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Abstract— One of the hallmarks of physical interaction
between humans is haptic communication, i.e. an informa-
tion exchange through force signals. Humans excel in tasks
that require such interaction by adapting impedance and
anticipating the partner’s intentions. It is highly desirable to
endow robots with similar capabilities. Recently, the robotics
community renewed its interest in variable impedance control.
A special emphasis is put on the development of controllers
that incorporate learning as an essential element.

This article combines programming by demonstration and
adaptive control for teaching a robot to physically interact
with a human in a collaborative task requiring sharing of a
load by the two partners. Learning a task model allows the
robot to anticipate the partner’s intentions and adapt its motion
according to perceived forces. As the human represents a
highly complex contact environment, direct reproduction of the
learned model may lead to sub-optimal results. To compensate
for unmodelled uncertainties, in addition to learning we propose
an adaptive control algorithm which tunes the impedance
parameters, so as to ensure accurate reproduction.

To simplify the illustration of the concepts introduced in
this paper and provide a systematic evaluation, we present
experimental results obtained in physically-realistic simulation
of a dyad of two planar 2-DOF robots.

I. INTRODUCTION

Biological organisms show a unique competence for fast
adaptation to novel and unpredictable changes. Such “on-
line” adaptation may require the modification of the con-
trol law itself. This is different from typical error correc-
tion performed by conventional high-gain, trajectory-tracking
robotic controllers [1]. Once a robot is required not only to
accurately reproduce a pre-defined motion plan, but also to
operate in physical contact with other objects or humans, the
choice of control algorithm should be reassessed in favor of
adaptable low-gain approaches.

We consider the problem of physical interaction between
a robot and a human in situations where they jointly per-
form manipulation tasks, e.g. the collaborative carrying and
positioning of a load.

In [2], [3], we explored learning a control law for driving
physical interaction between the HRP-2 robot and a human
in a collaborative task of lifting up a beam; see Figure 1-
(a). Early analysis of the conducted experiments revealed
the importance of the prediction of motion velocity and
the anticipation of future perceived forces. Furthermore,
additional mechanisms are required to mitigate unmodelled
effects during task execution, i.e. sudden, unobserved de-
viations from a motion plan or varying human impedance.
Finally, it appeared necessary to systematically investigate
the prediction of the controller in controlled situations. To
provide such validation, we present studies modelling the
interaction between a pair of two planar robots in physically-
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realistic simulation'; see Figure 1-(b)-(d). We will further
denote as robot-leader the robot that substitutes the human
in the real-world experiments, while the other robot will
be denoted as robot-follower. The robot-follower proactively
changes the reference trajectory to synchronize with the
robot-leader, which keeps its reference trajectory unchanged.
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Fig. 1. (a) A human and a robot are collaboratively lifting a beam [3].

(b) Two planar robots (2 DOFs g, and g,) are engaged in a collaborative
task requiring lifting a beam up and down. The robot-leader substitutes the
human. The robot-follower anticipates the motion intentions of the robot-
leader and adapts accordingly. Task completion requires the satisfaction of
”soft constraints”: the two robots must coordinate and adapt their motions
so as to avoid tilting the beam, which would let the box fall down.
(c) The desired kinematic plan x4 1,Xq 1,%q,7 of the robot-leader is
given. During demonstration, the robot-follower learns to generate a desired
kinematic command x4,%4,X4 in response to the perceived force f. The
dynamical behavior of both robot end-effectors is modeled as mechanical
impedance, characterized by desired stiffness, damping, and inertia. During
the reproduction of the task, the robot-follower adapts its desired stiffness
K, and inertia A4, so as to ensure accurate reproduction of a learned task
model.

A generic approach to modeling robot behavior in contact
tasks is impedance control [4]. Essentially, impedance con-
trol generates a control law consisting of two components:
feedforward control, which produces the necessary forces to
accomplish a task (i.e. to accurately follow the reference
signals) in the perfect conditions and a feedback signal for
correcting errors of the feedforward controller. One distin-
guishes between positional feedback for correcting tracking
errors and force feedback, which is responsible for adaptation
to perceived external forces. The relative importance of
these components is controlled by the impedance parameters:
stiffness and damping affect positional feedback and inertia
influences force feedback.

Traditional position-tracking controllers represent a par-
ticular implementation of impedance control, where prece-
dence is given to minimizing position errors, forcing the

IDuring real-world human-robot interaction, one does not observe the
motion that the human intends to execute. However, having this information
would be desirable for comparing with that predicted by the robot. Simu-
lation allows us access to the data at the "human” side and to accordingly
conduct an accurate comparison.
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Fig. 2. After acquiring a set of demonstrations D, the robot learns the
task model £ = h(¢&) and a forward control signal # = w(¢&) which
maps the desired state of the internal model to actual motor commands.
Representation of the internal task model as a dynamical system allows the
robot to generate reference signals online adapting to the force applied by
a human. The robot is controlled through an impedance control law so as
to compensate for unmodeled aspects of the external dynamics. The desired
stiffness K and inertia A are continuously adapted during task execution.

robot to stiffly reject all external dynamics. This behavior
is strikingly different from that observed in humans, who
manage to achieve both compliancy and accuracy. Human
motion studies suggest that human motor control combines
the feedforward and feedback signal, and that the dominance
of one component over another gradually changes from
feedback control during the early stages of skill acquisition,
to feedforward control in highly trained individuals [5].
Recently, several bio-inspired algorithms have been proposed
to control robots in contact tasks. Specifically, works [1],
[6] advocate that skillful behavior can be accomplished
by continuous adaptation of the feedforward control and
stiffness. These works, however, consider interaction with
either a static environment or random disturbances.

The problem that we address in the current paper goes
beyond that of a robot reacting to random dynamical dis-
turbances. Instead, it focuses on continuous prediction and
adaptation to the unknown, but systematic, dynamics of a
human. We demonstrate that to resolve this problem, the
robot should be endowed, not only with variable stiffness [1],
[6], but also with variable inertia and an adaptive algorithm
to generate different reference kinematic profiles depending
on the perceived force.

We present a novel algorithm that first infers a task model:
once such a model is learned, the robot is able to generate
reference kinematic signals that are adapted to the perceived
force. To compensate for the unmodelled dynamics and
natural variability of the human partner, the learned model
is further integrated into an adaptive impedance controller.
The proposed adaptive impedance controller includes an
automatic gain-scheduling procedure inspired by the one
described in [6]. Specifically, we extend the feedback func-
tion so as to consider both positional and force feedback,
which leads to a new adaptation law for stiffness, inertia,
and feedforward control.

To systematically validate the performance of our
approach, we conducted physical simulations of two
dynamically-coupled multi-joint robotic arm systems, whose
behaviors incorporate delays and signal-dependent noise. We
demonstrate that the proposed controller is able to compen-
sate for varying environmental dynamics (i.e. variability in
the human motion) and unknown impedances.

II. PROBLEM STATEMENT

A training set D consists of M demonstrated trajectories
of length N*, for k = 1..M, each trajectory is a sequence
of states, £F, state derivatives £¥, and control inputs uf, t =
1..N".
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Fig. 3. The task model is represented by an autonomous dynamical system
& =h(¢), € = [x4;f4) and estimated from the training data. At each time
step, the velocity x4 and force f; are inferred from these observed at the
previous step. Their dynamical relationships follow vector fields displayed in
blue in the figure. Dark grey lines show the demonstrations. One can observe
an accurate fit between the inferred and demonstrated dynamics. Statistical
inference extends prediction of the force-velocity pattern to ranges of these
variables not observed during training. This offers a greater robustness
during adaptation to a new human partner.

The state vector represents the kinematic and haptic parts
of the task &F = [&,f¥]7. The kinematic part x} is the
velocity of the robot’s hand. The haptic part f f is the external
force perceived by a force sensor mounted at the robot’s
wrist. The control input ¥ is the vector of joint torques?.
The details of data acquisition in the real world task with
the HRP-2 can be found in [2], [3]; here we develop an
alternative procedure for acquiring data in simulation; see
Section IV-A.

We assume that the dependency observed between the
perceived force and robot’s kinematics contains a pattern of
adaptation, which should be reproduced by the robot during
autonomous interaction. Therefore, we aim to estimate the
task model from the observed data. To provide the robot-
follower with the means to follow the task model, we learn
an approximation of the feedforward control.

The demonstrations are implicitly influenced by some
unobservable parameters, dependent on bio-mechanical prop-
erties of the arm (e.g. stiffness, damping, etc.). To keep
our framework generic, we deliberately do not make any
assumptions on the type of the parameters. Instead, we
directly encode the internal task model, i.e. the evolution
of the task dynamics and the associated feedforward con-
trol. To compensate for unmodelled effects and the varying
impedance of the human collaborator, we further suggest
an outer control loop which implements adaptive robotic
impedance.

III. APPROACH

In the next sections we outline our approach to control
a robot during physical interaction with a human; see also
the schema in Figure 2 for a summary. We first outline our
learning algorithm that estimates the task model from demon-
strations. Next, we present adaptive impedance control, that
allows for the compensation of effects not captured by the
learned model. Such a compensation is achieved through the
tuning of the impedance parameters and of the feedforward
control signal.

A. LEARNING A TASK MODEL

We assume that the internal model of a task-related motion
is governed by an autonomous (no explicit time-dependency)

%In the following, we consider robots with torque controlled joints.



dynamical system?:

£ =h(€) + (&), (1

where £ is the state of the system, h(&) is the dynamical
function governing the temporal evolution of the motion and
(&) ~ N(0,%,(§)) is the signal-dependent noise.

In our previous work [7], we developed a statistical frame-
work which allowed one to learn a kinodynamical model
of the task from a series of demonstrations. Essentially, the
method consists of representing a demonstrated dataset D of
the state vectors and its derivatives as the joint probability
distribution P(€,€) and then extracting the dynamics func-
tion h(¢) as the posterior mean estimate h(¢) = E[P(£]¢)].

Due to the particular choice of the parametrization through
Gaussian Mixture Models (GMM), the learned non-linear
estimate h(£) is expressed as a sum of linear dynamical
systems weighted with nonlinear coefficients. The parameters
of the GMM, namely the means and covariance matrices, are
learned through an incremental EM procedure that ensures
that the final estimate is asymptotically stable at an attractor
(see [7]-[9] for details on the learning algorithm).

Here the attractor is predetermined and corresponds to
the origin of the system, i.e. force and velocity are zero. If
no force is perceived, the robot maintains an initial posture
without moving. When it perceives the force, the task model
starts to generate the reference kinematic profile according
to the non-linear force-velocity dependency; see Figure 3.

In our previous works, we considered that the state of the
system in Eq.1 represents the end-effector’s configuration in
the task space. Here we define an augmented state of the
system, that consists of the two parts: the kinematic part, that
represents the reference velocity x4, and the force feedback
part, that represents the expected external force f;:

€= [afy" )

The internal model in Eq.1 with the augmented state given
by Eq.2 iteratively generates a reference acceleration for
the robot’s end-effector X, together with the prediction of
the force derivative f 4- The velocity and position signals
X4, x4, as well as force prediction f; are then obtained by
integration.

The important novelty here consists of representing the
state of the task model through what we refer to as an
augmented state. The augmented state encapsulates both the
kinematic command, x, and the haptic input, f, and allows
one to learn a temporal evolution of the reference velocity
correlated with the perceived external force. As such, this
allows the robot to smoothly switch across different reference
velocity profiles in response to a change in the human’s
intentions, as perceived through the force input. A further
advantage of this encoding is that the internal model can
be used to mitigate sensory delays and noise by predicting
the perceived force. Specifically, to generate a reference
kinematics, the robot does not need to get the actual value
of the perceived force at each time step, it can predict the
perceived force to a velocity. Later, once it gets actual value
of the force, it may offset its prediction so as to switch to a
different velocity profile if necessary.

3Encoding a task model as an autonomous dynamical system allows to
represent behaviors that cannot be unambiguously expressed by a single
non-autoregressive function. Specifically, the dependency between force and
velocity in our case is not functional: the same value of force corresponds
to different velocities; see Figure 3.

B. LEARNING FEEDFORWARD CONTROL

Generation of the feedforward control u directly falls
within the category of problems tackled in operational space
control [10], [11]. It can be formalized as u = w(x 4, X4,%4):
the signal u controls the robot such that the end-effector
follows a desired Cartesian path x4, x4, X 4.

The learned task model € = h(£), with state & = [x4;f ],
defines a manifold in the space {xg,%4,%¥;}. Along this
manifold, both the reference acceleration X4 and position
x4 are functions of the state vector &; (¥y is generated by
ﬁ(£ ) and x4 is computed by integrating forward the reference
velocity x4 starting from an initial condition x4 ¢.) Therefore,
in this case, the feedforward control u# can be rewritten in a
more compact form as follows: u = w(€,x4,0).

The adaptive impedance control that we develop in the
next sections requires a linear parametrization of the control
signal u. Following [6], we write an approximation of the
control law as:

u=[®¢)" 0", 3)

where ® € REWNV=+Ny) s a vector of G basis functions and
© ¢ REW=+Ns)xNg i a matrix of the tunable parameters
(each column 67, i = 1..N,, of the matrix © corresponds to
one degree of freedom in the joint space). Ny, Ny, N, refer
to the dimensionality of the Cartesian space of the robot’s
end-effector, perceived force, and joint space, respectively.
This type of linear control parametrization is commonly used
in the adaptive control literature [12], [13]. The basis ®
consists of G Gaussian functions:

e =2(&); = Zgj(i)r 5(6)

where ;(€) = exp70'5(£7“‘§,]‘)T2_j_1(57“’§>7‘)

, j=1.G “)

where pg j, X, are the mean and the diagonal covariance
of a jth Gaussian kernel. We learn the parametrization in
Eq.3 through Linear Weighted Regression [14], by fixing the
means and covariances of Gaussian kernels.

C. IMPEDANCE CONTROL

The goal of impedance control is to implement a desired
dynamical relationship between the robot motion and the ex-
ternal forces/torques [4]. Our particular interest lies with the
control of impedance at contact points defined in Cartesian
space, specifically, at the robot’s end-effector.

We write the rigid body dynamics in the task coordinates
[15] % as:

Alg, @)k +plg.q)x +J Tglg) =T "T+f. (5
The matrices A(x) and p(x) are given by:
A)=JTMI7 k) =J"HC-MIT )Y (©)

where ¢ € RVq is the vector of joint angles, M(q) is the
inertia matrix, C(q, q) is the Coriolis/centrifugal matrix, g(q)
is the vector of gravity torques, 7., is the vector of external
torques, and 7T are the applied joint torques. The relation
between the Cartesian coordinates x and the joint coordinates
q is given by the kinematic function with the Jacobian J(q).

Impedance control defined in Cartesian space consists of
the following control objective [4]:

Agéy +Dyé, + Kae, = ¢ %)
withe, =x —xgande;=f — f ;.

4The notation ~7 refers to pseudo-inverse of a transposed matrix



where e, is the position error between the actual position
x and the reference position xg; ey measures how much
the actual perceived force f deviates from the predicted
one f;. Ay, Dy, and K, are the symmetric and positive
definite matrices of desired inertia, damping, and stiffness,
respectively. The external forces defined in the Cartesian
space are projected onto the joint torques according to:
Text = J Tf .

Substituting ¥ from Eq.7 into Eq. 5, the Cartesian
impedance controller can be implemented via the joint
torques 7 as follows:

T=u+J"Ke, +J"Dé, +J" Agey. (8)
where

u=g+J"(Aig+ px,) )
i{d = AA(;le» Dd = AAngd +IJ/7 Ad = AA;l - I

Eq.8 can be rewritten as a sum of the feedforward and
feedback components. The feedback signal can be decom-
posed into the kinematic feedback v, and the force feedback

V.

T=u+v, v=v,+7v;. (10)

Vo = JT(i{dez +Ddé1), Vi = JTAdef

Recently different approaches for shaping the desired
stiffness and damping have been suggested (see [6], [16],
[17]). In these works, the shaping of the desired inertia Ay
has been avoided by assigning it to be equal to the inertia of
the robot: A; = A. This simplifies control law computations
and eliminates the need to obtain an accurate dynamical
model of the robot. However, such an assumption also
leads to an important compromise: any system, interacting
with a robot, will sense its actual dynamical properties,
which are different from that of a human. A user will be
exposed to the unnatural robot’s dynamics. In tasks where the
robot physically interacts with humans, adaptation through
positional feedback is not sufficient, and shaping of the
desired inertia becomes important [18], [19].

In the remainder of this paper, we assume the desired
impedance matrices to be diagonal: K; = diag{ K, gﬂ; ,
D, = diag{D/ ggf, and Ag = diag{[&i}ggf . Common
practice assigns the damping factor D to be a function of
the stiffness K. Here we set D7 = )\\/E , where )\ is an
empirical parameter (A = 2 in our experiments).

D. ADAPTIVE IMPEDANCE

In this section we sketch an adaptive control algorithm for
learning the impedance parameters. The algorithm derived
in this section is an extension of a bio-mimetic approach
for tuning the stiffness of the robot end-effector presented
in [6]. We provide a brief outline of the original approach
in Appendix I; for more details, please refer to the original
paper.

Consider an adaptation law for feedforward control, de-
fined as follows:

26 = (1 @e + D14 @) 1, i = 1N,

2 2
(1)

where € is the error function, which will be defined later and
B, X, and 7 are empirical constants.

During free motion, deviations of the robot from a ref-
erence trajectory are solely caused by inaccuracies in the
dynamical models of either the robot’s body or the object

being manipulated. In contrast, during physical interaction,
such a deviation can also be due to variations in the partner’s
intentions. The view on processing kinematics errors, which
is taken in the original paper [6], suggests counteracting them
by applying force in the opposite direction. In our case the
robot should only counteract kinematics errors which are
due to model inaccuracies. Therefore, we introduce a new
feedback function which includes the force feedback and the
object-related kinematic error:

€=€m + €= JTex,m + ngTef. (12)

where e, ,, = {min(f - é,,0)(p1e: + p2és)

where - refers to the inner vector product and £ = ||f-é, ||~ ! is
the normalization factor. The term e, ,, defines the kinematic
error which is due to the varying mass of the object. We can
now rewrite Eq.11 as:

Ab" = §<1 —x1)®e; + §<1 +x1) @+ (3)
§(1 — X2)®e} + g(l + x2)@ley| — 71

In Eq.13, the terms (1 — x1)®¢, and 5(1 - X2)®e
correspond to the conventional adaptation law from the
control literature. g(l — x1)®Pe€’, generates a force in the
opposite direction of the kinematic error e,,,, and updates
the feedforward signal u. g(l — X2)<I>el]} compensates for
the deviation of the actual external force from the reference
external force and contributes to the adaptation of the desired
inertia.

The terms dependent on the absolute values of the errors
aim to tune stiffness. g(l + x1)®|€l| increases stability in
response to kinematic perturbation, while g(l + X2)<I>|ejc|
decreases the stiffness if the deviation of the external force
is increasing. Indeed, a sudden increase in the force error
e; signifies that the human is attempting to impose a
different motion plan, and hence the robot should decrease
the stiffness so as to maintain stable interaction.

Analogous to [6], the update mechanism emulates auto-
matic relaxation through the term +I. This is similar to a
behavior observed in humans who, in the absence of motion
errors, tend to relax muscles so as to minimize energy
consumption. Regrouping the terms in Eq.20 according to the
analysis above, the updating procedure for the forward signal
and the impedance parameters can be written as follows:

AG' = Ko P€pm — Yo, Ky >0 (14)
AKZZ = Br|egc,m,| - 6f|€§“ - 71_(3 517[3,7;77 > 0 (15)
AN} = kel — 5, §=1.N; k>0 (16)

Eq.8 together with Eq.3,14-16 represent the control algo-
rithm which allows for the simultaneous on-line adaptation
of the feedforward signal, desired stiffness and inertia.

IV. RESULTS

We validate our method in simulations that control the
robot-follower interacting with another planar robot; see Fig-
ure 1-(b). To highlight different types of adaptation handled
by our algorithm, we simulate different conditions that may
arise during execution of the collaborative tasks, and that
would require on-the-fly adaptation of the robot’s control
law.
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Fig. 4. TWO-STAGE TRAINING PROCEDURE. To simulate real-world training, where the robot is teleoperated by a human, we adopt a two stage
training procedure. Figures (a), (e) present the robots’ configurations during training. Desyncronization between the partners is greatly reduced during
active observation, as expressed by the reduced tilting of the beam. PASSIVE OBSERVATION: The stiffness of the robot-follower is set to be low ( 5N/m)
and the stiffness of the robot-leader is high ( 50/N/m). This allows the robot-leader to impose its kinematic plan; see Figure (b). The actual velocity of
the robot-follower is higher than its reference signal and coincides with the actual and reference velocities of the robot-leader. Such a forced adaptation
is achieved at the cost of considerable energy injection; see Figure (c)-(d). The robot-follower perceives high positive external forces, which are due to
the effort of the robot-leader. After observing the task “passively”, the robot-follower stores the kinematic information and discards the force signals.
ACTIVE OBSERVATION: The stiffness of both partners is medium ( 15N/m). The robot-leader repeats the same reference kinematical profile as at the
previous stage, while the robot-follower utilizes the adapted kinematic profile acquired during passive observation. Reproducing the adapted motion, the
robot-follower is more coordinated with its partner. Improvements in coordination lead to a decrease in the magnitude of the forces perceived by both
partners; see Figure (c)-(d), solid line. The final training set is composed of the velocity signal recorded during passive observation, and the external

forces/applied torques recorded during active observation.

A. TWO-STAGE TRAINING PROCEDURE

Demonstration data, which we will use next for validating
our algorithm, are acquired through a two-stage training pro-
cedure: in each demonstration, the robots alternate between
“passive” and “active” stages. In total, 15 demonstrations at
different speeds are provided. This procedure is inspired from
the way humans incrementally learn to synchronize with each
other. Here, the leader keeps the same pace during passive
and active stages. The follower adapts its desired kinematics
to synchronize with the leader.

We simulate the two types of sensorimotor limitations
of the human motor system: a signal-dependent noise and
sensory delay. We assign an initial reaction delay (a time
span between the moment when the robot-follower starts to
perceive the changing force and the moment when it actually
starts moving) to be 150ms; the constant perception delay
along the motion (delay between perception of a force and
generation of a reaction) is 3ms.

The robots are controlled with the impedance control law
according to Eq.8 with the pre-defined impedance parameters
and the zero reference force f,;. The reference kinematics
profiles share the same goal (i.e. bring the beam in a specified
location), but have dissimilar timing (due to different refer-
ence velocity profiles and sensory delays). For both the leader
and the follower, the reference kinematics are generated
with a dynamical system parameterized with a multiplicative
parameter, so as to produce the same task space trajectories
but with different velocity profiles. Specifically, we use
the VITE dynamical model of human reaching motions
[20], [21]: X4 = a(—%q + 4(x@ — x4)), where « is the
multiplicative parameter, X, is the given target location.

To provide examples of adaptation to different velocities,
the parameter o of the robot-leader is varied from one
demonstration to another (but not between the two stages
of one demonstration), so as to generate motions with a
maximum desired velocity of 0.2m/s-0.5m/s and duration of
0.4-0.8 5. The parameter « of the robot-follower is fixed; the
VITE model generates the reference motion of 0.8s with the
maximum velocity 0.2m/s.

5 A model parameterized with o = 10 will produce the same trajectories
in the state-space {x1; 2} as a model parameterized with o = 20, however
the latter one converges to the target twice as fast.
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Fig. 5. TASK LEARNING AND REPRODUCTION. In this experiment,
the robot-follower learns the lifting task by observing several demonstrations
performed with different velocity profiles imposed by the robot-leader.
Next, during reproduction, the robot-leader varies its kinematics plan from
one attempt to another; it does so by changing motion duration and
maximum velocity. The robot-follower, governed by the learned task and
control model, adapts to the motion of the robot-leader and successfully
accomplishes the task. (a) The state-space view of the data used for training
a task model (grey line) and the reproduction attempts (green line). Note
the non-linear correlation pattern between the perceived force and generated
velocity. (b) The forward control signal generated by the robot-follower
during demonstration (grey line) and reproduction (green line). The two
datasets correspond to the two joints of the planar robot-follower. (c)-
(d) The time-series of the Cartesian velocity and trajectory of the robot-
follower during reproduction. After an initial delay in synchronization, the
robot-follower (green line) adjusts its reference kinematics and successfully
synchronizes with the robot-leader (dashed blue line).

1) Passive Observation: The two robots are controlled to
follow their reference kinematical profiles generated with the
VITE system as discussed above. The stiffness of the robot-
follower is set to be low ( 5N/m) and the stiffness of the
robot-leader is high ( 50N/m). The robot-leader imposes its
motion plan to the partner; see Figure 4-(b). This requires
the robot-leader to inject a considerable amount of energy;
see Figure 4-(c),(d), dashed line. Therefore, even though the
robot-follower follows the motion of the robot-leader (the
actual velocity of the robot-follower is close to that of the



leader), the perceived forces are different from those that
would be observed if it did so intentionally. To observe these
forces, the robot-follower reproduces the actual kinematics
during the next training step.

2) Active Observation: The robot-leader tracks the same
reference trajectory X4 r,Xq,r,X4r as during the passive
stage. The robot-follower utilizes as the reference signal the
actual kinematics x,x, X recorded during passive observation
(as it more accurately matches the reference kinematics of
the leader; see Figure 4-(b)). The stiffness of both partners
is medium ( 15N/m).

By deliberately reproducing this imposed kinematic pro-
file, the robot-follower generates forces that are better aligned
with those of the robot-leader. At this stage the robot-leader
injects less energy and, therefore, the forces perceived by the
robot-follower are smaller than those at the first stage; see
Figure 4-(c),(d), solid line.

Figure 4-(a),(e) highlights improvements in synchroniza-
tion between the robots across the two training stages.

The collected data (the actual velocity, the perceived
forces, and the feedforward commands of the robot-follower)
are further used to learn models of the task & and of the
feedforward control w.

B. LEARNING A TASK MODEL

The acquired training data are depicted in Figure 5 -
(a),(b); note that the data exhibit a non-linear force-velocity
correlation, and that the pattern of this correlation is similar
to the one observed in real-world data acquired with HRP-2
robot (see our previous work [3]).

After acquiring the training data, the robot learns the
internal model of the task & = h(¢) and the forward control
model u = w(&). During reproduction, the learned models
are fed into the control law in Eq. 8. The results of the
task execution are depicted in green in Figure 5. Note that
the robot-follower manages to successfully choose different
velocity profiles, which are synchronized with those applied
by the robot-leader.

C. ADAPTATION TO PERTURBATIONS

We tested the ability of the trained model to adapt to
changing intentions of the robot-leader during motion execu-
tion. We simulated uncertainties about the motion objectives
by varying the target position Xy, in the motion plan of the
robot-leader. Three different cases are considered where the
robot-leader changes the motion plan in real-time, during
task execution. It decides to move the beam (1) higher than
it has initially planned, (2) lower, but still higher than the
actual position of the robots at the moment of taking the
decision, and (3) lower than both the original target position
and the actual position.

Figure 6 shows that the robot-follower succeeds in follow-
ing the robot-leader, by bringing the beam to the new desired
location. This exploits the fact that the learned internal model
generalizes the force and velocity patterns to values not
observed during training, as discussed in Figure 3. Note that
the robot-follower, governed by the learned model, succeeds
in following the robot-leader according to the demonstrated
motion pattern. In all trials the robot-follower brings the
beam to the new target position imposed by the robot-leader.

In the first case, after a short period during which the
velocity decreases (due to inertia and perception delay), the
robot-follower catches up with the intentions of the robot-
leader keep higher; and in turn starts to reaccelerate to also
move higher. In the second case (placing the beam into

the lower position before this position has been passed),
the robot-follower decelerates faster than during the normal
conditions; see Figure 6-(c). In the third case, when the
robot-follower manages to rapidly decelerate and smoothly
switch to the negative velocity. Note, that in the second
and the third cases, the robot-follower slightly overshoots
after the perturbation, as it requires some time to readjust its
reference kinematics.

D. ADAPTATION OF UNKNOWN IMPEDANCE

In the previous experiments we reused the impedance pa-
rameters which the two robots had during training. However,
in general the impedance parameters of the robot-follower
are unknown, e.g. if the demonstrations are provided through
teleoperation. We now assume that the robot-follower has
no information about the impedance it should apply at the
end-effector. Therefore, the robot-follower should adapt the
parameters on-line, during task reproduction; see Figure 7.

The experiment starts with the robot-follower stiffness and
inertia set to mid-range values of 35N/m and 0 respectively
(in contrast, during demonstration the two parameters were
10N/m and 0.7). This is an important difference in the
parameter values. One can see in Figure 7-(a), dashed
line, that reproduction without adaptation of the impedance
parameters leads to an overestimated reference velocity and
instabilities at the target. Adaptation allows the tuning of
the parameters so as to facilitate stable interactions and
convergence to the target; see Figure 7-(a), green line. After
slightly growing in the beginning of the motion, to enable for
smooth acceleration, the stiffness gradually decreases due to
the relaxation term and errors in tracking the desired force
profile; see Figure 7-(d). The inertia, in turn, decreases in the
beginning, to ensure the stable onset of the motion. It further
increases to endow the robot-follower with greater reactivity
to the partner’s intentions; see Figure 7-(c).
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Fig. 7. ADAPTATION OF UNKNOWN IMPEDANCE. In general, the
impedance parameters that would be optimal for the task are unknown.
Therefore, the robot-follower should tune its stiffness and inertia during task
execution. Indeed, the arbitrary impedance parameters may cause undesir-
able effects, e.g. overestimated reference kinematics and contact instabilities
(blue dashed line). Our algorithm provides an efficient adaptation law, which
allows to tune the parameters, so as to ensure accurate reproduction of the
observed behavior (green lines in (a)-(b) show the results with impedance
adaptation).

E. COMPARISON WITH A DAMPING CONTROLLER

To highlight the advantages of the proposed approach for
controlling a robot during collaborative manipulation tasks,
we implemented a damping controller [22]. This easy to
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ADAPTATION TO PERTURBATIONS. We analyze three different cases where the robot-leader decides to change the motion plan online and

move the beam (1) higher than it has initially planned, (2) lower, but higher than the actual position of the beam at the moment of taking the decision about
changing, and (3) lower than both the original target position and the actual position at the decision-taking moment. In the first case, the robot-follower
manages to reaccelerate (see the two peaks in the velocity profile). While in the two other cases the robot-follower proactively decelerates. In the third
case, the robot also manages to smoothly drop velocity below zero and lower the beam.

implement and computationally cheap method is often used
to control robots during physical collaboration with people.
The only free parameter in this controller is the damping
coefficient; the reference kinematics and all other impedance
parameters are set to zero. The resultant robot behavior is
purely reactive, i.e. the only source of mechanical energy
is a human partner, who should constantly inject energy to
keep the robot moving. The damping control has been proven
to be useful and efficient in many applications; however, it
puts additional workload on the human and is not adequate
to control for fast motions.

We compare the performance of our system versus that
of the damping controller in Figure 8. The forces perceived
by the robot are much higher than those observed with our
learned system (Figure 8-(d)). This is due to the higher forces
that the robot-leader has to apply to control the interaction.
Additionally, the beam undergoes stronger rotation (Figure
8-(b)) due to the imbalanced forces on its two sides. This
will be highly undesirable if the beam is loaded with unfixed
objects, which may fall down if the rotation is too strong.
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Fig. 8. COMPARISON WITH A DAMPING CONTROLLER. We compare
the performance of our system versus that of the damping controller. (a),
(c) Snapshots of the planar robots performing lifting; the robot follower
is controlled by (a) the proposed learned controller, and (c) the damping
controller. One may visually notice the improvements in coordination
between the partners when the robot-follower adapts its kinematic profile (a):
the beam is mostly kept horizontal all along the motion. It is persistently
tilted when the robot-follower is controlled with the damping (c). (d) 0
characterizes deviation of the beam from the horizontal orientation. The
damping controller produces force imbalance on the two sides of the beam
which leads to greater variation in 6 along the motion. (b) The robot-leader
has to apply considerably higher forces to make the system move.

V. RELATED WORK

While interaction control has been investigated for several
decades, the available tools remain substantially less efficient
than those developed for free-space motion. Later attempts
to implement physical human-robot interaction introduced
the notions of variable impedance and active following. For
instance in [23] a robot adjusts its damping depending on
the perceived force; in [22] it tries to predict the target
of a motion to proactively generate a reference trajectory.
Although their validity is confirmed with successful exper-
imental results, they are still ad-hoc solutions: no generic
framework for tackling both the learning of task models and
the variable impedance is provided.

With recently renewed interest in impedance control, sev-
eral methods have been suggested to address the problem of
the automatic scheduling of the impedance parameters. The
existing algorithms implement learning the variable stiffness
through reinforcement learning [16] or adaptive control [6].
The major assumption shared by these approaches is the
repeatability of both a task and the external dynamics, which
allows a robot to adapt its behavior between multiple trials.

In robot learning, the few existing works consider a
learned trajectory as a reference signal for a hard-coded
impedance controller. In [24], a robot is taught to clap hands
with a human. The robot utilizes Hidden Markov Models
(HMM) to recognize the human behavior from motion data
and generate a reference trajectory. This trajectory is fur-
ther incorporated into a hard-coded impedance controller to
compensate for a potential physical impact. The considered
scenario does not require continuous physical interaction and
haptic signals do not effect the reference signal.

A hand-shaking robot is presented in [25]. In this method,
the authors encode motion trajectories with an HMM, where
the hidden variables represent the human impedance. Such
encoding requires the robot to measure human impedance
and further recognize which motion model to choose. The
motion model is chosen at the onset of the task and governs
the robot through the rest of the task without adaptation.
This is different from our approach that allows continuous
adaptation of the motion throughout the task.

VI. CONCLUSIONS AND FUTURE WORKS

We present an approach to learning robot control during
physical interaction with humans. The method addresses the
problem of controlling a robot so that it can coordinate its



motions with that of a human in collaborative tasks, and this
while relying solely on haptic and proprioceptive feedback
(no vision or verbal commands are involved).

In contrast to other works on variable impedance, our
method allows for adaptation within an execution trial, and
not only from trial to trial. Since there is a human in the
loop, this characteristic is essential. We cannot ensure that
at the next trial the person will identically repeat the task and
provide the robot with time to tune its controller. However,
our method still benefits from a model-free approach which
eliminates the necessity to derive a complete dynamical
model of the robot.

In the current contribution, we address the case of torque-
controlled robots and derive an impedance-based approach.
Currently, we are working on an extension of our algorithm
that encapsulates an admittance-based controller for position-
controlled robots. We will implement the suggested algo-
rithm on an actual HRP-2 robot. We believe that our method
contributes importantly to research on physical human-robot
interaction. The proposed system endows the robot with two
fundamental features of human motor control that emerge
during physical interaction: learning haptic communication
in a natural manner, and continuous adaptation to incoming
forces during task execution. Additionally, the simulator
developed in this work provides an efficient means to study
physical interactions between two agents for which we have
yet very few models. It offers a framework for systematically
assessing and comparing performance of different algorithms
to control human-robot interaction, a very intricate problem.

VII. APPENDIX

We further briefly summarize the major concepts of the bio-
mimetic adaptive algorithm presented in [6], for details, please,
refer to the original publication.

We use the following cost function [6] which penalizes the
feedback cost and activation of the feedforward command:

K
ming: R'(0') = 0.58 (v')* +~ > 0;, forall i = 1.N,. (17)

k=1

where 8 > 0,7 > 0 are empirical constants controlling the
influence of the two components. In [6], it has been suggested to
use a special form of the feedback signal v* for derivation of the
adaptation policy:

v' = 0.5[(1 = x)e" + (L +x)[e']],
€ = pie’ + p2¢', pr,p2 >0

(18)

e’ is deviation of the controlled signal from its desired value,
X, p1, p2 > 0 are empirical constants.
To optimize the trained parameters ® in Eq.3, the cost function

R; is minimized by gradient descent:

LRi v’ )T
do’

A = — : —~1
t 802 v 77

= —5(

19)

The control T, feedforward u, and feedback signal v are linked:
T = u +v; see Eq.10. T represents the environment being learned
and is assumed to be independent of ®, therefore the adaptation
law in Eq.19 can be rewritten as:

out
0%

A0 = (o) 0" =yl = BBV — 1. (20)
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