are kept in a colony a stable hierarchy usually develops within a few days (Blanchard et 

al., 1988). 

Social recognition and social memory are critical for the establishment and 

maintenance of social relationships, including social attachment, sexual behavior, parental 

care and dominance hierarchies (Bielsky and Young, 2004). Social memory for offspring and 

mates is usually long-lasting for days, months or even years (Ferguson et al., 2002). However, 

recognition of an unfamiliar individual tends to be short-lasting, in the range of minutes to 

hours. Due to the importance of social recognition, the hypothesis has been put forward that 

specific pathways in the brain have developed for this purpose. Among the brain areas that 

have been involved in these pathways are the medial amygdala (MeA) and lateral septum 

(LS) (Ferguson et al., 2002; Bielsky and Young, 2004). Oxytocin (OT) and arginine 

vasopressin (AVP) are two neuropeptides that play an important role in the regulation of 

social behavior (reviewed by Veenema and Neumann, 2008). These neuropeptides, and their 

receptors oxytocin receptor (OTR) and vasopressin receptor 1a (V1aR) are expressed in the 

above mentioned brain areas that are involved in social behavior (Ostrowski et al., 1994; 

Ostrowski, 1998; Newman, 1999; Gimpl and Fahrenholz, 2001; Goodson, 2005).  

Mice that are knockout for OT or V1aR are not able to form social memories 

(Ferguson et al., 2000; Ferguson et al., 2001; Bielsky et al., 2004; Crawley et al., 2007). 

Administration of OT to OT knockout mice before a social encounter or re-expression of 

V1aR in V1aR knockout mice restores the ability to form social memories (Ferguson et al., 

2000; Bielsky et al., 2005). In rats, administration of AVP or of low but not high doses of OT 

facilitates social recognition (Popik and Van Ree, 1991; Popik and Vetulani, 1991; Popik et 

al., 1992; Benelli et al., 1995), whereas administration of OT or AVP antagonists blocks 

social recognition (Dantzer et al., 1987; Le Moal et al., 1987; Dantzer et al., 1988; Popik and 

Van Ree, 1991; Popik and Vetulani, 1991; Popik et al., 1992; Benelli et al., 1995; Landgraf et 

al., 1995; Engelmann et al., 1996; Popik et al., 1996; van Wimersma Greidanus and Maigret, 

1996; Everts and Koolhaas, 1997; Engelmann et al., 1998; Everts and Koolhaas, 1999; 

Landgraf et al., 2003; Choleris et al., 2007). Besides its role in social recognition, AVP has 
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also been implicated in aggressive behavior (Ferris et al., 1984; Irvin et al., 1990; Winslow 

and Insel, 1993; Delville et al., 1996). 

In rats, exposure to different types of emotional and physical stressors has been 

reported to lead to OT and AVP release from the paraventricular nucleus (PVN) and the 

supraoptic nucleus (SON) of the hypothalamus (reviewed by Neumann, 2007). Thus, 

exposure to a single social defeat was shown to increase OT release from the SON 

(Engelmann et al., 1999) and the LS (Ebner et al., 2000) and AVP release from the PVN 

(Wotjak et al., 1996). Increases in both OT and AVP release in the SON and the PVN were 

found after repeated exposure to forced swimming (Wotjak et al., 1998).  

Interestingly, intracerebral infusion of OT, on its turn, was found to attenuate the 

response of the HPA axis, as measured by the ACTH and corticosterone response to stress 

and CRF mRNA expression in the PVN (Windle et al., 1997; Windle et al., 2004). Infusion of 

OT antagonists enhances ACTH levels in the blood (Neumann et al., 2000a) and OT knockout 

mice show enhanced plasma corticosterone level (Mantella et al., 2004). Patchev et al. (1993) 

showed that glucocorticoids increase OT binding in the amygdala, LS and bed nucleus of stria 

terminalis. Increasing OT by intracerebral infusions leads to a more passive stress coping 

strategy and to inhibition of the HPA axis. This is thought to prevent an excessive stress 

response (Neumann et al., 2000a; Windle et al., 2004; Ebner et al., 2005). V1aR binding in 

LS was also found to be regulated by glucocorticoids, with adrenalectomy decreasing V1aR 

binding and administration of dexamethasone restoring this effect (Watters et al., 1996). 

Interestingly, the hypothesis has been put forward that interactions between OT, AVP and 

glucocorticoids could provide a mechanism for dynamical changes in social behavior (Gimpl 

and Fahrenholz, 2001). 

In an animal model that was developed in our group (Cordero and Sandi, 2007), we 

have shown that when one rat of a dyad is exposed to acute stress prior to a first encounter, 

this stressed rat becomes the subordinate individual in the first encounter, and the established 

dominance hierarchy is stable for at least one week. When two non-stressed rats are submitted 

to a social encounter, a hierarchy is formed during the first encounter, but the social rank 

obtained on the first day is not maintained during a second encounter one week later. In the 

current study, we investigated the role of OTR and V1aR in the stress facilitation of a long-

term dominance hierarchy between two adult male rats. Specifically, we studied the 

immediate and long-term changes in gene expression of Otr and V1aR and the causal 

relationship between gene expression and behavior by using antagonists of OT and AVP. We 
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expect that both OT and AVP are causally involved in the long-term establishment of a 

dominance hierarchy, but that they may exert their effects in different brain areas. 
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3.3 Materials and methods 

Animals 

Male Wistar rats (Charles River Laboratories, Lyon, France) weighing 250-275 grams 

at arrival were individually housed with ad libitum access to food and water. Animals were 

kept in a 12h light/dark cycle with lights on at 0700h, and a constant temperature of 22 ± 2 

°C. Animals were left undisturbed for one week after arrival before starting the experiment, 

except when surgery was performed, which was performed a few days after arrival. Rats were 

weighed once per week. Experiments were performed with approval of the Cantonal 

Veterinary Authorities (Vaud, Switzerland).  

All experiments took place between 0800h and 1400h, except for the water 

competition test that took place between 1400h and 1900h, after a water deprivation period of 

6h (from 0800h until 1400h). All rats were handled for 2 min per day during three days before 

exposure to the elevated plus maze (see below). 

 

Surgery 

Rats were anaesthetized with ketamine (70 mg/kg) and xylazine (6 mg/kg), 

administered by i.p. injection. 10 mm long stainless steel guide cannulae of 23 gauge (Plastics 

One, Roanoke, USA) were implanted bilaterally in the MeA at -2.50 mm anterior and ±3.3 

mm lateral relative to Bregma and -7.9 mm ventral relative to dura (Paxinos and Watson, 

1998) using a standard stereotaxic frame (Stoelting, USA). Bilateral 4 mm long stainless steel 

guide cannulae of 22 gauge with a distance of 1.5 mm between the guide cannulae (Plastics 

One, Roanoke, USA) were implanted in the LS at +0.20 mm anterior, ±0.75 mm lateral and    

-3.7 mm ventral relative to Bregma. Cannulae were fixed to the skull with dental acrylic 

cement (Kaladent, Switzerland) and anchored with Vetbond Tissue Adhesive glue (3M). 

Dummy cannulae (10mm for MeA, 4mm for LS, Plastics One, Roanoke, USA) were inserted 

into the cannulae to protect them from blocking. Rats received an injection with Antisedan 

(0.04 ml s.c., Pfizer, Switzerland) after the surgery to reverse the effects of the anesthetics. 

Paracetamol was added to the drinking water as analgesic in the days following surgery. The 

rats were allowed to recover for at least one week before the start of the experiment. 

 

Drugs and infusion procedure 

The selective OT antagonist (OTA) desGly-NH2-d(CH2)5[D-Tyr2,Thr4]OVT was used 

for infusions into the MeA, the selective V1aR antagonist d(CH2)5[Tyr2(Me)2]AVP for 
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infusions into the LS (both antagonists were a generous gift of dr. M. Manning, Toledo, OH, 

USA). The OTA and V1aR antagonist were dissolved in saline. For MeA, internal injectors of 

11 mm (extending 1 mm from the end of the guide cannula, 30 gauge, Plastics One, Roanoke, 

USA) were used to administer the drug. For LS, a bilateral internal injector of 6 mm 

(extending 2 mm from the end of the guide cannula, 28 gauge, Plastics One, Roanoke, USA) 

was used. The injectors were connected to 10 μl microsyringes (SGE Analytical Science, 

Australia) on an automated infusion pump (Harvard Apparatus, MA, USA) through 

polyethylene tubing. 1 μg of OTA in 1 μl of saline was infused into the MeA of each 

hemisphere at a rate of 0.5 μl/min. 10 ng of V1aR antagonist in 1 μl of saline was infused 

bilaterally into the LS at rate of 0.5 μl/min. After the infusion the injector was left in place for 

1 min to allow diffusion of the drug. Saline was used as a vehicle. The OTA was infused 

 

 
Figure 1. Overview of the experimental design. (A) In one experiment, both rats were infused with vehicle in the 

medial amygdala, or the dominant rat of the pair was infused with vehicle and the subordinate rat with OTA 

immediately after the first encounter on day 1. (B). In another experiment, both rats were infused with vehicle in 

the lateral septum 30 min before the second encounter, or the previously dominant rat was infused with vehicle 

and the previously subordinate rat with V1aR antagonist. ‘OTA’ = oxytocin antagonist 
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immediately after the encounter to the subordinate rat or after the last habituation session in 

the group that was not exposed to a social encounter on day 1. The V1aR antagonist was 

infused 30 min before the second encounter to the subordinate rat. The other rat of the pair 

and both rats of control pairs were infused with vehicle. 

 

Elevated plus maze 

Before the start of the experiment the ‘elevated plus maze’ (EPM) test was performed 

to measure anxiety-related behavior. The EPM consists of two opposing open arms (45x10 

cm) and two opposing closed arms (45x10 cm with walls of 50 cm high) that extend from a 

central platform (10x10 cm), elevated 65 cm above the floor. The rats were placed 

individually on the central platform facing the same closed arm and were allowed to explore 

the EPM freely during 5 min. The behavior of each rat was video recorded and analyzed using 

a computerized tracking system (Ethovision 3.1.16, Noldus IT, the Netherlands). Time spent 

in the open and closed arms was measured.  

 

Dyads and groups 

Rats were distributed to dyads consisting of two rats that were matched for their body 

weight and anxiety level. The anxiety level was defined by the time spent in the open arms of 

the EPM. Thus, the rats in each dyad were considered equal in their probability to become 

dominant or subordinate during a first encounter. The fur of both rats in a dyad was marked 

on different body parts (i.e. neck and back) to help identifying the animals. Rats were 

habituated to marking during the three day habituation period that took place before the first 

social encounter. Dyads were divided randomly over the different groups. Each group 

consisted of 7-14 dyads. 

 

Stress delivery – Contextual fear conditioning 

In non-stressed pairs (Pns) none of the rats were stressed prior to the social encounter. 

In stressed pairs (Ps) one rat of the pair was stressed using a contextual fear conditioning 

paradigm just before the first social encounter. Fear conditioning was performed in an 

observation chamber of 30x37x25 cm (Panlab, Spain) made of black steel walls and a 

Plexiglas ceiling and door. The floor consisted of 20 steel rods connected to a shock source 

and solid-state scrambler for delivery of electrical shocks. The observation chamber was lit by 

a 20 W light bulb and there was a background noise of 68 dB. The protocol consisted of a 

habituation period of 3 min, followed by 3 footshocks of 1 mA lasting 1 sec each with an 
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intershock interval of 60 sec. 30 sec after the last shock the rat was taken out and immediately 

submitted to the first social encounter with an unfamiliar rat in an adjacent room. 

 

Food and water competition test 

In order to habituate animals to the rewarding food used in the ‘food competition test’ 

(FCT), they received eight Chocopop flakes (Kellogg’s, Switzerland) in their homecages 

daily, during two days before the start of the habituation to the experimental setup. The rats 

were habituated to the experimental setup for three days during which they were first placed 

in a clean homecage for 20 min and then in a food competition box for 10 min. The food 

competition box is a plastic box of 60x40 cm with walls of 32 cm high with a feeder 

containing eight Chocopops on one of the short sides. On day 1 of the experiment, the day 

after the last habituation day, the rats were submitted to a first encounter with an unfamiliar 

rat, consisting of a ‘social interaction test’ in a neutral homecage without food and water for 

20 min, followed by a ‘food competition test’ (FCT) in which the rats had to compete for 

Chocopops during 10 min. After the tests each rat was returned to its homecage. The group 

without an encounter on day 1 was exposed to an extra day of habituation. 

The memory for the formed hierarchy was tested in a ‘water competition test’ (WCT) 

that was performed on day 8 after a preceding water deprivation period of 6h. Rats were 

exposed to the same opponent as on day 1. The WCT was performed in a neutral homecage. 

After 2 min of habituation, a single bottle of water was presented and the behavior during the 

following 10 min was recorded. In the experiment using the V1aR antagonist the second 

encounter was performed without a preceding water deprivation period and without 

presentation of the bottle of water to exclude any effects of the antagonist on vasopressinergic 

water regulation. Previous experiments have shown that the outcome of a second social 

encounter without water deprivation is the same as the outcome of a WCT (Timmer and 

Sandi, 2010). 

Behavior was video-recorded and scored blindly using The Observer (v.5.0.25, Noldus 

IT, the Netherlands). The duration and frequency of offensive and defensive behaviors was 

scored. Offensive behaviors were attacks (biting), keeping down (pushing the opponent to the 

floor), offensive upright (standing on the hind legs in upright position) and lateral threat 

(pushing or approaching the opponent showing its side with an arched back). Defensive 

behavior consisted of freezing (immobility), defensive upright (standing on the hind legs in 

response to offensive upright) and submissive posture (lying on the back). In the FCT the 

number of consumed Chocopops and the number of passes over the feeder was counted and in 
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the WCT the time spent drinking was measured. The rat that showed most offensive behavior 

during the interaction was considered the dominant rat, the rat showing least offensive 

behavior and most defensive behavior the subordinate rat. 

Two control groups were added for the gene expression experiments. The first control 

group was submitted to habituation, but not to a social encounter. The stressed control group 

was submitted to habituation and to foot shock stress (as described above), but not to a social 

encounter.  

 

Sacrifice 

For the gene expression experiments rats were sacrificed either on day 1, three hours 

after the end of the food competition test, or on day 8, one week after the social interaction 

and food competition test under basal conditions. The animals were decapitated, the brain was 

quickly removed and frozen in isopentane at a temperature between -50 and -40 °C and stored 

at -80 °C until further processing.  

In experiments involving cannulation, in order to check the position of the cannulae in 

the OTA and V1aR antagonist experiments rats were injected i.p. with pentobarbital. Then, 1 

μl of ink was subsequently infused into the MeA or LS to mark the position of drug delivery. 

The rats were decapitated and the brains removed, frozen in isopentane and stored at -80 °C 

until further processing. 40 μm thick coronal sections were stained with thionin to detect the 

cannula position. 

 

Laser capture micro dissection 

For the gene expression experiment, coronal sections of 20 μm were taken for ‘laser 

capture micro dissection’ (LCM). The sections were put on membrane covered slides (Palm 

Microlaser Technologies, Carl Zeiss, Germany) and stored at -20 °C covered with RNAlater 

ICE (Ambion, TX, USA). Prior to LCM the sections were stained with the HistoGene LCM 

Frozen Section Staining kit following the protocol (Arcturus Bioscience, Switzerland). The 

MeA and the LS from the right hemisphere were dissected through LCM. The target tissue 

was catapulted into a PALM adhesive cap (Palm Microlaser Technologies, Carl Zeiss, 

Germany) and subsequently incubated in 100 μl of lysis buffer (RNAqueous Micro Kit, 

Ambion, TX, USA) for 30 min at 42 °C. After spinning down the tissue was stored at -80 °C 

until further processing. 
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RNA isolation 

RNA was isolated from the tissue using the RNAqueous Micro Kit (Ambion, TX, 

USA). First, 3 μl of LCM additive was added. Subsequently 129 μl of 100% ethanol was 

added to the mixture. The lysate/ethanol mixture was loaded onto a Micro Filter Cartridge 

Assembly and centrifuged for 1 minute at 10000g. Afterward 180 μl of Wash Solution 1 was 

added and the mixture was centrifuged again for 1 min at 10000g. 180 μl of Wash Solution 

2/3 was added and the mixture was centrifuged for 30 sec at 14000g. The flow-through was 

discarded and the Micro Filter Cartridge was centrifuged for another minute at 14000g. The 

Micro Filter Cartridge was transferred into a Micro Elution Tube and 8 μl of preheated 

Elution Solution was added. The mixture was left for 5 min at room temperature and 

subsequently centrifuged for 1 min at 14000g. Another 8 μl of Elution Solution was added 

and the mixture was centrifuged again at 14000g. The RNA was stored at -80 °C until further 

processing 

 

Reverse transcription and preamplification 

9.62 μl of the extracted RNA was converted into cDNA using Taqman Reverse 

Transcriptase Reagents (Applied Biosystems, CA, USA). 1.25 μl of random hexamers and 2.5 

μl of RT 10x buffer were added to reach an end volume of 13.37 μl. The mixture was brought 

to 65 °C for 10 min followed by 10 min at room temperature in a Thermocycler (Primus 96, 

Peqlab, Germany). Following this step 5.5 μl of MgCl2, 5 μl of dNTPs (10 mM), 0.5 μl of 

RNAse inhibitor and 0.63 μl of Multiscribe Reverse were added to each sample. Using the 

Thermocycler, the reverse transcription was executed for 10 min at 25 °C, 25 min at 48 °C 

and 5 min at 95 °C. The obtained cDNA was stored at -20 °C until further processing. 

The cDNA was preamplified using Pre-amp MasterMix for TaqMan assays (Applied 

Biosystems, CA, USA). A pool of TaqMan Gene Expression Assays for the genes of interest 

(see ‘Real time PCR’) was made in ultrapure water (Gibco, NY, USA) at a concentration of 

1% for each Assay. 25 μl of Taqman PreAmp MasterMix, 12.5 μl of the pooled Assay mix 

and 12.5 μl of cDNA were mixed for each sample. The preamplification was done by an 

enzyme activation period of 10 min at 95 °C, followed by 10 cycles of 15 sec at 95 °C and 4 

min at 60 °C. After finishing the run the samples were immediately placed on ice and diluted 

5x in ice-cold ultrapure water (Gibco, NY, USA). Samples were stored at -20 °C until further 

processing. 
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Quantitative real time PCR 

Quantitative real time PCR was performed using TaqMan Gene Expression Assays for 

the genes for the oxytocin receptor (Otr) and the arginine vasopressin receptor 1A (V1ar) with 

the control genes ribosomal protein S18 (Rps18), ribosomal protein S29 (Rps29) and 

eukaryotic elongation factor 1 alpha 1 (Eef1a1) (see Table 1 for the used Gene Expression 

Assays, Applied Biosystems, CA, USA). First, a reaction mixture containing 4.5 μl 

preamplified cDNA, 0.5 μl 20x Taqman Gene Expression Assay for the genes of interest and 

5 μl 2x PCR Master Mix (TaqMan Universal PCR master mix no AmpErase UNG, Applied 

Biosystems, CA, USA) per reaction of 10 μl was made. Triplicates of 10 μl of each reaction 

mixture were transferred to a well in a 384-well optical reaction plate (Applied Biosystems, 

CA, USA). The real time PCR was performed using 40 cycles of 15 sec at 95 °C and 1 min at 

60 °C (7900HT, Applied Biosystems, CA, USA), preceded by 2 min at 50 °C and 10 min at 

95 °C. 

The software SDS (v.2.3, Applied Biosystems, CA, USA) was used for running and 

analyzing the quantitative real time PCR. Each target gene was compared to three internal 

control genes (Rps18, Rps29, Eef1a1) using the ΔΔCt method (described by Livak and 

Schmittgen, 2001). The results are expressed as fold change compared to the control groups. 

 
Table 1. Overview of the used Gene Expression Assays (Applied Biosystems). 

Gene Gene Expression Assay 

Oxytocin receptor (Otr) Rn00563503_m1 

Arginine vasopressin receptor 1a (V1ar) Rn00583910_m1 

Ribosomal protein S18 (Rps18) Rn01428915_g1 

Ribosomal protein S29 (Rps29) Rn00820645_g1 

Eukaryotic elongation factor 1a1 (Eef1a1) Rn01639851_g1  

 

Statistics 

All results are expressed as the mean ± the standard error of the mean (S.E.M.).  

For statistical analyses of mRNA expression levels, the fold change of the different 

groups compared to the non-stressed control group was calculated. One-way ANOVA was 

used to test statistical significance between the dominant and subordinate rats of Pns and Ps. A 

priori comparisons to test differences between two specific groups were established and 

evaluated through either unpaired or paired two-tailed Student t-tests. Paired t-tests were 

applied to compare mRNA expression levels of dominant and subordinate rats that competed 
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together, while unpaired t-tests were applied when comparisons involved animals that had not 

directly interacted. A priori comparisons for group comparisons were (1) the subordinate rat 

of Ps with the subordinate rat of Pns, (2) the subordinate rat of Ps with the dominant rat of Ps, 

(3) the dominant rat of Ps with the dominant rat of Pns, (4) the subordinate rat of Pns with the 

dominant rat of Pns, (5) the subordinate rat of Ps with the stressed control group and (6) each 

experimental group compared to non-stressed controls. 

For the behavioral experiments, the percentage of offensive behaviors within each 

dyad was calculated. A paired two-tailed Student t-test was used to compare the percentage of 

offensive behaviors within a dyad of rats competing together.  

The computer software SPSS for Windows (version 13.0) was used for statistical 

analysis. P<0.05 was considered significant. 
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3.4 Results 

Exposure to acute stress induces a long-term memory for the established hierarchy 

First, we evaluated whether exposure of one rat of a dyad to acute stress before a first 

encounter induces a long-term memory for the hierarchy that was established on day 1. Rats 

that have not been submitted to stress (Pns) form a hierarchy when exposed to a first social 

encounter on day 1 (t = 7.844, df = 6, p<0.001), but on day 8 the hierarchy is not maintained 

(Fig. 2A). When one rat of a dyad is exposed to acute stress (Ps), the stressed rat become 

subordinate during the first encounter, and one week later the same hierarchy is still observed 

(t = 5.083, df = 5, p<0.01 for day 1, t = 3.109, df = 5, p<0.05 for day 8, Fig. 2B). Therefore, 

under our experimental conditions, we have replicated previous observations (Cordero and 

Sandi, 2007) that under control conditions the social rank established through a first social 

interaction test between two males is not maintained when the animals are confronted one 

week later, whereas when one rat of the dyad is stressed before the first encounter, the 

dominance hierarchy established on day 1 is still clearly observed one week later, with the 

stressed rat becoming submissive. 

 

 

 

Figure 2. The percentage of total offensive behavior (mean ± S.E.M.) between two opponents shown in the 

social interaction test on day 1 and the water competition test on day 8. (A) The hierarchy of rats of non-stressed 

pairs (n=7). (B) The hierarchy of rats of the stressed pairs (n=6). The status ‘dom’ (dominant) or ‘sub’ 

(subordinate) refers to the status that was obtained during the social interaction test on day 1. ‘Rns’ = non-

stressed rat, ‘Rs’ = stressed rat. * p<0.05, ** p<0.01, *** p<0.001 vs. the other rat of the dyad. 
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Changes in mRNA levels 3h and 1 week after a first encounter 

The immediate (3h) and long term (1 week, under basal conditions) effects of stress 

and hierarchy formation on the levels of Otr and V1ar mRNA were studied in MeA and LS, 

brain areas that are important in the regulation of social behavior and stress responses. 

The animals of Pns and Ps were submitted to a first encounter on day 1. The pairs 

formed a clear hierarchy on day 1 (t = 5.527, df = 19, p<0.001 for Pns, Fig. 3A; t = 2.943, df 

= 19, p<0.01, Fig. 3B). A part of the rats (from all groups: Pns, Ps, controls and stressed 

controls) was sacrificed three hours after the end of the first encounter to study the immediate 

changes in Otr and V1ar mRNA levels in MeA and LS. The other rats  (again from all groups: 

Pns, Ps, controls and stressed controls) were sacrificed one week after the first encounter, 

under basal conditions, in order to study the long-term changes in Otr and V1ar mRNA levels 

that could underlie the long-term establishment of the dominance hierarchy.  

 

 

Figure 3. The percentage of total offensive behavior (mean ± S.E.M.) between two opponents shown in the 

social interaction test on day 1. (A) The hierarchy of rats of non-stressed pairs (n=20). (B) The hierarchy of rats 

of the stressed pairs (n=20). The status ‘dom’ (dominant) or ‘sub’ (subordinate) refers to the status that was 

obtained during the social interaction test on day 1. ‘Rns’ = non-stressed rat, ‘Rs’ = stressed rat. ** p<0.01, *** 

p<0.001 vs. the other rat of the dyad. 

 

ANOVA for data from the dominant and subordinate rats of both Pns and Ps denotes a 

significant difference in Otr mRNA expression in MeA at 3h after the first encounter (F3,48 = 

2.807, p<0.05). No significant differences are found in any of the other genes or time points in 

MeA and LS. 

Student t-test indicates significantly different Otr mRNA levels in MeA of the 

subordinate rats of Ps at 3h, which is lower compared to the dominant rats of Ps and the 
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dominant and subordinate rats of Pns (Fig. 4A, Table 2). In LS, the dominant rats of Pns have 

lower Otr mRNA levels than the subordinate rats of Pns (Fig. 4B, Table 2). 

After 1 week the subordinate rats of Ps show an increase in Otr mRNA in MeA 

compared to the control group (Fig. 4A, Table 2). In LS, a difference in V1ar mRNA is found 

in the same group, which is lower than controls and the dominant rats of both Pns and Ps (Fig. 

5B, Table 3). 
 

 

Figure 4. The expression of Otr mRNA in MeA and LS 3h and 1 week after the first encounter (mean ± S.E.M.). 

(A) Otr mRNA expression in MeA. (B) Otr mRNA expression in LS. ‘str ctl’ = stressed control group, ‘dom’ = 

dominant, ‘sub’ = subordinate, ‘Pns’ = non-stressed pair, ‘Ps’ = stressed pair. * p<0.05 vs. subordinate rats of Ps, 

** p<0.01 vs. subordinate rats of Ps, + p<0.05 vs. controls, $$ p<0.01 vs. subordinate rats of Pns. For the 3h time 

point each group consists of 12-14 animals, for the 1 week time point of 6-8 animals. 
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Table 2. Overview of the outcome of paired and unpaired t-tests that compare the mRNA levels of Otr in MeA 

and LS. All comparisons are between the group mentioned in the top row and the group mentioned in the cell. 

‘Pns’ = non-stressed pair, ‘Ps’ = stressed pair, ‘dom’ = dominant, ‘sub’ = subordinate, ‘str control’ = stressed 

control group. 

  Compared to Ps sub Compared to Pns dom Compared to control 

3h 

Ps dom: t = 3.028, df = 10, 
p = 0.013 * 
Pns sub: t = 3.157, df = 22, 
p = 0.005 ** 
str control: t = 1.107, df = 
22, p = 0.280 

Ps dom: t = 0.775, df = 23, p 
= 0.446 
Pns sub: t = 0.041, df = 12, p 
= 0.968 

str control: t = 0.174, df = 
24, p = 0.863 
Pns dom: t = 1.843, df = 25, 
p = 0.077 
Pns sub: t = 1.648, df = 24, p 
= 0.112 
Ps dom: t = 0.892, df = 22, 
df = 0.382 
Ps sub: t = 1.184, df = 22, p 
= 0.249 MeA 

OTR 

1 week 

Ps dom: t = 1.764, df = 7, p 
= 0.121 
Pns sub: t = 0.361, df = 13, p 
= 0.724 
str control: t = 0.157, df = 
14, p = 0.877 

Ps dom: t = 0.512, df = 12, p 
= 0.618 
Pns sub: t = 0.775, df = 5, p 
= 0.473 

str control: t = 0.175, df = 
12, p = 0.864 
Pns dom: t = 0.572, df = 11, 
p = 0.579 
Pns sub: t = 0.083, df = 11, p 
= 0.935 
Ps dom: t = 0.006, df = 13, p 
= 0.995 
Ps sub: t = 0.296, df = 14, p 
= 0.771 

3h 

Ps dom: t = 2.032, df = 10, p 
= 0.070 
Pns sub: t = 0.665, df = 21, p 
= 0.513 
str control: t = 1.017, df = 
22, p = 0.320 

Ps dom: t = 1.830, df = 22, p 
= 0.081 
Pns sub: t = 3.765, df = 11, 
p = 0.003 ** 

str control: t = 0.187, df = 
24, p = 0.853 
Pns dom: t = 0.635, df = 24, 
p = 0.531 
Pns sub: t = 1.599, df = 23, p 
= 0.123 
Ps dom: t = 1.562, df = 22, p 
= 0.133 
Ps sub: t = 0.862, df = 22, p 
= 0.398 LS 

OTR 

1 week 

Ps dom: t = 2.798, df = 7, p 
= 0.027 * 
Pns sub: t = 0.110, df = 13, p 
= 0.914 
str control: t = 1.450, df = 
13, p = 0.171 

Ps dom: t = 0.028, df = 12, p 
= 0.978 
Pns sub: t = 1.440, df = 5, p 
= 0.209 

str control: t = 1.820, df = 
10, p = 0.099 
Pns dom: t = 1.732, df = 10, 
p = 0.114 
Pns sub: t = 1.954, df = 10, p 
= 0.079 
Ps dom: t = 2.073, df = 12, p 
= 0.060 
Ps sub: t = 2.941, df = 13, p 
= 0.011 * 

 
 
 
 
 
 
 
 
 
 
 
 
 



 60

 
 
 
 
 
 

 

Figure 5. The expression of V1ar mRNA in MeA and LS 3h and 1 week after the first encounter (mean ± 

S.E.M.). (A) V1ar mRNA expression in MeA. (B) V1ar mRNA expression in LS. ‘str’ = stressed control group, 

‘dom’ = dominant, ‘sub’ = subordinate, ‘Pns’ = non-stressed pair, ‘Ps’ = stressed pair. * p<0.05 vs. subordinate 

rats of Ps, + p<0.05 vs. controls, $ p<0.05 vs. subordinate rats of Pns. For the 3h time point each group consists 

of 12-14 animals, for the 1 week time point of 6-8 animals. 
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Table 3. Overview of the outcome of paired and unpaired t-tests that compare the mRNA levels of V1aR in MeA 

and LS. All comparisons are between the group mentioned in the top row and the group mentioned in the cell. 

‘Pns’ = non-stressed pair, ‘Ps’ = stressed pair, ‘dom’ = dominant, ‘sub’ = subordinate, ‘str control’ = stressed 

control group. 

  Compared to Ps sub Compared to Pns dom Compared to control 

3h 

Ps dom: t = 0.482, df = 11, p 
= 0.640 
Pns sub: t = 0.878, df = 23, p 
= 0.389 
str control: t = 0.088, df = 
23, p = 0.931 

Ps dom: t = 0.772, df = 23, p 
= 0.448 
Pns sub: t = 0.436, df = 12 p 
= 0.671 

str control: t = 0.201, df = 
24, p = 0.842 
Pns dom: t = 0.861, df = 24, 
p = 0.398 
Pns sub: t = 0.908, df = 24, p 
= 0.373 
Ps dom: t = 0.235, df = 23, p 
= 0.816 
Ps sub: t = 0.081, df = 23, p 
= 0.936 MeA 

V1aR 

1 week 

Ps dom: t = 2.943, df = 7, p 
= 0.022 * 
Pns sub: t = 0.663, df = 13, p 
= 0.519 
str control: t = 0.560, df = 
14, p = 0.584 

Ps dom: t = 0.887, df = 12, p 
= 0.393 
Pns sub: t = 2.626, df = 5, p 
= 0.047 * 

str control: t = 0.033, df = 
12, p = 0.974 
Pns dom: t = 0.575, df = 11, 
p = 0.577 
Pns sub: t = 0.158, df = 11, p 
= 0.877 
Ps dom: t = 0.317, df = 13, p 
= 0.756 
Ps sub: t = 0.491, df = 14, p 
= 0.631 

3h 

Ps dom: t = 0.788, df = 10, p 
= 0.449 
Pns sub: t = 0.007, df = 23, p 
= 0.994 
str control: t = 0.226, df = 
22, p = 0.823 

Ps dom: t = 0.003, df = 23, p 
= 0.998 
Pns sub: t = 0.266, df = 13, p 
= 0.794 

str control: t = 0.117, df = 
24, p = 0.908 
Pns dom: t = 0.147, df = 25, 
p = 0.885 
Pns sub: t = 0.235, df = 25, p 
= 0.816 
Ps dom: t = 0.109, df = 22, p 
= 0.914 
Ps sub: t = 0.318, df = 22, p 
= 0.754 LS 

V1aR 

1 week 

Ps dom: t = 2.572, df = 7, p 
= 0.037 * 
Pns sub: t = 1.641, df = 13, p 
= 0.125 
str control: t = 1.596, df = 
14, p = 0.133 

Ps dom: t = 1.377, df = 12, p 
= 0.194 
Pns sub: t = 2.290, df = 5, p 
= 0.071 

str control: t = 0.819, df = 
12, p = 0.429 
Pns dom: t = 0.195, df = 11, 
p = 0.849 
Pns sub: t = 0.913, df = 11, p 
= 0.381 
Ps dom: t = 1.280, df = 13, p 
= 0.223 
Ps sub: t = 2.198, df = 14, p 
= 0.045 * 

 

Infusion of a selective OTA into the MeA 

Since a downregulation in Otr mRNA was found in the MeA 3h after the first 

encounter in the stressed male that becomes subordinate, we reasoned that if this molecular 

change is involved in the long-term maintenance of the hierarchy, mimicking a reduction in 

OTR function in subordinate, but not formerly stressed males, would facilitate a long-term 

hierarchy also in that pair. Therefore, in this experiment, we administered a selective OTA 
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into the MeA of non-stressed subordinate rats immediately after the first encounter on day 1. 

The long-term establishment of the hierarchy was tested in a WCT one week after the first 

encounter. 

In the non-stressed control group, both rats of the dyad were infused with vehicle into 

the MeA. A hierarchy was formed on day 1 (t = 10.07, df = 7, p<0.001), but no memory for 

the hierarchy was found 1 week later, as expected (Fig. 6A). When OTA was given to the 

subordinate rat immediately after the first encounter (t = 3.339, df = 9, p<0.01), the same 

hierarchy is found 1 week later (t = 2.912, df = 9, p<0.05, Fig. 6B), suggesting a role for OTR 

in MeA in the long-term establishment of the hierarchy. To check the effect of the OTA 

without the combination of exposure to a social experience, we infused OTA into the MeA of  

 

 

Figure 6. The percentage of total offensive behavior (mean ± S.E.M.) between two opponents shown in the 

social interaction test on day 1 and the water competition test on day 8. (A) The hierarchy of rats that were 

infused with vehicle (n=8). (B) Group in which the subordinate rat was infused with OTA immediately after the 

first encounter (n=10). (C) Rats that were infused with either vehicle or OTA on day 1 without exposure to an 

encounter until day 8 (n=7). (D) Representative photograph of the injection site in the MeA. The status ‘dom’ 

(dominant) or ‘sub’ (subordinate) refers to the status that was obtained during the social interaction test on day 1. 

‘OTA’ = oxytocin antagonist. * p<0.05, ** p<0.01, *** p<0.001 vs. the other rat of the dyad. 
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one rat of each dyad and tested the effect on the establishment of a hierarchy one week later. 

No effect of OTA infusion on the establishment of a hierarchy during the WCT on day 8 was 

found (Fig. 6C).  Fig. 6D shows a representative example of the injection site in the MeA. 

 

Infusion of a selective V1aR antagonist into the LS 

To test whether the effect of acute stress on the long-term hierarchy establishment can 

be mimicked by the administration of a V1aR antagonist, we infused the antagonist into the 

LS of non-stressed subordinate rats 30 minutes before the second encounter that took place 

one week after the first encounter. Both groups had established a clear hierarchy on day 1 (t = 

6.355, df = 9, p<0.001 for the vehicle group, Fig. 7A; t = 5.857, df = 6, p<0.01 for the V1aR 

antagonist  treated  group, Fig. 7B;  note that both  groups were  equivalent –untreated- at that 

 

Figure 7. The percentage of total offensive behavior (mean ± S.E.M.) between two opponents shown in the 

social interaction test on day 1 and a second social interaction test on day 8. (A) The hierarchy of rats that were 

infused with vehicle 30min before the second encounter (n=10). (B) Group in which the subordinate rat was 

infused with V1aR antagonist 30min before the second encounter (n=7). (C) A representative picture of the 

placement of a cannula in lateral septum. The status ‘dom’ (dominant) or ‘sub’ (subordinate) refers to the status 

that was obtained during the social interaction test on day 1. ‘V1aR ant.’ = V1aR antagonist. ** p<0.01, 

***p<0.001 vs. the other rat of the dyad. 
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time point). The vehicle-treated rats showed no memory for the hierarchy when they were 

tested one week after the first encounter (Fig. 7A). When the subordinate rat was infused with 

the V1aR antagonist before the second encounter there was a tendency for these rats to 

become subordinate (t = 2.342, df = 6, p = 0.058, Fig. 7B), which happened in 6 out of 7 

pairs. A representative picture of LS cannulation is shown in Fig. 7C. 
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3.5 Discussion 

In our recently developed model to study the establishment and maintenance of 

dominance hierarchies between two adult male rats, we have shown that two non-stressed rats  

(Pns) that have an equal opportunity to become dominant or subordinate establish a hierarchy 

during a first encounter, but this hierarchy is not maintained when the same pair is confronted 

again one week later. When one of the rats is stressed just before the first encounter (Ps), the 

stressed rat becomes the subordinate rat of the pair during the first encounter, and the formed 

hierarchy is stable and lasts for at least one week (Cordero and Sandi, 2007). Here, we have 

presented further evidence confirming this model and attempted to investigate neurobiological 

mechanisms involved in the long-term facilitation of the hierarchy by stress. 

The neuropeptides OT and AVP play an important role in the regulation of social 

behavior and stress responses (Ferguson et al., 2000; Ferguson et al., 2001; Bielsky and 

Young, 2004; Crawley et al., 2007). In the current study we have examined the role of the 

neuropeptide receptors OTR and V1aR in the establishment and maintenance of dominance 

hierarchies that is induced by exposure to acute stress. We have studied immediate and long-

term changes in mRNA levels of Otr and V1ar in MeA and LS, brain areas that are involved 

in social memory, aggressive behavior and regulation of the stress response. We have 

subsequently tested whether administration of antagonists of OTR in the MeA and of V1aR in 

the LS could mimic the effects of acute stress on the long-term establishment of a dominance 

hierarchy. Our results support the view that OTR in the MeA plays a role in the initial stages 

of the long-term establishment of the hierarchy in the subordinate rat of the pair, whereas 

V1aR in the LS plays a role at a later time point during re-exposure to the other rat of the 

dyad, possibly in the retrieval of the memory or in the regulation of aggressive behavior. 

First, we performed an experiment in which the effect of acute stress on the 

establishment and maintenance of dominance hierarchies was studied. As before (Cordero and 

Sandi, 2007), we showed that rats of Pns establish a hierarchy on day 1, but that this hierarchy 

is not maintained in the water competition test one week after the first encounter. In Ps, the 

stressed rats became subordinate during the first encounter and in the water competition test 

on day 8 the same hierarchy as on day 1 was found.  

Next, we performed an experiment to study potential changes in Otr and V1ar mRNA 

levels in the MeA and LS at different times after establishment of a dominance hierarchy 

under the influence of stress. In MeA, subordinate rats of Ps showed lower mRNA levels for 

the Otr than dominant rats of Ps and both (dominant and subordinate) rats of Pns at 3h after 
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the first encounter. After one week, the differences in Otr mRNA levels in MeA have 

disappeared. In LS, there were no clear differences in Otr mRNA levels between the groups, 

except for an increase in the level one week after the encounter in the subordinate rat of Ps 

compared to controls. No changes among the different groups and comparisons were 

observed in V1ar mRNA levels in the MeA, both at 3h and one week after the first encounter. 

In LS, the subordinate rats of Ps have lower V1ar mRNA levels compared to the control 

group and the dominant rats of both Pns and Ps. No changes were found at 3h after the first 

encounter. 

The decrease in Otr mRNA in the subordinate rats of Ps 3h after the first encounter led 

to the question whether the long-term establishment of the hierarchy in Ps could be mimicked 

by administration of a selective OT antagonist (OTA) into the MeA of non-stressed 

subordinate rats immediately after the first encounter. In control animals that were infused 

with vehicle, the hierarchy that was established on day 1 was clear, but it was not maintained 

in a second encounter 1 week later. When the subordinate rat of the pair was infused with 

OTA immediately after the encounter the hierarchy found in the WCT after one week was the 

same as on day 1. Thus, mimicking the reduction of Otr mRNA in the MeA by administration 

of a selective OTA to non-stressed subordinate rats leads to a long-term establishment of a 

dominance hierarchy. To exclude non-specific effects of OTA treatment, a control experiment 

was performed in which one rat of each pair was infused with vehicle and the other with OTA 

on day 1, without exposure to an encounter. One week after the infusion the first encounter 

took place. There was no long-term effect of OTA administration on the outcome of this first 

encounter, which supports the view that the effect on long-term hierarchy establishment that 

was found for OTA administered to non-stressed subordinate rats is specific for the 

combination with the social encounter. 

Finally, an experiment was performed to test whether the administration of a V1aR 

antagonist into the LS of the subordinate rats of Ps just before a second encounter can mimic 

the long-term maintenance of the dominance hierarchy as induced by exposure to acute stress. 

When the two rats of a non-stressed pair were infused with vehicle into the LS before the 

second encounter, no maintenance of the hierarchy as established on day 1 was found. When 

the subordinate rats of non-stressed pairs were infused with a selective V1aR antagonist into 

the LS 30 min before the second encounter, the subordinate V1aR-treated rats became again 

subordinate during this second encounter. This shows that mimicking the downregulation of 

V1aR in the LS by giving an antagonist of this receptor type at the time of a second encounter 

induces submission. 
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Systemic and central administrations of low doses of OT have been shown to facilitate 

social recognition of a juvenile rat by adult male rats, whereas systemic administration of high 

doses attenuates social recognition. This suggests that the effect of OT on social recognition 

in males follows an inverted U-shape response (Popik and Van Ree, 1991; Popik and 

Vetulani, 1991; Popik et al., 1992; Benelli et al., 1995). In female rats, OT infused i.c.v. has 

no effect on social recognition, although infusion of an OTA interferes with social recognition 

(Engelmann et al., 1998). Similarly, in female mice, administration of OTR antisense DNA 

into the MeA blocks social recognition (Choleris et al., 2007). In all these cases 

administration of OT or OTA took place before the social interaction. In the current 

experiment OTA was infused after the encounter and the effect was measured 1 week later. 

Thus, during the first social encounter OT signaling was unaffected by the treatment. The 

present finding of a downregulation in OTR mRNA levels in the MeA might be due to a high 

release of OT during the exposure to stress and/or the first encounter, which could enhance 

the social memory formation, although OT release is something that has not been measured in 

the current experiment. However, cell culture experiments have shown that exposure to OT 

results in a downregulation of OTR (Insel et al., 1992; Di Scala-Guenot and Strosser, 1995). 

The MeA is one of the first brain areas in the pathway of brain areas processing social 

information to become activated after exposure to a conspecific. OT in MeA has been shown 

to be essential for the processing or initial retention of social information by using OT 

knockout mice. These mice can form a spatial memory and have normal smell, but cannot 

form social memories. Infusion of OT into the MeA is sufficient to restore the social memory 

(Ferguson et al., 2000; Ferguson et al., 2001). OT knockout mice show normal social 

approach, social interaction, perception and recognition of social cues, which suggests that 

OT is required selectively for higher order processing of social memory formation (Crawley 

et al., 2007). Therefore, it is plausible to hypothesize that the stress-induced enhancement of a 

memory for the dominance hierarchy is linked to increased OT release in the MeA at the time 

of the first encounter, and to the subsequent observed downregulation in OTR expression, 

which, on its turn, might affect downstream targets such as the LS.  

The role of AVP in social recognition has been more widely studied and has been 

more clearly established than the role of OT. In rats, systemic or central AVP injections 

enhance social recognition, as does administration of V1aR viral vectors in the LS (Le Moal 

et al., 1987; Dantzer et al., 1988; Popik et al., 1991; Popik and Van Ree, 1992; Engelmann 

and Landgraf, 1994). Administration of antagonists of AVP and V1aR and downregulation of 

V1aR in LS disrupt social recognition in rats (Dantzer et al., 1987; Dantzer et al., 1988; 
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Bluthe et al., 1990; Landgraf et al., 1995; van Wimersma Greidanus and Maigret, 1996; 

Everts and Koolhaas, 1997, 1999; Landgraf et al., 2003). Studies using V1aR knockout mice 

show that these mice have impaired social recognition (Bielsky et al., 2004). In mice, V1aR is 

specifically important in the LS for social recognition, not in the MeA. Increased levels of 

AVP release and V1aR activation may play a role in increasing the duration of social 

memories (Bielsky et al., 2005).  

Besides its role in social recognition, the role of AVP in aggression has been clearly 

established. Central infusions of AVP facilitate aggressive behavior in rats and hamsters 

(Ferris et al., 1984; Irvin et al., 1990; Winslow and Insel, 1993; Delville et al., 1996). In 

hamsters, administration of V1aR antagonists blocks aggressive behavior when infused into 

the anterior hypothalamus (Ferris et al., 1985; Ferris and Potegal, 1988; Delville et al., 1996; 

Ferris et al., 2006). More specifically, V1aR antagonists infused in the anterior hypothalamus 

of the dominant hamster blocks the offensive behavior flank marking in the dominant hamster 

and increases flank marking in the untreated subordinate hamster, whereas administration of 

AVP in subordinates increases flank marking (Ferris et al., 1985). During a resident-intruder 

test, aggressive rats show an increased AVP release in the LS, with the level of aggression 

and AVP release in the LS being positively correlated (Veenema and Neumann, 2008; 

Veenema et al., 2010). After exposure to a resident-intruder test, a negative correlation 

between AVP content and fiber density in LS and intermale aggression was found in rats 

(Everts et al., 1997; Everts and Koolhaas, 1999). Exposure to a food competition test led to a 

decrease in V1aR binding in both dominant and subordinate rats in LS, but dominant rats 

showed a stronger decrease in V1aR binding than subordinate rats (Askew et al., 2006). 

Lesions of LS after a food competition test reversed the hierarchical status when the dominant 

rat was lesioned, but not when the subordinate rat was lesioned (Costanzo et al., 1977). 

Aggressive mice show a higher AVP innervation in the LS than non-aggressive mice 

(Compaan et al., 1993). V1aR knockout mice show normal aggressive behavior, whereas 

V1bR knockout mice show no offensive aggression at all (Wersinger et al., 2002; Wersinger 

et al., 2007a; Wersinger et al., 2007b).  

Stress induces changes in both the oxytocinergic and vasopressinergic system, and OT 

on its turn regulates the HPA axis. Exposure to stressors such as forced swimming and social 

defeat leads to the release of OT and AVP from the SON and/or the PVN of the hypothalamus 

(Wotjak et al., 1996; Wotjak et al., 1998; Engelmann et al., 1999; Neumann, 2007), of OT in 

the LS (Ebner et al., 2000) and in the CeA (Ebner et al., 2005). Administration of OT leads to 

suppression of stress-induced HPA axis activity and activates downstream brain areas such as 
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LS (Windle et al., 1997; Windle et al., 2004). Exposure to restraint stress activates the MeA 

and OT neurons in the PVN. OT knockout female mice show a higher corticosterone release 

after exposure to stress and less stress-induced MeA activation (Mantella et al., 2004). The 

expression of OTR in the brain is upregulated by dexamethasone, glucocorticoids and after 

prolonged stress (Patchev et al., 1993; Liberzon and Young, 1997). V1aR is regulated by 

glucocorticoids too. Adrenalectomy reduces V1aR density in LS, which can be reversed by 

administration of dexamethasone. Glucocorticoids might facilitate memory formation and the 

retention of information by enhancing AVP transmission by increasing V1aR density 

(Watters et al., 1996). The increase in OT release in the amygdala leads to inhibition of the 

HPA axis and to a more passive coping style. This is thought to prevent an excessive stress 

response (Neumann et al., 2000b; Windle et al., 2004; Ebner et al., 2005). Interestingly, we 

have recently found evidence for a role of glucocorticoids in the long-term established of the 

social hierarchy in our model (Timmer and Sandi, 2010). A possible mechanism by which OT 

and AVP can have an effect on the long-term establishment of a dominance hierarchy might 

be through an effect of exposure to acute stress on the release of these neuropeptides from the 

hypothalamus and other brain areas. It has been shown that exposure to a variety of stressors 

induces OT and AVP release from the hypothalamus or OT release from LS (Wotjak et al., 

1996; Engelmann et al., 1999; Ebner et al., 2000). An increase in OT release in the MeA of 

the subordinate rat of the stressed pair could play a role in the enhancement of a long-term 

memory for a dominance hierarchy. Since the MeA has a vasopressinergic output to the 

downstream area LS, changes in OT signaling in the MeA might lead to changes in V1aR 

mRNA levels in LS, which might play a role at a later time point in the effects of acute stress 

on hierarchy establishment.  

OT release in the amygdala leads to a more passive coping style (Ebner et al., 2005), 

whereas AVP release in LS leads to a more active coping style (Ebner et al., 1999; Koolhaas 

et al., 2010). An active coping style is associated with a higher aggression level (reviewed by 

Koolhaas et al., 2010). It is therefore tempting to hypothesize that, in our model, exposure to 

acute stress might lead to a more passive coping style through an increased OT release in the 

amygdala and this, in turn, plays a role in the stressed rat becoming subordinate. Furthermore, 

on the long-term maintenance of the hierarchy, the lower V1aR mRNA expression in LS 

observed in the stress condition one week after the first encounter (or administration of a 

selective V1aR antagonist in subordinate, not formerly stressed rats) could lead to a decreased 

sensitivity to AVP release in LS.  
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In summary, we have shown changes in the oxytocinergic and vasopressinergic 

system that are possibly involved in the long-term establishment of a dominance hierarchy as 

facilitated by stress. We found a lower Otr mRNA level in the MeA of subordinate rats of 

stressed pairs at 3h after a first social encounter compared to the dominant rats of stressed 

pairs and both dominant and subordinate rats of non-stressed pairs. Administration of a 

selective OTA into the MeA of non-stressed subordinate rats immediately after a first 

encounter induced a long-term memory for the dominance hierarchy. Long-term changes that 

were found were a lower V1aR mRNA level in the LS of the subordinate rats of stressed pairs 

compared to controls and dominant rats of both non-stressed and stressed pairs, one week 

after the first encounter. Administration of a selective V1aR antagonist into the LS of the 

subordinate rats of non-stressed pairs mimics the effect of exposure to acute stress on the 

long-term establishment of a dominance hierarchy. These findings suggest that changes in 

oxytocinergic and vasopressinergic systems are involved in the immediate and long-term 

effects of exposure to acute stress on the maintenance of a dominance hierarchy. 
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4.1 Abstract 

Exposure to acute stress affects the long-term establishment of dominance hierarchies. 

In the present study, we investigated the long-term effect of acute stress and hierarchy 

establishment on the establishment of a second hierarchy with an unfamiliar opponent, one 

week after a first encounter. We show that the behavior of a stressed subordinate rat towards 

an unfamiliar opponent depends on the previous status of the opponent: when paired with a 

previously dominant rat it becomes subordinate, whereas it becomes dominant when paired 

with a previously subordinate rat. Furthermore, we show that monoamine oxidase A and 

androgen receptor mRNA levels are downregulated in the lateral septum of stressed 

subordinate rats at one week after the first encounter; i.e., at the time when we have observed 

their flexible social behavior against unfamiliar opponents. 15 μg of the monoamine oxidase 

A inhibitor clorgyline was injected into the lateral septum to examine whether there was a 

causal relationship between changes in monoamine oxidase A mRNA levels and aggressive 

behavior towards an unfamiliar subordinate opponent. However, our results did not support 

this hypothesis.  

 

Key words: dominance hierarchy; aggression; monoamine oxidase a; subordinate; rat; 

clorgyline. 
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4.2 Introduction 

Animals that live together in groups form dominance hierarchies to minimize the cost of 

fighting for resources, space and females (Van Kreveld, 1970). Factors that determine which 

individual becomes dominant can be divided into intrinsic factors, such as size, age, sex, 

strength, physiology and level of aggressiveness (Parker, 1974; Chase et al., 2002) and 

extrinsic factors, such as winner and loser effects (reviewed by Chase et al., 1994). According 

to the winner and loser effects, an animal that has won an encounter is more likely to win 

subsequent encounters, and an animal that has lost an encounter is more likely to lose 

subsequent encounters. Rats form almost linear dominance hierarchies in which each 

individual is dominant over all the rats with a lower rank and subordinate to all the rats with a 

higher rank (Berdoy et al., 1995). 

Aggression is important in the establishment and maintenance of dominance 

hierarchies. Normal aggression is important for the survival of an individual, but excessive 

aggression or aggression that is expressed out of context is considered to be pathological 

(reviewed by Nelson and Trainor, 2007). The neural circuitry that has been involved in the 

regulation of aggression consists of the medial preoptic area (MPOA), lateral septum (LS), 

anterior hypothalamus (AH), ventromedial hypothalamus (VMH), periaquaductal grey 

(PAG), medial amygdala (MeA) and bed nucleus of stria terminalis (BNST) (Nelson and 

Trainor, 2007). Lesions of LS, BNST, AH and MeA have been shown to reduce intermale 

aggression (reviewed by Kruk, 1991). To ensure the success of living in groups, impulsivity 

and aggression need to be carefully modulated (Lesch and Merschdorf, 2000). The 

neurotransmitters serotonin (5-HT), dopamine and gamma-aminobutyric acid (GABA) play a 

role in the regulation of aggression (reviewed by de Almeida et al., 2005).  

Monoamine oxidase A (MAOA) is a mitochondrial enzyme involved in the degradation 

of 5-HT, dopamine and noradrenaline. The activity of MAOA is related to aggression in 

animals and humans. MAOA knockout mice are more aggressive (Cases et al., 1995). In 

humans, studies on polymorphisms of MAOA show that the presence of a low activity allele 

of MAOA (McDermott et al., 2009), low activity of MAOA in depressed patients (Alia-Klein 

et al., 2008) or the lack of a functional MAOA gene (Brunner et al., 1993) is related to higher 

aggression. 

Steroid hormones such as testosterone promote aggressiveness in LS, amygdala and the 

dorsal raphe nucleus (Simon et al., 1998). In subordinate rats living in a visible burrow system 

the level of testosterone is reduced (Blanchard et al., 1993, 1995; Hardy et al., 2002). Work in 
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mice indicated that androgens do not play a role in the regulation of submission (Leshner and 

Politch, 1979), but they were shown to affect the intensity of aggression (Leshner and Moyer, 

1975). Although, in general, stress leads to a reduction in testosterone (Retana-Marquez et al., 

2003; Dong et al., 2004), it was also shown that acute stress can lead to an increase in 

testosterone in the initial phases of acute stress, mainly during agonistic encounters (reviewed 

by Chichinadze and Chichinadze, 2008). 

In an animal model developed in our group, exposure to acute stress was shown to 

affect the establishment and maintenance of a dominance hierarchy in male adult rats 

(Cordero and Sandi, 2007). More precisely, non-stressed pairs (Pns; consisting of two 

unstressed rats) establish a hierarchy during a first encounter, but do not form a long-term 

memory for the hierarchy, as tested in a water competition test one week after the first 

encounter. However, when one rat of a pair is stressed (Ps, stressed pair), the stressed rat 

usually becomes the subordinate rat of the pair and a long-term memory for the hierarchy is 

formed. 

The aim of the current experiment was to investigate the long-term effect of stress and 

the rank obtained in a first encounter on aggressive behavior towards an unfamiliar rat one 

week after the first encounter, as well as potential neurobiological mechanisms underlying 

stress effects. For this purpose, we evaluated behavior of both the dominant and subordinate 

rat of Ps when exposed to an unfamiliar unstressed rat that had been either dominant or 

subordinate in a previous encounter, or naïve. Then, we examined potential changes in Maoa 

and androgen receptor (Ar) mRNA levels in several brain areas that are involved in social 

behaviors and aggression: MeA, LS and BNST. Finally, in order to test whether the observed 

changes in gene expression were functionally involved in regulation of the long-term effects 

of stress and a first encounter on aggressive behavior, we investigated the behavioral 

implications of injecting the MAOA inhibitor clorgyline into the LS of one rat on each pair 

before an encounter with an unfamiliar rat, one week after a first encounter. 
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4.3 Material and Methods 

Animals 

Male Wistar rats (Charles River Laboratories, Lyon, France) weighing 250-275 grams 

at arrival were individually housed with ad libitum access to food and water. Animals were 

kept in a 12h light/dark cycle with lights on at 0700h, and a constant temperature of 22 ± 2 

°C. Animals were left undisturbed for one week after arrival before starting the experiment, 

except when surgery was performed, which was performed a few days after arrival. Rats were 

weighed once per week. Experiments were performed with approval of the Cantonal 

Veterinary Authorities (Vaud, Switzerland).  

All experiments took place between 0800h and 1400h, except for the water 

competition test that took place between 1400h and 1900h, after a water deprivation period of 

6h (from 0800h until 1400h). All rats were handled for 2 min per day during three days before 

exposure to the elevated plus maze (see below). 

 

Surgery 

Rats were anaesthetized with ketamine (70 mg/kg) and xylazine (6 mg/kg), 

administered by i.p. injection. Bilateral 4 mm long stainless steel guide cannulae of 22 gauge 

with a distance of 1.5 mm between the guide cannulae (Plastics One, Roanoke, USA) were 

implanted in the LS at +0.20 mm anterior, ±0.75 mm lateral and -3.7 mm ventral relative to 

Bregma (Paxinos and Watson, 1998) using a standard stereotaxic frame (Stoelting, USA). 

Cannulae were fixed to the skull with dental acrylic cement (Kaladent, Switzerland) and 

anchored with Vetbond Tissue Adhesive glue (3M). Dummy cannulae (10mm for MeA, 4mm 

for LS, Plastics One, Roanoke, USA) were inserted into the cannulae to protect them from 

blocking. Rats received an injection with Antisedan (0.04 ml s.c., Pfizer, Switzerland) after 

the surgery to reverse the effects of the anesthetics. Paracetamol was added to the drinking 

water as analgesic in the days following surgery. The rats were allowed to recover for at least 

one week before the start of the experiment. 

 

Drugs and infusion procedure 

Clorgyline (N-methyl-N-propargyl-3-3[2,4-dichlorophenoxy]propylamine 

hydrochloride, Sigma-Aldrich, Switzerland) was used for infusions into the LS. Clorgyline 

was dissolved in saline. A bilateral internal injector of 6 mm (extending 2 mm from the end of 

the guide cannula, 28 gauge, Plastics One, Roanoke, USA) was used. The injectors were 
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connected to 10 μl microsyringes (SGE Analytical Science, Australia) on an automated 

infusion pump (Harvard Apparatus, MA, USA) through polyethylene tubing. 15 μg of 

clorgyline in 1 μl of saline was infused into the LS of each hemisphere at a rate of 0.5 μl/min. 

After the infusion the injector was left in place for 1 min to allow diffusion of the drug. Saline 

was used as a vehicle. Clorgyline was infused 3h before the second encounter to the one rat of 

each pair. Rats of control pairs were infused with vehicle. 

 

Elevated plus maze 

Before the start of the experiment the ‘elevated plus maze’ (EPM) test was performed 

to measure anxiety-related behavior. The EPM consists of two opposing open arms (45x10 

cm) and two opposing closed arms (45x10 cm with walls of 50 cm high) that extend from a 

central platform (10x10 cm), elevated 65 cm above the floor. The rats were placed 

individually on the central platform facing the same closed arm and were allowed to explore 

the EPM freely during 5 min. The behavior of each rat was video recorded and analyzed using 

a computerized tracking system (Ethovision 3.1.16, Noldus IT, the Netherlands). Time spent 

in the open and closed arms was measured.  

 

Dyads and groups 

Rats were distributed to dyads consisting of two rats that were matched for their body 

weight and anxiety level. The anxiety level was defined by the time spent in the open arms of 

the EPM. Thus, the rats in each dyad were considered equal in their probability to become 

dominant or subordinate during a first encounter. The fur of both rats in a dyad was marked 

on different body parts (i.e. neck and back) to help identifying the animals. Rats were 

habituated to marking during the three day habituation period that took place before the first 

social encounter. Dyads were divided randomly over the different groups. Each group 

consisted of 6-14 dyads. 

 

Stress delivery – Contextual fear conditioning 

In non-stressed pairs (Pns) none of the rats were stressed prior to the social encounter. 

In stressed pairs (Ps) one rat of the pair was stressed using a contextual fear conditioning 

paradigm just before the first social encounter. Fear conditioning was performed in an 

observation chamber of 30x37x25 cm (Panlab, Spain) made of black steel walls and a 

Plexiglas ceiling and door. The floor consisted of 20 steel rods connected to a shock source 
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and solid-state scrambler for delivery of electrical shocks. The observation chamber was lit by 

a 20 W light bulb and there was a background noise of 68 dB. The protocol consisted of a 

habituation period of 3 min, followed by 3 footshocks of 1 mA lasting 1 sec each with an 

intershock interval of 60 sec. 30 sec after the last shock the rat was taken out and immediately 

submitted to the first social encounter with an unfamiliar rat in an adjacent room. 

 

Food and water competition test 

In order to habituate animals to the rewarding food used in the ‘food competition test’ 

(FCT), they received eight Chocopop flakes (Kellogg’s, Switzerland) in their homecages 

daily, during two days before the start of the habituation to the experimental setup. The rats 

were habituated to the experimental setup for three days during which they were first placed 

in a clean homecage for 20 min and then in a food competition box for 10 min. The food 

competition box is a plastic box of 60x40 cm with walls of 32 cm high with a feeder 

containing eight Chocopops on one of the short sides. On day 1 of the experiment, the day 

after the last habituation day, the rats were submitted to a first encounter with an unfamiliar 

rat, consisting of a ‘social interaction test’ in a neutral homecage without food and water for 

20 min, followed by a ‘food competition test’ (FCT) in which the rats had to compete for 

Chocopops during 10 min. After the tests each rat was returned to its homecage. The group 

without an encounter on day 1 was exposed to an extra day of habituation. 

The memory for the formed hierarchy or behavior towards an unfamiliar individual 

was tested in a ‘water competition test’ (WCT) that was performed on day 8 after a preceding 

water deprivation period of 6h. Rats were exposed to the same opponent as on day 1 or to an 

unfamiliar opponent that was equal in anxiety level and body weight. The WCT was 

performed in a neutral homecage. After 2 min of habituation, a single bottle of water was 

presented and the behavior during the following 10 min was recorded.  

Behavior was video-recorded and scored blindly using The Observer (v.5.0.25, Noldus 

IT, the Netherlands). The duration and frequency of offensive and defensive behaviors was 

scored. Offensive behaviors were attacks (biting), keeping down (pushing the opponent to the 

floor), offensive upright (standing on the hind legs in upright position) and lateral threat 

(pushing or approaching the opponent showing its side with an arched back). Defensive 

behavior consisted of freezing (immobility), defensive upright (standing on the hind legs in 

response to offensive upright) and submissive posture (lying on the back). In the FCT the 

number of consumed Chocopops and the number of passes over the feeder was counted and in 

the WCT the time spent drinking was measured. The rat that showed most offensive behavior 
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during the interaction was considered the dominant rat, the rat showing least offensive 

behavior and most defensive behavior the subordinate rat. 

Control groups for studying gene expression levels were submitted to habituation and 

exposure to the experimental setup on day 1, with or without exposure to stress (control group 

and stressed control group), but not to social interaction. 

 

Sacrifice 

For the gene expression experiments rats were sacrificed either on day 1, three hours 

after the end of the food competition test, or on day 8, one week after the social interaction 

and food competition test under basal conditions. The animals were decapitated, the brain was 

quickly removed and frozen in isopentane at a temperature between -50 and -40 °C and stored 

at -80 °C until further processing.  

In experiments involving cannulation, in order to check the position of the cannulae 

rats were injected i.p. with pentobarbital. 1 μl of ink was subsequently infused into the LS to 

mark the position of drug delivery. The rats were decapitated and the brains removed, frozen 

in isopentane and stored at -80 °C until further processing. 40 μm thick coronal sections were 

stained with thionin to detect the cannula position. 

 

Laser capture micro dissection 

For the gene expression experiment, coronal sections of 20 μm were taken for ‘laser 

capture micro dissection’ (LCM). The sections were put on membrane covered slides (Palm 

Microlaser Technologies, Carl Zeiss, Germany) and stored at -20 °C covered with RNAlater 

ICE (Ambion, TX, USA). Prior to LCM the sections were stained with the HistoGene LCM 

Frozen Section Staining kit following the protocol (Arcturus Bioscience, Switzerland). The 

MeA and the LS from the right hemisphere were dissected through LCM. The target tissue 

was catapulted into a PALM adhesive cap (Palm Microlaser Technologies, Carl Zeiss, 

Germany) and subsequently incubated in 100 μl of lysis buffer (RNAqueous Micro Kit, 

Ambion, TX, USA) for 30 min at 42 °C. After spinning down the tissue was stored at -80 °C 

until further processing. 

 

RNA isolation 

RNA was isolated from the tissue using the RNAqueous Micro Kit (Ambion, TX, 

USA). First, 3 μl of LCM additive was added. Subsequently 129 μl of 100% ethanol was 
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added to the mixture. The lysate/ethanol mixture was loaded onto a Micro Filter Cartridge 

Assembly and centrifuged for 1 minute at 10000g. Afterward 180 μl of Wash Solution 1 was 

added and the mixture was centrifuged again for 1 min at 10000g. 180 μl of Wash Solution 

2/3 was added and the mixture was centrifuged for 30 sec at 14000g. The flow-through was 

discarded and the Micro Filter Cartridge was centrifuged for another minute at 14000g. The 

Micro Filter Cartridge was transferred into a Micro Elution Tube and 8 μl of preheated 

Elution Solution was added. The mixture was left for 5 min at room temperature and 

subsequently centrifuged for 1 min at 14000g. Another 8 μl of Elution Solution was added 

and the mixture was centrifuged again at 14000g. The RNA was stored at -80 °C until further 

processing 

 

Reverse transcription and preamplification 

9.62 μl of the extracted RNA was converted into cDNA using Taqman Reverse 

Transcriptase Reagents (Applied Biosystems, CA, USA). 1.25 μl of random hexamers and 2.5 

μl of RT 10x buffer were added to reach an end volume of 13.37 μl. The mixture was brought 

to 65 °C for 10 min followed by 10 min at room temperature in a Thermocycler (Primus 96, 

Peqlab, Germany). Following this step 5.5 μl of MgCl2, 5 μl of dNTPs (10 mM), 0.5 μl of 

RNAse inhibitor and 0.63 μl of Multiscribe Reverse were added to each sample. Using the 

Thermocycler, the reverse transcription was executed for 10 min at 25 °C, 25 min at 48 °C 

and 5 min at 95 °C. The obtained cDNA was stored at -20 °C until further processing. 

The cDNA was preamplified using Pre-amp MasterMix for TaqMan assays (Applied 

Biosystems, CA, USA). A pool of TaqMan Gene Expression Assays for the genes of interest 

(see ‘Real time PCR’) was made in ultrapure water (Gibco, NY, USA) at a volume of 1% for 

each Assay. 25 μl of Taqman PreAmp MasterMix, 12.5 μl of the pooled Assay mix and 12.5 

μl of cDNA were mixed for each sample. The preamplification was done by an enzyme 

activation period of 10 min at 95 °C, followed by 10 cycles of 15 sec at 95 °C and 4 min at 60 

°C. After finishing the run the samples were immediately placed on ice and diluted 5x in ice-

cold ultrapure water (Gibco, NY, USA). Samples were stored at -20 °C until further 

processing. 

 

Quantitative real time PCR 

Quantitative real time PCR was performed using TaqMan Gene Expression Assays for 

the genes for monoamine oxidase A (Maoa) and the androgen receptor (Ar) with the control 
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genes ribosomal protein S18 (Rps18), ribosomal protein S29 (Rps29) and eukaryotic 

elongation factor 1 alpha 1 (Eef1a1) (see Table 1 for the used Gene Expression Assays, 

Applied Biosystems, CA, USA). First, a reaction mixture containing 4.5 μl preamplified 

cDNA, 0.5 μl 20x Taqman Gene Expression Assay for the genes of interest and 5 μl 2x PCR 

Master Mix (TaqMan Universal PCR master mix no AmpErase UNG, Applied Biosystems, 

CA, USA) per reaction of 10 μl was made. Triplicates of 10 μl of each reaction mixture were 

transferred to a well in a 384-well optical reaction plate (Applied Biosystems, CA, USA). The 

real time PCR was performed using 40 cycles of 15 sec at 95 °C and 1 min at 60 °C (7900HT, 

Applied Biosystems, CA, USA), preceded by 2 min at 50 °C and 10 min at 95 °C. 

The software SDS (v.2.3, Applied Biosystems, CA, USA) was used for running and 

analyzing the quantitative real time PCR. Each target gene was compared to three internal 

control genes (Rps18, Rps29, Eef1a1) using the ΔΔCt method (described by Livak and 

Schmittgen, 2001). The results are expressed as fold change compared to the control groups. 

 

Table 1. Overview of the used Gene Expression Assays. 

Gene Gene Expression Assay 

Monoamine oxidase A (Maoa) Rn01430958_m1 

Androgen receptor (Ar) Rn00560747_m1 

Ribosomal protein S18 (Rps18) Rn01428915_g1 

Ribosomal protein S29 (Rps29) Rn00820645_g1 

Eukaryotic elongation factor 1a1 (Eef1a1) Rn01639851_g1  

 

Statistics 

All results are expressed as the mean ± the standard error of the mean (S.E.M.).  

For statistical analyses of mRNA expression levels, the fold change of the different 

groups compared to the non-stressed control group was calculated. One-way ANOVA was 

used to test statistical significance between the dominant and subordinate rats of Pns and Ps. A 

priori comparisons to test differences between two specific groups were established and 

evaluated through either unpaired or paired two-tailed Student t-tests. Paired t-tests were 

applied to compare mRNA expression levels of dominant and subordinate rats that competed 

together, while unpaired t-tests were applied when comparisons involved animals that had not 

directly interacted. A priori comparisons for group comparisons were (1) the subordinate rat 

of Ps with the subordinate rat of Pns, (2) the subordinate rat of Ps with the dominant rat of Ps, 
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(3) the dominant rat of Ps with the dominant rat of Pns, (4) the subordinate rat of Pns with the 

dominant rat of Pns, (5) the subordinate rat of Ps with the stressed control group and (6) each 

experimental group compared to non-stressed controls. 

For the behavioral experiments, the percentage of offensive behaviors within each 

dyad was calculated. A paired two-tailed Student t-test was used to compare the percentage of 

offensive behaviors within a dyad of rats competing together.  

The computer software SPSS for Windows (version 13.0) was used for statistical 

analysis. P<0.05 was considered significant. 
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4.4 Results 

How becoming subordinate following stress affects social behavior to unfamiliar individuals 

in future encounters 

First, we performed an experiment in which non-stressed and stressed rats were 

confronted to each other and established a dominance hierarchy on day 1. One week after the 

first encounter, both rats were exposed to an unfamiliar non-stressed rat that was previously 

dominant or subordinate in a first encounter one week earlier, or naïve. We examined the 

offensive behavior towards an unfamiliar individual and tested whether the behavior was 

different according to the previous status of the unfamiliar rat.  

The rats of pairs consisting of a non-stressed and a stressed rat (Ps) established a 

hierarchy on day 1 with the stressed rats becoming subordinate (t = 3.210, df = 21, p<0.01, 

Fig. 1A&B). When the previously dominant rat of Ps was paired with a previously dominant 

or subordinate rat of Pns, or a naïve rat, the previous status of these unfamiliar rats did not 

affect the outcome of the WCT on day 8 (Fig. 1A), with the percentage of offensive behaviors  

 
Figure 1. The percentage of total offensive behavior (mean ± S.E.M.) between two opponents shown in the 

social interaction test on day 1 and the water competition test on day 8. (A) The hierarchy of Ps on day 1 and of 

the subordinate rat of Ps when paired with a previously dominant (n=8), subordinate (n=8) or naïve (n=6) rat. (B) 

The hierarchy of Ps on day 1 and of the dominant rat of Ps when paired with a previously dominant (n=7), 

subordinate (n=9) or naïve (n=6) rat. The status ‘dom’ (dominant) or ‘sub’ (subordinate) refers to the status that 

was obtained during the social interaction test on day 1. * p<0.05, ** p<0.01 vs. the other rat of the pair. 
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in each animal in the dyad being fairly equivalent. However, when it was the stressed 

subordinate rat (Ps) that was exposed to an unfamiliar dominant, subordinate or naïve rat 

during the WCT, a different outcome was observed depending on the previous status of the 

unfamiliar rat. Thus, when the subordinate rat of Ps was paired with a previously dominant rat 

of Pns the subordinate rat of Ps became subordinate (t = 2.663, df = 7, p<0.05, Fig. 1B). 

When the subordinate rat of Ps was paired with a previously subordinate rat of Pns it became 

dominant during this second encounter (t = -2.978, df = 7, p<0.05, Fig. 1B). When paired with 

a naïve rat there was no significant difference (t = 1.660, df = 5, p=0.1579) between the 

offensive behavior of the subordinate rat of Ps and the naïve rat (Fig. 1B). 

 

Changes in mRNA levels 3h and 1 week after a first encounter 

Next, the immediate (3h) and long-term (1 week) changes in mRNA levels of 

monoamine oxidase A (Maoa) and the androgen receptor (Ar) after exposure to stress and/or a 

social encounter were studied in MeA, LS and BNST. 

One-way ANOVA for data from the dominant and subordinate rats of both Pns and Ps 

indicates a lack of significant difference among dominant and subordinate rats of Pns and Ps 

for both Maoa and Ar in MeA, LS and BNST. 

In MeA, the dominant rat of Ps shows a lower Maoa mRNA level than the subordinate 

rat 3h after the encounter, whereas in Pns the dominant rat shows a higher Maoa mRNA level 

than the subordinate rat (Table 2, Fig. 2A). The subordinate rats of Ps have a lower Maoa 

mRNA level in LS than the dominant rats of Ps 3h after the encounter (Table 2, Fig. 2B). In 

BNST, the dominant and subordinate rats of Pns, the subordinate rats of Ps and the stressed 

controls show an increase in Maoa mRNA compared to controls. Both in Pns and Ps the 

dominant rats have a lower Maoa mRNA levels than the subordinate rats of the same pair 

(Table 2, Fig. 2C). 

One week after the first encounter there are no differences in Maoa mRNA in MeA 

(Fig. 2A) and BNST (Fig. 2C). In LS the subordinate rats of Ps show a decrease in Maoa 

mRNA compared to controls, stressed controls and the dominant rats of Ps (Table 2, Fig. 2B). 

In summary, the main changes observed in the subordinate rats of Ps were found with 

regards to their dominant counterparts, and consisted of a decrease in Maoa mRNA in LS 3h 

and 1 week after the first encounter. 
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Table 2. Overview of the outcome of paired and unpaired t-tests that compare Maoa mRNA levels in MeA, LS 

and BNST. ‘Pns dom’ = dominant rat of Pns, ‘Pns sub’ = subordinate rat of Pns, ‘Ps dom’ = dominant rat of Ps, 

‘Ps sub’ = subordinate rat of Ps, ‘str ctl’ = stressed control. 

 
 Compared to Ps sub Compared to Pns sub Compared to control 

3h Ps dom: 
t = 2.231, df = 11, p<0.05 

Pns dom: 
t = -2.501, df = 12, p<0.05  

- 
MeA 

1 week - - - 

3h Ps dom: 
t = 4.107, df = 11, p<0.01 

- - 

LS 
1 week 

Pns dom: 
t = 3.155, df = 7, p<0.05 
Str ctl: 
t = 2.797, df = 12, p<0.05 

- Ps sub: 
t = 2.149, df = 13, p = 0.05 

3h 

Ps dom:  
t = -3.567, df = 10, p<0.01 

Pns dom: 
t = -4.245, df = 13, p<0.01 

Pns dom: 
t = -2.554, df = 25, p<0.05 
Pns sub: 
t = -3.116, df = 25, p<0.01 
Ps sub: 
t = -2.570, df = 13, p<0.05 
str ctl: 
t = -2.920, df = 25, p<0.01 

BNST 

1 week - - - 
 

 

 

 

Three hours after the first encounter, the dominant rats of Pns have a lower Ar mRNA 

level in MeA than the subordinate rats of Pns (Table 3, Fig. 3A). In LS, no changes are found 

after 3h (Fig. 3B). The dominant and subordinate rats of Ps and the stressed controls show an 

increase in Ar mRNA compared to controls at 3h after the first encounter (Table 3, Fig. 3C). 
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Figure 2. The expression of Maoa mRNA in MeA, LS and BNST 3h and 1 week after the first encounter (mean 

± S.E.M.). (A) Maoa mRNA expression in MeA. (B) Maoa mRNA expression in LS. (C) Maoa mRNA 

expression in BNST. ‘str ctl’ = stressed control group, ‘dom’ = dominant, ‘sub’ = subordinate, ‘Pns’ = non-

stressed pair, ‘Ps’ = stressed pair. * p<0.05 vs. subordinate rats of Ps, ** p<0.01 vs. subordinate rats of Ps, + 

p<0.05 vs. controls, ++ p<0.01 vs. controls, $< p0.05, between the dominant and subordinate rat of Pns, $$ 

p<0.01 between the dominant and subordinate rat of Pns. For the 3h time point each group consists of 12-14 

animals, for the 1 week time point of 6-8 animals. 
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Figure 3. The expression of Ar mRNA in MeA, LS and BNST 3h and 1 week after the first encounter (mean ± 

S.E.M.). (A) Ar mRNA expression in MeA. (B) Ar mRNA expression in LS. (C) Ar mRNA expression in BNST. 

‘str ctl’ = stressed control group, ‘dom’ = dominant, ‘sub’ = subordinate, ‘Pns’ = non-stressed pair, ‘Ps’ = 

stressed pair. * p<0.05 vs. subordinate rats of Ps, ** p<0.01 vs. subordinate rats of Ps, + p<0.05 vs. controls, ++ 

p<0.01 vs. controls, $$$ p<0.001 between the dominant and subordinate rat of Pns. For the 3h time point each 

group consists of 12-14 animals, for the 1 week time point of 6-8 animals. 
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One week after the first encounter the dominant rats of Ps show a higher Ar mRNA 

level compared to the subordinate rat of Ps in both MeA (Table 3, Fig. 3A) and LS (Table 3, 

Fig. 3B). In LS, the subordinate rats of Ps show a significant decrease in Ar mRNA compared 

to controls (Table 3, Fig. 3B). No significant differences were found in BNST (Fig. 3C). 

In summary, the main changes observed in the subordinate rats of Ps were found with 

respect to the dominant rat of Ps and consisted of a decrease in Ar mRNA in LS 1 week after 

the first encounter  

 
Table 3. Overview of the outcome of paired and unpaired t-tests that compare Ar mRNA levels in MeA, LS and 

BNST. ‘Pns dom’ = dominant rat of Pns, ‘Pns sub’ = subordinate rat of Pns, ‘Ps dom’ = dominant rat of Ps, ‘Ps 

sub’ = subordinate rat of Ps, ‘str ctl’ = stressed control. 

 
 Compared to Ps sub Compared to Pns sub Compared to control 

3h - Pns dom: 
t = -5.273, df = 13, p<0.001  

- 
MeA 

1 week Ps dom: 
t = 2.551, df = 7, p<0.05 

- - 

3h - - - 
LS 

1 week Ps dom: 
t = 4.470, df = 7, p<0.01 

- Ps sub: 
t = 2.576, df = 13, p<0.05 

3h 

- - 
 

Ps sub: 
t = -2.707, df = 21, p<0.05 
Ps dom: 
t = -2.108, df = 22, p<0.05 
Str ctl: 
t = -2.985, df = 24, p<0.01 

BNST 

1 week - - - 
 

 

Infusion of an inhibitor of MAOA into the LS 

Since the subordinate rats of Ps show a lower Maoa mRNA level compared to the 

dominant rats of Ps and controls 1 week after the first encounter, we next investigated 

whether this downregulation could be associated with the behavior displayed by these animals 

towards an unfamiliar subordinate individual as seen in Fig. 1B. Therefore we infused 

clorgyline, an inhibitor of MAOA, into the LS at 3h before the WCT in one rat of each pair of 

unfamiliar individuals. 

First, to exclude an effect of infusion, we infused vehicle into the LS of a dominant rat 

that would be paired with an unfamiliar dominant rat, and of a subordinate rat that would be 

paired with an unfamiliar subordinate rat. On day 1, a clear hierarchy had been established in 

the original pairs (t = 10.76, df = 35, p<0.001, Fig. 4A-D). Both in pairs consisting of two 

unfamiliar dominant rats or of two unfamiliar subordinate rats infusion had no effect on the 
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outcome of the WCT (Fig. 4A&C). Next, we infused clorgyline into the LS of dominant rats 

that would be paired with an unfamiliar dominant rat and of subordinate rats that would be 

paired with an unfamiliar subordinate rat. Here as well infusion had no effect on the outcome 

of the WCT (Fig. 4B&D). Thus, infusion of an inhibitor of MAOA has no effect on the 

outcome of an encounter with an unfamiliar individual. Figure 4E shows a representative 

picture of the position of the LS cannula. 

 
Figure 4. The percentage of total offensive behavior (mean ± S.E.M.) between two opponents shown in the 

social interaction test on day 1 and the water competition test on day 8. (A) The hierarchy between two 

previously dominant rats of which one was infused with vehicle (n=7). (B) The hierarchy between two 

previously dominant rats of which one was infused with clorgyline  (n=7). The hierarchy between two 

previously subordinate rats of which one was infused with vehicle (n=7). (D) The hierarchy between two 

previously subordinate rats of which one was infused with clorgyline (n=9). (E) Representative picture of the 

position of the cannula in lateral septum. The status ‘dom’ (dominant) or ‘sub’ (subordinate) refers to the status 

that was obtained during the social interaction test on day 1. ‘MAOI’ = MAOA inhibitor (clorgyline). *** 

p<0.001 vs. the other rat of the pair. 
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4.5 Discussion 

We used an animal model that has recently been developed in our group (Cordero and 

Sandi, 2007) to examine the establishment and maintenance of dominance hierarchies in rats. 

In this model, when two non-stressed rats (non-stressed pairs, Pns) are exposed to each other, 

a dominance hierarchy is established during the first encounter, but the rank obtained during 

the first encounter is not maintained until a second encounter one week later. Exposure to 

acute stress for one rat of a pair (stressed pairs, Ps) leads to induction of submissiveness 

during a first encounter, and to a long-term memory for the established hierarchy (Cordero 

and Sandi, 2007). In the current study, we investigated the long-term consequences of 

exposure to acute stress and the establishment of a dominance hierarchy on the establishment 

of a second hierarchy with an unfamiliar opponent. Therefore, in a WCT given one week after 

the first encounter, rats from Ps were exposed to an unfamiliar opponent that was previously 

dominant or subordinate, or naïve. We also investigated mRNA levels for the monoamine 

degradation enzyme MAOA and for the steroid receptor AR. Finally, we tested whether the 

changes that were found in Maoa mRNA levels could be linked with the observed effects of 

stress on aggressive behavior towards an unfamiliar subordinate opponent by administration 

of the MAOA inhibitor clorgyline. 

First, we aimed to examine whether the aggressive behavior towards an unfamiliar rat 

was changed by prior exposure to acute stress linked to a first social encounter. We exposed 

rats from Ps to an unfamiliar partner during the WCT one week after the first encounter. This 

unfamiliar partner was previously dominant or subordinate in a Pns, or naïve. We showed that 

for the dominant rat of Ps the previous status of the unfamiliar rat does not affect the outcome 

of the WCT. When paired with either a previously dominant, subordinate or naïve rat, the 

dominant rats of Ps became dominant in about half of the cases, and subordinate in the other 

half. For the subordinate stressed rat of Ps the previous status of the unfamiliar individual did 

affect the outcome of the WCT: when paired with a previously dominant rat, the subordinate 

rats of Ps became subordinate. When paired with a previously subordinate rat, the subordinate 

rats of Ps became dominant. There was no significant effect of pairing with a naïve rat, 

although there seems to be a tendency for the subordinate rats of Ps to become subordinate. 

These results strongly suggest that stress linked to a first subordinate experience sensitizes 

animals to perceive the potential status of unfamiliar animals in future contests, facilitating 

the development of the winner and loser effects. Brown (1992) has shown that subordinate 

rats recognize dominant rats based on identity rather than status, since subordinate rats react 
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differently to the odor of familiar and unfamiliar dominant rats. Also in hamsters, defeated 

animals are capable to recognize individual winners rather than winners in general (Lai and 

Johnston, 2002; Petrulis et al., 2004). Conceivably, stress and social defeat affect the 

subordinate rats of Ps to develop a high sensitivity to signals that are sent out by their 

opponent and react accordingly to this, resulting in subordinate behavior when paired with a 

previously dominant rat, and dominant behavior when paired with a previously subordinate 

rat.  

Next, we studied the levels of Maoa and Ar mRNA in MeA, BNST and LS, brain areas 

that are involved in the regulation of social behaviors such as aggression. For Maoa mRNA in 

MeA, the dominant rats of Pns have lower levels than the subordinate rats of Pns, whereas in 

Ps the subordinate rats have lower levels than dominant rats 3h after the first encounter. After 

one week the difference is no longer there. In LS, the subordinate rats of Ps have lower Maoa 

mRNA levels compared to dominant rats 3h after the first encounter, and lower levels than the 

dominant rats of Ps, controls and stressed controls one week after the first encounter. In 

BNST the dominant rats of both Pns and Ps have a lower Maoa mRNA level than the 

subordinate rats of the same pair. Compared to controls all groups show an increase in Maoa 

mRNA, except for the dominant rats of Ps. No differences are found in BNST one week after 

the first encounter. For Ar mRNA in MeA, 3h after the first encounter the dominant rats of 

Pns show a lower level than the subordinate rats, whereas after one week the dominant rats of 

Ps show a higher level than the subordinate rats. In LS, no change is found in any of the 

groups 3h after the encounter. However, after 1 week the subordinate rats of Ps show a 

decreased Ar mRNA level compared to controls and the dominant rats of Ps. In BNST an 

increase in Ar mRNA is found in both rats of Ps and in stressed controls compared to controls 

at 3h after the first encounter. There are no significant changes after 1 week. 

To test whether the downregulation of Maoa mRNA in the LS of the subordinate rats 

of Ps one week after the first encounter can be linked to the fact that subordinate rats of Ps 

became dominant when paired with a previously subordinate rat, we infused an inhibitor of 

MAOA into the LS of the subordinate rats, before pairing them with a previously subordinate 

rat one week after the first encounter. There was no effect of administration of the MAOA 

inhibitor clorgyline into the LS on the outcome of the WCT with an unfamiliar opponent.  

Dominance hierarchies are established to minimize the costs of fighting in a group (Van 

Kreveld, 1970). Intrinsic factors such as size, age, sex, strength, physiology and level of 

aggressiveness (Parker, 1974; Chase et al., 2002) and extrinsic factors such as winner and 

loser effects (Chase et al., 1994) determine which individual becomes dominant. Experiments 
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studying dominance hierarchies in cichlid fish suggest that both intrinsic and extrinsic factors 

play an important role in defining the outcome of a dominance hierarchy (Chase et al., 2002). 

Animals have different ways of estimating their chances of winning. According to the social 

cue hypothesis animals assess the strengths and weaknesses of their opponent before or 

during an encounter (Rutte et al., 2006). Since the behavior of the subordinate rats of Ps is 

dependent on the previous status of the opponent, this hypothesis might be able to explain our 

results. It is possible that the subordinate rats of Ps have undergone molecular changes in the 

brain that make these rats more sensitive to the signals of their opponent. We found a 

downregulation of several genes specifically in the LS of the subordinate rats of Ps, such as in 

Maoa and Ar, but also in V1ar (chapter 3) that might be involved in this enhanced sensitivity. 

The monoamine degradation enzyme MAOA is linked to the regulation of aggression. 

MAOA knockout mice are more aggressive than wild-type mice (Cases et al., 1995). In 

humans, low activity of MAOA is correlated with aggression (Alia-Klein et al., 2008; 

McDermott et al., 2009). A Dutch family carrying a point mutation in the MAOA gene shows 

borderline mental retardation and impulsive aggression (Brunner et al., 1993). The 

subordinate rats of Ps in the current study have a decrease in Maoa mRNA one week after the 

encounter. This decrease in Maoa might play a role in the increased aggression towards an 

unfamiliar subordinate rat. One of the neurotransmitters that is degraded by MAOA is 5-HT, 

which been shown to play a role in the regulation of aggression and to be related to the 

hierarchical status in several animal species (Kostowski et al., 1984; Blanchard et al., 1993; 

McKittrick et al., 1995; Ferris, 1996; Dhingra et al., 1997; Ferris et al., 1997; Larson and 

Summers, 2001). These findings are in agreement with our result of a reduced Maoa mRNA 

level in the subordinate rats of Ps. However, no causal relationship of MAOA activity with 

the behavior towards an unfamiliar individual could be shown. 

Besides monoamines such as 5-HT, steroid hormones such as testosterone could play a 

role in aggressive behavior. Steroid hormones promote aggressiveness in LS, amygdala and 

dorsal raphe nucleus (Simon et al., 1998). Subordinate rats in a visible burrow system have a 

reduced testosterone level (Blanchard et al., 1993; Blanchard et al., 1995; Hardy et al., 2002). 

Whereas chronic stress leads to a reduction in testosterone, acute stress can lead to an increase 

in testosterone in the initial phases of acute stress, mainly during agonistic encounters 

(Chichinadze and Chichinadze, 2008). Androgens are likely mediators of winner and loser 

effects (Rutte et al., 2006). In male cichlid fish, social dominance is associated with an 

increase in AR and estrogen receptor mRNA expression, which makes the dominant males 

more sensitive to sex steroids (Burmeister et al., 2007). The observed downregulation in Ar 
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mRNA in subordinate rats of Ps possibly also explains part of the behavioral effects that were 

found.  

In summary, we have shown that the behavior of subordinate rats of Ps towards an 

unfamiliar opponent depends on the previously obtained status of the unfamiliar rat: when the 

opponent was previously dominant, the subordinate rats of Ps become subordinate, whereas 

they become dominant when the opponent was previously subordinate. For dominant rats of 

Ps the previous status of the unfamiliar opponent has no effect on the outcome of the 

hierarchy in the WCT. Furthermore, we have shown that the subordinate rats of Ps show a 

downregulation in Maoa mRNA in LS one week after the first encounter, as well as a 

downregulation in Ar mRNA. However, experiments using the MAOA inhibitor clorgyline 

did not mimic the long-term effect on offensive behavior towards an unfamiliar opponent, so 

a causal relationship between the observed behavior and the changes in Maoa mRNA levels 

has not been shown in this study. 



 99

4.6 Acknowledgements 

This work was supported by grants from the EU 7th (FP7- HEALTH-F2M-2007-

201600; MemStick) FP and from the Swiss National Science Foundation (310000-120791) to 

C.S. The authors wish to thank to Grégoire Parchet and Angélique Vaucher for technical 

assistance. 



 100

4.7 References 

Alia-Klein N., Goldstein R.Z., Kriplani A., Logan J., Tomasi D., Williams B., Telang F., 
Shumay E., Biegon A., Craig I.W., Henn F., Wang G.J., Volkow N.D., Fowler J.S. 
(2008). Brain monoamine oxidase A activity predicts trait aggression. J Neurosci 
28:5099-5104. 

Berdoy M., Smith P., MacDonald D.W. (1995). Stability of social status in wild rats: age and 
the role of settled dominance. Behaviour 132:193-212. 

Blanchard D.C., Sakai R.R., McEwen B., Weiss S.M., Blanchard R.J. (1993). Subordination 
stress: behavioral, brain, and neuroendocrine correlates. Behav Brain Res 58:113-121. 

Blanchard D.C., Spencer R.L., Weiss S.M., Blanchard R.J., McEwen B., Sakai R.R. (1995). 
Visible burrow system as a model of chronic social stress: behavioral and 
neuroendocrine correlates. Psychoneuroendocrinology 20:117-134. 

Brown R.E. (1992). Responses of dominant and subordinate male rats to the odors of male 
and female conspecifics. Aggressive behavior 18:129-138. 

Brunner H.G., Nelen M., Breakefield X.O., Ropers H.H., van Oost B.A. (1993). Abnormal 
behavior associated with a point mutation in the structural gene for monoamine 
oxidase A. Science 262:578-580. 

Burmeister S.S., Kailasanath V., Fernald R.D. (2007). Social dominance regulates androgen 
and estrogen receptor gene expression. Horm Behav 51:164-170. 

Cases O., Seif I., Grimsby J., Gaspar P., Chen K., Pournin S., Muller U., Aguet M., Babinet 
C., Shih J.C., et al. (1995). Aggressive behavior and altered amounts of brain 
serotonin and norepinephrine in mice lacking MAOA. Science 268:1763-1766. 

Chase I.D., Bartolomeo C., Dugatkin L.A. (1994). Aggressive interactions and inter-contest 
interval: how long do winners keep winning? Anim Behav 48:393-400. 

Chase I.D., Tovey C., Spangler-Martin D., Manfredonia M. (2002). Individual differences 
versus social dynamics in the formation of animal dominance hierarchies. Proc Natl 
Acad Sci U S A 99:5744-5749. 

Chichinadze K., Chichinadze N. (2008). Stress-induced increase of testosterone: contributions 
of social status and sympathetic reactivity. Physiol Behav 94:595-603. 

Cordero M.I., Sandi C. (2007). Stress amplifies memory for social hierarchy. Frontiers in 
neuroscience 1:175-184. 

de Almeida R.M., Ferrari P.F., Parmigiani S., Miczek K.A. (2005). Escalated aggressive 
behavior: dopamine, serotonin and GABA. Eur J Pharmacol 526:51-64. 

Dhingra N.K., Raju T.R., Meti B.L. (1997). Selective reduction of monoamine oxidase A and 
B in the frontal cortex of subordinate rats. Brain Res 758:237-240. 

Dong Q., Salva A., Sottas C.M., Niu E., Holmes M., Hardy M.P. (2004). Rapid glucocorticoid 
mediation of suppressed testosterone biosynthesis in male mice subjected to 
immobilization stress. Journal of andrology 25:973-981. 

Ferris C.F. (1996). Serotonin diminishes aggression by suppressing the activity of the 
vasopressin system. Ann N Y Acad Sci 794:98-103. 

Ferris C.F., Melloni R.H. Jr., Koppel G., Perry K.W., Fuller R.W., Delville Y. (1997). 
Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive 
behavior in golden hamsters. J Neurosci 17:4331-4340. 

Hardy M.P., Sottas C.M., Ge R., McKittrick C.R., Tamashiro K.L., McEwen B.S., Haider 
S.G., Markham C.M., Blanchard R.J., Blanchard D.C., Sakai R.R. (2002). Trends of 
reproductive hormones in male rats during psychosocial stress: role of glucocorticoid 
metabolism in behavioral dominance. Biol Reprod 67:1750-1755. 



 101

Kostowski W., Plewako M., Bidzinski A. (1984). Brain serotonergic neurons: their role in a 
form of dominance-subordination behavior in rats. Physiol Behav 33:365-371. 

Kruk M.R. (1991). Ethology and pharmacology of hypothalamic aggression in the rat. 
Neurosci Biobehav Rev 15:527-538. 

Lai W.S., Johnston R.E. (2002). Individual recognition after fighting by golden hamsters: a 
new method. Physiol Behav 76:225-239. 

Larson E.T., Summers C.H. (2001). Serotonin reverses dominant social status. Behav Brain 
Res 121:95-102. 

Lesch K.P., Merschdorf U. (2000). Impulsivity, aggression, and serotonin: a molecular 
psychobiological perspective. Behav Sci Law 18:581-604. 

Leshner A.I., Moyer J.A. (1975). Androgens and agonistic behavior in mice: relevance to 
aggression and irrelevance to avoidance-of-attack. Physiol Behav 15:695-699. 

Leshner A.I., Politch J.A. (1979). Hormonal control of submissiveness in mice: irrelevance of 
the androgens and relevance of the pituitary-adrenal hormones. Physiol Behav 22:531-
534. 

Livak K.J., Schmittgen T.D. (2001). Analysis of relative gene expression data using real-time 
quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408. 

McDermott R., Tingley D., Cowden J., Frazzetto G., Johnson D.D. (2009). Monoamine 
oxidase A gene (MAOA) predicts behavioral aggression following provocation. Proc 
Natl Acad Sci U S A 106:2118-2123. 

McKittrick C.R., Blanchard D.C., Blanchard R.J., McEwen B.S., Sakai R.R. (1995). 
Serotonin receptor binding in a colony model of chronic social stress. Biol Psychiatry 
37:383-393. 

Nelson R.J., Trainor B.C. (2007). Neural mechanisms of aggression. Nat Rev Neurosci 8:536-
546. 

Parker G.A. (1974). Assessment strategy and the evolution of fighting behaviour. J Theor 
Biol 47:223-243. 

Paxinos G., Watson C. (1998). The rat brain in stereotaxic coordinates. Academic Press, New 
York. 

Petrulis A., Weidner M., Johnston R.E. (2004). Recognition of competitors by male golden 
hamsters. Physiol Behav 81:629-638. 

Retana-Marquez S., Bonilla-Jaime H., Vazquez-Palacios G., Martinez-Garcia R., Velazquez-
Moctezuma J. (2003). Changes in masculine sexual behavior, corticosterone and 
testosterone in response to acute and chronic stress in male rats. Horm Behav 44:327-
337. 

Rutte C., Taborsky M., Brinkhof M.W. (2006). What sets the odds of winning and losing? 
Trends Ecol Evol 21:16-21. 

Simon N.G., Cologer-Clifford A., Lu S.F., McKenna S.E., Hu S. (1998). Testosterone and its 
metabolites modulate 5HT1A and 5HT1B agonist effects on intermale aggression. 
Neurosci Biobehav Rev 23:325-336. 

Van Kreveld D. (1970). A selective review of dominance-subordinate relations in animals. 
Genetics and Psychology Monographs 81:143-173. 

 
 

 



 102

 



 103

Chapter 5 - General discussion and future perspectives 

In this thesis we studied the neurobiological mechanisms underlying the effects of 

acute stress on the establishment and maintenance of dominance hierarchies in adult rats. 

More specifically, we studied (1) the role of glucocorticoids in the long-term establishment of 

dominance hierarchies, (2) the role of oxytocin and vasopressin receptors in the long-term 

establishment of dominance hierarchies and (3) the long-term effects of acute stress and 

dominance hierarchy formation on a second hierarchy formation with an unfamiliar opponent 

and on possible neurobiological mechanisms underlying these effects. 

 

5.1 The role of glucocorticoids in the long-term establishment of dominance hierarchies 

When two non-stressed rats (non-stressed pair, Pns) of equal body weight and anxiety 

level are submitted to a social encounter, a dominance hierarchy is established, but when the 

same rats are re-exposed to each other one week later, the hierarchy that was formed during 

the first encounter is not maintained. Exposure to acute stress for one rat of the pair (stressed 

pair, Ps) before a first social encounter induces submissiveness in the stressed rat, and leads to 

a long-term memory maintenance for the established hierarchy (Cordero and Sandi, 2007). 

To examine whether enhancing corticosterone levels plays a role in the initial 

establishment of a dominance hierarchy and in the long-term maintenance of the hierarchy, 

we injected one rat of each pair with corticosterone, either just before the first encounter, or 

immediately after the first encounter. We showed that enhancing corticosterone levels before 

the first encounter has no effect on the outcome of the hierarchy. Furthermore, we showed 

that when the rat that was treated with corticosterone before the first encounter becomes 

dominant, but not when it becomes subordinate, a long-term maintenance of the established 

hierarchy is induced. Third, we showed that when the subordinate rat, but not the dominant 

rat, is treated with corticosterone immediately after the first encounter, the long-term 

maintenance of the hierarchy is enhanced. 

Corticosterone treatment had no effect on the outcome of the first encounter, in 

contrast to exposure to acute stress (Cordero and Sandi, 2007). Exposure to inescapable foot 

shock stress might lead to a wider array of physiological changes than only enhancing 

corticosterone levels, which could explain the discrepancy. Various studies show that 

increased glucocorticoid levels lead to an increase in aggression (Brain and Evans, 1977; 

Heller, 1978; Hayden-Hixson and Ferris, 1991; Haller et al., 1997), whereas other show that 

increasing corticosterone levels induces submissive behavior (Leshner and Moyer, 1975; 
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Leshner et al., 1975; Moyer and Leshner, 1976; Leshner and Politch, 1979; Leshner et al., 

1980). It is possible that by increasing an animal’s arousal (Leshner et al., 1980), 

corticosterone enhances the capability of recognizing whether the opponent is aggressive or 

passive, leading to an increase in subordinate or aggressive behavior depending on the 

opponent. Since there is an equal chance of meeting an opponent that is either aggressive or 

passive, this might explain why half of the pre-training corticosterone-treated rats respond by 

becoming dominant during the first encounter, and half by becoming subordinate.  

It is unexpected that pre-training corticosterone injections only induce a long-term 

maintenance of the hierarchy when the corticosterone-treated rat becomes dominant, and not 

when it becomes subordinate. When one rat of a pair is submitted to acute stress in the form 

of foot shocks, the stressed rat becomes subordinate and a long-term memory is formed for 

the hierarchy (Cordero and Sandi, 2007), so we would have expected to see the same effect of 

corticosterone treatment. Based on the current data it is not clear why no long-term memory is 

kept for the hierarchy when the corticosterone-treated rat becomes subordinate. 

Several studies using memory tests such as spatial learning (Sandi et al., 1997; 

Conboy and Sandi, 2009), fear conditioning (Cordero and Sandi, 1998), inhibitory avoidance 

(Sandi et al., 1995; Venero and Sandi, 1997) and object recognition (Okuda et al, 2004; 

Roozendaal et al., 2006) have shown that corticosterone potentiates long-term memory when 

injected after training. This is similar to our finding that corticosterone enhances the memory 

for the dominance hierarchy when injected in the subordinate rat after the encounter. 

Although we have not studied this in the current thesis, our hypothesis is that it is the 

subordinate rat of the stressed pair that keeps the memory for the hierarchy, and not the 

dominant rat. This fits with the finding that post-encounter corticosterone injections only 

induce a long-term memory when administered to the subordinate rat. 

An interesting follow-up study would be to investigate in which brain region 

corticosterone exerts its effect. A candidate brain region is the amygdala, which has a 

feedback onto the HPA axis and plays a role in contextual fear conditioning and social 

memory. Experiments studying the effects of corticosterone infusion into various nuclei of the 

amygdala on the establishment and maintenance of dominance hierarchies are currently 

ongoing in our group. 
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5.2 The role of oxytocin and vasopressin receptors in the long-term maintenance of 

dominance hierarchies 

Oxytocin (OT) and arginine vasopressin (AVP) are two neuropeptides that play a role 

in the regulation of social behavior, but also of the stress response (Ferguson et al., 2000; 

Ferguson et al., 2001; Bielsky et al., 2004; Crawley et al., 2007). Therefore, we hypothesized 

that changes in OT receptors (OTR) and AVP 1a receptors (V1aR) play an important role in 

the long-term maintenance of dominance hierarchies induced by exposure to acute stress. 

We show that exposure to acute stress and a social encounter leads to a 

downregulation in Otr mRNA in the medial amygdala (MeA) of the subordinate rats of 

stressed pairs at three hours after the first encounter. On the long-term, one week after the 

encounter, we found a downregulation in V1ar mRNA in the lateral septum (LS) of the 

subordinate rats of stressed pairs. When non-stressed subordinate rats were infused with an 

OT antagonist immediately after the first encounter, the established hierarchy was stable 

when tested one week later, which shows that blockade of OTR in the subordinate rat after an 

encounter plays a role in inducing a long-term memory for the dominance hierarchy. 

Administration of a V1aR antagonist into the LS of non-stressed subordinate rats before the 

second encounter, one week after the first encounter, induced submissiveness in the 

subordinate rats, which shows that V1aR in LS might be involved in the effects of acute stress 

on the long-term establishment of the hierarchy. 

These results suggest that OT in MeA and AVP in LS might play a role at different 

stages in the long-term establishment of a dominance hierarchy, at least with regards to stress 

influences on this phenomenon. Social information passes from the accessory olfactory bulb 

to the MeA, from where it is passed on to several downstream brain regions such as LS. OT 

knockout mice show no activation of MeA and cannot form a social memory when exposed to 

a conspecific. Administration of OT into the MeA in these mice is sufficient to restore social 

memory formation, but only when it is administered before the encounter (Ferguson et al., 

2000; Ferguson et al., 2001). This shows that OT in the MeA is essential for the processing of 

social information. Furthermore, the amygdala has an output to the HPA axis and OT in the 

amygdala plays a role in the attenuation of the stress response, possibly to prevent excessive 

HPA axis activation (Neumann et al., 2000; Windle et al., 2004; Ebner et al., 2005). It is 

tempting to speculate that the downregulation in Otr mRNA in MeA observed in our study 

might be caused by a high OT release in MeA (Insel et al., 1992; Di Scala-Guenot and 

Strosser, 1995). In the future it would be interesting to investigate OT release in the MeA 

around the time of exposure to foot shocks and the first encounter using microdialysis.  



 106

The changes observed in our study in vasopressinergic neurotransmission in the LS 

seem to play a role at a later time point. Whether changes in V1ar mRNA in LS and blocking 

V1aR in LS by administration of an antagonist affects memory retrieval or reflects a change 

in social behavior cannot be concluded from the present data. Administration of a V1aR 

antagonist before a first encounter between two naïve rats might tell us whether the effect of 

the antagonist is specific for rats that were subordinate in a previous encounter, or whether it 

has a similar effect in naïve rats and thus induces submissive behavior rather than having an 

effect on the retrieval of a memory that has been formed for the hierarchy. Again, 

microdialysis would give us more information about AVP release in LS around the first and 

second encounter. 

It would be useful in future studies to examine protein levels of the studied molecules 

using Western blots and to perform receptor-binding studies. 

 

5.3 The effect of acute stress and hierarchy establishment on the establishment of a second 

dominance hierarchy with an unfamiliar opponent 

When a previously subordinate rat from a stressed pair is exposed to an unfamiliar 

opponent in a water competition test one week after the first encounter, the outcome of the 

water competition test depends on the previous status of the unfamiliar opponent. When the 

opponent was dominant in a previous encounter, the stressed subordinate rat becomes 

subordinate in the water competition test. When the opponent was subordinate in a previous 

encounter, the stressed subordinate rat becomes dominant in the water competition test. When 

the dominant rat of a stressed pair is exposed to an unfamiliar opponent, the previous status of 

the opponent does not affect the outcome of the water competition test. In half of the cases the 

dominant rat of the stressed pair becomes dominant, in the other half subordinate. One week 

after the first encounter, subordinate rats of stressed pairs show a downregulation in 

monoamine oxidase A (Maoa), androgen receptor (Ar) and V1ar (see discussion above) 

mRNA in LS compared to the dominant rats of stressed pairs and to controls. When the 

MAOA inhibitor clorgyline was infused into the LS of an unstressed subordinate rat before 

exposure to an unfamiliar subordinate opponent, the treatment had no effect on the outcome 

of the water competition test. 

To identify which molecular changes can explain why subordinate rats of stressed 

pairs become dominant when paired with an unfamiliar subordinate opponent, there are 

several protein candidates to be explored. In chapter 3, we have shown that subordinate rats of 

stressed pairs have a downregulation in V1ar mRNA in LS compared to the dominant rats of 
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stressed pairs and controls. AVP plays a role in social recognition and the regulation of 

aggression (reviewed by Veenema and Neumann, 2008). Therefore, changes in V1ar mRNA 

levels could, at least partly, explain the behavior that was observed in the current experiment. 

Administration of a V1aR antagonist in the LS of a subordinate rat before an encounter with 

an unfamiliar subordinate opponent could tell us whether V1aR is involved in the observed 

effect. Furthermore, we have shown a downregulation in Ar mRNA in subordinate rats of 

stressed pairs in LS at one week after the first encounter. This change could also play a role in 

the observed behavior, so experiments using androgen antagonists would be useful to 

examine the role of the AR in the observed effect. 

 

5.4 The long-term effects of acute stress and hierarchy formation on social behavior 

Depending on the hierarchical organization within a group, either being the dominant 

or subordinate individual can be more stressful (Sapolsky, 2005). In rats, social defeat or 

being the subordinate individual in a visible burrow system has many disadvantageous effects 

on health and well-being. Social defeat in a resident-intruder test leads to a reduced body 

weight, reduced heart rate, reduced body temperature, reduced activity, lower cellular 

immunocompetence, higher plasma corticosterone levels and augmented responses to 

stressors (de Jong et al., 2005; Arakawa, 2006). After repeated exposure to food competition 

tests, subordinate rats show a lower level of cell proliferation in the dentate gyrus and more 

depressive-like behavior in a forced swim test (Hoshaw et al., 2006). These long-term 

negative effects of losing an encounter have been suggested to show resemblance to 

depressive-like symptoms. It has been hypothesized that depression in humans might have 

evolved as an exaggerated and persistent display of subordinate signs, which could have the 

function to avoid participation in conflicts that seem unwinnable (Wilkinson, 1999). If 

something similar happens in the rats in the model that we use, this could mean that when the 

stressed subordinate rats are exposed to a familiar or an unfamiliar dominant rat, the 

submissive behavior that they show to avoid a potentially harmful conflict can be considered 

as a depressive-like symptom. 

MAOA is involved in the degradation of serotonin (5-HT), noradrenaline and 

dopamine. 5-HT modulates emotional behavior such as anxiety, impulsivity and aggression 

and has been implicated in depression (Lesch and Meschdorf, 2000). MAOA knockout mice 

are more aggressive and have a higher 5-HT level than wild-type mice (Cases et al., 1995). In 

humans, low activity of MAOA or a mutation in the Maoa gene is correlated with aggression 

(Alia-Klein et al., 2008, McDermott et al., 2009; Brunner et al., 1993). The subordinate rats of 



 108

stressed pairs in the current study show a decrease in Maoa mRNA one week after the 

encounter. This decrease in Maoa might play a role in the fact that subordinate rats of stressed 

pairs become dominant when paired with an unfamiliar subordinate rat. A decrease in Maoa 

suggests a possible increase in 5-HT levels or a prolonged action of 5-HT, although this has 

not been shown in the current study. 5-HT has been shown to play a role in the hierarchical 

status in several animal species. In the visible burrow system, subordinate rats show an 

increased 5-HIAA/5-HT ratio and alterations in 5-HT1a-receptor binding (Blanchard et al., 

1993; McKittrick et al., 1995). Ranks in a water competition test can be reversed when the 

dominant rat is treated with drugs that stimulate 5-HT neurons or receptors, and when the 

subordinate rat is treated with drugs that block 5-HT neurons or receptors (Kostowski et al., 

1984). In a worker-parasite paradigm subordinate rats have a lower MAOA enzyme activity 

than dominant rats (Dhingra et al., 1997). In lizards, dominant males show an increase in 5-

HT in MeA 1h after the initiation of fighting, whereas subordinates show an increase starting 

only 24h after the initiation of fighting, with a peak level after one week. Selective serotonin 

reuptake inhibitors (SSRIs), resulting in a higher 5-HT level, reduced aggression in lizards 

and reversed dominance in half of the dyads (Larson and Summers, 2001). Highly aggressive 

SAL mice show lower 5-HT levels in the prefrontal cortex than less aggressive LAL mice 

after repeated exposure to resident intruder tests (Caramaschi et al., 2008). In hamsters, 5-HT 

decreases the level of aggression, possibly by interfering with the action of AVP that 

facilitates aggression (Ferris, 1996; Ferris et al., 1997). In monkeys, a lowered 5-HT 

functioning is related to lower ranks in social groups, probably due to less competent social 

behavior and greater impulsive aggression (reviewed in Lesch and Merschdorf, 2000). All 

these findings show that 5-HT plays an important role in the regulation of aggression and 

social ranks, and fit with our result of a reduced Maoa mRNA level in the subordinate rats of 

stressed pairs. Although no causal relationship of MAOA activity with the behavior towards 

an unfamiliar individual could be shown in the current study, it would be interesting to further 

explore changes in the 5-HT system in the rats exposed to our model.  

 

5.5 Winner and loser effects 

Dominance hierarchies are established to minimize the costs of fighting in a group 

(Van Kreveld, 1970). Intrinsic factors such as size, age, sex, strength, physiology and level of 

aggressiveness (Parker, 1974; Chase et al., 2002) and extrinsic factors such as winner and 

loser effects (Chase et al., 1994) determine which individual becomes dominant. Experiments 

studying dominance hierarchies in cichlid fish suggest that both intrinsic and extrinsic factors 
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play an important role in defining the outcome of a dominance hierarchy (Chase et al., 2002). 

In our model, the intrinsic factors body weight and anxiety level, and also age, are kept 

similar between the two rats of a dyad to exclude as many intrinsic factors as possible in 

determining the hierarchy. Dugatkin and Earley (2004) have described that when individual 

recognition occurs, winner and loser effects on hierarchy establishment disappear. Since 

individual recognition rather than recognition of a hierarchical status seems to occur in rats 

during aggressive encounters (Brown, 1992; Cordero and Sandi, 2007), this would mean that 

winner and loser effects cannot explain why subordinate rats of stressed pairs become 

dominant when paired with an unfamiliar previously subordinate rat. Animals have different 

ways of estimating their chances of winning. According to the social cue hypothesis animals 

assess the strengths and weaknesses of their opponent before or during an encounter (Rutte et 

al., 2006). Since the behavior of the subordinate rats of stressed pairs is dependent on the 

previous status of the opponent, the social cue hypothesis could be used to explain our results. 

Social cues used in this hypothesis could be signs of exhaustion or injury in losers, or 

chemical cues. It is possible that the subordinate rats of stressed pairs have undergone 

molecular changes in the brain that make these rats more sensitive to the signals of their 

opponents. We found a downregulation of several genes specifically in the LS of the 

subordinate rats of stressed pairs, such as in Maoa and Ar, but also in V1ar that might be 

involved in this enhanced sensitivity, which also fits with the proposed role of the LS in the 

regulation of social behavior. 

 

5.6 General conclusion 

We have shown that corticosterone has no effect on the initial outcome of an 

encounter between two unfamiliar opponents, but that corticosterone mimics the effects of 

acute stress on the long-term maintenance of a dominance hierarchy when administered pre-

training to the dominant rat, or post-training to the subordinate rat. This suggests that 

corticosterone plays a role in the consolidation of the memory for a recently established 

hierarchy. 

Furthermore, we have shown that the OTR in the MeA and in the V1aR in the LS play 

a role in the immediate and long-term effects of acute stress on the maintenance of a 

dominance hierarchy, since administration of OT antagonists to non-stressed subordinate rats 

after a first encounter induces a long-term memory for the hierarchy and administration of 

V1aR antagonists to non-stressed subordinate rats before a second encounter induces 

submissive behavior.  
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Finally, we have shown that a second hierarchy that is established when subordinate 

rats of Ps are paired with unfamiliar opponent depends on the previous status of the opponent, 

with subordinate rats becoming dominant when exposed to a previously subordinate 

opponent. Although changes in Maoa mRNA levels were found, using a MAOA inhibitor did 

not mimic the effects of acute stress on social behavior. 

Taken together, we have shown that exposure to acute stress and a social encounter 

leads to a wide array of neurobiological changes in the receptors for the neuropeptides OT and 

AVP, the testosterone receptor AR and the monoamine degradation enzyme MAOA. These 

changes might underlie the formation of a long-term memory for an established hierarchy, the 

long-term effects of acute stress on the hierarchy, and long-term changes in offensive 

behavior towards an unfamiliar opponent. Since administration of corticosterone mimics the 

effects of acute stress on behavior, corticosterone might play a role in inducing the changes in 

neurobiological mechanisms that were investigated in this thesis. 
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Appendix 

 
Chapter 2, 3 and 4 described the main results of this thesis research. In addition, 

several experiments that were done at different phases of this study but not included in the 

former chapters are included in this Appendix. These experiments include the evaluation of 

(1) the effects of administration of the protein synthesis inhibitor anisomycin after the first 

encounter on memory formation, (2) the changes in Otr and V1ar mRNA levels in LS one 

week after administration of an OT antagonist in MeA, (3) a social preference test for a 

juvenile rat after exposure to acute stress, (4) the difference in offensive behavior during the 

first encounter between rats of non-stressed and stressed pairs, (5) mRNA levels of the 

glucocorticoid receptor (Gr) and neural cell adhesion molecule (Ncam) in MeA, LS and 

BNST, (6) mRNA levels of Otr, V1ar, Ar, Maoa, Gr and Ncam in hippocampus, (7) mRNA 

levels of Otr and V1ar in BNST and (8) plasma corticosterone levels at three hours and one 

week after the first encounter. 
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Materials and methods 
Animals 

Male Wistar rats (Charles River Laboratories, Lyon, France) weighing 250-275 grams 

at arrival were individually housed with ad libitum access to food and water. Animals were 

kept in a 12h light/dark cycle with lights on at 0700h, and a constant temperature of 22 ± 2 

°C. Animals were left undisturbed for one week after arrival before starting the experiment, 

except when surgery was performed, which was performed a few days after arrival. Rats were 

weighed once per week. Experiments were performed with approval of the Cantonal 

Veterinary Authorities (Vaud, Switzerland).  

All experiments took place between 0800h and 1400h, except for the water competition 

test that took place between 1400h and 1900h, after a water deprivation period of 6h (from 

0800h until 1400h). All rats were handled for 2 min per day during three days before 

exposure to the elevated plus maze (see below). 

 

Surgery 

Rats were anaesthetized with ketamine (70 mg/kg) and xylazine (6 mg/kg), 

administered by i.p. injection. 10 mm long stainless steel guide cannulae of 23 gauge (Plastics 

One, Roanoke, USA) were implanted bilaterally in the MeA at -2.50 mm anterior and ±3.3 

mm lateral relative to Bregma and -7.9 mm ventral relative to dura (Paxinos and Watson, 

1998) using a standard stereotaxic frame (Stoelting, USA). Cannulae were fixed to the skull 

with dental acrylic cement (Kaladent, Switzerland) and anchored with Vetbond Tissue 

Adhesive glue (3M). Dummy cannulae (10mm, Plastics One, Roanoke, USA) were inserted 

into the cannulae to protect them from blocking. Rats received an injection with Antisedan 

(0.04 ml s.c., Pfizer, Switzerland) after the surgery to reverse the effects of the anesthetics. 

Paracetamol was added to the drinking water as analgesic in the days following surgery. The 

rats were allowed to recover for at least one week before the start of the experiment. 

 

Drugs and infusion procedure 

The selective OT antagonist (OTA) desGly-NH2-d(CH2)5[D-Tyr2,Thr4]OVT was used 

for infusions into the MeA (the OTA was a generous gift of dr. M. Manning, Toledo, OH, 

USA). The OTA was dissolved in saline. Internal injectors of 11 mm (extending 1 mm from 

the end of the guide cannula, 30 gauge, Plastics One, Roanoke, USA) were used to administer 

the drug. The injectors were connected to 10 μl microsyringes (SGE Analytical Science, 
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Australia) on an automated infusion pump (Harvard Apparatus, MA, USA) through 

polyethylene tubing. 1 μg of OTA in 1 μl of saline was infused into the MeA of each 

hemisphere at a rate of 0.5 μl/min. After the infusion the injector was left in place for 1 min to 

allow diffusion of the drug. Saline was used as a vehicle. The OTA was infused immediately 

after the encounter to the subordinate rat. The other rat of the pair and both rats of control 

pairs were infused with vehicle. 

The protein synthesis inhibitor anisomycin was injected IP (Sigma Chemical Co., 

Switzerland) at a dose of 150 mg/kg. The dose of 150 mg/kg was used in previous 

experiments in our group (Cordero and Sandi, 2007). Anisomycin was dissolved in saline by 

adding 1 N HCl. The pH was adjusted to 7.4 by adding NaOH. One rat of each pair (either the 

dominant or subordinate rat) was injected with anisomycin immediately after the end of the 

first encounter. The other rat of the pair was injected with vehicle. In control pairs both rats 

were injected with vehicle. 

 

Elevated plus maze 

Before the start of the experiment the ‘elevated plus maze’ (EPM) test was performed to 

measure anxiety-related behavior. The EPM consists of two opposing open arms (45x10 cm) 

and two opposing closed arms (45x10 cm with walls of 50 cm high) that extend from a central 

platform (10x10 cm), elevated 65 cm above the floor. The rats were placed individually on 

the central platform facing the same closed arm and were allowed to explore the EPM freely 

during 5 min. The behavior of each rat was video recorded and analyzed using a computerized 

tracking system (Ethovision 3.1.16, Noldus IT, the Netherlands). Time spent in the open and 

closed arms was measured.  

 

Dyads and groups 

Rats were distributed to dyads consisting of two rats that were matched for their body 

weight and anxiety level. The anxiety level was defined by the time spent in the open arms of 

the EPM. Thus, the rats in each dyad were considered equal in their probability to become 

dominant or subordinate during a first encounter. The fur of both rats in a dyad was marked 

on different body parts (i.e. neck and back) to help identifying the animals. Rats were 

habituated to marking during the three day habituation period that took place before the first 

social encounter. Dyads were divided randomly over the different groups. Each group 

consisted of 7-14 dyads. 
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Stress delivery – Contextual fear conditioning 

In non-stressed pairs (Pns) none of the rats were stressed prior to the social encounter. 

In stressed pairs (Ps) one rat of the pair was stressed using a contextual fear conditioning 

paradigm just before the first social encounter. Fear conditioning was performed in an 

observation chamber of 30x37x25 cm (Panlab, Spain) made of black steel walls and a 

Plexiglas ceiling and door. The floor consisted of 20 steel rods connected to a shock source 

and solid-state scrambler for delivery of electrical shocks. The observation chamber was lit by 

a 20 W light bulb and there was a background noise of 68 dB. The protocol consisted of a 

habituation period of 3 min, followed by 3 footshocks of 1 mA lasting 1 sec each with an 

intershock interval of 60 sec. 30 sec after the last shock the rat was taken out and immediately 

submitted to the first social encounter with an unfamiliar rat in an adjacent room. 

 

Food and water competition test 

In order to habituate animals to the rewarding food used in the ‘food competition test’ 

(FCT), they received eight Chocopop flakes (Kellogg’s, Switzerland) in their homecages 

daily, during two days before the start of the habituation to the experimental setup. The rats 

were habituated to the experimental setup for three days during which they were first placed 

in a clean homecage for 20 min and then in a food competition box for 10 min. The food 

competition box is a plastic box of 60x40 cm with walls of 32 cm high with a feeder 

containing eight Chocopops on one of the short sides. On day 1 of the experiment, the day 

after the last habituation day, the rats were submitted to a first encounter with an unfamiliar 

rat, consisting of a ‘social interaction test’ in a neutral homecage without food and water for 

20 min, followed by a ‘food competition test’ (FCT) in which the rats had to compete for 

Chocopops during 10 min. After the tests each rat was returned to its homecage. The group 

without an encounter on day 1 was exposed to an extra day of habituation. 

The memory for the formed hierarchy was tested in a ‘water competition test’ (WCT) 

that was performed on day 8 after a preceding water deprivation period of 6h. Rats were 

exposed to the same opponent as on day 1. The WCT was performed in a neutral homecage. 

After 2 min of habituation, a single bottle of water was presented and the behavior during the 

following 10 min was recorded. 

Behavior was video-recorded and scored blindly using The Observer (v.5.0.25, Noldus 

IT, the Netherlands). The duration and frequency of offensive and defensive behaviors was 

scored. Offensive behaviors were attacks (biting), keeping down (pushing the opponent to the 

floor), offensive upright (standing on the hind legs in upright position) and lateral threat 



 127

(pushing or approaching the opponent showing its side with an arched back). Defensive 

behavior consisted of freezing (immobility), defensive upright (standing on the hind legs in 

response to offensive upright) and submissive posture (lying on the back). In the FCT the 

number of consumed Chocopops and the number of passes over the feeder was counted and in 

the WCT the time spent drinking was measured. The rat that showed most offensive behavior 

during the interaction was considered the dominant rat, the rat showing least offensive 

behavior and most defensive behavior the subordinate rat. 

Control groups for studying gene expression levels were submitted to habituation and 

exposure to the experimental setup on day 1, with or without exposure to stress (control group 

and stressed control group), but not to social interaction. 

 

Social preference test 

The social preference test was carried out in a rectangular, three-chambered arena made 

out of grey opaque plastic. The two outer compartments were 30 x 35 cm and the center 

compartment 20 x 35 cm. Retractable doorways separated the compartments from each other. 

The walls were 35 cm high. In each outer compartment a Plexiglas tube with perforations was 

placed. During the test, the rats were exposed to an object inside the tube in one compartment 

and to a juvenile rat of 43 days old in the tube in the opposite compartment. After 2 minutes 

of habituation in the center compartment, the rats were allowed to explore the arena during 20 

minutes. The time spent actively exploring the juvenile and the object was measured. 

 

Sacrifice 

For the gene expression experiments rats were sacrificed either on day 1, three hours 

after the end of the food competition test, or on day 8, one week after the social interaction 

and food competition test under basal conditions. The animals were decapitated, the brain was 

quickly removed and frozen in isopentane at a temperature between -50 and -40 °C and stored 

at -80 °C until further processing. 

Trunk blood was taken in tubes containing 100μl heparine. Blood samples were 

centrifuged and the plasma was stored at -20 °C. Corticosterone levels were measured using 

enzyme-linked immunosorbent assays (ELISA) (Assay Design, Ann Arbor, MI, USA). 

In experiments involving cannulation, in order to check the position of the cannulae rats 

were injected i.p. with pentobarbital. 1 μl of ink was subsequently infused into the MeA to 

mark the position of drug delivery. The rats were decapitated and the brains removed, frozen 
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in isopentane and stored at -80 °C until further processing. 40 μm thick coronal sections were 

stained with thionin to detect the cannula position. 

 

Laser capture micro dissection 

For the gene expression experiment, coronal sections of 20 μm were taken for ‘laser 

capture micro dissection’ (LCM). The sections were put on membrane covered slides (Palm 

Microlaser Technologies, Carl Zeiss, Germany) and stored at -20 °C covered with RNAlater 

ICE (Ambion, TX, USA). Prior to LCM the sections were stained with the HistoGene LCM 

Frozen Section Staining kit following the protocol (Arcturus Bioscience, Switzerland). The 

MeA and the LS from the right hemisphere were dissected through LCM. The target tissue 

was catapulted into a PALM adhesive cap (Palm Microlaser Technologies, Carl Zeiss, 

Germany) and subsequently incubated in 100 μl of lysis buffer (RNAqueous Micro Kit, 

Ambion, TX, USA) for 30 min at 42 °C. After spinning down the tissue was stored at -80 °C 

until further processing. 

 

RNA isolation 

RNA was isolated from the tissue using the RNAqueous Micro Kit (Ambion, TX, 

USA). First, 3 μl of LCM additive was added. Subsequently 129 μl of 100% ethanol was 

added to the mixture. The lysate/ethanol mixture was loaded onto a Micro Filter Cartridge 

Assembly and centrifuged for 1 minute at 10000g. Afterward 180 μl of Wash Solution 1 was 

added and the mixture was centrifuged again for 1 min at 10000g. 180 μl of Wash Solution 

2/3 was added and the mixture was centrifuged for 30 sec at 14000g. The flow-through was 

discarded and the Micro Filter Cartridge was centrifuged for another minute at 14000g. The 

Micro Filter Cartridge was transferred into a Micro Elution Tube and 8 μl of preheated 

Elution Solution was added. The mixture was left for 5 min at room temperature and 

subsequently centrifuged for 1 min at 14000g. Another 8 μl of Elution Solution was added 

and the mixture was centrifuged again at 14000g. The RNA was stored at -80 °C until further 

processing 

 

Reverse transcription and preamplification 

9.62 μl of the extracted RNA was converted into cDNA using Taqman Reverse 

Transcriptase Reagents (Applied Biosystems, CA, USA). 1.25 μl of random hexamers and 2.5 

μl of RT 10x buffer were added to reach an end volume of 13.37 μl. The mixture was brought 
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to 65 °C for 10 min followed by 10 min at room temperature in a Thermocycler (Primus 96, 

Peqlab, Germany). Following this step 5.5 μl of MgCl2, 5 μl of dNTPs (10 mM), 0.5 μl of 

RNAse inhibitor and 0.63 μl of Multiscribe Reverse were added to each sample. Using the 

Thermocycler, the reverse transcription was executed for 10 min at 25 °C, 25 min at 48 °C 

and 5 min at 95 °C. The obtained cDNA was stored at -20 °C until further processing. 

The cDNA was preamplified using Pre-amp MasterMix for TaqMan assays (Applied 

Biosystems, CA, USA). A pool of TaqMan Gene Expression Assays for the genes of interest 

(see ‘Real time PCR’) was made in ultrapure water (Gibco, NY, USA) at a volume of 1% for 

each Assay. 25 μl of Taqman PreAmp MasterMix, 12.5 μl of the pooled Assay mix and 12.5 

μl of cDNA were mixed for each sample. The preamplification was done by an enzyme 

activation period of 10 min at 95 °C, followed by 10 cycles of 15 sec at 95 °C and 4 min at 60 

°C. After finishing the run the samples were immediately placed on ice and diluted 5x in ice-

cold ultrapure water (Gibco, NY, USA). Samples were stored at -20 °C until further 

processing. 

 

Quantitative real time PCR 

Quantitative real time PCR was performed using TaqMan Gene Expression Assays for 

the genes for the oxytocin receptor (Otr), the arginine vasopressin receptor 1A (V1ar), 

monoamine oxidase A (Maoa), androgen receptor (Ar), glucocorticoid receptor (Gr) and 

neural cell adhesion molecule (Ncam) with the control genes ribosomal protein S18 (Rps18), 

ribosomal protein S29 (Rps29) and eukaryotic elongation factor 1 alpha 1 (Eef1a1) (see Table 

I for the used Gene Expression Assays, Applied Biosystems, CA, USA). First, a reaction 

mixture containing 4.5 μl preamplified cDNA, 0.5 μl 20x Taqman Gene Expression Assay for 

the genes of interest and 5 μl 2x PCR Master Mix (TaqMan Universal PCR master mix no 

AmpErase UNG, Applied Biosystems, CA, USA) per reaction of 10 μl was made. Triplicates 

of 10 μl of each reaction mixture were transferred to a well in a 384-well optical reaction 

plate (Applied Biosystems, CA, USA). The real time PCR was performed using 40 cycles of 

15 sec at 95 °C and 1 min at 60 °C (7900HT, Applied Biosystems, CA, USA), preceded by 2 

min at 50 °C and 10 min at 95 °C. 

The software SDS (v.2.3, Applied Biosystems, CA, USA) was used for running and 

analyzing the quantitative real time PCR. Each target gene was compared to three internal 

control genes (Rps18, Rps29, Eef1a1) using the ΔΔCt method (described by Livak and 

Schmittgen, 2001). The results are expressed as fold change compared to the control groups. 
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Table I. Overview of the used Gene Expression Assays (Applied Biosystems). 

Gene Gene Expression Assay 

Oxytocin receptor (Otr) Rn00563503_m1 

Arginine vasopressin receptor 1a (V1ar) Rn00583910_m1 

Monoamine oxidase A (Maoa) Rn01430958_m1 

Androgen receptor (Ar) Rn00560747_m1 

Glucocorticoid receptor (Gr) Rn00560747_m1 

Neural cell adhesion molecule (Ncam) Rn01418541_m1 

Ribosomal protein S18 (Rps18) Rn01428915_g1 

Ribosomal protein S29 (Rps29) Rn00820645_g1 

Eukaryotic elongation factor 1a1 (Eef1a1) Rn01639851_g1  

 

Statistics 

All results are expressed as the mean ± the standard error of the mean (S.E.M.).  

For statistical analyses of mRNA expression levels, the fold change of the different 

groups compared to the non-stressed control group was calculated. One-way ANOVA was 

used to test statistical significance between the dominant and subordinate rats of Pns and Ps. A 

priori comparisons to test differences between two specific groups were established and 

evaluated through either unpaired or paired two-tailed Student t-tests. Paired t-tests were 

applied to compare mRNA expression levels of dominant and subordinate rats that competed 

together, while unpaired t-tests were applied when comparisons involved animals that had not 

directly interacted. A priori comparisons for group comparisons were (1) the subordinate rat 

of Ps with the subordinate rat of Pns, (2) the subordinate rat of Ps with the dominant rat of Ps, 

(3) the dominant rat of Ps with the dominant rat of Pns, (4) the subordinate rat of Pns with the 

dominant rat of Pns, (5) the subordinate rat of Ps with the stressed control group and (6) each 

experimental group compared to non-stressed controls. The same comparisons were made for 

corticosterone levels. 

For the behavioral experiments, the percentage of offensive behaviors within each 

dyad was calculated. A paired two-tailed Student t-test was used to compare the percentage of 

offensive behaviors within a dyad of rats competing together.  

The computer software SPSS for Windows (version 13.0) was used for statistical 

analysis. P<0.05 was considered significant. 
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Results 
The effect of the protein synthesis inhibitor anisomycin on the memory for a social hierarchy 

We have previously shown that when protein synthesis is inhibited by administration of 

anisomycin to both the dominant and subordinate rat of Ps, no memory for the social 

hierarchy formed on day 1 is found on day 8 (Cordero and Sandi, 2007). In the present 

experiment only one of the two rats received a post-encounter anisomycin injection: in half of 

the pairs the non-stressed dominant rat and in the other half the stressed subordinate rat. The 

other rat of the pair was injected with vehicle. In the control group both rats were injected 

with vehicle. All three groups form a hierarchy on day 1 (t = 3.819, df = 7, p<0.01 for the 

control group, Fig. IA; t = 4.823, df = 7, p<0.01 for the group in which the non-stressed 

dominant rat of Ps was treated with anisomycin, Fig. IB; t = 2.548, df = 7, p<0.05 for the 

group in which the stressed subordinate rat of Ps was treated with anisomycin, Fig. IC). After 

one week the same hierarchy was found in the control group (t = 2.327, df = 7, p≤0.05, Fig. 

IA), which corresponds with previous findings. When the non-stressed dominant rat was 

injected with anisomycin no memory for the hierarchy was found (n.s., Fig. IB). However, 

when the stressed subordinate rat was treated with anisomycin the hierarchy found on day 8 

was the same as on day 1 (t = 3.113, df = 7, p<0.05, Fig. IC). 

 
Figure I.  The percentage of total offensive behavior (mean ± S.E.M.) between two opponents shown in the 

social interaction test on day 1 and the water competition test on day 8 after treatment with anisomycin or 

vehicle. (A) The hierarchy of rats injected with vehicle after the first encounter (n=8). (B) Anisomycin treatment 

of the non-stressed dominant rat of Ps after the first encounter (n=8) (C) Anisomycin treatment of the stressed 

subordinate rat of Ps after the first encounter (n=8). The status ‘dom’ (dominant) or ‘sub’ (subordinate) refers to 

the status that was obtained during the social interaction test on day 1. ‘Rns’ = non-stressed rat, ‘Rs’ = stressed 

rat, ‘veh’ = vehicle, ‘ANI’ = anisomycin. * p≤0.05, ** p<0.01 vs. the other rat of the pair. 
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The effect of OTA infusion on OTR and V1aR mRNA levels in LS 1 week after the first 

encounter 

Since administration of OTA into the MeA has the same long-term effects on the 

behavior in the WCT as administration of foot shocks in the stressed rat of Ps, we wanted to 

know whether administration of OTA in the MeA also affects the long-term effects on gene 

expression in a similar way. To study this, we administered vehicle or OTA to rats that were 

not exposed to an encounter and served as controls (data not shown), and OTA immediately 

after the first encounter to the subordinate rat of Pns and vehicle to the dominant rat of Pns. 1 

week later the rats were sacrificed under basal conditions and the mRNA levels for OTR and 

V1aR in LS were measured. There is no significant change in the expression of OTR in LS 

(Fig. IIA). In the V1aR a downregulation was found in the V1aR of the subordinate OTA-

treated rat compared to the dominant vehicle treated rat (t = 2.564, df = 8, p<0.05, Fig. IIB), 

which is similar to the changes in V1aR expression in LS found in the subordinate rat of Ps 1 

week after the first encounter (Chapter 3). 

 
Figure II. The expression of Otr and V1ar mRNA in LS 1 week after the first encounter and vehicle or OTA 

administration (mean ± S.E.M.). (A) Otr mRNA expression in LS (n=9). (B) V1ar mRNA expression in LS 

(n=9). ‘OTA’ = oxytocin antagonist, ‘dom’ = dominant, ‘sub’ = subordinate. * p<0.05 vs. the subordinate rat. 
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Social preference for a juvenile after exposure to acute stress 

To test whether acute stress leads to social avoidance, we submitted the rats to a social 

preference test with an unfamiliar juvenile in one compartment and an object in the opposite 

compartment. In both the control and stress group the rats spend more time exploring the 

juvenile than the object (data not shown). The stressed rats spend a higher percentage of 

exploration in the juvenile compartment than the non-stressed rats (t = 2.932, df = 11, p<0.05, 

Fig. III). This shows that, at least in a non-aggressive setting, acute foot shock stress does not 

lead to avoidance of social interaction or a decrease in social interest. 

 

 

 

 

 

 

 
 
 
Figure III. Percentage of exploration of an unfamiliar 

juvenile rat. * p<0.05 vs. control. 
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Differences between Pns and Ps in the first encounter 

In the current experiment we wanted to investigate whether there is a difference in the 

pattern of offensive behavior between Pns and Ps during the first encounter. Therefore, the 

time spent on offensive behavior was examined per minute of the encounter (Fig. IVA&B).  

In Pns an effect of both time and status are found (time: F19,817 = 3.377, p<0.001; status 

F1,43 = 88.867, p<0.001; interaction time x status F19,817 = 2.309, p<0.01). Significant 

differences between the offensive behavior shown by the dominant and subordinate rat are 

found at minute 5, 6, 9, 10, 11, 13, 15 and 16 (Fig. IVA). 

In Ps also an effect of time and status are found (time: F19,798 = 2.967, p<0.001; status 

F1,42 = 56.522, p<0.001; interaction time x status F19,798 = 1.315 p=0.165). The difference 

between the dominant and subordinate rat is less clear than in Pns, with only significant 

differences at minute 6, 9, 10 and 16 (Fig. IVB). The stressed rat of the Ps seems to show a 

higher level of offensive behavior around 7 and 13 minutes after the start of the encounter 

compared to the subordinate rats of Pns (Fig. V). 

 
Figure IV. The time of total offensive behavior (mean ± S.E.M.) between two opponents shown in the social 

interaction test on day 1. (A) The offensive behavior during the 20 minutes of the first encounter in Pns. (B) The 

offensive behavior during the 20 minutes of the first encounter in Ps. ‘Rns’ = non-stressed rat, ‘Rs’ = stressed rat. 

* p<0.05, ** p<0.01 vs. the other rat of the pair. 
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Figure V. The time of total offensive behavior (mean ± S.E.M.) of the subordinate rats of Pns and Ps in the 

social interaction test on day 1. ‘Rs’ = stressed rat. * p<0.05 vs. the subordinate rats of Pns. 
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GR and NCAM gene expression in MeA, BNST and LS 

The immediate (3h) and long-term (1 week) changes in mRNA levels of Gr and NCAM 

after exposure to stress and/or a social encounter were studied in MeA, BNST and LS. 

No changes are found in Gr mRNA in MeA 3h or 1 week after the first encounter. In 

LS, 3h after the first encounter the dominant rats of non-stressed pairs show a lower Gr 

mRNA level than the subordinate rats of non-stressed pairs, whereas the dominant rats of 

stressed pairs show a higher Gr mRNA level than the subordinate rats of stressed pairs. In 

BNST, the dominant rats of both non-stressed and stressed pairs show a lower Gr mRNA 

levels than the subordinate rats of the same pairs (Table IV, Fig. VI). 

In MeA, no differences are found in Ncam mRNA at 3h or 1 week after the encounter. 

In LS, the dominant rats of non-stressed pairs have a lower Ncam level than the subordinate 

rats of non-stressed pairs one week after the encounter. In stressed pairs, the dominant rats 

have a higher Ncam mRNA level than subordinate rats. The subordinate rats of non-stressed 

pairs have a higher Ncam mRNA level than the subordinate rats of stressed pairs. 3h after the 

encounter the dominant rats of non-stressed pairs have a decrease in Ncam mRNA in BNST 

compared to the subordinate rats of non-stressed pairs. One week after the encounter the 

subordinate rats of non-stressed pairs have a higher Ncam mRNA level in BNST than 

dominant rats of non-stressed pairs and subordinate rats of stressed pairs (Table IV, Fig. VI). 

 
Table II. Overview of the significant differences in paired and unpaired t-tests that compare Gr and NCAM 

mRNA levels in MeA, LS and BNST. ‘Pns dom’ = dominant rat of Pns, ‘Pns sub’ = subordinate rat of Pns, ‘Ps 

dom’ = dominant rat of Ps, ‘Ps sub’ = subordinate rat of Ps, ‘str ctl’ = stressed control. 

 Compared to Ps sub Compared to Pns sub Compared to control 
3h -  - - MeA 

GR  1 week - - - 

3h Ps dom: 
t = 3.863, df = 5, p<0.05 

Pns dom: 
t = 2.910, df = 5, p<0.05 

- LS  
GR 1 week - - - 

3h Ps dom: 
t = 3.515, df = 5, p<0.05 

Pns dom: 
t = 6.747, df = 5, p<0.01 

- BNST 
GR 1 week - - - 

3h - - - MeA 
NCAM 1 week - - - 

3h - - - 

LS 
NCAM 1 week 

Pns sub: 
t = 2.608, df = 11, p<0.05 
Ps dom: 
t = 3.096, df = 5, p<0.05 

Pns dom: 
T = 3.786, df = 5, p<0.05 

- 

3h - Pns dom: 
t = 2.566, df = 5, p<0.05 

- 
BNST 
NCAM 1 week Pns sub: 

t = 2.553, df = 11, p<0.05 
Pns dom: 
t = 5.072, df = 5, p<0.01 

- 
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Figure VI. The expression of Gr and Ncam mRNA in MeA, LS and BNST at 3h and 1 week after the first 

encounter (mean ± S.E.M.). (A) Gr mRNA expression in MeA. (B) Ncam mRNA expression in MeA. (C) Gr 

mRNA expression in LS. (D) Ncam mRNA expression in LS. (E) Gr mRNA expression in BNST. (F) Ncam 

mRNA expression in BNST. ‘str ctl’ = stressed control group, ‘dom’ = dominant, ‘sub’ = subordinate, ‘Pns’ = 

non-stressed pair, ‘Ps’ = stressed pair. * p<0.05 vs. subordinate rat of Ps,  $ p<0.05 vs. subordinate rat of Pns, $$ 

p<0.01 vs. subordinate rat of Pns  Each group consists of 5-14 animals. 
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Gene expression hippocampus 

The immediate (3h) and long-term (1 week) changes in mRNA levels of Otr, V1ar, 

Maoa, Ar, Gr and NCAM after exposure to stress and/or a social encounter were studied in 

hippocampus. 

One-way ANOVA between the dominant and subordinate rats of both Pns and Ps 

indicates a lack of significant difference among dominant and subordinate rats of Pns and Ps 

for all genes in hippocampus. 

3h after the first encounter the stressed control group has a lower V1ar mRNA level 

than the subordinate rats of Ps and the dominant rats of the non-stressed pair (Pns) have a 

lower level than the subordinate rats of the same pair 3h after the first encounter (Table III, 

Fig. VII). For Ar and Gr, the dominant rats of the non-stressed pair (Pns) have lower levels 

than the subordinate rats of the same pair (Table III, Fig. VII). No changes are found in Otr, 

Maoa and NCAM mRNA 3h after the first encounter (Table III, Fig. VII). 

1 week after the encounter there are no changes in Otr and V1ar mRNA levels (Table 

III, Fig. VII). In Maoa, the dominant rats of the stressed pair (Ps) have a higher level than the 

subordinate rats 1 week after the first encounter (Table III, Fig. VII). The dominant rats of Ps 

have a higher Ar and Gr mRNA level than the subordinate rats of Ps (Table III, Fig. VII). 

Dominant rats of Ps have a lower Ncam mRNA level than subordinate rats of Ps, and stressed 

controls have a lower level than controls (Table III, Fig. VII). 
 
Table III. Overview of the significant differences in paired and unpaired t-tests that compare Otr, V1ar, Maoa, 

Ar, Gr and NCAM mRNA levels in hippocampus. ‘Pns dom’ = dominant rat of Pns, ‘Pns sub’ = subordinate rat 

of Pns, ‘Ps dom’ = dominant rat of Ps, ‘Ps sub’ = subordinate rat of Ps, ‘str ctl’ = stressed control. 

 Compared to Ps sub Compared to Pns sub Compared to control 
3h -  - - OTR 
1 week - - - 

3h Str ctl: 
t = -2.580, df = 9, p<0.05 

Pns dom:  
t = -2.794, df = 5, p<0.05 

- 
V1aR 

1 week - - - 
3h - - - 

MAOA 
1 week Ps dom: 

t = 4.194, df = 6, p<0.01  
- - 

3h - Pns dom: 
t = -12.277, df = 4, p<0.001 

- 
AR 

1 week Ps dom: 
t = 6.325, df = 6, p=0.001 

- - 

3h - Pns dom:  
t = -12.004, df = 4, p<0.001 

- 
GR 

1 week Ps dom: 
t = 3.137, df = 6, p<0.05 

- - 

3h - - - 
NCAM 

1 week Ps dom: 
t = -2.631, df = 6, p<0.05 

- Str ctl: 
t = 2.782, df = 12, p<0.05 



 139

Figure VII. The expression of Otr, V1ar, Maoa, Ar, Gr and Ncam mRNA in hippocampus at 3h and 1 week 

after the first encounter (mean ± S.E.M.). (A) Otr mRNA expression. (B) V1ar mRNA expression. (C) Maoa 

mRNA expression. (D) Ar mRNA expression. (E) Gr mRNA expression. (F) Ncam mRNA expression. ‘str ctl’ = 

stressed control group, ‘dom’ = dominant, ‘sub’ = subordinate, ‘Pns’ = non-stressed pair, ‘Ps’ = stressed pair. * 

p<0.05 vs. subordinate rats of Ps, ** p<0.01 vs. subordinate rat of Ps, *** p<0.001 vs. subordinate rats of Ps,  + 

p<0.05 vs. controls, $ p<0.05 vs. subordinate rats of Pns $$$ p<0.001 vs. subordinate rats of Pns. Each group 

consists of 5-8 animals. 
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OTR and V1aR gene expression in BNST 

The immediate (3h) and long-term (1 week) changes in mRNA levels of Otr and V1ar 

after exposure to stress and/or a social encounter were studied in BNST. 

For OTR, 3h after the first encounter the dominant rats of the stressed pair show an 

increase compared to controls (Table IV, Fig. VIII). After 1 week the dominant rats of the 

stressed pair have a lower Otr mRNA level than subordinate rats of the stressed pair (Table 

IV, Fig. VIII). 

Dominant rats of non-stressed pairs show a lower V1ar mRNA level than the 

subordinate rats of non-stressed pairs 3h after the first encounter (Table IV, Fig. VIII). After 1 

week, the subordinate rats of non-stressed pairs have a lower V1ar mRNA level than 

subordinate rats of stressed pairs (Table IV, Fig. VIII). 

 
Table IV. Overview of the significant differences in paired and unpaired t-tests that compare Otr and V1ar, 

mRNA levels in BNST. ‘Pns dom’ = dominant rat of Pns, ‘Pns sub’ = subordinate rat of Pns, ‘Ps dom’ = 

dominant rat of Ps, ‘Ps sub’ = subordinate rat of Ps. 

 Compared to Ps sub Compared to Pns sub Compared to control 

3h - 
 

 - Ps dom: 
t = 2.246, df = 23, p<0.05 OTR 

1 week Ps dom:  
t = 3.194, df = 7, p<0.05 

- - 

3h - 
 

Pns dom:  
t = 4.006, df = 12, p<0.01 

- 
V1aR 

1 week Pns sub: 
t = 2.284, df = 12, p<0.05 

- - 
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Figure VIII. The expression of Otr and V1ar mRNA in BNST at 3h and 1 week after the first encounter (mean 

± S.E.M.). (A) Otr mRNA expression. (B) V1ar mRNA expression. ‘str ctl’ = stressed control group, ‘dom’ = 

dominant, ‘sub’ = subordinate, ‘Pns’ = non-stressed pair, ‘Ps’ = stressed pair. * p<0.05 vs. subordinate rats of Ps,  

+ p<0.05 vs .controls, $$ p<0.01 vs. subordinate rats of Pns. Each group consists of 5-14 animals. 
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Corticosterone levels 

The immediate (3h) and long-term (1 week) changes in corticosterone levels after 

exposure to stress and/or a social encounter were measured (Fig. IX). 

One-way ANOVA between all six groups shows an effect 3h after the first encounter 

(F5,79 = 2.471, p<0.05), but not one week after the first encounter. Student t-test indicates a 

significant difference between the subordinate rats of the stressed pair (Ps) and the stressed 

control group (t = 2.850, df = 24, p<0.01). After one week there is a tendency for a difference 

between the dominant and subordinate rats of the stressed pair (t = 2.215, df = 7, p = 0.0624). 

 

 
Figure IX. Corticosterone levels at 3h and 1 week after the first encounter. ‘Pns’ = non-stressed pair, ‘Ps’ = 

stressed pair, ‘ctl’ = control group, ‘str ctl’ = stressed control group, ‘dom’ = dominant, ‘sub’ = subordinate. The 

status ‘dom’ and ‘sub’ refers to the status obtained on day 1. ** p<0.01 vs. the subordinate rats of Ps. 
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