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Abstract

Assume that a stochastic processes can be approximated, when some scale parameter
gets large, by a fluid limit (also called “mean field limit”, or “hydrodynamic limit”). A
common practice, often called the “fixed point approximation” consists in approximating
the stationary behaviour of the stochastic process by the stationary points of the fluid
limit. It is known that this may be incorrect in general, as the stationary behaviour of
the fluid limit may not be described by its stationary points. We show however that, if
the stochastic process is reversible, the fixed point approximation is indeed valid. More
precisely, we assume that the stochastic process converges to the fluid limit in distribution
(hence in probability) at every fixed point in time. This assumption is very weak and holds
for a large family of processes, among which many mean field and other interaction models.
We show that the reversibility of the stochastic process implies that any limit point of its
stationary distribution is concentrated on stationary points of the fluid limit. If the fluid
limit has a unique stationary point, it is an approximation of the stationary distribution
of the stochastic process.

1. Introduction

This paper is motivated by the use of fluid limits in models of interacting objects or
particles, in contexts such as communication and computer system modelling [7], biology [8]
or game theory [4]. Typically, one has a stochastic process YV, indexed by a size parameter
N; under fairly general assumptions, one can show that the stochastic process Y~ converges
to a deterministic fluid limit ¢ [I7]. We are interested in the stationary distribution of
YN assumed to exist and be unique, but which may be too complicated to be computed
explicitly. The “fixed point assumption” is then sometimes invoked [I5] 6, 19 [14]: it
consists in approximating the stationary distribution of Y by a stationary point of the
deterministic fluid limit ¢. In the frequent case where the fluid limit ¢ is described by an
Ordinary Differential Equation (ODE), say of the form ¢y = F(y), the stationary points are
obtained by solving F(y) = 0. If YV is an empirical measure, convergence to a deterministic
limit implies propagation of chaos, i.e. the states of different objects are asymptotically
independent, and the distribution of any particular object at any time is obtained from
the fluid limit. Under the fixed point assumption, the stationary distribution of one object
is approximated by a stationary point of the fluid limit.
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A critique of the fixed point approximation method is formulated in [3], which observes
that one may only say, in general, that the stationary distribution of Y converges to
a stationary distribution of the fluid limit. For a deterministic fluid limit, a stationary
distribution is supported by the Birkhoff center of the fluid limit, which may be larger
than the set of stationary points. An example is given where the fluid limit has a unique
stationary point, but the stationary distribution of Y~ does not converge to the Dirac
mass at this stationary point; in contrast, it converges to a distribution supported by a
limit cycle of the ODE. If the fluid limit has a unique limit point, say y*, to which all
trajectories converge, then this unique limit point is also the unique stationary point and
the stationary distribution of Y& does converge to the Dirac mass at y* (i.e. the fixed
point approximation is then valid). However, as illustrated in [3], this assumption may
be difficult to verify, as it often does not hold, and when it does, it may be difficult to
establish. For example, in [9] it is shown that the fixed point assumption does not hold
for some parameter settings of a wireless system analyzed in [6], due to limit cycles in the
fluid limit.

In this paper we show that there is a class of systems for which such complications
may not arise, namely the class of reversible stochastic processes. Reversibility is classi-
cally defined as a property of time reversibility in stationary regime [I3]. For example, the
stochastic process Y of [14], which describes the occupancy of inter-city telecommunica-
tion links, is reversible. In such cases, we show that the fluid limit must have stationary
points, and any limit point of the stationary distribution of Y~ must be supported by the
set of stationary points. Thus, for reversible processes that have a fluid limit, the fixed
point approximation is justified.

2. Assumptions and Notation

2.1. A Collection of Reversible Random Processes

Let E be a Polish space and let d be a measure that metrizes F. Let P(E) be the set
of probability measures on E, endowed with the topology of weak convergence. Let Cp(E)
be the set of bounded continuous functions from F to R, and similarly C,(E x E) is the
set of bounded continuous functions from £ x E to R.

We are given a collection of probability spaces (QV, F¥ PV) indexed by N = 1,2, 3, ...
and for every N we have a process Y defined on (QV, FV PV). Time is continuous. Let
D0, 00) be the set of cddldg functions [0,00) — E; Y is then a stochastic process with
sample paths in Dg|0, co).

We denote by Y () the random value of YV at time t > 0. Let E C E be the
support of YV (0), so that PN(YV(0) € EV) = 1.

We assume that, for every N, the process YV is Feller, in the sense that for every ¢ > 0
and h € Cy(E), EN [h(YN(t))} YN (0) = yo| is a continuous function of yo € E. Examples
of such processes are continuous time Markov chains as in [16], or linear interpolations of
discrete time Markov chains as in [5], or the projections of a Markov process as in [12].
Note that apart from the first example, these are not Markov.



Definition 1. A probability [TV € P(F) is invariant for YV if [TV (EY) = 1 and for every
h € Cy(E) and every t > 0:

LB [ () YY) = ] 1) = [ )

E

We are interested in reversible processes, i.e. processes that keep the same stationary
law under time reversal. A weak form of such a property is defined as follows

Definition 2. Assume IIV is a probability on E such that IIV(EY) = 1, for some N. We
say that Y is reversible under ITV if for every time ¢t > 0 and any h € Cy(E x E):

JEY [0 YY) ©0) = ] 1) = [ B [ (@), YV(0) = ] 1)

Note that, necessarily, II"V is an invariant probability for Y~. If Y¥ is a Markov process,
then Definition 2] coincides with the classical definition of reversibility as in [13]. Similarly,
if Y is a projection of a reversible Markov process X%, as in [I0], then YV is reversible
under the projection of the stationary probability of X*; note that in such a case, YV is
not Markov.

2.2. A Limiting, Continuous Semi-Flow
Further, let ¢ be a deterministic process, i.e. a mapping
v: [0,00)xE — FE
t Yo = ©i(Yo)

We assume that ¢; is a semi-flow, i.e.

L o(y) =y,
2. st =@so forall s >0andt >0,

and we say that ¢ is “space continuous” if for every t > 0, ¢,(y) is continuous in y.
Definition 3. We say that y € E is a stationary point of ¢ if p,(y) =y for all ¢t > 0

In cases where F is a subset of R? for some integer d, the semi-flow ¢ may be an autonomous
ODE, of the form § = F(y); here the stationary points are the solutions of F'(y) = 0.

Definition 4. We say that the semi-flow ¢ is reversible under the probability IT € P(FE)
if for every time ¢ > 0 and any h € C,(E x E):

/E By, or(y))TT(dy) = / hr(y), y)TI(dy) 1)

E

As we show in the next section, reversible semi-flows must concentrate on stationary points.
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2.3. Convergence Hypothesis

We assume that, for every fixed ¢ the processes YV converge in distribution to the
deterministic process ¢ as N — oo for every collection of converging initial conditions.
More precisely:

Hypothesis 1. For every yo in E, every sequence (y) )n=12.. such that y)' € EN and
limy oo ¥ = wo, and every t > 0, the conditional law of YN (t) given YN(0) = y¥
converges weakly to the Dirac mass at oi(yo). That is

i BT [RYH(0)] Y7(0) = y5'] = o iluo)

for all h € Cy(E) and any fized t > 0.

Hypothesis [l holds in [18, [16] 20} [7, 3] as a consequence of stronger convergence results;
for example in [I6] there is almost sure, uniform convergence for all ¢ € [0,7], for any
T > 0. In [I2] the convergence is on the set of trajectories and is thus stronger than what
we require.

Under Hypothesis[l ¢ is called the hydrodynamic limit [1], or simply fluid limit of Y.

3. Reversible Semi-Flows Concentrate on Stationary Points

Theorem 1. Let ¢ be a space continuous semi-flow, reversible under I1. Let S be the set
of stationary points of p. Then 11 is concentrated on S, i.e. II(S) = 1.

Proof.
Step 1. Denote with S the complement of the set of stationary points. Take some
fixed but arbitrary yy € S. By definition of S, there exists some 7 > 0 such that

©ar(Y0) 7# Yo (2)

Define ¢-(yo) = y1. ¢-(y1) = Y2, so that y» # yo.
For y € E and € > 0 we denote with B(y, €) the open ball = {z € E,d(z,y) < €}. Let

€ = d(yo,y2) > 0 and let By = B(y9,€/2). Since the semi-flow is continuous in space, there
is some «; > 0 such that By = B(y;,aq) and ¢, (B;) C By. Also let B} = B(y1,1/2).
By the same argument, there exists some o > 0 such that ay < €¢/2, By = B(y.ap) and
- (By) C Bj. We have thus:

Or (BQ) C Bi C Bl
¢r (B1) C By
BQ N BQ - @

Let £ be some continuous function [0, +00) — [0, 1] such that £(u) = 1 whenever 0 < u <
1/2 and &(u) = 0 whenever u > 1 (for example take a linear interpolation). Now take

My, 2) € (M) ¢ (M) 3)

(&%) (€51
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so that h € Cp(E x E) and

h(y,z) =0 whenever y &€ By or z € By
hy,z) =1 whenever d(yo,y) < ap/2 and z € B

It follows that h(p,(2),z) = 0 for every z € E and

/E Wy o2 (4))TI(dy) > TI(Byo, ao/2)) (4)

Apply Definition [ it comes II (B(yo, ®/2)) = 0; thus, for any non stationary point ¥
there is some o > 0 such that
IT(B(yo, ) =0 (5)

Step 2. The space is polish thus also separable, i.e. has a dense enumerable set, say

Q.
For every y € S let a be as in Eq.(B) and pick some ¢(y) € Q and n(y) € N s.t.

Aly.a(y)) < 555 < @ Thus y € Blaly), 715) and 11 (Blay), 515)) = 0.

n(y) n(y)

Let F'=,cs(q(y),n(y)). F C Q x N thus F' is enumerable and

Thus
0<II(S) < H(B <q, %)) =0 (6)
O

Note that it follows that a semi-flow that does not have any stationary point cannot be
reversible under any probability.

4. Stationary Behaviour of Fluid Limits of Reversible Processes

Theorem 2. Assume the processes Y are reversible under some probabilities [TV . Assume
the convergence Hypothesis[l holds and that I1 € P(E) is a limit point of the sequence 11V,
Then the fluid limit is reversible under I1. In particular, it follows from Theorem[d] that 11
s concentrated on the set of stationary points S of the fluid limit .

Proof. All we need to show is that II verifies Definition @l Let N, be a subsequence
such that limy_,. I = II in the weak topology on P(E). By Skorohod’s representation
theorem for Polish spaces [T, Thm 1.8], there exists a common probability space (€2, F,P)
on which some random variables X* for £ € N and X are defined such that

law of X% = TN
law of X =11
XF 5 XP—as.
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Fix some t > 0 and h € C,(E x E), and define, for k € Nand y € £

)
)

a“(y) E E(h(y, YV@0)] Y(0)

=Y
Fy) € E(h(YN(t),y)| YY(0) =y

Since YV is reversible under ITVk:

[ @ ay) = [ vma) ™)
E E

Hypothesis [l implies that limy o, a®(2*) = h(z, p:(z)) for every sequence z* such that
¥ € EM and limy,_,oo 2% = 2 € E. Now X* € ENr P— almost surely, since the law of X*
is IIV* and Y™k is reversible under II™* . Further, X* — X P— almost surely; thus

klim a®(X*) = h(X, (X)) P— almost surely (8)
—00
Now a*(X*) < ||n||, and, thus, by dominated convergence:

lim E (a"(X")) = E (h(X, ¢:(X))) (9)

k—o00

and similarly for v*. Thus

[E Wy, o)) TI(dy) = / W), y)TI(dy) (10)

E

In particular, if the semi-flow has a unique stationary point, we have:

Corollary 1. Assume the processes YV are reversible under some probabilities 11V . As-
sume Hypothesis [l holds and:

1. the sequence (IIN) =1 is tight;
2. the semi-flow p has a unique stationary point y*.

It follows that the sequence IIV converges weakly to the Dirac mass at y*.

Recall that tightness means that for every € > 0 there is some compact set K C E such
that TIV(K) > 1 — € for all N. If F is compact then (IT")y_1 o is necessarily tight.

Compare Corollary [[lto known results for the non reversible case [2]: there we need that
the fluid limit ¢ has a unique limit point to which all trajectories converge. In contrast,
here, we need a much weaker assumption, which bears only on stationary points. It is
possible for a semi-flow to have a unique stationary point, without this stationary point
being a limit of all trajectories (for example because it is unstable, or because there are
stable limit cycles as in [3]). In Corollary [Il, we do not need to show stability of the unique
stationary point y*.
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