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Abstract

Message-based concurrency using actors has the potential to scale from multi-
core processors to distributed systems. However, several challenges remain until
actor-based programming can be applied on a large scale.

First, actor implementations must be efficient and highly scalable to meet the
demands of large-scale distributed applications. Existing implementations for
mainstream platforms achieve high performance and scalability only at the cost
of flexibility and ease of use: the control inversion introduced by event-driven
designs and the absence of fine-grained message filtering complicate the logic of
application programs.

Second, common requirements pertaining to performance and interoperability
make programs prone to concurrency bugs: reusing code that relies on lower-level
synchronization primitives may introduce livelocks; passing mutable messages by
reference may lead to data races.

This thesis describes the design and implementation of Scala Actors. Our sys-
tem offers the efficiency and scalability required by large-scale production sys-
tems, in some cases exceeding the performance of state-of-the-art JVM-based ac-
tor implementations. At the same time, the programming model (a) avoids the
control inversion of event-driven designs, and (b) supports a flexible message re-
ception operation. Thereby, we provide experimental evidence that Erlang-style
actors can be implemented on mainstream platforms with only a modest overhead
compared to simpler actor abstractions based on inversion of control. A novel
integration of event-based and thread-based models of concurrency enables a safe
reuse of lock-based code from inside actors.

Finally, we introduce a new type-based approach to actor isolation which
avoids data races using unique object references. Simple, static capabilities are
used to enforce a flexible notion of uniqueness and at-most-once consumption of
unique references. Our main point of innovation is a novel way to support internal
aliasing of unique references which leads to a surprisingly simple type system,
for which we provide a complete soundness proof. Using an implementation as
a plug-in for the EPFL Scala compiler, we show that the type system can be in-
tegrated into full-featured languages. Practical experience with collection classes
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and actor-based concurrent programs suggests that the system allows type check-
ing real-world Scala code with only few changes.

Keywords: Concurrent programming, actors, threads, events, join patterns, chords,
aliasing, linear types, unique pointers, capabilities



Kurzfassung

Nachrichtenbasierte Nebenläufigkeit mit Aktoren hat das Potential von Mehrkern-
Prozessoren hin zu verteilten System zu skalieren. Es gibt jedoch noch mehrere
Herausforderungen zu meistern bis aktorenbasierte Programmierung im grossen
Massstab angewandt werden kann.

Zum einen werden effiziente Implementierungen benötigt, die hochgradig skalier-
bar sind, um den Anforderungen moderner verteilter Anwendungen gerecht zu
werden. Existierende Implementierungen für verbreitete Plattformen erreichen
hohe Leistung und Skalierbarkeit nur auf Kosten von Flexibilität und Benutzbarkeit:
Die Steuerfluss-Inversion, die ereignisbasierte Entwürfe mit sich bringen, und das
Fehlen von feingranularer Nachrichtenfilterung führen oft dazu, dass die Anwen-
dungslogik deutlich komplizierter wird.

Zum anderen bringen Leistungs- und Interoperabilitätsanforderungen oft eine
erhöhte Anfälligkeit für Synchronisierungsfehler mit sich: Die Wiederverwen-
dung von Quellcode, der auf Synchronisierungsmechanismen einer niedrigeren
Abstraktionsebene basiert, kann Livelocks zur Folge haben; das Senden von Ref-
erenzen auf nichtkonstante Daten als Nachrichten kann zu Dataraces führen.

Diese Dissertation beschreibt den Entwurf und die Implementierung von Scala
Actors. Unser System stellt die Effizienz und Skalierbarkeit zur Verfügung, die
für grosse Systeme in Produktionsumgebungen erforderlich ist, wobei in manchen
Fällen die Leistung anderer Javabasierter Aktorimplementierungen deutlich übertrof-
fen wird. Gleichzeitig wird vom Programmiermodell (a) die Steuerfluss-Inversion
ereignisbasierter Entwürfe vermieden, und (b) eine flexible Nachrichtenempfang-
soperation unterstützt. Damit zeigen wir mit Hilfe experimenteller Ergebnisse,
dass Erlang-Aktoren mit nur geringem Overhead im Vergleich zu einfacheren
Programmiermodellen, die auf Steuerfluss-Inversion basieren, auf weitverbreit-
eten Plattformen implementiert werden können. Eine neuartige Integration von
ereignisbasierten und threadbasierten Nebenläufigkeitsmodellen erlaubt eine sichere
Wiederverwendung von lockbasiertem Quellcode innerhalb von Aktoren.

Im letzten Teil der Dissertation führen wir einen neuen typbasierten Ansatz zur
Isolierung von Aktoren ein, bei dem Dataraces mit Hilfe von eindeutigen Objek-
treferenzen vermieden werden. Einfache, statische Capabilities werden genutzt
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um sowohl eine flexible Form von Referenzeindeutigkeit als auch den höchstens
einmaligen Verbrauch eindeutiger Referenzen sicherzustellen. Unsere wichtig-
ste Innovation ist eine neuartige Methode, internes Aliasing eindeutiger Referen-
zen zu erlauben, was zu einem erstaunlich einfachen Typsystem führt; wir stellen
einen vollständigen Beweis der Typsicherheit unseres Systems zur Verfügung. Mit
Hilfe einer Implementierung als Plugin für den EPFL Scala-Compiler zeigen wir,
dass das Typsystem in umfangreiche, produktionsreife Sprachen integriert wer-
den kann. Praktische Experimente mit Collections und aktorbasierten, nebenläu-
figen Programmen zeigen, dass das System die Typprüfung praktisch benutzbaren
Scala-Quellcodes erlaubt, wobei nur wenige zusätzliche Änderungen benötigt wer-
den.

Stichwörter: Nebenläufige Programmierung, Aktoren, Threads, Ereignisse, Join-
Kalkül, Chords, Alias-Analyse, Lineare Typen, Eindeutige Referenzen, Capabili-
ties
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Chapter 1

Introduction

In today’s computing landscape it is paramount to find viable solutions to perva-
sive concurrency. On the one hand, application programmers have to structure
their programs in a way that leverages the resources of current and future multi-
core processors. On the other hand, concurrency is an intrinsic aspect of emerging
computing paradigms, such as web applications and cloud computing.

The two main approaches to concurrency are shared memory and message
passing. In the shared memory approach, the execution of concurrent threads of
control is typically synchronized using locks or monitors. Locking has a simple
semantics, and can be implemented efficiently [10]; however, it suffers from well-
known problems pertaining to correctness, liveness, and scalability [72].

Several researchers have proposed software transactional memory to over-
come the problems of locking in shared-memory concurrency [75, 112, 5]. How-
ever, it is not yet clear, whether the induced overhead can be made small enough
to make software transactions practical [24].

The above concerns lead us to explore concurrent programming based on mes-
sage passing in this thesis. In message-based concurrency, programs are struc-
tured as collections of processes (or agents, or actors) that share no common state.
Messages are the only way of synchronization and communication. There are
two categories of message-based systems: actor-based systems and channel-based
systems. In actor-based systems [76, 3], messages are sent directly to processes.
Channel-based systems introduce channels as an intermediary abstraction: mes-
sages are sent to channels, which can be read by one or more processes. In dis-
tributed systems, channels are usually restricted to be readable only by a single
process. Although channel-based concurrency has been studied more extensively
by the research community (e.g., the π-calculus [92]), in practice actor-based sys-
tems are more wide-spread.

One of the earliest popular implementations of actor-based concurrency is the
Erlang programming language [8], which was created by Ericsson. Erlang sup-
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2 CHAPTER 1. INTRODUCTION

ports massively concurrent systems such as telephone exchanges by using a very
lightweight implementation of concurrent processes [7, 95]. The language was
used at first in telecommunication systems, but is now also finding applications
in internet commerce, such as Amazon’s SimpleDB [113]. Erlang’s strong sepa-
ration between address spaces of processes ensures that its concurrent processes
can only interact through message sends and receives. It thus excludes race condi-
tions of shared-memory systems by design and in practice also reduces the risks of
deadlock. These guarantees are paid for by the added overhead of communication:
data has to be copied between actors when sent in a message. This would rule out
the Erlang style in systems that pass large amounts of state between actors.

Despite the initial success of Erlang in certain domains, the language is still
not being as widely adopted as other concurrent, object-oriented languages, such
as Java.1 In contrast, programming models based on actors or agents are be-
coming more and more popular, with implementations being developed as part of
both new languages, such as Clojure [49], and libraries for mainstream languages,
such as Microsoft’s Asynchronous Agents Library [33] for C++. However, there
are several remaining challenges that must be addressed to make actor-based pro-
gramming systems a viable solution for concurrent programming on a large scale.
In this thesis we focus on what we believe are two of the most important problems:

1. Implementations of the actor model on mainstream platforms that are effi-
cient and flexible. The standard concurrency constructs of platforms such as
the Java virtual machine (JVM), shared-memory threads with locks, suffer
from high memory consumption and context-switching overhead. There-
fore, the interleaving of independent computations is often modeled in an
event-driven style on these platforms. However, programming in an explic-
itly event-driven style is complicated and error-prone, because it involves an
inversion of control [125, 35]. The challenge is to provide actor implemen-
tations with the efficiency of event-driven run-time systems while avoiding
this control inversion.

Moreover, in practice it is important that actors integrate with existing syn-
chronization mechanisms. For instance, in a JVM-based setting it is neces-
sary to provide a safe way to interact with existing thread-based code that
uses locks and monitors for synchronization.

2. Safe and efficient message passing between local and remote actors. To en-
able seamless scalability of applications from multi-core processors to dis-
tributed systems, local and remote message send operations should behave

1Given its age, it is surprising that in the TIOBE Programming Commu-
nity Index of July 2010, Scala is already more popular than Erlang. See
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html.
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the same. A good candidate for a uniform semantics is that a sent message
gets moved from the memory region of the sender to the (possibly disjoint)
memory region of the receiver. This means that the sender loses access to a
message after it has been sent. Using such a semantics even inside the same
shared-memory (virtual) machine has the advantage that it avoids data races
when accessing heap objects, provided concurrent processes communicate
only by passing messages.

However, physically moving messages through marshaling (i.e., copying)
is expensive. In performance-critical code where messages can be large,
such as network protocol stacks [48, 50] or image-processing pipelines, the
overhead of copying the state of messages is not acceptable. Instead, the
underlying implementation must pass messages between processes running
inside the same address space (or virtual machine) by reference. As a result,
enforcing race freedom becomes much more difficult, especially in the con-
text of imperative, object-oriented languages, where aliasing is common.

This thesis describes a practical approach to race-free concurrent program-
ming with actors that relies on integrating threads and events, and a lightweight
type system that tracks uniqueness of object references. Our approach builds on
features that have been adopted in widely-available languages, such as Scala and
F#, namely first-class functions, pattern matching, and type system plug-ins.

Establishing this thesis required us to advance the state of the art in implement-
ing concurrent programming models, and in static type systems. In the following
we summarize the specific contributions we make in each of these areas.

1.1 Contributions

1.1.1 Design and implementation of programming models for
concurrency

We present the design and implementation of an actor-based programming sys-
tem that is efficient and flexible. The system is efficient thanks to a lightweight,
event-driven execution model that can leverage work-stealing thread pools. Ex-
perimental results show that our system outperforms state-of-the-art actor imple-
mentations in important scenarios. The programming model is more flexible than
previous designs by combining the following properties in the same system:

• Event-driven systems can be programmed without an inversion of control.
In conventional event-driven designs, the program logic is fragmented across
several event handlers; control flow is expressed through manipulation of
shared state [26]. Our design avoids this control inversion.
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• Incoming messages can be filtered in a fine-grained way using expressive
primitives for message reception. This allows expressing common message-
passing protocols in a direct and intuitive way [8].

• Event-driven code can interact safely with thread-based, blocking code. The
behavior of a single actor can be expressed using both event-driven and
thread-based code.

We provide a complete implementation of our programming model in the Scala
Actors library, which is part of the Scala distribution [83]. It requires neither spe-
cial syntax nor compiler support. The main advantage of a library-based design is
that it is easy to extend and adapt. Apart from lowering the implementation effort,
it also helps make the system future proof by enabling non-trivial extensions.

We show how to extend our programming system with a high-level synchro-
nization construct inspired by the join-calculus [56, 57]. Our implementation tech-
nique is novel in the way it integrates with Scala’s standard pattern matching; this
allows programmers to avoid certain kinds of boilerplate code that are inevitable
when using existing library-based approaches. We provide a complete prototype
implementation that supports join patterns with multiple synchronous events and
a restricted form of guards [63].

1.1.2 Static type systems
We introduce a type system that uses capabilities for enforcing both a flexible no-
tion of uniqueness and at-most-once consumption of unique references, making
the system uniform and simple. The type system supports methods that operate
on unique objects without consuming them in the caller’s context. This is akin to
lent or borrowed parameters in ownership type systems [94, 31, 136], which allow
temporary aliasing across method boundaries. Our approach identifies uniqueness
and borrowing as much as possible. In fact, the only difference between a unique
and a borrowed object is that the unique object comes with the capability to con-
sume it (e.g., through ownership transfer). While uniform treatments of unique-
ness and borrowing exist [51, 19], our approach requires only simple, unstructured
capabilities. This has several advantages: first, it provides simple foundations for
uniqueness and borrowing. Second, it does not require complex features such as
existential ownership or explicit regions in the type system. Third, it avoids the
problematic interplay between borrowing and destructive reads, since unique ref-
erences subsume borrowed references. The specific contributions of our approach
are as follows.

1. We introduce a simple and flexible annotation system used to guide the type
checker. The system is simple in the sense that only local variables, fields
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and method parameters are annotated. This means that type declarations
remain unchanged. This facilitates the integration of our annotation system
into full-featured languages, such as Scala.

2. We formalize our type system in the context of an imperative object calculus
and prove it sound. Our main point of innovation is a novel way to support
internal aliasing of unique references, which is surprisingly simple. By
protecting all aliases pointing into a unique object (graph) with the same
capability, illegal aliases are avoided by consuming that capability. The
formal model corresponds closely to our annotation system: all types in the
formalization can be expressed using those annotations. We also extend our
system with constructs for actor-based concurrency and prove an isolation
theorem.

3. We extend our system to support closures and nested classes, features that
have been almost completely ignored by existing work on unique object
references. However, we found these features to be indispensable for type-
checking real-world Scala code, such as collection classes.

4. We have implemented our type system as a pluggable annotation checker
for the EPFL Scala compiler. We show that real-world actor-based con-
current programs can be type-checked with only a small increase in type
annotations.

1.1.3 Publications

Parts of the above contributions have been published in the following papers. At
the beginning of each chapter we clarify more precisely its relationship to the
corresponding publication(s).

• Philipp Haller and Martin Odersky. Capabilities for uniqueness and borrow-
ing. In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP’10), pages 354–378. Springer, June 2010

• Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based and
event-based programming. Theor. Comput. Sci, 410(2-3):202–220, 2009

• Philipp Haller and Tom Van Cutsem. Implementing joins using extensible
pattern matching. In Proceedings of the 10th International Conference on
Coordination Models and Languages (COORDINATION’08), pages 135–
152. Springer, June 2008
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• Philipp Haller and Martin Odersky. Event-based programming without in-
version of control. In Proceedings of the 7th Joint Modular Languages
Conference (JMLC’06), pages 4–22. Springer, September 2006

1.2 Outline of the Dissertation
The rest of this dissertation is organized as follows. In Chapter 2 we introduce
the Scala Actors library, which provides an embedded domain-specific language
for programming with actors in Scala. This chapter explains our approach to in-
tegrating threads and events, and provides experimental evidence that our imple-
mentation is indeed practical. Chapter 3 presents a novel implementation of join
patterns based on Scala’s support for extensible pattern matching; we also show
how to integrate joins into Scala Actors. Chapter 4 introduces a novel type-based
approach to actor isolation. We present a formalization of our type system in the
context of an imperative object calculus. The formal development is used to estab-
lish soundness of the type system (a complete proof appears in Appendix A.) This
chapter also includes an isolation theorem that guarantees race freedom in concur-
rent programs (a proof of this theorem appears in the appendix.) Finally, we report
on our implementation in Scala and practical experience with mutable collections
and mid-sized concurrent programs. Chapter 5 concludes this dissertation.



Chapter 2

Integrating Threads and Events

In Chapter 1 we introduced the Erlang programming language [8] as a popular
implementation of actor-style concurrency. An important factor of Erlang’s suc-
cess (at least in the domain of telecommunications software [95]) is its lightweight
implementation of concurrent processes [7]. Mainstream platforms, such as the
JVM [90], have been lacking an equally attractive implementation. Their stan-
dard concurrency constructs, shared-memory threads with locks, suffer from high
memory consumption and context-switching overhead. Therefore, the interleav-
ing of independent computations is often modeled in an event-driven style on these
platforms. However, programming in an explicitly event-driven style is compli-
cated and error-prone, because it involves an inversion of control [125, 35].

In this chapter we introduce a programming model for Erlang-style actors that
unifies thread-based and event-based models of concurrency. The two models are
supported through two different operations for message reception. The first opera-
tion, receive, corresponds to thread-based programming: when the actor cannot
receive a message, it suspends keeping the entire call stack of its underlying thread
intact. Subsequently, the actor can be resumed just like a regular blocked thread.
The second operation, react, corresponds to event-based programming: here, the
actor suspends using only a continuation closure; the closure plays the same role
as an event handler in event-driven designs. An actor suspended in this way is
resumed by scheduling its continuation closure for execution on a thread pool. By
allowing actors to use both receive and react for implementing their behavior,
we combine the benefits of the respective concurrency models. Threads support
blocking operations such as system I/O, and can be executed on multiple processor
cores in parallel. Event-based computation, on the other hand, is more lightweight
and scales to larger numbers of actors. We also present a set of combinators that
allows a flexible composition of these actors.

7
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The presented scheme has been implemented in the Scala Actors library.1 It
requires neither special syntax nor compiler support. A library-based implemen-
tation has the advantage that it can be flexibly extended and adapted to new needs.
In fact, the presented implementation is the result of several previous iterations.
However, to be easy to use, the library draws on several of Scala’s advanced ab-
straction capabilities; notably partial functions and pattern matching [47].

The rest of this chapter is organized as follows. Section 2.1 introduces our
actor-based programming model and explains how it can be implemented as a
Scala library. In Section 2.2 we present an extension of our programming model
that allows us to unify thread-based and event-based models of concurrency un-
der a single abstraction of actors. We also provide an overview and important
details of our implementation. Section 2.3 illustrates the core primitives of Scala
Actors using larger examples. Section 2.4 introduces channels for type-safe and
private communication. By means of a case study we show in Section 2.5 how our
unified programming model can be applied to programming advanced web appli-
cations. Experimental results are presented in Section 2.6. Section 2.7 discusses
related work on implementing concurrent processes, and actors in particular. Our
main concerns are efficiency, the particular programming model, and the approach
taken to integrate with the concurrency model of the underlying platform (if any).

This chapter is based on a paper published in Theor. Computer Science [68].
A preliminary version of the paper appears in the proceedings of the 9th Inter-
national Conference on Coordination Models and Languages (COORDINATION
2007) [67]. The paper was written by the author of this thesis, except for parts
of this introduction and parts of Sections 2.1 and 2.3, which were contributed by
Martin Odersky. We also acknowledge the anonymous reviewers for their helpful
feedback.

2.1 The Scala Actors Library
In the following, we introduce the fundamental concepts underlying our program-
ming model and explain how various constructs are implemented in Scala. The
implementation of message reception is explained in Section 2.1.1. Section 2.1.2
shows how first-class message handlers support the extension of actors with new
behavior.

Actors The Scala Actors library provides a concurrent programming model based
on actors. An actor [76, 3] is a concurrent process that communicates with other
actors by exchanging messages. Communication is asynchronous; messages are

1Available as part of the Scala distribution [83].
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buffered in an actor’s mailbox. An actor may respond to an asynchronous mes-
sage by creating new actors, sending messages to known actors (including itself),
or changing its behavior. The behavior specifies how the actor responds to the
next message that it receives.

Actors in Scala Our implementation of actors in Scala adopts the basic commu-
nication primitives virtually unchanged from Erlang [8]. The expression a ! msg
sends message msg to actor a (asynchronously). The receive operation has the
following form:

receive {
case msgpat1 => action1

...
case msgpatn => actionn

}

The first message which matches any of the patternsmsgpati is removed from the
mailbox, and the corresponding actioni is executed (see Figure 2.1 for an example
of a message pattern). If no pattern matches, the actor suspends.

New actors can be created in two ways. In the first alternative, we define a
new class that extends the Actor trait.2 The actor’s behavior is defined by its act
method. For example, an actor executing body can be created as follows:

class MyActor extends Actor {
def act() { body }

}

Note that after creating an instance of the MyActor class the actor has to be started
by calling its start method. The second alternative for creating an actor is as
follows. The expression actor {body} creates a new actor which runs the code in
body. Inside body, the expression self is used to refer to the currently executing
actor. This “inline” definition of an actor is often more concise than defining a
new class. Finally, we note that every Java thread is also an actor, so even the
main thread can execute receive.3

The example in Figure 2.1 demonstrates the usage of all constructs introduced
so far. First, we define an orderMngr actor that tries to receive messages inside
an infinite loop. The receive operation waits for two kinds of messages. The
Order(s, item) message handles an order for item. An object which represents
the order is created and an acknowledgment containing a reference to the order

2A trait in Scala is an abstract class that can be mixin-composed with other traits. [99]
3Using self outside of an actor definition creates a dynamic proxy object which provides an

actor identity to the current thread, thereby making it capable of receiving messages from other
actors.
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// base version
val orderMngr = actor {
while (true) receive {
case Order(s, item) =>
val o =
handleOrder(s, item)

s ! Ack(o)
case Cancel(s, o) =>
if (o.pending) {
cancelOrder(o)
s ! Ack(o)

} else s ! NoAck
case x => junk += x

}
}
val customer = actor {
orderMngr ! Order(self, it)
receive {
case Ack(o) => ...

}
}

// version with reply and !?
val orderMngr = actor {
while (true) receive {
case Order(item) =>
val o =
handleOrder(sender, item)

reply(Ack(o))
case Cancel(o) =>
if (o.pending) {
cancelOrder(o)
reply(Ack(o))

} else reply(NoAck)
case x => junk += x

}
}
val customer = actor {
orderMngr !? Order(it) match {
case Ack(o) => ...

}
}

Figure 2.1: Example: orders and cancellations

object is sent back to the sender s. The Cancel(s, o) message cancels order o
if it is still pending. In this case, an acknowledgment is sent back to the sender.
Otherwise a NoAck message is sent, signaling the cancellation of a non-pending
order.

The last pattern x in the receive of orderMngr is a variable pattern which
matches any message. Variable patterns allow to remove messages from the mail-
box that are normally not understood (“junk”). We also define a customer actor
which places an order and waits for the acknowledgment of the order manager
before proceeding. Since spawning an actor (using actor) is asynchronous, the
defined actors are executed concurrently.

Note that in the above example we have to do some repetitive work to im-
plement request/reply-style communication. In particular, the sender is explicitly
included in every message. As this is a frequently recurring pattern, our library
has special support for it. Messages always carry the identity of the sender with
them. This enables the following additional operations:

• a !? msg sends msg to a, waits for a reply and returns it.
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• sender refers to the actor that sent the message that was last received by
self.

• reply(msg) replies with msg to sender.

• a forward msg sends msg to a, using the current sender instead of self
as the sender identity.

With these additions, the example can be simplified as shown on the right-hand
side of Figure 2.1. In addition to the operations above, an actor may explicitly
designate another actor as the reply destination of a message send. The expression
a.send(msg, b) sends msg to a where actor b is the reply destination. This
means that when a receives msg, sender refers to b; therefore, any reply from a is
sent directly to b. This allows certain forwarding patterns to be expressed without
creating intermediate actors [140].

Looking at the examples shown above, it might seem that Scala is a language
specialized for actor concurrency. In fact, this is not true. Scala only assumes
the basic thread model of the underlying host. All higher-level operations shown
in the examples are defined as classes and methods of the Scala library. In the
following, we look “under the covers” to find out how each construct is defined
and implemented. The implementation of concurrent processing is discussed in
Section 2.2.3.

The send operation ! is used to send a message to an actor. The syntax a ! msg
is simply an abbreviation for the method call a.!(msg), just like x + y in Scala is
an abbreviation for x.+(y). The ! method is defined in the Reactor trait, which is
a super trait of Actor:4

trait Reactor[Msg] {
val mailbox = new Queue[Msg]
def !(msg: Msg): Unit = ...
...

}

The method does two things. First, it enqueues the message argument in the re-
ceiving actor’s mailbox which is represented as a field of type Queue[Msg], where
Msg is the type of messages that the actor can receive. Second, if the receiving ac-
tor is currently suspended in a receive that could handle the sent message, the ex-
ecution of the actor is resumed. Note that the Actor trait extends Reactor[Any].
This means an actor created in one of the ways discussed above can receive any
type of message. It is also possible to create and start instances of Reactor di-
rectly. However, Reactors do not support the (thread-based) receive operation

4For simplicity we omit unimportant implementation details, such as super traits and modifiers.
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that we discuss in the following; Reactors can only receive messages using the
(event-based) react primitive, which we introduce in Section 2.2.2.

The actor and self constructs are realized as methods defined by the Actor
object. Objects have exactly one instance at runtime, and their methods are similar
to static methods in Java.

object Actor {
def self: Actor ...
def actor(body: => Unit): Actor ...
...

}

Note that Scala has different namespaces for types and terms. For instance, the
name Actor is used both for the object above (a term) and the trait which is the
result type of self and actor (a type). In the definition of the actor method, the
argument body defines the behavior of the newly created actor. It is a closure
returning the unit value. The leading => in its type indicates that it is passed by
name.

2.1.1 The receive operation
The receive { ... } construct is particularly interesting. In Scala, the pattern
matching expression inside braces is treated as a first-class object that is passed
as an argument to the receive method. The argument’s type is an instance of
PartialFunction, which is a subclass of Function1, the class of unary functions.
The two classes are defined as follows.

abstract class Function1[-A, +B] {
def apply(x: A): B

}
abstract class PartialFunction[-A, +B] extends Function1[A, B] {
def isDefinedAt(x: A): Boolean

}

Functions are objects which have an apply method. Partial functions are objects
which have in addition a method isDefinedAt which tests whether the function
is defined for a given argument. Both classes are parametrized; the first type
parameter A indicates the function’s argument type and the second type parameter
B indicates its result type.5

5Parameters can carry + or - variance annotations which specify the relationship between in-
stantiation and subtyping. The -A, +B annotations indicate that functions are contravariant in
their argument and covariant in their result. In other words Function1[X1, Y1] is a subtype of
Function1[X2, Y2] if X2 is a subtype of X1 and Y1 is a subtype of Y2.
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A pattern matching expression { case p1 => e1; ...; case pn => en }
is then a partial function whose methods are defined as follows.

• The isDefinedAt method returns true if one of the patterns pi matches the
argument, false otherwise.

• The applymethod returns the value ei for the first pattern pi that matches its
argument. If none of the patterns match, a MatchError exception is thrown.

The receive construct is realized as a method (of the Actor trait) that takes a
partial function as an argument.

def receive[R](f: PartialFunction[Any, R]): R

The implementation ofreceiveproceeds roughly as follows. First, messages in the
mailbox are scanned in the order they appear. If receive’s argument f is defined
for a message, that message is removed from the mailbox and f is applied to it. On
the other hand, if f.isDefinedAt(m) is false for every message m in the mailbox,
the receiving actor is suspended.

There is also some other functionality in Scala’s actor library which we have
not covered. For instance, there is a method receiveWithin which can be used to
specify a time span in which a message should be received allowing an actor to
timeout while waiting for a message. Upon timeout the action associated with a
special TIMEOUT pattern is fired. Timeouts can be used to suspend an actor, com-
pletely flush the mailbox, or to implement priority messages [8].

2.1.2 Extending actor behavior
The fact that message handlers are first-class partial function values can be used
to make actors extensible with new behaviors. A general way to do this is to
have classes provide actor behavior using methods, so that subclasses can override
them.

Figure 2.2 shows an example. The Buffer class extends the Actor trait to
define actors that implement bounded buffers containing at most N integers. We
omit a discussion of the array-based implementation (using the buf array and a
number of integer variables) since it is completely standard; instead, we focus on
the actor-specific parts. First, consider the definition of the act method. Inside an
infinite loop it invokes receive passing the result of the reaction method. This
method returns a partial function that defines actions associated with the Put(x)
and Get message patterns. As a result, instances of the Buffer class are actors
that repeatedly wait for Put or Get messages.

Assume we want to extend the behavior of buffer actors, so that they also re-
spond to Get2 messages, thereby removing two elements at once from the buffer.
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class Buffer(N: Int) extends Actor {
val buf = new Array[Int](N)
var in = 0; var out = 0; var n = 0
def reaction: PartialFunction[Any, Unit] = {
case Put(x) if n < N =>
buf(in) = x; in = (in + 1) % N; n = n + 1; reply()

case Get if n > 0 =>
val r = buf(out); out = (out + 1) % N; n = n - 1; reply(r)

}
def act(): Unit = while (true) receive(reaction)

}
class Buffer2(N: Int) extends Buffer(N) {
override def reaction: PartialFunction[Any, Unit] =
super.reaction orElse {
case Get2 if n > 1 =>
out = (out + 2) % N; n = n - 2
reply (buf(out-2), buf(out-1))

}
}

Figure 2.2: Extending actors with new behavior

The Buffer2 class below shows such an extension. It extends the Buffer class,
thereby overriding its reaction method. The new method returns a partial func-
tion which combines the behavior of the superclass with a new action associated
with the Get2 message pattern. Using the orElse combinator we obtain a partial
function that is defined as super.reaction except that it is additionally defined
for Get2. The definition of the act method is inherited from the superclass which
results in the desired overall behavior.

2.2 Unified Actor Model and Implementation

Traditionally, programming models for concurrent processes are either thread-
based or event-based. We review their complementary strengths and weaknesses
in Section 2.2.1. Scala Actors unify both programming models, allowing pro-
grammers to trade efficiency for flexibility in a fine-grained way. We present our
unified, actor-based programming model in Section 2.2.2. Section 2.2.3 provides
an overview as well as important details of the implementation of the Scala Actors
library. Finally, Section 2.2.4 introduces a set of combinators that allows one to
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compose actors in a modular way.

2.2.1 Threads vs. events

Concurrent processes such as actors can be implemented using one of two imple-
mentation strategies:

• Thread-based implementation: The behavior of a concurrent process is de-
fined by implementing a thread-specific method. The execution state is
maintained by an associated thread stack (see, e.g., [85]).

• Event-based implementation: The behavior is defined by a number of (non-
nested) event handlers which are called from inside an event loop. The
execution state of a concurrent process is maintained by an associated record
or object (see, e.g., [134]).

Often, the two implementation strategies imply different programming models.
Thread-based models are usually easier to use, but less efficient (context switches,
memory consumption) [102], whereas event-based models are usually more effi-
cient, but very difficult to use in large designs [125].

Most event-based models introduce an inversion of control. Instead of calling
blocking operations (e.g., for obtaining user input), a program merely registers
its interest to be resumed on certain events (e.g., signaling a pressed button). In
the process, event handlers are installed in the execution environment. The pro-
gram never calls these event handlers itself. Instead, the execution environment
dispatches events to the installed handlers. Thus, control over the execution of
program logic is “inverted”. Because of inversion of control, switching from a
thread-based to an event-based model normally requires a global re-write of the
program [26, 35].

2.2.2 Unified actor model

The main idea of our programming model is to allow an actor to wait for a message
using two different operations, called receive and react, respectively. Both
operations try to remove a message from the current actor’s mailbox given a partial
function that specifies a set of message patterns (see Section 2.1). However, the
semantics of receive corresponds to thread-based programming, whereas the
semantics of react corresponds to event-based programming. In the following
we discuss the semantics of each operation in more detail.
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The receive operation

The receive operation has the following type:

def receive[R](f: PartialFunction[Any, R]): R

If there is a message in the current actor’s mailbox that matches one of the cases
specified in the partial function f, the result of applying f to that message is re-
turned. Otherwise, the current thread is suspended; this allows the receiving actor
to resume execution normally when receiving a matching message. Note that
receive retains the complete call stack of the receiving actor; the actor’s behav-
ior is therefore a sequential program which corresponds to thread-based program-
ming.

The react operation

The react operation has the following type:

def react(f: PartialFunction[Any, Unit]): Nothing

Note that react has return type Nothing. In Scala’s type system a method that
never returns normally has return type Nothing. This means that the action speci-
fied in f that corresponds to the matching message is the last code that the current
actor executes. The semantics of react closely resembles event-based program-
ming: the current actor registers the partial function f which corresponds to a
set of event handlers, and then releases the underlying thread. When receiving
a matching message the actor’s execution is resumed by invoking the registered
partial function. In other words, when using react, the argument partial function
has to contain the rest of the current actor’s computation (its continuation) since
calling react never returns. In Section 2.2.4 we introduce a set of combinators
that hide these explicit continuations.

2.2.3 Implementation
Before discussing the implementation it is useful to clarify some terminology.
In this section we refer to an actor that is unable to continue (e.g., because it is
waiting for a message) as being suspended. Note that this notion is independent
of a specific concurrency model, such as threads. However, it is often necessary
to indicate whether an actor is suspended in an event-based or in a thread-based
way. We refer to an actor that is suspended in a react as being detached (since
in this case the actor is detached from any other thread). In contrast, an actor
that is suspended in a receive is called blocked (since in this case the underlying
worker thread is blocked). More generally, we use the term blocking as a shortcut
for thread-blocking.
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Implementation Overview

In our framework, multiple actors are executed on multiple threads for two rea-
sons:

1. Executing concurrent code in parallel may result in speed-ups on multi-
processors and multi-core processors.

2. Executing two interacting actors on different threads allows actors to invoke
blocking operations without affecting the progress of other actors.

Certain operations provided by our library introduce concurrency, namely spawn-
ing an actor using actor, and asynchronously sending a message using the !
operator. We call these operations asynchronous operations. Depending on the
current load of the system, asynchronous operations may be executed in parallel.
Invoking an asynchronous operation creates a task that is submitted to a thread
pool for execution. More specifically, a task is generated in the following three
cases:

1. Spawning a new actor using actor {body} generates a task that executes
body.

2. Sending a message to an actor suspended in a react that enables it to con-
tinue generates a task that processes the message.

3. Calling react where a message can be immediately removed from the mail-
box generates a task that processes the message.

The basic idea of our implementation is to use a thread pool to execute actors,
and to resize the thread pool whenever it is necessary to support blocking thread
operations. If actors use only operations of the event-based model, the size of
the thread pool can be fixed. This is different if some of the actors use blocking
operations such as receive or system I/O. In the case where every worker thread
is occupied by a blocked actor and there are pending tasks, the thread pool has to
grow.

For example, consider a thread pool with a single worker thread, executing a
single actor a. Assume a first spawns a new actor b, and then waits to receive a
message from b using the thread-based receive operation. Spawning b creates a
new task that is submitted to the thread pool for execution. Execution of the new
task is delayed until a releases the worker thread. However, when a suspends,
the worker thread is blocked, thereby leaving the task unprocessed indefinitely.
Consequently, a is never resumed since the only task that could resume it (by
sending it a message) is never executed. The system is deadlocked.



18 CHAPTER 2. INTEGRATING THREADS AND EVENTS

In our library, system-induced deadlocks are avoided by increasing the size of
the thread pool whenever necessary. It is necessary to add another worker thread
whenever there is a pending task and all worker threads are blocked. In this case,
the pending task(s) are the only computations that could possibly unblock any of
the worker threads (e.g., by sending a message to a suspended actor). To do this,
our system can use one of several alternative mechanisms. In the most flexible
alternative, a scheduler thread (which is separate from the worker threads of the
thread pool) periodically checks whether the number of worker threads that are
not blocked is smaller than the number of available processors. In that case, a new
worker thread is added to the thread pool that processes any remaining tasks.

Implementation Details

A detached actor (i.e., suspended in a react call) is not represented by a blocked
thread but by a closure that captures the actor’s continuation. This closure is
executed once a message is sent to the actor that matches one of the message
patterns specified in the react. When an actor detaches, its continuation closure
is stored in the waitingFor field of the Actor trait:6

trait Actor {
val mailbox = new Queue[Any]
var waitingFor: PartialFunction[Any, Unit]
def !(msg: Any): Unit = ...
def react(f: PartialFunction[Any, Unit]): Nothing = ...
...

}

An actor’s continuation is represented as a partial function of type
PartialFunction[Any, Unit]. When invoking an actor’s continuation we pass
the message that enables the actor to resume as an argument. The idea is that
an actor only detaches when react fails to remove a matching message from
the mailbox. This means that a detached actor is always resumed by sending
it a message that it is waiting for. This message is passed when invoking the
continuation. We represent the continuation as a partial function rather than a
function to be able to test whether a message that is sent to an actor enables it to
continue. This is explained in more detail below.

The react method saves the continuation closure whenever the receiving actor
has to suspend (and therefore detaches):

6To keep the explanation of the basic concurrency mechanisms as simple as possible, we ignore
the fact that in our actual implementation the Actor trait has several super traits.
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def react(f: PartialFunction[Any, Unit]): Nothing =
synchronized {
mailbox.dequeueFirst(f.isDefinedAt) match {
case Some(msg) =>
schedule(new Task({ () => f(msg) }))

case None =>
waitingFor = f
isDetached = true

}
throw new SuspendActorException

}

Recall that a partial function, such as f, is usually represented as a block with a list
of patterns and associated actions. If a message can be removed from the mailbox
(tested using dequeueFirst) the action associated with the matching pattern is
scheduled for execution by calling the schedule operation. It is passed a task
which contains a delayed computation that applies f to the received message,
thereby executing the associated action. Tasks and the schedule operation are
discussed in more detail below.

If no message can be removed from the mailbox, we save f as the continuation
of the receiving actor in the waitingFor field. Since f contains the complete
execution state we can resume the execution at a later point when a matching
message is sent to the actor. The instance variable isDetached is used to tell
whether the actor is detached (as opposed to blocked in a receive). If it is, the
value stored in the waitingFor field is a valid execution state.

Finally, by throwing a special exception, control is transferred to the point in
the control flow where the current actor was started or resumed. Since actors are
always executed as part of tasks, the SuspendActorException is only caught
inside task bodies.

Tasks are represented as instances of the following class (simplified):

class Task(cont: () => Unit) {
def run() {
try { cont() } // invoke continuation
catch { case _: SuspendActorException =>
// do nothing }

} }

The constructor of the Task class takes a continuation of type () => Unit as its
single argument. The class has a single run method that wraps an invocation of the
continuation in an exception handler. The exception handler catches exceptions
of type SuspendActorException which are thrown whenever an actor detaches.
The body of the exception handler is empty since the necessary bookkeeping, such
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as saving the actor’s continuation, has already been done at the point where the
exception was thrown.

Sending a message to an actor involves checking whether the actor is waiting
for the message, and, if so, resuming the actor according to the way in which it
suspended (i.e., using receive or react):

def !(msg: Any): Unit = synchronized {
if (waitingFor(msg)) {
val savedWaitingFor = waitingFor
waitingFor = Actor.waitingForNone
if (isDetached) {
isDetached = false
schedule(new Task({ () => savedWaitingFor(msg) }))

} else
resume() // thread-based resume

} else mailbox += msg
}

When sending a message to an actor that it does not wait for (i.e., the actor is
not suspended or its continuation is not defined for the message), the message
is simply enqueued in the actor’s mailbox. Otherwise, the internal state of the
actor is changed to reflect the fact that it is no longer waiting for a message
(Actor.waitingForNone is a partial function that is not defined for any argu-
ment). Then, we test whether the actor is detached; in this case we schedule a
new task that applies the actor’s continuation to the newly received message. The
continuation was saved when the actor detached the last time. If the actor is not
detached (which means it is blocked in a receive), it is resumed by notifying its
underlying blocked thread.

Spawning an actor using actor {body} generates a task that executes body
as part of a new actor:

def actor(body: => Unit): Actor = {
val a = new Actor {
def act() = body

}
schedule(new Task({ () => a.act() }))
a

}

The actor function takes a delayed expression (indicated by the leading =>) of
type Unit as its single argument. After instantiating a new Actor with the given
body, we create a new task that is passed a continuation that simply executes the
actor’s body. Note that the actor may detach later on (e.g., by waiting in a react),
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in which case execution of the task is finished early, and the rest of the actor’s body
is run as part of a new continuation which is created when the actor is resumed
subsequently.

The schedule operation submits tasks to a thread pool for execution. A sim-
ple implementation strategy would be to put new tasks into a global queue that all
worker threads in the pool access. However, we found that a global task queue
becomes a serious bottle neck when a program creates short tasks with high fre-
quency (especially if such a program is executed on multiple hardware threads).
To remove this bottle neck, each worker thread has its own local task queue. When
a worker thread generates a new task, e.g., when a message send enables the re-
ceiver to continue, the (sending) worker puts it into its local queue. This means
that a receiving actor is often executed on the same thread as the sender. This
is not always the case, because work stealing balances the work load on multi-
ple worker threads (which ultimately leads to parallel execution of tasks) [16].
This means that idle worker threads with empty task queues look into the queues
of other workers for tasks to execute. However, accessing the local task queue
is much faster than accessing the global task queue thanks to sophisticated non-
blocking algorithms [86]. In our framework the global task queue is used to allow
non-worker threads (any JVM thread) to invoke asynchronous operations.

As discussed before, our thread pool has to grow whenever there is a pending
task and all worker threads are blocked. Our implementation provides two differ-
ent mechanisms for avoiding pool lock ups in the presence of blocking operations.
The mechanisms mainly differ in the kinds of blocking operations they support.

The first mechanism uses an auxiliary scheduler thread that periodically de-
termines the number of blocked worker threads. If the number of workers that are
not blocked is smaller than the number of available processors, additional work-
ers are started to process any remaining tasks. Aside from avoiding pool lock ups,
this mechanism can also improve CPU utilization on multi-core processors.

The second mechanism is based on the so-called managed blocking feature
provided by Doug Lea’s fork/join pool implementation for Java ([86] discusses a
predecessor of that framework). Managed blocking enables the thread pool to con-
trol the invocation of blocking operations. Actors are no longer allowed to invoke
arbitrary blocking operations directly. Instead, they are only permitted to directly
invoke blocking operations defined for actors, such as receive, receiveWithin,
or !?. Any other blocking operation must be invoked indirectly through a method
of the thread pool that expects an instance of the following ManagedBlocker trait.
The blocking operations provided by the actors library are implemented in terms
of that trait (see below).
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trait ManagedBlocker {
def block(): Boolean
def isReleasable: Boolean

}

An instance of ManagedBlocker allows invoking the blocking operation via its
block method. Furthermore, using the isReleasable method one can query
whether the blocking operation has already returned. This enables the thread pool
to delay the invocation of a blocking operation until it is safe (for instance, af-
ter a spare worker thread has been created). In addition, the result of invoking
isReleasable indicates to the thread pool if it is safe to terminate the temporary
spare worker that might have been created to support the corresponding blocking
operation.

More specifically, the two methods are implemented in the following way. The
block method invokes a method that (possibly) blocks the current thread. The un-
derlying thread pool makes sure to invoke block only in a context where blocking
is safe; for instance, if there are no idle worker threads left, it first creates an ad-
ditional thread that can process submitted tasks in the case all other workers are
blocked. The Boolean result indicates whether the current thread might still have
to block even after the invocation of block has returned. None of the blocking
operations defined for actors require blocking after block returns; therefore, it is
sufficient to just return true, which indicates that no additional blocking is neces-
sary. The isReleasable method, like block, indicates whether additional block-
ing is necessary. Unlike block, it should not invoke possibly blocking operations
itself. Moreover, it can (and should) return true even if a previous invocation of
block returned false, but blocking is no longer necessary.

Figure 2.3 shows the Blocker class (simplified) which is used by the blocking
receive operation to safely block the current worker thread (we omit unimportant
parts of the code, including visibility modifiers of methods).

2.2.4 Composing actor behavior
Without extending the unified actor model, defining an actor that executes several
given functions in sequence is not possible in a modular way.

For example, consider the two methods below:

def awaitPing = react { case Ping => }
def sendPong = sender ! Pong

It is not possible to sequentially compose awaitPing and sendPong as follows:

actor { awaitPing; sendPong }
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trait Actor extends ... {
// ...

class Blocker extends ManagedBlocker {
def block() = {
Actor.this.suspendActor()
true

}
def isReleasable =
!Actor.this.isSuspended

}

def suspendActor() = synchronized {
while (isSuspended) {
try {
wait()

} catch {
case _: InterruptedException =>

}
}

}
}

Figure 2.3: Extending the ManagedBlocker trait for implementing blocking actor
operations

Since awaitPing ends in a call to react which never returns, sendPong would
never get executed. One way to work around this restriction is to place the con-
tinuation into the body of awaitPing:

def awaitPing = react { case Ping => sendPong }

However, this violates modularity. Instead, our library provides an andThen com-
binator that allows actor behavior to be composed sequentially. Using andThen,
the body of the above actor can be expressed as follows:

awaitPing andThen sendPong

andThen is implemented by installing a hook function in the actor. This func-
tion is called whenever the actor terminates its execution. Instead of exiting, the
code of the second body is executed. Saving and restoring the previous hook
function permits chained applications of andThen.
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class InOrder(n: IntTree) extends Producer[Int] {
def produceValues() {
traverse(n)

}
def traverse(n: IntTree) {
if (n != null) {
traverse(n.left)
produce(n.elem)
traverse(n.right)

}
}

}

Figure 2.4: Producer that generates all values in a tree in in-order

The Actor object also provides a loop combinator. It is implemented in terms
of andThen:

def loop(body: => Unit) = body andThen loop(body)

Hence, the body of loop can end in an invocation of react. Similarly, we can
define a loopWhile combinator that terminates the actor when a provided guard
evaluates to false.

2.3 Examples
In this section we discuss two larger examples. These examples serve two pur-
poses. First, they show how our unified programming model can be used to make
parts of a threaded program event-based with minimal changes to an initial actor-
based program. Second, they demonstrate the use of the combinators introduced
in Section 2.2.4 to turn a complex program using non-blocking I/O into a purely
event-driven program while maintaining a clear threaded code structure.

2.3.1 Producers and iteration
In the first example, we are going to write an abstraction of producers that provide
a standard iterator interface to retrieve a sequence of produced values. Produc-
ers are defined by implementing an abstract produceValues method that calls a
produce method to generate individual values. Both methods are inherited from
a Producer class. For example, Figure 2.4 shows the definition of a producer that
generates the values contained in a tree in in-order.
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class Producer[T] {
def produce(x: T) {
coordinator ! Some(x)

}
val producer = actor {
produceValues
coordinator ! None

}
...

}

val coordinator = actor {
while (true) receive {
case Next => receive {
case x: Option[_] =>
reply(x)

}
}

}

Figure 2.5: Implementation of the producer and coordinator actors

val coordinator = actor {
loop { react {
// ... as in Figure 2.5

}}}

Figure 2.6: Implementation of the coordinator actor using react

Figure 2.5 shows an implementation of producers in terms of two actors, a
producer actor, and a coordinator actor. The producer runs the produceValues
method, thereby sending a sequence of values, wrapped in Some messages, to the
coordinator. The sequence is terminated by a None message. The coordinator
synchronizes requests from clients and values coming from the producer.

It is possible to economize one thread in the producer implementation. As
shown in Figure 2.6, this can be achieved by changing the call to receive in the
coordinator actor into a call to react and using the loop combinator instead of
the while loop. By calling react in its outer loop, the coordinator actor allows
the scheduler to detach it from its worker thread when waiting for a Next message.
This is desirable since the time between client requests might be arbitrarily long.
By detaching the coordinator, the scheduler can re-use the worker thread and avoid
creating a new one.

2.3.2 Pipes and asynchronous I/O
In this example, a pair of processes exchanges data over a FIFO pipe. Such a pipe
consists of a sink and a source channel that are used for writing to the pipe and
reading from the pipe, respectively. The two processes communicate over the pipe
as follows. One process starts out writing some data to the sink while the process
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at the other end reads it from the source. Once all of the data has been transmitted,
the processes exchange roles and repeat this conversation.

To make this example more realistic and interesting at the same time, we use
non-blocking I/O operations. A process that wants to write data has to register
its interest in writing together with an event handler; when the I/O subsystem can
guarantee that the next write operation will not block (e.g., because of enough
buffer space), it invokes this event handler.

The data should be processed concurrently; it is therefore not sufficient to
put all the program logic into the event handlers that are registered with the I/O
subsystem. Moreover, we assume that a process may issue blocking calls while
processing the received data; processing the data inside an event handler could
therefore block the entire I/O subsystem, which has to be avoided. Instead, the
event handlers have to either notify a thread or an actor, or submit a task to a
thread pool for execution.

In the following, we first discuss a solution that uses threads to represent the
end points of a pipe. After that, we present an event-based implementation and
compare it to the threaded version. Finally, we discuss a solution that uses Scala
Actors. The solutions are compared with respect to synchronization and code
structure.

We use a number of objects and methods whose definitions are omitted be-
cause they are not interesting for our discussion. First, processes have a reference
sink to an I/O channel. The channel provides a write method that writes the
contents of a buffer to the channel. The non-blocking I/O API is used as follows.
The user implements an event handler which is a class with a single method that
executes the I/O operation (and possibly other code). This event handler is reg-
istered with an I/O event dispatcher disp together with a channel; the dispatcher
invokes an event handler when the corresponding (read or write) event occurs on
the channel that the handler registered with. Each event handler is only registered
until it has been invoked. Therefore, an event handler has to be registered with the
dispatcher for each event that it should handle.

Thread-based pipes

In the first solution that we discuss, each end point of a pipe is implemented
as a thread. Figure 2.7 shows the essential parts of the implementation. The
run method of the Proc class on the left-hand side shows the body of a process
thread. First, we test whether the process should start off writing or reading. The
writeData and readData operations are executed in the according order. After
the writing process has written all its data, it has to synchronize with the reading
process, so that the processes can safely exchange roles. This is necessary to avoid
the situation where both processes have registered a handler for the same kind of
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class Proc(write: Boolean,
exch: Barrier)

extends Thread {
...
override def run() {
if (write) writeData
else readData
exch.await
if (write) readData
else writeData

} }

def writeData {
fill(buf)
disp.register(sink,

writeHnd)
var finished = false
while (!finished) {
dataReady.await
dataReady.reset
if (bytesWritten==32*1024)
finished = true

else {
if (!buf.hasRemaining)
fill(buf)

disp.register(sink,
writeHnd)

} } }
val writeHnd = new WriteHandler {
def handleWrite() {
bytesWritten +=
sink.write(buf)

dataReady.await
} }

Figure 2.7: Thread-based pipes

I/O event. In this case, a process might wait indefinitely for an event because it
was dispatched to the other process. We use a simple barrier of size 2 for synchro-
nization: a thread invoking await on the exch barrier is blocked until a second
thread invokes exch.await. The writeData method is shown on the right-hand
side of Figure 2.7 (the readData method is analogous). First, it fills a buffer with
data using the fill method. After that, it registers the writeHnd handler for write
events on the sink with the I/O event dispatcher (writeHnd is discussed below).
After that, the process enters a loop. First, it waits on the dataReady barrier
until the write event handler has completed the next write operation. When the
thread resumes, it first resets the dataReady barrier to the state where it has not
been invoked, yet. The thread exits the loop when it has written 32 KB of data.
Otherwise, it refills the buffer if it has been completed, and re-registers the event
handler for the next write operation. The writeHnd event handler implements a
single method handleWrite that writes data stored in buf to the sink, thereby
counting the number of bytes written. After that, it notifies the concurrently run-
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class Proc(write: Boolean,
pool: Executor)

{
...
var last = false
if (write) writeData
else readData
...
def writeData {
fill(buf)
disp.register(...)

}
}

val task = new Runnable {
def run() {
if (bytesWritten==32*1024) {
if (!last) {
last = true; readData

}
} else {
if (!buf.hasRemaining)
fill(buf)

disp.register(sink,
writeHnd)

}
}

}
val writeHnd = new WriteHandler {
def handleWrite() {
bytesWritten +=
sink.write(buf)

pool.execute(task)
}

}

Figure 2.8: Event-driven pipes

ning writer thread by invoking await on the dataReady barrier.

Event-driven pipes

Figure 2.8 shows an event-driven version that is functionally equivalent to the
previous threaded program. The process constructor which is the body of the
Proc class shown on the left-hand side, again, tests whether the process starts out
writing or reading. However, based on this test only one of the two I/O operations
is called. The reason is that each I/O operation, such as writeData, registers
an event handler with the I/O subsystem, and then returns immediately. The event
handler for the second operation may only be installed when the last handler of the
previous operation has run. Therefore, we have to decide inside the event handler
of the write operation whether we want to read subsequently or not. The last field
keeps track of this decision across all event handler invocations. If last is false,
we invoke readData after writeData has finished (and vice versa); otherwise,
the sequence of I/O operations is finished. The definition of an event handler
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for write events is shown on the right-hand side of Figure 2.8 (read events are
handled in an analogous manner). As before, the writeHnd handler implements
the handleWrite method that writes data from buf to the sink, thereby counting
the number of bytes written. To do the concurrent processing the handler submits
a task to a thread pool for execution. The definition of this task is shown above.
Inside the task we first test whether all data has been written; if so, the next I/O
operation (in this case, readData) is invoked depending on the field last that
we discussed previously. If the complete contents of buf has been written, it is
refilled. Finally, the task re-registers the writeHnd handler to process the next
event.

Compared to thread-based programming, the event-driven style obscures the
control flow. For example, consider the writeData method. It does some work,
and then registers an event handler. However, it is not clear what the operational
effect of writeData is. Moreover, what happens after writeData has finished its
actual work? To find out, we have to look inside the code of the registered event
handler. This is still not sufficient, since also the submitted task influences the
control flow. In summary, the program logic is implicit, and has to be recovered
in a tedious way. Moreover, state has to be maintained across event handlers and
tasks. In languages that do not support closures this often results in manual stack
management [1].

Actor-based pipes

Figure 2.9 shows the same program using Scala Actors. The Proc class extends
the Actor trait; its act method specifies the behavior of an end point. The body of
the act method is similar to the process body of the thread-based version. There
are two important differences. First, control flow is specified using the andThen
combinator. This is necessary since writeData (and readData) may suspend us-
ing react. Without using andThen, parts of the actor’s continuation not included
in the argument closure of the suspending react would be “lost”. Basically,
andThen appends the closure on its right-hand side to whatever continuation is
saved during the execution of the closure on its left-hand side. Second, end point
actors exchange messages to synchronize when switching roles from writing to
reading (and vice versa). The writeData method is similar to its thread-based
counterpart. The while loop is replaced by the loopWhile combinator since in-
side the loop the actor may suspend using react. At the beginning of each loop
iteration the actor waits for a Written message signaling the completion of a write
event handler. The number of bytes written is carried inside the message which
allows us to make bytesWritten a local variable; in the thread-based version it is
shared among the event handler and the process. The remainder of writeData is
the same as in the threaded version. The writeHnd handler used in the actor-based
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class Proc(write: Boolean,
other: Actor)

extends Actor {
...
def act() {
{ if (write)

writeData
else
readData

} andThen {
other ! Exchange
react {
case Exchange =>
if (write)
readData

else
writeData }

} }
}

def writeData {
fill(buf)
disp.register(sink,

writeHnd)
var bytesWritten = 0
loopWhile(bytesWritten<32*1024)
react { case Written(num) =>
bytesWritten += num
if (bytesWritten==32*1024)
exit()

else {
if (!buf.hasRemaining)
fill(buf)

disp.register(sink,
writeHnd)

} }
}
val writeHnd =
new WriteHandler {
def handleWrite() {
val num =
sink.write(buf)

proc!Written(num)
} }

Figure 2.9: Actor-based pipes

program is similar to the thread-based version, except that it notifies its process
using an asynchronous message send. Note that, in general, the event handler is
run on a thread which is different from the worker threads used by our library to
execute actors (the I/O subsystem might use its own thread pool, for example). To
make the presented scheme work, it is therefore crucial that arbitrary threads may
send messages to actors.

Conclusion Compared to the event-driven program, the actor-based version im-
proves on the code structure in the same way as the thread-based version. Pass-
ing result values as part of messages makes synchronization slightly clearer and
reduces the number of global variables compared to the thread-based program.
However, in Section 2.6 we show that an event-based implementation of a bench-
mark version of the pipes example is much more efficient and scalable than a
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purely thread-based implementation. Our unified actor model allows us to imple-
ment the pipes example in a purely event-driven way while maintaining the clear
code structure of an equivalent thread-based program.

2.4 Channels and Selective Communication
In the programming model that we have described so far, actors are the only enti-
ties that can send and receive messages. Moreover, the receive operation ensures
locality, i.e., only the owner of the mailbox can receive messages from it. There-
fore, race conditions when accessing the mailbox are avoided by design. Types
of messages are flexible: they are usually recovered through pattern matching.
Ill-typed messages are ignored instead of raising compile-time or run-time errors.
In this respect, our library implements a dynamically-typed embedded domain-
specific language.

However, to take advantage of Scala’s rich static type system, we need a way
to permit strongly-typed communication among actors. For this, we use chan-
nels which are parameterized with the types of messages that can be sent to and
received from it, respectively. Moreover, the visibility of channels can be re-
stricted according to Scala’s scoping rules. That way, communication between
sub-components of a system can be hidden. We distinguish input channels from
output channels. Actors are then treated as a special case of output channels:

trait Actor extends OutputChannel[Any] { ... }

The possibility for an actor to have multiple input channels raises the need to
selectively communicate over these channels. Up until now, we have shown how
to use receive to remove messages from an actor’s mailbox. We have not yet
shown how messages can be received from multiple input channels. Instead of
adding a new construct, we generalize receive to work over multiple channels.

For example, a model of a component of an integrated circuit can receive
values from both a control and a data channel using the following syntax:

receive {
case DataCh ! data => ...
case CtrlCh ! cmd => ...

}

2.5 Case Study
In this section we show how our unified actor model addresses some of the chal-
lenges of programming web applications. In the process, we review event- and
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thread-based solutions to common problems, such as blocking I/O operations. Our
goal is then to discuss potential benefits of our unified approach. Advanced web
applications typically pose at least the following challenges to the programmer:

• Blocking operations. There is almost always some functionality that is im-
plemented using blocking operations. Possible reasons are lack of suitable
libraries (e.g., for non-blocking socket I/O), or simply the fact that the ap-
plication is built on top of a large code base that uses potentially blocking
operations in some places. Typically, rewriting infrastructure code to use
non-blocking operations is not an option.

• Non-blocking operations. On platforms such as the JVM, web application
servers often provide some parts (if not all) of their functionality in the
form of non-blocking APIs for efficiency. Examples are request handling,
and asynchronous HTTP requests.

• Race-free data structures. Advanced web applications typically maintain
user profiles for personalization. These profiles can be quite complex (some
electronic shopping sites apparently track every item that a user visits).
Moreover, a single user may be logged in on multiple machines, and is-
sue many requests in parallel. This is common on web sites, such as those
of electronic publishers, where single users represent whole organizations.
It is therefore mandatory to ensure race-free accesses to a user’s profile.

2.5.1 Thread-based approaches

VMs overlap computation and I/O by transparently switching among threads.
Therefore, even if loading a user profile from disk blocks, only the current request
is delayed. Non-blocking operations can be converted to blocking operations to
support a threaded style of programming: after firing off a non-blocking opera-
tion, the current thread blocks until it is notified by a completion event. However,
threads do not come for free. On most mainstream VMs, the overhead of a large
number of threads–including context switching and lock contention–can lead to
serious performance degradation [134, 46]. Overuse of threads can be avoided by
using bounded thread pools [85]. Shared resources such as user profiles have to be
protected using synchronization operations. This is known to be particularly hard
using shared-memory locks [87]. We also note that alternatives such as trans-
actional memory [71, 72], even though a clear improvement over locks, do not
provide seamless support for I/O operations as of yet. Instead, most approaches
require the use of compensation actions to revert the effects of I/O operations,
which further complicate the code.
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2.5.2 Event-based approaches

In an event-based model, the web application server generates events (network
and I/O readiness, completion notifications etc.) that are processed by event han-
dlers. A small number of threads (typically one per CPU) loop continuously re-
moving events from a queue and dispatching them to registered handlers. Event
handlers are required not to block since otherwise the event-dispatch loop could
be blocked, which would freeze the whole application. Therefore, all operations
that could potentially block, such as the user profile look-up, have to be trans-
formed into non-blocking versions. Usually, this means executing them on a
newly spawned thread, or on a thread pool, and installing an event handler that
gets called when the operation completed [103]. Usually, this style of program-
ming entails an inversion of control that causes the code to loose its structure and
maintainability [26, 35].

2.5.3 Scala Actors

In our unified model, event-driven code can easily be wrapped to provide a more
convenient interface that avoids inversion of control without spending an extra
thread [66]. The basic idea is to decouple the thread that signals an event from the
thread that handles it by sending a message that is buffered in an actor’s mailbox.
Messages sent to the same actor are processed atomically with respect to each
other. Moreover, the programmer may explicitly specify in which order messages
should be removed from its mailbox. Like threads, actors support blocking oper-
ations using implicit thread pooling as discussed in Section 2.2.3. Compared to
a purely event-based approach, users are relieved from writing their own ad hoc
thread pooling code. Since the internal thread pool can be global to the web ap-
plication server, the thread pool controller can leverage more information for its
decisions [134]. Finally, accesses to an actor’s mailbox are race-free. Therefore,
resources such as user profiles can be protected by modeling them as (thread-less)
actors.

2.6 Experimental Results

Optimizing performance across threads and events involves a number of non-
trivial trade-offs. Therefore, we do not want to argue that our framework is better
than event-based systems or thread-based systems or both. Instead, the following
basic experiments show that the performance of our framework is comparable to
those of both thread-based and event-based systems.
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Figure 2.10: Throughput (number of message passes per second) when passing a
single message around a ring of processes

2.6.1 Message passing

In the first benchmark we measure throughput of blocking operations in a queue-
based application. The application is structured as a ring of n producers/con-
sumers (in the following called processes) with a shared queue between each of
them. Initially, only one of the queues contains a message and the others are
empty. Each process loops taking a message from the queue on its right and
putting it into the queue on its left.

The following tests were run on a 3.33 GHz Intel Core2 Duo processor with
3072 MB memory and 6 MB cache; the processor supports 4 hardware threads via
two hyper-threaded cores. We used Sun’s Java HotSpot Server VM 1.6.0 under
Linux 2.6.32 (SMP configuration). We configured the JVM to use a maximum
heap size of 256 MB, which provides for sufficient physical memory to avoid any
disk activity. In each case we took the median of 5 runs. The execution times
of equivalent implementations written using (1) event-based actors, (2) unified
actors, (3) ActorFoundry [81] (version 1.0), an actor framework for Java based on
Kilim [117], and (4) pure Java threads, respectively, are compared.

Before discussing our results, we want to point out that, unlike implementa-
tions (1) and (2), ActorFoundry does not implement full Erlang-style actors: first,
message reception is based on inversion of control; instead of providing a receive
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operation that can be used anywhere in the actor’s body, methods are annotated
to allow invoking them asynchronously. Second, upon reception, messages are
only filtered according to the static method dispatching rules of Java; while this
enables an efficient implementation, it is less expressive than Erlang-style mes-
sage filtering using receive or react, which allows encoding priority messages
among others. Given the above two restrictions, comparing the performance of
ActorFoundry with our actors is not entirely fair. However, it allows us to quan-
tify how much we have to pay in terms of performance to get the flexibility of full
Erlang-style actors compared to ActorFoundry’s simpler programming model.

Figure 2.10 shows the number of message passes per second (throughput) de-
pending on the ring size. Note that the horizontal scale is logarithmic. For 200
processes or less, actors are 3.6 times faster than Java threads. This factor in-
creases to 5.1 for purely event-based actors. Event-based actors are more efficient
because (1) they do not need to maintain thread-local state (for interoperability
with Java threads), (2) they do not transmit implicit sender references, and (3) the
overhead of send/receive is lower, since only a single mode of suspension is sup-
ported (react). At ring sizes of 500 to 1000, the throughput of threads breaks in
(only 71736 messages per second for 1000 threads), while the throughput of actors
(both event-based and unified) stays basically constant (at around 1,000,000 and
700,000 messages per second, respectively). The process ring cannot be operated
with 5000 or more threads, since the JVM runs out of heap memory. In contrast,
using actors (both event-based and unified) the ring can be operated with as many
as 500,000 processes. For 200 processes or less, the throughput of event-based
actors is around 24% lower compared to ActorFoundry. Given that ActorFoundry
uses Kilim’s CPS transformation for implementing lightweight actors, this slow-
down is likely due to the high frequency of exceptions that are used to implement
the react message receive operation both in event-based and in unified actors.
Interestingly, event-based actors scale much better with the number of actors com-
pared to ActorFoundry. At 50,000 processes, both event-based and unified actors
are faster than ActorFoundry. At 500,000 processes the ActorFoundry benchmark
times out. The improvement in scalability is likely due to the fact that in Scala,
actors are implemented using a lightweight fork/join execution environment that
is highly scalable. However, most importantly, the high frequency of control-flow
exceptions does not negatively impact scalability. This means that control-flow
exceptions are indeed a practical and scalable way to implement our nested react
message receive operation.

2.6.2 I/O performance
The following benchmark scenario is similar to those used in the evaluation of
high-performance thread implementations [126, 89]. We aim to simulate the ef-
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Figure 2.11: Network scalability benchmark, single-threaded

fects of a large number of mostly-idle client connections. For this purpose, we
create a large number of FIFO pipes and measure the throughput of concurrently
passing a number of tokens through them. If the number of pipes is less than 128,
the number of tokens is one quarter of the number of pipes; otherwise, exactly 128
tokens are passed concurrently. The idle end points are used to model slow client
links. After a token has been passed from one process to another, the processes at
the two end points of the pipe exchange roles, and repeat this conversation.

This scenario is interesting, because it allows us to determine the overhead of
actors compared to purely event-driven code in a worst-case scenario. That is,
event-driven code always performs best in this case. The main reasons are: (1)
directly invoking an event handler is more efficient than creating, sending, and
dispatching a message to an actor; (2) the protocol logic is programmed explicitly
using inversion of control, as opposed to using high-level combinators.

Figure 2.11 shows the performance of implementations based on events, event-
based actors, and unified actors under load. The programs used to obtain these
results are slightly extended versions of those discussed in Section 2.3.2. We used
the same system configuration as in Section 2.6.1. In each case, we took the
average of 5 runs.

The first version uses a purely event-driven implementation; concurrent tasks
are run on a lightweight fork/join execution environment [86]. The second version
uses event-based actors. The third program is basically the same as the second
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Figure 2.12: Network scalability benchmark, multi-threaded

one, except that actors run in “unified mode”. For each implementation we con-
figure the run-time system to utilize only a single worker thread. This allows us
to measure overheads (compared to the purely event-driven implementation) that
are independent of effects pertaining to scalability. The overhead of unified ac-
tors compared to purely event-based actors ranges between 5% (4 pipes) and 15%
(2048 pipes). The event-driven version is on average 33% faster than event-based
actors. The difference in throughput is at most 58% (at 8196 pipes).

Figure 2.12 shows how throughput changes when the number of utilized worker
threads is increased. (Recall that our system configuration supports 4 hardware
threads, see Section 2.6.1). We compare the performance of a naive thread-based
implementation with an implementation based on unified actors (the third version
of our previous experiment). We run the actor-based program using two different
configurations, utilizing 4 worker threads or 2 worker threads, respectively. The
thread-based version uses two threads per pipe (one reader thread and one writer
thread), independent of the number of available hardware threads. Therefore, we
expect this implementation to fully utilize the processor cores of our system. For
a number of pipes between 16 and 1024, the throughput achieved by actors us-
ing 2 worker threads is on average 20% higher than with threads. The overhead
of threads is likely due to context switches, which are expensive on the HotSpot
JVM, since threads are mapped to heavyweight OS processes. Actors using 4
worker threads provide a throughput that is on average 46% higher than with only



38 CHAPTER 2. INTEGRATING THREADS AND EVENTS

2 worker threads. Note that the gain in throughput is only achieved with at least
16 pipes. The reason is that at 8 pipes, only 2 tokens are concurrently passed
through the pipes, which is not sufficient to fully utilize all worker threads. The
thread-based version can only be operated up to a number of 2048 pipes; at 4096
pipes the JVM runs out of memory. We ran the actor-based version up to a number
of 16384 pipes, at which point throughput has decreased by 39% and 47% for 2
worker threads and 4 worker threads, respectively, compared to the throughput at
1024 pipes.

2.7 Discussion and Related Work
There are two main approaches to model the interleaving of concurrent computa-
tions: threads (or processes) and events. In Section 2.7.1 we review previous work
on implementing concurrency using threads or events. Section 2.7.2 discusses the
application of continuations to lightweight concurrency. In Section 2.7.3 we relate
our work to existing actor-based programming systems.

2.7.1 Threads and events
Lauer and Needham [84] note in their seminal work that threads and events are
dual to each other. They suggest that any choice of either one of them should
therefore be based on the underlying platform. Almost two decades later, Ouster-
hout [102] argues that threads are a bad idea not only because they often perform
poorly, but also because they are hard to use. More recently, von Behren and
others [125] point out that even though event-driven programs often outperform
equivalent threaded programs, they are too difficult to write. The two main reasons
are: first, the interactive logic of a program is fragmented across multiple event
handlers (or classes, as in the state design pattern [60]). Second, control flow
among handlers is expressed implicitly through manipulation of shared state [26].
In the Capriccio system [126], static analysis and compiler techniques are em-
ployed to transform a threaded program into a cooperatively-scheduled event-
driven program with the same behavior. Responders [26] provide an event-loop
abstraction as a Java language extension. Since their implementation manages one
VM thread per event-loop, scalability is limited on standard JVMs.

The approach used to implement thread management in the Mach 3.0 ker-
nel [45] is conceptually similar to ours. When a thread blocks in the kernel, either
it preserves its register state and stack and resumes by restoring this state, or it
preserves a pointer to a continuation function that is called when the thread is re-
sumed. The latter form of suspension is more efficient and consumes much less
memory; it allows threads to be very lightweight. Instead of function pointers we
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use closures to represent the continuation of a suspended actor. Moreover, our li-
brary provides a set of higher-order functions that allows composing continuation
closures in a flexible way (see Section 2.2.4).

2.7.2 Concurrency via continuations
The idea to implement lightweight concurrent processes using continuations has
been explored many times [133, 73, 32]. However, existing techniques impose
major restrictions when applied to VMs such as the JVM because (1) the security
model restricts accessing the run-time stack directly, and (2) heap-based stacks
break interoperability with existing code. Delimited continuations based on a
type-directed CPS transform [108] can be used to implement lightweight concur-
rent processes in Scala, the host language of our system. However, this requires
CPS-transforming all code that could potentially invoke process-suspending op-
erations. This means that processes are not allowed to run code that cannot be
CPS transformed, such as libraries that cannot be transformed without breaking
existing clients.

In languages like Haskell and Scala, the continuation monad can also be used
to implement lightweight concurrency [28]. In fact, it is possible to define a
monadic interface for the actors that we presented in this chapter; however, a thor-
ough discussion is beyond the scope of this thesis. Li and Zdancewic [89] use the
continuation monad to combine events and threads in a Haskell-based system for
writing high-performance network services. However, they require blocking sys-
tem calls to be wrapped in non-blocking operations. In our library actors subsume
threads, which makes this wrapping unnecessary; essentially, the programmer is
relieved from writing custom thread-pooling code.

2.7.3 Actors and reactive objects
The actor model has been integrated into various Smalltalk systems. Actalk [20]
is an actor library for Smalltalk-80 that does not support multiple processor cores.
Actra [121] extends the Smalltalk/V VM to provide lightweight processes. In
contrast, we implement lightweight actors on unmodified VMs.

Our library was inspired to a large extent by Erlang’s elegant programming
model. Erlang [8] is a dynamically-typed functional programming language de-
signed for programming real-time control systems. The combination of lightweight
isolated processes, asynchronous message passing with pattern matching, and
controlled error propagation has been proven to be very effective in telecommuni-
cation systems [7, 95]. One of our main contributions lies in the integration of Er-
lang’s programming model into a full-fledged object-oriented and functional lan-
guage. Moreover, by lifting compiler magic into library code we achieve compat-
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ibility with standard, unmodified JVMs. To Erlang’s programming model we add
new forms of composition as well as channels which permit strongly-typed and
secure inter-actor communication. Termite Scheme [62] integrates Erlang’s pro-
gramming model into Scheme. Scheme’s first-class continuations are exploited
to express process migration. However, their system apparently does not support
multiple processor cores; all published benchmarks were run in a single-core set-
ting.

SALSA [124] is a JVM-based actor language that supports features, such as
universal names and migration, which make it particularly suited for distributed
and mobile computing. However, its implementation is not optimized for local
applications running on a single JVM: first, each actor is mapped to its own VM
thread; this limits scalability on standard JVMs [68]. Second, message passing
performance suffers from the overhead of reflective method calls. Kilim [117]
integrates a lightweight task abstraction into Java using a bytecode postprocessor
that is guided by source-level annotations (this postprocessor is also used by Ac-
torFoundry [81] which we discuss and evaluate experimentally in Section 2.6.1.)
Building on these tasks, Kilim provides an actor-oriented programming model
with first-class message queues (or mailboxes). The model does not support full
Erlang-style actors: message queues are not filtered when receiving a message
(i.e., messages are always removed in FIFO order from their mailboxes); choice
must be encoded using multiple mailboxes and a select primitive.

Timber [15] is an object-oriented and functional programming language de-
signed for real-time embedded systems. It offers message passing primitives for
both synchronous and asynchronous communication between concurrent reactive
objects. In contrast to our programming model, reactive objects are not allowed
to call operations that might block indefinitely. Frugal objects [61] (FROBs) are
distributed reactive objects that communicate through typed events. FROBs are
basically actors with an event-based computation model. Similar to reactive ob-
jects in Timber, FROBs may not call blocking operations. Other concurrent pro-
gramming languages and systems also use actors or actor-like abstractions. Am-
bientTalk [39] provides actors based on communicating event loops [91]. Ambi-
entTalk implements a protocol mapping [37] that allows native (Java) threads to
interact with actors while preserving non-blocking communication among event
loops. However, the mapping relies on the fact that each actor is always associated
with its own VM thread, whereas Scala’s actors can be thread-less.



Chapter 3

Join Patterns and Actor-Based Joins

Recently, the pattern matching facilities of languages such as Scala and F# have
been generalized to allow representation independence for objects used in pattern
matching [47, 120]. Extensible patterns open up new possibilities for implement-
ing abstractions in libraries which were previously only accessible as language
features. More specifically, we claim that extensible pattern matching eases the
construction of declarative approaches to synchronization in libraries rather than
languages. To support this claim, in this chapter we show how a concrete declar-
ative synchronization construct, join patterns, can be implemented in Scala, using
extensible pattern matching.

Join patterns [56, 57] offer a declarative way of synchronizing both threads
and asynchronous distributed computations that is simple and powerful at the
same time. They form part of functional languages such as JoCaml [55] and
Funnel [98]. Join patterns have also been implemented as extensions to existing
languages [13, 127]. Recently, Russo [109] and Singh [114] have shown that ad-
vanced programming language features make it feasible to provide join patterns
as libraries rather than language extensions. For example, based on Haskell’s
software transactional memory [72] it is possible to define a set of higher-order
combinators that can encode expressive join patterns.

We argue that an implementation using extensible pattern matching can sig-
nificantly improve the integration of a joins library into the host language. In
existing library-based implementations, pattern variables are represented implic-
itly as parameters of join continuations. Mixing up parameters of the same type
inside the join body may lead to obscure errors that are hard to detect. Our design
avoids these errors by using the underlying pattern matcher to bind variables that
are explicit in join patterns. Moreover, the programmer may use a rich pattern
syntax to express constraints using nested patterns and guards.

The rest of this chapter is organized as follows. In Section 3.1 we briefly
highlight join patterns as a declarative synchronization abstraction, how they have
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been integrated into other languages before, and how combining them with pattern
matching can improve this integration. Section 3.2 shows how to use our library
to synchronize threads and actors using join patterns. In Section 3.3 we present
a complete implementation of our design as a Scala library [63]. Moreover, we
integrate our library into Scala Actors (see Chapter 2); this enables expressive
join patterns to be used in the context of advanced synchronization modes, such
as future-type message sending. Section 3.4 reviews related work and discusses
specific properties of our design in the context of previous systems. Section 3.5
concludes.

This chapter is based on a paper published in the proceedings of the 10th Inter-
national Conference on Coordination Models and Languages (COORDINATION
2008) [65]. The paper is joint work with Tom Van Cutsem. We also acknowl-
edge the anonymous reviewers of the 3rd Workshop on Declarative Aspects of
Multicore Programming (DAMP 2008) for their helpful feedback.

3.1 Motivation
Background: Join Patterns A join pattern consists of a body guarded by a
linear set of events. The body is executed only when all of the events in the set
have been signaled to an object. Threads may signal synchronous or asynchronous
events to objects. By signaling a synchronous event to an object, threads may
implicitly suspend. The simplest illustrative example of a join pattern is that of an
unbounded FIFO buffer. In Cω [13], it is expressed as follows:

public class Buffer {
public async Put(int x);
public int Get() & Put(int x) { return x; }

}

Let b be an instance of class Buffer. Threads may put values into b by invoking
b.Put(v); invoking Put never blocks, since the method is marked async. They
may also read values from the buffer by invoking b.Get(). The join pattern
Get() & Put(int x) (called a chord in Cω) specifies that a call to Get may
only proceed if a Put event has previously been signaled. Hence, if there are no
pending Put events, a thread invoking Get is automatically suspended until such
an event is signaled.

The advantage of join patterns is that they allow a declarative specification of
the synchronization between different threads. Often, the join patterns correspond
closely to a finite state machine that specifies the valid states of the object [13]. In
the following, we explain the benefits of our new implementation by means of an
example.
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Example Consider the traditional problem of synchronizing multiple concurrent
readers with one or more writers who need exclusive access to a resource. In Cω,
join patterns are supported as a language extension through a dedicated compiler.
With the introduction of generics in C# 2.0, Russo has made join patterns available
in a C# library called Joins [109]. In that library, a multiple reader/one writer lock
can be implemented as follows:

public class ReaderWriter {
public Synchronous.Channel Exclusive, ReleaseExclusive;
public Synchronous.Channel Shared, ReleaseShared;
private Asynchronous.Channel Idle;
private Asynchronous.Channel<int> Sharing;
public ReaderWriter() {
Join j = Join.Create(); ... // Boilerplate omitted
j.When(Exclusive).And(Idle).Do(delegate {});
j.When(ReleaseExclusive).Do(delegate{ Idle(); });
j.When(Shared).And(Idle).Do(delegate{ Sharing(1); });
j.When(Shared).And(Sharing).Do(delegate(int n) {
Sharing(n + 1); });

j.When(ReleaseShared).And(Sharing).Do(delegate(int n) {
if (n == 1) Idle(); else Sharing(n - 1); });

Idle();
}

}

In C# Joins, join patterns consist of linear combinations of channels and a delegate
(a function object) which encapsulates the join body. Join patterns are triggered
by invoking channels which are special delegates.

In the example, channels are declared as fields of the ReaderWriter class.
Channel types are either synchronous or asynchronous. Asynchronous channels
correspond to asynchronous methods in Cω (e.g., Put in the previous example).
Channels may take arguments which are specified using type parameters. For ex-
ample, the Sharing channel is asynchronous and takes a single int argument.
Channels are often used to model (parts of) the internal state of an object. For ex-
ample, the Idle and Sharing channels keep track of concurrent readers (if any),
and are therefore declared as private. To declare a set of join patterns, one first
has to create an instance of the Join class. Individual join patterns are then created
by chaining a number of method calls invoked on that Join instance. For example,
the first join pattern is created by combining the Exclusive and Idle channels
with an empty delegate; this means that invoking the synchronous Exclusive
channel (a request to acquire the lock in exclusive mode) will not block the caller
if the Idle channel has been invoked (the lock has not been acquired).
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Even though the verbosity of programs written using C# Joins is slightly
higher compared to Cω, basically all the advantages of join patterns are preserved.
However, this code still has a number of drawbacks: first, the encoding of the in-
ternal state is redundant. Logically, a lock in idle state can be represented either
by the non-empty Idle channel or the Sharing channel invoked with 0.1

Note that it is impossible in C# (and in Cω) to use only Sharing. Consider
the first join pattern. Implementing it using Sharing instead of Idle requires a
delegate that takes an integer argument (the number of concurrent readers):

j.When(Exclusive).And(Sharing).Do(delegate(int n) {...}

Inside the body we have to test whether n > 0 in which case the thread invoking
Exclusive has to block. Blocking without reverting to lower-level mechanisms
such as locks is only possible by invoking a synchronous channel; however, that
channel has to be different from Exclusive (since invoking Exclusive does not
block when Sharing has been invoked) which re-introduces the redundancy.

Another drawback of the above code is the fact that arguments are passed im-
plicitly between channels and join bodies: in the third case, the argument n passed
to the delegate is the argument of the Sharing channel. Contrast this with the
Cω buffer example in which the Put event explicitly binds its argument x. Not
only are arguments passed implicitly, the order in which they are passed is merely
conventional and not checked by the compiler. For example, the delegate of a (hy-
pothetical) join pattern with two channels of type Asynchronous.Channel<int>
would have two int arguments. Accidentally swapping the arguments in the body
delegate would go unnoticed and result in errors.

In our implementation in Scala the above example is expressed as follows:

join {
case Exclusive() & Sharing(0) => Exclusive.reply()
case ReleaseExclusive() => Sharing(0); ReleaseExclusive.reply()
case Shared() & Sharing(n) => Sharing(n+1); Shared.reply()
case ReleaseShared() & Sharing(n) if n > 0 =>
Sharing(n-1); ReleaseShared.reply()

}

The internal state of the lock is now represented uniformly using only Sharing.
Moreover, two formerly separate patterns are unified (patterns 3 and 4 in the C#
example) and the if-else statement is gone. (Inside join bodies, synchronous
events are replied to via their reply method; this is necessary since, contrary to

1The above implementation actually ensures that an idle lock is always represented as Idle
and never as Sharing(0). However, this close relationship between Idle and Sharing is not
explicit and has to be inferred from all the join patterns.
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C# and Cω, Scala Joins supports multiple synchronous events per pattern, cf. sec-
tion 3.2.) The gain in expressivity is due to nested pattern matching. In the first
pattern, pattern matching constrains the argument of Sharing to 0, ensuring that
this pattern only triggers when no other thread is sharing the lock. Therefore, an
additional Idle event is no longer necessary, which decreases the number of pat-
terns. In the last pattern, a guard (if n > 0) prevents invalid states (i.e., invoking
Sharing(n) where n < 0).

3.2 A Scala Joins Library
We now discuss a Scala library, called Scala Joins, that implements join patterns
using extensible pattern matching. In the following Section 3.2.1 we explain how
Scala Joins enables the declarative synchronization of threads; Section 3.2.2 de-
scribes joins for actors.

3.2.1 Joining threads
Scala Joins draws on Scala’s extensible pattern matching facility [47]. This has
several advantages: first of all, the programmer may use Scala’s rich pattern syn-
tax to express constraints using nested patterns and guards. Moreover, reusing
the existing variable binding mechanism avoids typical problems of other library-
based approaches where the order in which arguments are passed to the function
implementing the join body is merely conventional, as explained in Section 3.1.
Similar to C# Joins’s channels, joins in Scala Joins are composed of synchronous
and asynchronous events. Events are strongly typed and can be invoked using
standard method invocation syntax. The FIFO buffer example is written in Scala
Joins as follows:

class Buffer extends Joins {
val Put = new AsyncEvent[Int]
val Get = new NullarySyncEvent[Int]
join {
case Get() & Put(x) =>
Get reply x

}
}

To enable join patterns, a class inherits from the Joins class. Events are de-
clared as regular fields. They are distinguished based on their (a)synchrony and
the number of arguments they take. For example, Put is an asynchronous event
that takes a single argument of type Int. Since it is asynchronous, no return type
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is specified (it immediately returns the Unit value when invoked). In the case of a
synchronous event such as Get, the first type parameter specifies the return type.
Therefore, Get is a synchronous event that takes no arguments and returns values
of type Int.

Joins are declared using the join { ... } construct. This construct enables
pattern matching via a list of case declarations that each consist of a left-hand
side and a right-hand side, separated by =>. The left-hand side defines a join
pattern through the juxtaposition of a linear combination of asynchronous and
synchronous events. As is common in the joins literature, we use & as the juxta-
position operator. Arguments of events are usually specified as variable patterns.
For example, the variable pattern x in the Put event can bind to any value (of type
Int). This means that on the right-hand side, x is bound to the argument of the
Put event when the join pattern matches. Standard pattern matching can be used
to constrain the match even further (an example of this is given below).

The right-hand side of a join pattern defines the join body (an ordinary block of
code) that is executed when the join pattern matches. Like JoCaml, but unlike Cω
and C# Joins, Scala Joins allows any number of synchronous events to appear in
a join pattern. Because of this, it is impossible to use the return value of the body
to implicitly reply to the single synchronous event in the join pattern. Instead, the
body of a join pattern explicitly replies to all of the synchronous events that are
part of the join pattern on the left-hand side. Synchronous events are replied to by
invoking their reply method. This wakes up the thread that originally signalled
that event.

3.2.2 Joining actors

We now describe an integration of our joins library with Scala Actors (see Chap-
ter 2). The following example shows how to re-implement the unbounded buffer
example using joins:

object Put extends Join1[Int]
object Get extends Join
class Buffer extends JoinActor {
def act() {
loop {
receive {
case Get() & Put(x) => Get reply x

}
}

}
}
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It differs from the thread-based bounded buffer using joins in the following ways:

• The Buffer class inherits the JoinActor class to declare itself to be an
actor capable of processing join patterns.

• Rather than defining Put and Get as synchronous or asynchronous events,
they are all defined as join messages, which may support both kinds of
synchrony (this is explained in more detail below).

• The Buffer actor defines act and awaits incoming messages by means of
receive. Note that it is still possible for the actor to serve regular messages
within the receive block. Logically, regular messages can be regarded as
unary join patterns. However, they don’t have to be declared as joinable
messages; in fact, our joins extension is fully source compatible with the
existing actor library.

We illustrate below how the buffer actor can be used as a coordinator between a
consumer and a producer actor. The producer sends an asynchronous Put mes-
sage while the consumer awaits the reply to a Get message by invoking it syn-
chronously (using !?).2

val buffer = new Buffer; buffer.start()
actor {
buffer ! Put(42)

}
actor {
(buffer !? Get()) match {
case x: Int => /* process x */

}
}

By applying joins to actors, the synchronization dependencies between Get and
Put can be specified declaratively by the buffer actor. The actor will receive Get
and Put messages by queuing them in its mailbox. Only when all of the messages
specified in the join pattern have been received is the body executed by the actor.
Before processing the body, the actor atomically removes all of the participating
messages from its mailbox. Replies may be sent to any or all of the messages
participating in the join pattern. This is similar to the way replies are sent to
events in the thread-based joins library described previously.

Contrary to the way events are defined in the thread-based joins library, an
actor does not explicitly define a join message to be synchronous or asynchronous.

2Note that the Get message has return type Any. The type of the argument values is recovered
by pattern matching on the result, as shown in the example.
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We say that join messages are “synchronization-agnostic” because they can be
used in different synchronization modes between the sender and receiver actors.
However, when they are used in a particular join pattern, the sender and receiver
actors have to agree upon a valid synchronization mode. In the previous example,
the Put join message was sent asynchronously, while the Get join message was
sent synchronously. In the body of a join pattern, the receiver actor replied to Get,
but not to Put.

The advantage of making join messages synchronization agnostic is that they
can be used in arbitrary synchronization modes, including advanced synchroniza-
tion modes such as ABCL’s future-type message sending [140] or Salsa’s token-
passing continuations [124]. Every join message instance has an associated reply
destination, which is an output channel on which processes may listen for possible
replies to the message. How the reply to a message is processed is determined by
the way the message was sent. For example, if the message was sent purely asyn-
chronously, the reply is discarded; if it was sent synchronously, the reply awakes
the sender. If it was sent using a future-type message send, the reply resolves the
future.

3.3 Joins and Extensible Pattern Matching

Our implementation technique for joins is unique in the way events interact with
an extensible pattern matching mechanism. We explain the technique using a con-
crete implementation in Scala. However, we expect that implementations based
on, e.g., the active patterns of F# [120] would not be much different. In the fol-
lowing we first talk about pattern matching in Scala. After that we dive into the
implementation of events which crucially depends on properties of Scala’s exten-
sible pattern matching. Finally, we highlight how joins have been integrated into
Scala’s actor framework.

3.3.1 Join patterns as partial functions

In the previous section we used the join { ... } construct to declare a set of
join patterns. It has the following form:

join {
case pat1 => body1

...
case patn => bodyn

}
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The patterns pati consist of a linear combination of events evt1 & ... & evtm.
Threads synchronize over a join pattern by invoking one or several of the events
listed in a pattern pati. When all events occurring in pati have been invoked, the
join pattern matches, and its corresponding join bodyi is executed. Just like in the
implementation of receive (see Section 2.1.1), the pattern matching expression
inside braces is a value of type PartialFunction that is passed as an argument
to the join method.

Whenever a thread invokes an event e, each join pattern in which e occurs
has to be checked for a potential match. Therefore, events have to be associated
with the set of join patterns in which they participate. As shown before, this set of
join patterns is represented as a partial function. Invoking join(pats) associates
each event occurring in the set of join patterns with the partial function pats.

When a thread invokes an event, the isDefinedAt method of pats is used to
check whether any of the associated join patterns match. If yes, the corresponding
join body is executed by invoking the apply method of pats. A question remains:
what argument is passed to isDefinedAt and apply, respectively? To answer
this question, consider the simple buffer example from the previous section. It
declares the following join pattern:

join { case Get() & Put(x) => Get reply x }

Assume that no events have been invoked before, and a thread t invokes the Get
event to remove an element from the buffer. Clearly, the join pattern does not
match, which causes t to block since Get is a synchronous event (more on syn-
chronous events later). Assume that after thread t has gone to sleep, another thread
s adds an element to the buffer by invoking the Put event. Now, we want the join
pattern to match since both events have been invoked. However, the result of the
matching does not only depend on the event that was last invoked but also on the
fact that other events have been invoked previously. Therefore, it is not sufficient
to simply pass a Put message to the isDefinedAt method of the partial function
the represents the join patterns. Instead, when the Put event is invoked, the Get
event has to somehow “pretend” to also match, even though it has nothing to do
with the current event. While previous invocations can simply be buffered inside
the events, it is non-trivial to make the pattern matcher actually consult this infor-
mation during the matching, and “customize” the matching results based on this
information. To achieve this customization we use extensible pattern matching.

3.3.2 Extensible pattern matching
Emir et al. [47] recently introduced extractors for Scala that provide represen-
tation independence for objects used in patterns. Extractors play a role similar
to views in functional programming languages [128, 101] in that they allow con-
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versions from one data type to another to be applied implicitly during pattern
matching. As a simple example, consider the following object that can be used to
match even numbers:

object Twice {
def apply(x: Int) = x*2
def unapply(z: Int) = if (z%2 == 0) Some(z/2) else None

}

Objects with apply methods are uniformly treated as functions in Scala. When the
function invocation syntax Twice(x) is used, Scala implicitly calls Twice.apply(x).
The unapply method in Twice reverses the construction in a pattern match. It
tests its integer argument z. If z is even, it returns Some(z/2). If it is odd, it
returns None. The Twice object can be used in a pattern match as follows:

val x = Twice(21)
x match {
case Twice(y) => println(x+" is two times "+y)
case _ => println("x is odd")

}

To see where the unapply method comes into play, consider the match against
Twice(y). First, the value to be matched (x in the above example) is passed
as argument to the unapply method of Twice. This results in an optional value
which is matched subsequently.3 The preceding example is expanded as follows:

val x = Twice.apply(21)
Twice.unapply(x) match {
case Some(y) => println(x+" is two times "+y)
case None => println("x is odd")

}

Extractor patterns with more than one argument correspond to unapply methods
returning an optional tuple. Nullary extractor patterns correspond to unapply
methods returning a Boolean.

In the following we show how extractors can be used to implement the match-
ing semantics of join patterns. In essence, we define appropriate unapply meth-
ods for events which get implicitly called during the matching.

3.3.3 Matching join patterns
As shown previously, a set of join patterns is represented as a partial function. Its
isDefinedAt method is used to find out whether one of the join patterns matches.

3The optional value is of parameterized type Option[T] that has the two subclasses
Some[T](x: T) and None.
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In the following we are going to explain the code that the Scala compiler produces
for the body of this method. Let us revisit the join pattern that we have seen in the
previous section:

Get() & Put(x)

In our library, the & operator is an extractor that defines an unapply method;
therefore, the Scala compiler produces the following matching code:

&.unapply(m) match {
case Some((u, v)) =>
u match {
case Get() => v match {
case Put(x) => true
case _ => false }

case _ => false }
case None => false }

We defer a discussion of the argument m that is passed to the & operator. For
now, it is important to understand the general scheme of the matching process.
Basically, calling the unapply method of the & operator produces a pair of inter-
mediate results wrapped in Some. Standard pattern matching decomposes this pair
into the variables u and v. These variables, in turn, are matched against the events
Get and Put. Only if both of them match, the overall pattern matches.

Since the & operator is left-associative, matching more than two events pro-
ceeds by first calling the unapply methods of all the & operators from right to left,
and then matching the intermediate results with the corresponding events from
left to right. Events are objects that have an unapply method; therefore, we can
expand the code further:

&.unapply(m) match {
case Some((u, v)) =>
Get.unapply(u) match {
case true => Put.unapply(v) match {
case Some(x) => true
case None => false }

case false => false }
case None => false }

As we can see, the intermediate results produced by the unapply method of the
& operator are passed as arguments to the unapply methods of the correspond-
ing events. Since the Get event is parameterless, its unapply method returns a
Boolean, telling whether it matches or not. The Put event, on the other hand,
takes a parameter; when the pattern matches, this parameter gets bound to a con-
crete value that is produced by the unapply method.
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The unapply method of a parameterless event such as Get essentially checks
whether it has been invoked previously. The unapply method of an event that
takes parameters such as Put returns the argument of a previous invocation (
wrapped in Some), or signals failure if there is no previous invocation. In both
cases, previous invocations have to be buffered inside the event.

Firing join patterns As mentioned before, executing the right-hand side of a
pattern that is part of a partial function amounts to invoking the apply method of
that partial function. Basically, this repeats the matching process, thereby binding
any pattern variables to concrete values in the pattern body. When firing a join pat-
tern, the events’ unapply methods have to dequeue the corresponding invocations
from their buffers. In contrast, invoking isDefinedAt does not have any effect
on the state of the invocation buffers. To signal to the events in which context
their unapply methods are invoked, we therefore need some way to propagate
out-of-band information through the matching. For this, we use the argument m
that is passed to the isDefinedAt and apply methods of the partial function. The
& operator propagates this information verbatim to its two children (its unapply
method receivesm as argument and produces a pair with two copies ofmwrapped
in Some). Eventually, this information is passed to the events’ unapply methods.

3.3.4 Implementation details
Events are represented as classes that contain queues to buffer invocations. Fig-
ure 3.1 shows the abstract Event class, which is the super class of all synchronous
and asynchronous events.4 The Event class takes two type arguments R and Arg
that indicate the result type and parameter type of event invocations, respectively.
Events have a unique owner which is an instance of the Joins class. This class
provides the join method that we used in the buffer example to declare a set of
join patterns. An event can appear in several join patterns declared by its owner.
The tag field holds an identifier which is unique with respect to a given owner
instance. Whenever an event is invoked via its apply method, we first acquire an
owner-global lock. The reason is that invoking an event may require accessing the
buffers of several events participating in the same join pattern. For thread-safety,
all accesses must occur as part of a single atomic action. The lock is released
at the point where no owner-global state has to be accessed any more. Before
checking for a matching join pattern, we append the provided argument to the
buf list, which queues logical invocations. The abstract invoke method is used
to run synchronization-specific code; synchronous and asynchronous events dif-

4In our actual implementation the fact whether an event is parameterless is factored out for
efficiency. For clarity of exposition, we show a simplified class hierarchy.
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abstract class Event[R, Arg] {
val owner: Joins
val tag = owner.freshTag
var buf: List[Arg] = Nil
def apply(arg: Arg): R = {
owner.lock.acquire
buf = buf ::: List(arg)
invoke()

}
def invoke(): R
def unapply(isDryRun: Boolean): Option[Arg] = {
if (isDryRun && !buf.isEmpty)
Some(buf.head)

else if (!isDryRun && owner.matches(tag)) {
val arg = buf.head
buf = buf.tail
if (owner.isLastEvent)
owner.lock.release

Some(arg)
} else None

}
}

Figure 3.1: The abstract super class of synchronous and asynchronous events

fer mainly in their implementation of the invoke method (we show a concrete
implementation for synchronous events below).

In the unapply method we first test whether matching occurs during a “dry
run”, indicated by the isDryRun parameter. isDryRun is true when we only
check for a matching join pattern; in this case the buffer state is not modified.
The argument of a queued invocation is returned wrapped in Some. If there is no
previous invocation, we return None to indicate that the event, and therefore the
current pattern, does not match. When firing a join pattern, isDryRun is false;
in this case the invocations that form part of the corresponding match are removed
from their buffers. However, it is still possible that the current event does not
match, since the pattern matcher will also invoke the unapply methods of events
that occur in cases preceding the matching pattern. Therefore, we also have to
check that the current event (represented by its unique tag) belongs to the actual
match (owner.matches(tag)). In this case the argument value corresponding to
its oldest invocation is removed from the buffer. We also release the owner’s lock
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class SyncEvent[R, Arg] extends Event[R, Arg] {
val waitQ = new Queue[SyncVar[R]]
def invoke(): R = {
val res = new SyncVar[R]
waitQ += res
owner.matchAndRun()
res.get

}
def reply(res: R) {
owner.lock.acquire
waitQ.dequeue().set(res)
owner.lock.release

}
}

Figure 3.2: A class implementing synchronous events

if the current event occurs last in the matching pattern.
The SyncEvent class shown in Figure 3.2 implements synchronous events.

Synchronous events contain a logical queue of waiting threads, waitQ, which is
implemented using the implicit wait set of synchronous variables.5 The invoke
method is run whenever the event is invoked (see above). It creates a new SyncVar
and appends it to the waitQ. Then, the owner’s matchAndRun method is invoked
to check whether the event invocation triggers a complete join pattern. After that,
the current thread waits for the SyncVar to become initialized by calling its get
method. If the owner detects (during owner.matchAndRun()) that a join pattern
triggers, it will apply the join, thereby re-executing the pattern match (binding
variables etc.) and running the join body. Inside the body, synchronous events are
replied to by invoking their reply method. Replying means dequeuing a SyncVar
and setting its value to the supplied argument. If none of the join patterns matches,
the thread that invoked the synchronous event is blocked (upon calling res.get)
until another thread triggers a join pattern that contains the same synchronous
event.

Thread safety Our implementation avoids races when multiple threads try to
match a join pattern at the same time; checking whether a join pattern matches
is an atomic operation. Notably, the isDefinedAt/apply methods of the join set

5A SyncVar is an atomically updatable reference cell; it blocks threads trying to get the value
of an uninitialized cell.



3.3. JOINS AND EXTENSIBLE PATTERN MATCHING 55

are only called from within the matchAndRun method of the Joins class. This
method, in turn, is only called after the owner’s lock has been acquired. The
unapply methods of events, in turn, are only called from within the matching code
inside the partial function, and are thus guarded by the same lock. The internal
state of individual events is updated consistently: the apply method acquires the
owner’s lock, which is released after matching is finished; the dequeueing of a
waiting thread inside the reply method is guarded by the owner’s lock. We don’t
assume any concurrency properties of the queues used to buffer invocations or
waiting threads.

3.3.5 Implementation of actor-based joins
Actor-based joins integrate with Scala’s pattern matching in essentially the same
way as the thread-based joins, making both implementations very similar. We
highlight how joins are integrated into the actor library, and how reply destinations
are supported.

As explained in Section 2.1.1, receive is a method that takes a
PartialFunction as a sole argument, similar to the join method defined pre-
viously. To make receive aware of join patterns, the abstract JoinActor class
overrides this method by wrapping the partial function into a specialized partial
function that understands join messages. JoinActor also overrides send to set
the reply destination of a join message. Message sends such as a ! msg are in-
terpreted as calls to a’s send method.

abstract class JoinActor extends Actor {
override def receive[R](f: PartialFunction[Any, R]): R =
super.receive(new JoinPatterns(f))

override def send(msg: Any, replyTo: OutputChannel[Any]) {
setReplyDest(msg, replyTo)
super.send(msg, replyTo) }

def setReplyDest(msg: Any, replyTo: OutputChannel[Any]) { ... }
}

JoinPatterns (see below) is a special partial function that detects whether its
argument message is a join message. If it is, then the argument message is
transformed to include out-of-band information that will be passed to the pattern
matcher, as is the case for events in the thread-based joins library. The Boolean
argument passed to the asJoinMessage method indicates to the pattern matcher
whether or not join message arguments should be dequeued upon successful pat-
tern matching. If the msg argument is not a join message, asJoinMessage passes
the original message to the pattern matcher unchanged, enabling regular actor
messages to be processed as normal.
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class JoinPatterns[R](f: PartialFunction[Any, R])
extends PartialFunction[Any, R] {
override def isDefinedAt(msg: Any) =
f.isDefinedAt(asJoinMessage(msg, true))

override def apply(msg: Any) =
f(asJoinMessage(msg, false))

def asJoinMessage(msg: Any, isDryRun: Boolean): Any =
...

}

Recall from the implementation of synchronous events that thread-based joins
used constructs such as SyncVars to synchronize the sender of an event with
the receiver. Actor-based joins do not use such constructs. In order to synchro-
nize sender and receiver, every join message has a reply destination (which is an
OutputChannel, set when the message is sent in the actor’s send method) on
which a sender may listen for replies. The reply method of a JoinMessage sim-
ply forwards its argument value to this encapsulated reply destination. This wakes
up an actor that performed a synchronous send (a !? msg) or that was waiting on
a future (a !! msg).

3.4 Discussion and Related Work
In Section 3.1 we already introduced Cω [13], a language extension of C# support-
ing chords, linear combinations of methods. In contrast to Scala Joins, Cω allows
at most one synchronous method in a chord. The thread invoking this method
is the thread that eventually executes the chord’s body. The benefits of Cω as a
language extension over Scala Joins are that chords can be enforced to be well-
formed and that their matching code can be optimized ahead of time. In Scala
Joins, the joins are only analyzed at pattern-matching time. The benefit of Scala
Joins as a library extension is that it provides more flexibility, such as multiple
synchronous events. Benton et al. [13] note that supporting general guards in join
patterns is difficult to implement efficiently as it requires testing all possible com-
binations of queued messages to find a match. Side effects pose another problem.
The authors suggest a restricted language for guards to overcome these issues.
However, to the best of our knowledge, there is currently no joins framework that
supports a sufficiently restrictive yet expressive guard language to implement effi-
cient guarded joins. Our current implementation handles (side-effect free) guards
that only depend on arguments of events that queue at most one invocation at a
time.

Russo’s C# Joins library [109] exploits the expressiveness of C# 2.0’s gener-
ics to implement Cω’s synchronization constructs. Piggy-backing on an existing
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variable binding mechanism allows us to avoid problems with C# Joins’ delegates
where the order in which arguments are passed is merely conventional. Scala
Joins extends both Cω and C# Joins with nested patterns that can avoid certain
redundancies by generalizing events and patterns. CCR [27] is a C# library for
asynchronous concurrency that supports join patterns without synchronous com-
ponents. Join bodies are scheduled for execution in a thread pool. Our library
integrates with JVM threads using synchronous variables, and supports event-
based programming through its integration with Scala Actors. CML [107] allows
threads to synchronize on first-class composable events; because all events have
a single commit point, certain protocols may not be specified in a modular way
(for example when an event occurs in several join patterns). By combining CML’s
events with all-or-nothing transactions, transactional events [44] overcome this
restriction but may have a higher overhead than join patterns.

Synchronization in actor-based languages is a well-studied domain. Activa-
tion based on message sets [58] is more general than joins since events/channels
have a fixed owner, which enables important optimizations. Other actor-based
languages allow for a synchronization style similar to that supported by join pat-
terns. For example, behavior sets in Act++ [80] or enabled sets in Rosette [123]
allow an actor to restrict the set of messages which it may process. They do so by
partitioning messages into different sets representing different actor states. Joins
do not make these states explicit, but rather allow state transitions to be encoded
in terms of sending messages. The novelty of Scala Joins for actors is that such
synchronization is integrated with the actor’s standard message reception opera-
tion using extensible pattern matching. In SALSA [124] actors can synchronize
upon the arrival of multiple replies to previously sent messages. In contrast, Scala
Joins allow actors to synchronize on incoming messages that do not originate
from previous requests. Work by Sulzmann et al. [119] extends Erlang-style ac-
tors with receive patterns consisting of multiple messages, which is very similar
to our join-based actors. The two approaches are complementary: their work fo-
cuses on providing a formal matching semantics in form of Constraint Handling
Rules [59] whereas the emphasis of our work lies on the integration of joins with
extensible pattern matching; Scala Joins additionally permits joins for standard
(non-actor) threads that do not have a mailbox. JErlang [106] integrates join-
style message patterns into Erlang’s receive construct. In contrast to our approach
which does not need special compiler support, their system relies on an experi-
mental syntax transformation module that is run as part of compilation. JErlang’s
patterns may be non-linear (a single type of message occurs several times in the
same pattern) and guards may be side-effect-free Boolean expressions (without
calls to user-defined functions). The pattern language supported by our system
is less expressive, although it could be extended to handle more general guards.
Our system contributes synchronization-agnostic messages: each message is as-
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sociated with its sending actor (which is transmitted implicitly); synchronous and
future-type message send operations are supported by replying to the messages of
the corresponding request.

3.5 Conclusion
We presented a novel implementation of join patterns based on Scala’s extensible
pattern matching. Unlike previous library-based implementations, the embedding
into pattern matching enables us to reuse an existing variable binding mechanism,
thereby avoiding certain usage errors. Our technique also opens up new possibili-
ties for supporting features such as nested patterns and guards in joins. Programs
written using our library are often as concise as if written in dedicated language
extensions. We implemented our approach as a Scala library and furthermore in-
tegrated it with the Scala Actors concurrency framework without changing the
syntax and semantics of programs without joins.



Chapter 4

Type-Based Actor Isolation

In this chapter we introduce a new type-based approach to actor isolation. The
main idea of our approach is to use a type system with static capabilities to enforce
uniqueness of object references. Transferring a mutable object from one actor to
another requires a unique reference to that object. Moreover, after the (unique)
object has been sent, it is no longer accessible to the sender; the capability required
to access the object has been consumed. Thereby, we ensure that at most one actor
accesses a mutable object at any point in time; this means that actors are isolated
even in the presence of efficient by-reference message passing.

The rest of this chapter is organized as follows. Section 4.2 provides the nec-
essary background on statically checking separation and uniqueness by review-
ing existing proposals from the literature. In Section 4.3 we provide an infor-
mal overview of our type system and the user-provided annotations. Section 4.4
presents a formal account in the context of a small core language with objects. We
establish soundness of the type system (see Section 4.5) using a small-step opera-
tional semantics and the traditional method of preservation and progress theorems
(a complete proof appears in Appendix A.) Section 4.6 introduces immutable
types, which permit more flexible aliasing patterns; they integrate seamlessly with
uniqueness types. In Section 4.7 we extend our formal development with actors.
This allows us to prove an isolation theorem, which says that actors only access
immutable objects concurrently. Section 4.8 presents several extensions of our
system informally, notably closures and nested classes. In Section 4.9 we outline
our implementation for Scala; we also provide evidence that our system is practi-
cal by using it to type-check mutable collection classes and real-world, concurrent
programs.

This chapter is based on a paper published in the proceedings of the 24th
European Conference on Object-Oriented Programming (ECOOP 2010) [69]. The
material on immutable types (Section 4.6) as well as the extension to actor-based
concurrency (Section 4.7 including the isolation theorem of Section 4.7.6) is new
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and has not been published, yet. Section 4.8.1 adds a discussion of an application
to automatic resource management; the ray tracer example in Section 4.9.1 is also
new. The conference paper (without the mentioned extensions) was written by the
author of this thesis, except for parts of the introduction, which were contributed
by Martin Odersky; he also helped shape the final version of our formal semantics
and type system. We are grateful for the detailed and helpful feedback of the
anonymous reviewers.

4.1 Introduction
A promise of message-based concurrency are robust programming models that
scale from multi-core processors to distributed systems, such as web applications.
However, this requires a uniform semantics for local and remote message sends
(see Chapter 1). To support distributed systems where actors do not share state,
we consider a semantics where sent messages are moved from the memory region
of the sender to the (disjoint) memory region of the receiver. Thus, a message is
no longer accessible to its sender after it has been sent. This semantics also avoids
data races if concurrent processes running on the same computer communicate
only by passing messages.

However, moving messages physically requires expensive marshaling/copy-
ing. This would prohibit the use of message passing altogether in performance-
critical code that deals with large messages, such as network protocol stacks [48,
50]. To achieve the necessary performance in these applications, the underly-
ing implementation must pass messages between processes running on the same
shared-memory computer by reference. But reference passing makes it chal-
lenging to enforce race freedom, especially in the context of imperative, object-
oriented languages, where aliasing of object references is common.

The two main approaches to address this problem are:

• Immutable messages. Only allow passing objects of immutable type. Exam-
ples are Java-style primitive types (e.g., int, boolean), immutable strings,
and tree-shaped data, such as XML.

• Alias-free messages. Only a single, unique reference may point to each
message; upon transfer, the unique reference becomes unusable [50, 116,
117].

Immutable messages are used, for instance, in Erlang (see Section 2.7.3). The sec-
ond approach usually imposes constraints on the shape of messages (e.g., trees [117]).
Even though messages are passed by reference, message shape constraints may
lead indirectly to copying overheads: data stored in an object graph that does not
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Proposal Type System Unique Objects
Islands (˜ linear types) alias-free
Balloons (abstr. interpr.) alias-free
PacLang quasi-linear types alias-free, flds. prim.
PRFJ expl. ownership alias-free
StreamFlex impl. ownership alias-free, flds. prim.
Kilim impl. ownership alias-free
External U. expl. ownership intern. aliases
UTT impl. ownership intern. aliases
BR capabilities intern. aliases
MOAO expl. ownership intern. aliases
Sing# capabilities intern. aliases
This thesis capabilities intern. aliases

Table 4.1: Proposals for uniqueness: types and unique objects

satisfy the shape constraints must first be serialized into a permitted form before
it can be sent within a message.

In our actors library described in Chapter 2, messages can be any kind of data,
mutable as well as immutable. When sending messages between actors operat-
ing on the same computer, the message state is not copied; instead, messages
are transferred by reference only. This makes the system flexible and guarantees
high performance. However, without additional static or dynamic checks, passing
mutable messages by reference can lead to data races.

This chapter introduces a new type-based approach to statically enforce race
safety in Scala’s actors. Our main goal is to ensure race safety with a type sys-
tem that’s simple and expressive enough to be deployed in production systems by
normal users. Our system removes important limitations of existing approaches
concerning permitted message shapes. At the same time it allows interesting pro-
gramming idioms to be expressed with fewer annotations than previous work,
while providing equally strong safety guarantees.

4.2 Statically Checking Separation and Uniqueness

Our approach to isolating actors is based on a static type system to check separa-
tion and uniqueness properties of object references. Section 4.2.1 reviews related
work on uniqueness and full encapsulation. In Section 4.2.2 we relate our ap-
proach to linear types, region-based memory management, and separation logic.
We discuss other approaches to isolating concurrent processes in Section 4.2.3.
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Proposal Encapsulation Program Annotations
Islands full type qualifiers, purity
Balloons full type qualifiers
PacLang full type qualifiers
PRFJ deep/full owners, regions, effects
StreamFlex full type qualifiers
Kilim full type qualifiers
External U. deep owners, borrowing
UTT deep type qualifiers, regions
BR deep type qual., regions, effects
MOAO full simple owners, borrowing
Sing# full type qualifiers, borrowing
This thesis full type qualifiers

Table 4.2: Proposals for uniqueness: encapsulation and annotations

4.2.1 Type systems for uniqueness and full encapsulation
There exists a large number of proposals for unique object references. A com-
prehensive survey is beyond the scope of this thesis; Clarke and Wrigstad [29]
provide a good overview of earlier work where unique references are not allowed
to point to internally-aliased objects, such as doubly-linked lists. Aliases that are
strictly internal to a unique object are not observable by external clients and are
therefore harmless [136]. Importantly, “external” uniqueness enables many inter-
esting programming patterns, such as merging of data structures and abstraction
of object creation (through factory methods [60]). In the following we consider
two kinds of alias encapsulation policies:

• Deep encapsulation: [94] the only access (transitively) to the internal state
of an object is through a single entry point. References to external state are
allowed.

• Full encapsulation: same as deep encapsulation, except that no references
to objects outside the encapsulated object from within the encapsulation
boundary are permitted.

Our motivation to study full encapsulation is concurrent programming, where
deep encapsulation is generally not sufficient to avoid data races. In the follow-
ing we compare proposals from the literature that provide either uniqueness with
internal aliasing, full alias encapsulation, or both. (Section 4.2.2 discusses other
related work on linear types, regions, and program logics.)

Table 4.1 classifies existing approaches according to (a) the kind of type sys-
tem they use, and (b) the notion of unique/linear objects they support. Table 4.2
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classifies the same approaches according to (c) the alias encapsulation they pro-
vide, and (d) the program annotations they require for static (type) checking. We
distinguish three main kinds of type systems: explicit (parametrized) ownership
types [31], implicit ownership types, and systems based on capabilities/permis-
sions. The third column of Table 4.1 specifies whether unique objects are allowed
to have internal aliases; in general, alias-free unique references may only point to
tree-shaped object graphs. The second column of Table 4.2 indicates the encapsu-
lation policy. We are going to explain the program annotations in the third column
of Table 4.2 in the context of each proposal.

Islands [78] provide fully-encapsulated objects protected by “bridge” classes.
However, extending an Island requires unique objects, which must be alias-free.
Almeida’s Balloon Types [4] provide unique objects with full encapsulation; how-
ever, the unique object itself may not be (internally) aliased. Ennals et al. [48] have
used quasi-linear types [82] for efficient network packet processing in PacLang;
in their system, packets may not contain nested pointers. The PRFJ language of
Boyapati et al. [18] associates owners with shared-memory locks to verify correct
lock acquisition. PRFJ does not support unique references with internal aliasing; it
requires adding explicit owner parameters to classes and read/write effect annota-
tions. StreamFlex [116] (like its successor Flexotasks [9]) supports stream-based
programming in Java. It allows zero-copy message passing of “capsule” objects
along linear filter pipelines. Capsule classes must satisfy stringent constraints:
their fields may only store primitive types or arrays of primitive types. Kilim [117]
combines type qualifiers with an intra-procedural shape analysis to ensure isola-
tion of Java-based actors. To simplify the alias analysis and annotation system,
messages must be tree-shaped. StreamFlex, Flexotasks, and Kilim are systems
where object ownership is enforced implicitly, i.e., types in their languages do not
have explicit owners or owner parameters. This keeps their annotation systems
pleasingly simple, but significantly reduces expressivity: unique objects may not
be internally-aliased.

Universe Types [42, 41] is a more general implicit ownership type system
that restricts only object mutations, while permitting arbitrary aliasing. Uni-
verse Types are particularly attractive for us, because its type qualifiers are very
lightweight. In fact, some of the annotations proposed in this paper are very sim-
ilar, suggesting a close connection. Generally, however, the systems are very dif-
ferent, since restricting only modifications of objects does not prevent data races
in a concurrent setting. UTT [93] extends Universe Types with ownership trans-
fer; it increases the flexibility of external uniqueness by introducing explicit re-
gions (“clusters”); an additional static analysis helps avoiding common problems
of destructive reads. In Vault [51] Fähndrich and DeLine introduce adoption and
focus for embedding linear values into aliased containers (adoption), providing a
way to recover linear access to such values (focus). Their system builds on Alias
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Types [131] that allow a precise description of the shape of recursive data struc-
tures in a type system. Boyland and Retert [19] (BR in Table 4.1 and Table 4.2)
generalize adoption to model both effects and uniqueness. While their type lan-
guage is very expressive, it is also clearly more complex than Vault. Their realized
source-level annotations include region (“data group”) and effect declarations.

MOAO [30] combines a minimal notion of ownership, external uniqueness,
and immutability into a system that provides race freedom for active objects [140,
22]. To reduce the annotation burden messages have a flat ownership structure:
all objects in a message graph have the same owner. It requires only simple owner
annotations; however, borrowing requires existential owners [137] and owner-
polymorphic methods. Sing# [50] uses capabilities [51] to track the linear trans-
fer of message records that are explicitly allocated in a special exchange heap
reserved for inter-process communication. Their tracked pointers may have inter-
nal aliases; however, storing a tracked pointer in the heap requires dynamic checks
that may lead to deadlocks. Their annotation system consists of type qualifiers as
well as borrowing (“expose”) blocks for accessing fields of unique objects.

Summary In previous proposals, borrowing has largely been treated as a second-
class citizen. Several researchers [19, 93] have pointed out the problems of ad-
hoc type rules for borrowing (particularly in the context of destructive reads).
Concurrency is likely to exacerbate these problems. However, principled treat-
ments of borrowing currently demand a high toll: they require either existential
ownership types with owner-polymorphic methods, or type systems with explicit
regions, such as Universe Types with Transfer or Boyland and Retert’s general-
ized adoption. Both alternatives significantly increase the syntactic overhead and
are extremely challenging to integrate into practical object-oriented programming
languages.

4.2.2 Linear types, regions, and separation logic

In functional languages, linear types [129] have been used to implement opera-
tions like array updating without the cost of a full copy. An object of linear type
must be used exactly once; as a result, linear objects must be threaded through
the computation. Wadler’s let! or observers [97] can be used to temporarily
access a linear object under a non-linear type. Linear types have also been com-
bined with regions, where let! is only applicable to regions [132]. Bierhoff
and Aldrich [14] build on an expressive linear program logic for modular type-
state checking in an object-oriented setting. Their system provides unique ref-
erences; however, uniqueness does not imply an encapsulation property like ex-
ternal uniqueness [29], which is crucial for our application to actor isolation. In
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the system of Bierhoff and Aldrich, the encapsulation policy would have to be
expressed using explicit invariants provided by the programmer; it is not clear
whether the encapsulation policy we use can be expressed in their system. Beck-
man et al. [12] use a similar system for verifying the correct use of software trans-
actions. JAVA(X) [40] tracks linear and affine resources using type refinement
and capabilities, which are structured, unlike ours. The authors did not consider
applications to concurrency. Shoal [6] combines static and dynamic checks to
enforce sharing properties in concurrent C programs; in contrast, our approach is
purely static. Like in region-based memory management [122, 130, 77, 141], in
our system objects inside a region may not refer to objects inside another region
that may be separately consumed. The main differences are: first, regions in our
system do not have to be consumed/deleted, since they are garbage-collected; sec-
ond, regions in our system can be merged. Separation logic [100] is a program
logic designed to reason about separation of portions of the heap; the logic is not
decidable, unlike our approach. Bornat et al. [17] study permission accounting
in separation logic; unlike our system, their approach is not automated. Parkin-
son and Bierman [104] extend the logic to an object-oriented setting; however,
applications [43] still require a theorem prover and involve extensive program
annotation. To avoid aliasing, swapping [70] has been proposed previously as an
alternative to copying pointers; in contrast to earlier work, our approach integrates
swapping with internally-aliased unique references and local aliasing.

4.2.3 Isolating concurrent processes
ProActive [21] is a middleware for programming distributed Grid applications.
Its main abstractions are deterministic active objects [23] that communicate via
asynchronous method calls and futures. Transfering data between different active
objects requires cloning; this also applies to communication among components
in ToolBus [38]. Coboxes [111] generalize active objects by supporting coopera-
tive scheduling of multiple tasks inside a single active object. Moreover, coboxes
partition the heap hierarchically into isolated groups of objects. Access to ob-
jects local to a cobox is guaranteed to be race-free; only immutable objects can
be shared by multiple coboxes. Transferring mutable objects in a way that makes
them locally accessible inside the receiving cobox is only possible via deep copy-
ing. This is unlike the approach presented in this chapter which allows transfer-
ring mutable objects by reference between concurrent actors, while guaranteeing
race-free access to these objects.

Guava [11] is a variant of Java that categorizes data into objects, monitors,
and values. Objects always remain local to a single thread. Monitors may be
freely shared between threads, since their methods are always synchronized. Val-
ues behave like primitives in Java: they don’t have identity and they are deeply
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def runTests(kind: String, tests: List[Files]) {
var succ, fail = 0
val logs: LogList @unique = new LogList
for (test <- tests) {
val log: LogFile @unique = createLogFile(test)
// run test...
logs.add(log)

}
report(succ, fail, logs)

}
def report(succ: Int, fail: Int, logs: LogList @unique) {
master ! new Results(succ, fail, logs)

}

Figure 4.1: Running tests and reporting results

copied (except for embedded references to monitors) on assignment. A destructive
“move” operator can be used for assigning values without the overhead of a copy
operation. However, only immutable values may be passed by reference from one
thread to another, unlike our approach which also permits mutable values. Guava
allows objects to be temporarily passed between monitors; in contrast, our system
allows objects to be transfered permanently to another actor protecting its state.
Similar to our system, regions and ownership are used to enforce that monitors do
not hold on to objects owned by a different monitor or value. The authors present
the type system as a collection of informal rules. It is suggested that a variant
of the race-free type system of Flanagan and Abadi [53] could be used to model
Guava’s region types. X10 [110] is a new object-oriented programming language
with a type system supporting constraints [96] to check properties of concurrent
programs. Using place types the location of data can be tracked at compile time;
the compiler can exploit this information to optimize performance and scalability
on parallel platforms. X10 does not support unique references to transfer mutable
data; instead, computations can move to the (mutable) data which remains local.

4.3 Overview

As a running example we use the simplified core of partest, the parallel testing
framework used to test the Scala compiler and standard libraries. The framework
uses actors for running multiple tests in parallel, thereby achieving significant
speed-ups on multi-core processors.
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In this application, a master actor creates multiple worker actors, each of
which receives a list of tests to be run. A worker executes the runTests method
shown in Figure 4.1, which prompts the test execution. Each test is associated
with a log file that records the output produced by compiling and, in some cases,
running the test. These log files are collected in the logs list that the worker
sends back to the master upon completing the test execution. Note that log files
are neither immutable nor cloneable.1 Therefore, it is impossible to create a copy
of the log files upon sending them to the master. To ensure that passing logs by
reference is safe, we annotate its type as @unique. Inside the for-comprehension,
we also annotate the log variable, which refers to a single log file, as @unique;
this enables adding log to logs without losing the uniqueness of logs. (Below
we explain how to check that the invocation of add is safe.)

The worker reports the test results to its master using report. The @unique
annotation requires the logs parameter to be unique. Moreover, it indicates that
the caller loses the permission to access the passed argument subsequently. In fact,
any object reachable from logs becomes inaccessible to the caller. Conversely,
report has the full permission to access logs. This allows sending it as part of
a unique Results message to the master. Sending a unique object (using the !
method) makes it unusable, as well as all objects reachable from it, including the
logs.

In the above example we have shown how to use the @unique annotation to
ensure the safety of passing message objects by reference. In the following we
introduce aliasing invariants of our type system that guarantee the soundness of
this approach.

4.3.1 Alias invariant

The alias invariant that our system guarantees is based on a separation predicate
on stack variables. (Below, we extend this invariant to fields.) We characterize
two variables x, y as being separate, written separate(x, y), if and only if they do
not share a common reachable object.2 In other words, two variables are separate
if they point to disjoint object graphs in the heap. Based on this predicate we
define what it means for a variable to be separately-unique.

Definition 1 (Separate Uniqueness) A variable x is separately-unique iff ∀y 6=
x. y live⇒ separate(x, y).

1LogFile inherits from java.io.File, which is not cloneable.
2For simplicity we leave the heap implicit in the following discussion; we formalize it precisely

in Section 4.4.
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Figure 4.2: Comparing (a) external uniqueness and (b) separate uniqueness (⇒
unique reference,→ legal reference, 99K illegal reference)

This definition of uniqueness implies that if x is a separately-unique variable, there
is no other live variable on the stack that shares a common reachable object with
x.

In contrast, this does not hold for external uniqueness [29], which is the notion
of uniqueness most closely related to ours. Figure 4.2 compares the two notions of
uniqueness. We assume that object A owns object B. This means that references
r and i are internal to the ownership context of A. Ownership makes reference f ′

illegal. u is a unique reference to A; uniqueness makes reference f illegal. Im-
portantly, external uniqueness permits the s reference, which points to an object
that is reachable without using u. Therefore, even if u is unusable, the target of
s is still reachable. In contrast, our system enforces full encapsulation by forbid-
ding the s reference. This means that making u unusable results in all objects
reachable using u being unusable. Therefore, separate uniqueness avoids races
when unique references are passed among concurrent processes (we prove this in
Appendix A). With external uniqueness, one has to enforce additional constraints
to ensure safety [30].

We are now ready to state the alias invariant that our type system provides.

Definition 2 (Alias Invariant) Unique parameters are separately-unique.

Note that this invariant does not require unique variables to be separately-unique.
In particular, unique variables may be aliased by local variables on the stack.
However, it is valid to pass a unique variable to a method expecting a unique
argument. This means that it must always be possible to make unique variables
separately-unique. In the following we explain how we can enforce this using a
system of capabilities.

4.3.2 Capabilities
A unique variable has a type guarded by some capability ρ, written ρ . T (typi-
cally, T is the underlying class type). Capabilities have two roles: first, they serve
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as static names for (disjoint) regions of the heap. Second, they embody access per-
missions [130, 19, 25] to those regions. The typing rules of our system consume
and produce sets of capabilities. A variable with a type guarded by ρ can only be
accessed if ρ is available, i.e., if it is contained in the input set of capabilities in
the typing rule. Therefore, consuming ρ makes all variables of types guarded by
ρ unusable. The following invariant expresses the fact that accessible variables
guarded by different capabilities point to disjoint object graphs.

Definition 3 (Capability Type Invariant) Let x be a unique variable with guarded
type ρ . T. If y is an accessible variable such that ¬separate(x, y), then y has
guarded type ρ . S.

Note that the above definition permits variables z of guarded type δ . U (δ 6= ρ)
such that ¬separate(x, z). This is safe as long as δ is not available, which makes
z inaccessible.

In summary, the above invariant implies that if x’s type is guarded by some
capability ρ, consuming ρ makes all variables y such that ¬separate(x, y) inac-
cessible. Therefore, the separate uniqueness of unique arguments can be enforced
as follows: first, unique arguments must have guarded type ρ . T . Second, ca-
pability ρ is consumed (and, therefore, must be available) in the caller’s context.
Third, capabilities guarding other arguments (if any) must be different from ρ. In
Section 4.4 we formalize the mapping between annotations in the surface syntax,
such as @unique, and method types with capabilities.

We have introduced two invariants that are fundamental to the soundness of
unique variables and parameters in our system. In the following we motivate and
discuss extensions of our annotation system.

4.3.3 Transient and peer parameters
Our discussion of the example shown in Figure 4.1 did not address the problem
of mutating the unique logs list after running a single test. Crucially, logs must
remain unique (and accessible) after adding log to it. This means we cannot
use @unique to annotate the receiver of the add method, since it would make
logs inaccessible. Furthermore, add’s parameter must point into the same region
as the receiver, since add makes log reachable from logs. To express those
requirements, we introduce two additional annotations: @transient and @peer.
They are used to annotate the add method as follows.

class LogList {
var elem: LogFile = null
var next: LogList = this
@transient def add(file: LogFile @peer(this)) =
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if (isEmpty) { elem = file; next = new LogList }
else next.add(file)

}

Note that the @transient annotation applies to the receiver, i.e., this.
@transient is equivalent to @unique, except that it does not consume the capa-
bility to access the annotated parameter (including the receiver). Consequently, it
is illegal to pass a transient parameter, or any object reachable from it, to a method
expecting a unique parameter, which would consume its capability.

The @peer(this) annotation on the parameter type indicates that file points
into the same region as this. The effect on available capabilities is determined by
the argument of @peer: since this is transient, invoking add does not consume
the capability of file.

Note that our system does not restrict references between objects inside the
same region; this means that this and file can refer to each other in arbitrary
ways. In the type system this is expressed by having field selections propagate
guards: if this has type ρ . LogList, then this.elem has type ρ . LogFile.
Since file is a peer of this, its type is ρ . LogFile; therefore, assigning file to
elem in the then-branch of the conditional expression is safe.

To verify the safety of calling add in the else-branch, we have to check that
next and file have types guarded by the same capability. Moreover, this capa-
bility must be available. Since both conditions are true (the receiver of isEmpty
is transient), the invocation type-checks.

We have introduced the @transient annotation to express the fact that a
method maintains the uniqueness and accessibility of a receiver or parameter. The
@peer annotation indicates that certain parameters are in the same (logical) re-
gion of the heap, which allows creating reference paths between them. Together,
these annotations enable methods to mutate unique objects without destroying
their uniqueness. In the following section we show how the disjoint regions of
two unique objects can be merged.

4.3.4 Merging regions

Recall that the parameter of the addmethod shown above is marked as @peer(this),
which means that it must be in the same region as the receiver. However, when
using add in the example of Figure 4.1, the log variable is separately-unique; this
means it is contained in a region that is disjoint from the region of logs, the re-
ceiver of the method call. This is reflected in the types: log and logs have types
ρ . LogFile and δ . LogList, respectively, for some capabilities ρ 6= δ. There-
fore, the invocation logs.add(log) is not type-correct. What we need is a way
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to merge the regions of log and logs prior to invoking add.3

In our system, regions are merged using a capture expression of the form
t1 capturedBy t2. The arguments of capturedBy must have guarded types ρ1.T1

and ρ2 .T2, respectively, such that ρ1 is available. Our goal is to merge the regions
ρ1 and ρ2 in a way that (still) permits separately-unique references into region ρ2,
while giving up the disjointness from region ρ1. For this, capturedBy returns
an alias of t1, but with a type guarded by ρ2 instead of ρ1. This allows t1 and
t2 to refer to each other subsequently. To satisfy the Capability Type Invariant
(Definition 3), capturedBy consumes ρ1. This ensures that t1 can no longer be
accessed under a type guarded by ρ1. Therefore, it is safe to break the separation
of t1 and t2 subsequently. Since ρ2 is still available, it is possible for separately-
unique variables to point into region ρ2.

In the example, we use capturedBy to merge the regions of log and logs
before invoking add:

logs.add(log capturedBy logs)

Note that capturedBy consumes the capability of log, while the capability of
logs remains available. The result of capturedBy is an alias of log in the same
region as logs. Therefore, the precondition of add (see above) is satisfied.

4.3.5 Unique fields

In the example of Figure 4.1, we made the simplifying assumption that the list
of log files is stored in a local variable. This is not the case in the original pro-
gram, where the log files are stored in a field of the class containing the runTests
method. The main reason is that the lexical scope of runTests is too restrictive.
It is simpler to create the log file in a method transitively called by runTests, at
a point where more information about the test is available, and close to the point
where the log file is actually used. Consequently, updating the list of log files
inside runTests would be cumbersome, since it would require returning the log
file back into the context of runTests. Keeping the logs in a field avoids passing
it around using (extra) method parameters.

In our system, unique fields must be accessed using an expression of the form
swap(t1.l, t2); it returns the current value of the field t1.l and updates it with the
new value t2. The first argument must select a unique field. The second argument
must be a unique object to be stored as the new value in the field. The object that
swap returns is always unique, guarded by a fresh capability. The capability of
the second argument is consumed, which makes it separately-unique.

3This is similar to changing the owner in systems based on ownership; here, ownership of an
object is transferred from one (usually a special “unique”) owner to another [29].
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In our example, the list of log files can be maintained in a unique field logFiles
as follows.

val logs: LogList @unique = swap(this.logFiles, null)
logs.add(log capturedBy logs)
swap(this.logFiles, logs)

First, we obtain the current value of the unique logFiles field, providing null
as its new (dummy) value.4 Then, we add the log file to logs, maintaining the
uniqueness of logs as we discussed above. Finally, we use a second swap to
update logFiles with the modified logs.

We now extend the alias invariant introduced above to unique fields. The
only way to obtain a reference to an object stored in a unique field is to use the
swap expression that we just introduced. Therefore, a property that holds for all
(references to) objects returned by swap is an invariant of unique fields in our
system. This allows us to formulate a unique fields invariant that is pleasingly
simple.

Definition 4 (Unique Fields Invariant) References returned by swap are
separately-unique.

4.4 Formalization
This section presents a formalization of our type system. To simplify the presen-
tation of key ideas, we present our type system in the context of a core subset of
Java. We add the capturedBy and swap expressions introduced in the previous
section, and augment the type system with capabilities to enforce uniqueness and
aliasing constraints. Section 4.8 discusses extensions that are important when in-
tegrating our system into full-featured languages. In Section 4.9 we report on an
implementation for Scala.

Syntax Figure 4.3 shows the core language syntax. The syntax of programs,
classes, terms, and expressions is standard, except for the capturedBy and swap
expressions, which are new. A program consists of a sequence of class definitions
followed by a single top-level term. (We use the common over-bar notation [79]
for sequences.) Class definitions consist of declaring a single super-class followed
by a body containing field and method definitions. Field definitions carry an ad-
ditional modifier α, which indicates whether the field points to a unique object
(α = unique), or not (α = var). Method definitions are extended with two addi-
tional capability annotations that we explain below. The term language is mostly

4Note that it is always safe to treat literals as unique values.
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P ::= cdef t program
cdef ::= class C extends D {fld meth} class
fld ::= α l : C field
meth ::= defm[δ](x : T ) : (T,∆) = e method
t ::= terms

let x = e in t let binding
y.l := z field assignment
y variable

e ::= expressions
new C(y) instance creation
y.l field selection
y.m(z) method invocation
y capturedBy z region capture
swap(y.l, z) unique field swap
t term

C,D ∈ Classes x, y, z ∈ V ars T ::= ρ . C
l ∈ Fields α ∈ {var, unique} ∆ ::= · | ∆⊕ ρ
m ∈Methods ρ ∈ Caps

Figure 4.3: Core language syntax

standard. However, note that terms are written in A-normal form [54]: all sub-
expressions are variables and the result of each expression is immediately stored
into a field or bound in a let. x, y, z are local variables and x 6= this.

Types and capabilities In our system, there are only guarded types and method
types. Guarded types T are composed of an atomic capability ρ and the name
of a class. ρ can be seen as the static representation of a region of the heap that
contains all objects of a type guarded by ρ. A compound capability ∆ is a set of
atomic capabilities.

Method types are extended with capabilities δ and ∆. Roughly, ∆ indicates
which arguments become inaccessible at the call site when the method is invoked;
δ is the capability of the result type if it is fresh. The annotations introduced
in Section 4.3 correspond to method types in our core language as follows. A
parameter x of type C marked as @unique or @transient is mapped to a guarded
type ρ.C, where ρ is distinct from the capabilities guarding other parameter types.
If x is @transient, the method returns ρ, i.e., ρ ∈ ∆. If x is @unique, the method
consumes ρ, i.e., ρ /∈ ∆. A parameter y of type D marked as @peer(x) is mapped
to a guarded type ρ′ . D if x’s type is guarded by ρ′. @peer has no influence on ∆.
The receiver (this) is treated like a parameter. The capability δ is distinct from
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the capabilities of parameters. If the result type is marked @unique, its type is
guarded by δ. We have δ ∈ ∆ only if the result type is guarded by δ, otherwise δ
is unused. An unannotated method in the setting of Section 4.3 has the following
type in our core language: the parameters (including this) and the result are
guarded by the same capability ρ that the method does not consume (ρ ∈ ∆).

Note that the mapping we just described establishes a precise correspondence:
all types expressible in the core language can be expressed using the annotation
system of Section 4.3. This ensures that the formal model is not more powerful
than our implemented system.

4.4.1 Operational semantics
We formalize the dynamic semantics in the form of small-step reduction rules.
Reduction rules are written in the form H, V,R, t −→ H ′, V ′, R′, t′. Terms t are
reduced in a context consisting of a heapH , a variable environment V , and a set of
(dynamic) capabilities R. Figure 4.4 shows their syntax. A heap maps reference
locations to class instances. An instance C(r) stores location ri in its i-th field.
An environment maps variables to guarded reference locations β .r. Note that we
do not model explicit stack frames. Instead, method invocations are “flattened”
by renaming the method parameters before binding them to their argument values
in the environment (as in LJ [118]).

We use the following notational conventions. R ⊕ β is a short hand for the
disjoint unionR]{β}. We defineR⊕β := R⊕β1⊕. . .⊕βn where β = β1, . . . , βn.

According to the grammar in Figure 4.3, expressions are always reduced in the
context of a let-binding, except for field assignments. Each operand of an expres-
sion is a variable y that the environment maps to a guarded reference location β.r.
Reducing an expression containing y requires β to be present in the set of capabil-
ities. Since the environment is a flat list of variable bindings, let-bound variables
must be alpha-renamable: let x = e in t ≡ let x′ = e in [x′/x]t where x′ /∈
FV (t). (We omit the definition of the FV function to obtain the free variables of
a term, since it is completely standard [105].)

The top-level term of a program is reduced in the initial configuration
(r 7→ Object(ε)), (this 7→ ρ . r), {ρ} for some r ∈ RefLocs, ρ ∈ Caps. In the
following we explain the reduction rules.

H, V,R, t1 −→ H ′, V ′, R′, t′1
H,V,R, let x = t1 in t2

−→ H ′, V ′, R′, let x = t′1 in t2

(R-LET)

The congruence rule for let is standard. The term let x = y in t is reduced in
the obvious way.
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H ::= ∅ | (H, r 7→ C(r)) heap (r /∈ dom(H))
V ::= ∅ | (V, y 7→ β . r) envir. (y /∈ dom(V ))
R ::= ∅ | R⊕ β dynamic capability
r ∈ RefLocs reference location
β ∈ DynCaps atomic dyn. capability

Figure 4.4: Syntax for heaps, environments, and dynamic capabilities

V (y) = δ . r δ ∈ R
H(r) = C(r)

H,V,R, let x = y.li in t
−→ H, (V, x 7→ δ . ri), R, t

(R-SELECT)

V (y) = δ . r V (z) = δ . r′

H(r) = C(r) δ ∈ R
H ′ = H[r 7→ C([r′/ri]r)]

H,V,R, y.li := z −→ H ′, V, R, y
(R-ASSIGN)

The result of selecting a field of a variable y is guarded by the same capability
as y. Intuitively, this means that objects transitively reachable from y can only
be accessed using variables guarded by the same capability as y. We make this
intuition more precise in Section 4.4.2 where we formalize the separation invariant
of Section 4.3. Assigning to a field requires the variable whose field is updated
and the right-hand side to be guarded by the same capability. The heap changes
in the standard way.

V (y) = β . r H ′ = (H, r 7→ C(r)) r /∈ dom(H) γ fresh

H,V,R⊕ β, let x = new C(y) in t −→ H ′, (V, x 7→ γ . r), R⊕ γ, t
(R-NEW)

Creating a new instance consumes the capabilities of the constructor arguments.
This ensures that the arguments are effectively separately-unique. Consequently,
it is safe to assign (some of) the arguments to unique fields of the new instance. In
our core language, creating a new instance always yields a unique object. There-
fore, the new let-bound variable that refers to it is guarded by a fresh capability.

V (y) = β1 . r1 H(r1) = C1(_)

V (z) = β2 . r2 . . . βn . rn β ⊆ R
mbody(m,C1) = (x, e)

H,V,R, let x = y.m(z) in t

−→ H, (V, x 7→ β . r), R, let x = e in t

(R-INVOKE)

The rule for method invocation uses a standard auxiliary functionmbody to obtain
the body of a method. It is defined as follows. Let def m[δ](x : T ) : (R,∆) = e
be a method defined in the most direct super-class of C that defines m. Then
mbody(m,C) = (x, e).
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V (y) = β . r V (z) = γ . _
H,V,R⊕ β ⊕ γ, let x = y capturedBy z in t

−→ H, (V, x 7→ γ . r), R⊕ γ, t

(R-CAPTURE)

Reducing a capturedBy term merges the regions of its two arguments y and z. It
returns an alias of y guarded by the capability of z. This allows storing a reference
to y in a field of z and vice versa (see rule R-ASSIGN above). By consuming y’s
capability, we make sure that objects that used to be in region β remain accessible
only through variables guarded by γ, which is the capability of z. This enforces
that all objects are accessible as part of at most one region at a time. (Recall that
variables whose capabilities are not available cannot be accessed.)

V (y) = β . r H(r) = C(r) γ fresh
V (z) = β′ . r′ H ′ = H[r 7→ C([r′/ri]r)]

H,V,R⊕ β ⊕ β′, let x = swap(y.li, z) in t
−→ H ′, (V, x 7→ γ . ri), R⊕ β ⊕ γ, t

(R-SWAP)

The only way to access a unique field is using swap. It mutates a unique field to
point to a new object, and returns the field’s previous value. The first argument
must select a unique field such that the capability of the containing object is avail-
able. The second argument must be guarded by a different capability, which is
consumed. This ensures that the new value and the object containing the unique
field are separate prior to evaluating swap. swap returns the field’s old value; the
new let-bound variable that refers to it is guarded by a fresh capability, which
allows treating the variable as separately-unique.

4.4.2 Type system
Well-formed programs

A program is well-formed if all its class definitions are well-formed. Classes and
methods are well-formed according to the following rules. (We write . . . to omit
unimportant parts of code in a program P .)

C ` meth
D = Object ∨ P (D) = class D . . .

∀ (defm . . .) ∈ meth. override(m,C,D)

∀α l : E ∈ fld. l /∈ fields(D)

` class C extends D {fld meth}
(WF-CLASS)

All well-formed class hierarchies are rooted in Object. All methods in a well-
formed class definition are well-formed. We explain well-formed method over-
riding below. Fields may not be overridden; their names must be different from
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the names of fields in super-classes. We use a standard function fields(D) [79]
to obtain all fields in D and super-classes of D.

T = ρ . C x : T ; {ρ | ρ ∈ ρ} ` e : R ; ∆
x1 = this R = δ′ . D δ′ ∈ ∆

δ =

{
δ′ if δ′ /∈ ρ
fresh otherwise

C1 ` defm[δ](x : T ) : (R,∆) = e
(WF-METHOD)

In a well-formed method definition that appears in class C1, the first parameter is
always this and its class type is C1. The method body must be type-checkable in
an environment that binds the parameters to their declared types, and that provides
all capabilities of the parameter types. After type-checking the body, the capabil-
ities in ∆ must still be available. The result type of a method must be guarded
by a capability in ∆. If the capability of the result type does not guard one of the
parameter types, it is unknown in the caller’s context. In this case we treat it as
existentially quantified; the square brackets are used as its binder. If the capability
of the result type guards one of the parameter types, the quantified capability is
unused.

mtype(m,D) not defined ∨
(mtype(m,D) = ∃δ. (ρ . D, T )→ (R,∆) ∧
mtype(m,C) = ∃δ. (ρ . C, T )→ (R,∆))

override(m,C,D)
(WF-OVERRIDE)

A method defined in class C satisfies the rule for well-formed overriding if the
super-class D does not define a method of the same name, or the method types
differ only in the first this parameter.

Subclassing and subtypes Each program defines a class table, which defines
the subtyping relation <:. In our system, <: is identical to that of FJ [79], except
for the following rule for guarded types, which is new. It expresses the fact that
guarded types can only be sub-types if their capabilities are equal.

C <: D

ρ . C <: ρ . D
(<:-CAP)

Type assignment

Terms are type-checked using the judgement Γ ; ∆ ` t : T ; ∆′. Γ maps
variables to their types. The facts that Γ implies can be used arbitrarily often
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in typing derivations. ∆ and ∆′ are capabilities, which may not be duplicated.
As part of the typing derivation, capabilities may be consumed or generated. ∆′

denotes the capabilities that are available after deriving the type of the term t. In
a typing derivation where ∆′ = ∆ we omit ∆′ for brevity.

Γ(y) = ρ . C ρ ∈ ∆

Γ ; ∆ ` y : ρ . C ; ∆
(T-VAR)

Γ ; ∆ ` y : ρ . C

fields(C) = α l : D αi 6= unique

Γ ; ∆ ` y.li : ρ . Di ; ∆
(T-SELECT)

A variable is well-typed in Γ,∆ if Γ contains a binding for it, and ∆ contains
the capability of its (guarded) type. This ensures that the capabilities of variables
occurring in a typing derivation are statically available. Selecting a field from
a variable y of guarded type yields a type guarded by the same capability. The
selected field must not be unique. Because of rule T-VAR, the capability of y
must be available.

Γ ; ∆ ` y : ρ . C Γ ; ∆ ` z : ρ . Di

fields(C) = α l : D αi 6= unique

Γ ; ∆ ` y.li := z : ρ . C ; ∆
(T-ASSIGN)

Assigning to a non-unique field of a variable y with guarded type ρ . C requires
also the right-hand side to be guarded by ρ. The term has the same type as y,
which is the result of reducing the assignment (see Section 4.4.1).

Γ ; ∆ ` y : ρ . D ∆ = ∆′ ⊕ ρ
fields(C) = α l : D ρ′ fresh

Γ ; ∆ ` new C(y) : ρ′ . C ; ∆′ ⊕ ρ′
(T-NEW)

The rule for instance creation requires all constructor arguments to be guarded
by distinct capabilities, which must be available. Intuitively, this means that the
arguments are in mutually disjoint regions. Therefore, it is safe to assign them to
unique fields of the new instance. By consuming the capabilities of the arguments,
we ensure that there is no usable reference left that could point into the object
graph rooted at the new instance; thus, we can assign a type guarded by a fresh
capability ρ′ to the new instance and make ρ′ available to the context. Note that
we can relax this rule for initializing non-unique fields: multiple non-unique fields
may be guarded by the same capability. (See Section 4.8 for a discussion in the
context of nested classes.)
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Γ ; ∆ ` y : ρ1 . D1

Γ ; ∆ ` zi−1 : ρi . Di, i = 2..n

mtype(m,D1) = ∃δ. δ . D → (R,∆m)

σ = δ 7→ ρ ◦ δ 7→ ρ injective ρ fresh
∆ = ∆′ ] {ρ | ρ ∈ ρ}

Γ ; ∆ ` y.m(z) : σR ; σ∆m ⊕∆′
(T-INVOKE)

In the rule for method invocations, the capabilities of all arguments must be avail-
able in ∆. We look up the method type based on the static type of the receiver.
The capabilities in method types are abstract, and have to be instantiated with
concrete ones. To satisfy the pre-condition of the method, there must be a substi-
tution that maps the capabilities of the formal parameters to the capabilities of the
arguments. Importantly, the substitution must be injective to prevent mapping dif-
ferent formal capabilities to the same argument capability; this would mean that
the requirement to have two different formal capabilities could be met using only
a single argument capability, which would amount to duplicating that capability.
In our system, capabilities may never be duplicated. The resulting set of capa-
bilities is composed of the capabilities provided by the method after applying the
substitution (σ∆m) and those capabilities ∆′ that were provided by the context,
but that were not required by the method.

Γ ; ∆ ` y : ρ . C Γ ; ∆ ` z : ρ′ . C ′ ∆ = ∆′ ⊕ ρ
Γ ; ∆ ` y capturedBy z : ρ′ . C ; ∆′

(T-CAPTURE)

Typing the expression y capturedBy z requires the capabilities of y and z to be
present (this follows from rule T-VAR, see above). The capability of the first
argument is consumed, thereby making all variables pointing into its region inac-
cessible. The result has the same class type as y, but guarded by the capability of
z. Essentially, capturedBy casts its first argument from its current region to the
region of the second argument; in Section 4.5 we prove that the cast can never fail
at run-time.

Γ ; ∆ ` y : ρ . C Γ ; ∆ ` z : ρ′ . Di

fields(C) = α l : D αi = unique
∆ = ∆′ ⊕ ρ′ ρ′′ fresh

Γ ; ∆ ` swap(y.li, z) : ρ′′ . Di ; ∆′ ⊕ ρ′′
(T-SWAP)

The first argument of swap must select a unique field. Recalling the dynamic
semantics, swap returns the current value of this field, and assigns the value of
z to it. Therefore, the field must have the same class type as z (possibly using
subsumption, see below). The arguments must be guarded by two different capa-
bilities, which must be present in ∆. (Again, ρ is present because of rule T-VAR.)
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This means that the arguments point to disjoint regions in the heap. By consum-
ing the capability of z, we ensure that it is separately-unique. Since the reference
returned by swap is unique, the result is guarded by a fresh capability.

Γ ; ∆ ` e : T ; ∆′

Γ, x : T ; ∆′ ` t : T ′ ; ∆′′

Γ ; ∆ ` let x = e in t : T ′ ; ∆′′

(T-LET)

Γ ; ∆ ` e : T ′ ; ∆′

T ′ <: T

Γ ; ∆ ` e : T ; ∆′
(T-SUB)

The rule for let is standard, except for the fact that type derivations may change
the set of capabilities. The subsumption rule can be applied wherever the type of
an expression is derived. In particular, deriving the type of variables is subject to
subsumption.

Well-formedness

We require terms to be reduced in well-formed configurations. A well-formed
configuration must satisfy at least the following two invariants, which are cen-
tral to the soundness of our system. The first invariant expresses the fact that
two accessible variables guarded by different capabilities do not share a common
reachable object. It is based on a predicate separate, which is defined as follows.

Definition 1 (Separation) Two reference locations r and r′ are separate in heap
H , written separate(H, r, r′), iff
∀q, q′ ∈ dom(H). reachable(H, r, q) ∧ reachable(H, r′, q′)⇒ q 6= q′

The separate predicate expresses the fact that two references point to two dis-
joint object graphs. Based on separate we define a Separation Invariant on local
variables.

Definition 2 (Separation Invariant) A configuration V,H,R satisfies the Sepa-
ration Invariant, written separation(V,H,R), iff
∀ (x 7→ δ . r), (x′ 7→ δ′ . r′) ∈ V.
(δ 6= δ′ ∧ {δ, δ′} ⊆ R⇒ separate(H, r, r′))

Note that we can only conclude that the two variables are separate if both ca-
pabilities are present. In particular, capturing a variable y does not violate the
invariant even though it creates an alias of y guarded by a different capability. The
reason is that capturedBy consumes y’s capability, thereby making it inacces-
sible. Therefore, the invariant continues to hold for accessible variables, that is,
variables whose capabilities are present.
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Definition 3 (Unique Fields Invariant) A configuration V,H,R satisfies the Unique
Fields Invariant, written uniqF lds(V,H,R), iff
∀ (x 7→ δ . r) ∈ V. H(q) = C(p)⇒ ∀i ∈ uniqInd(C).

δ ∈ R ∧ reachable(H, pi, r′)⇒ domedge(H, q, i, r, r′)

The unique fields invariant says that all reference paths from a variable x to some
object r′ reachable from a unique field must “go through” that unique field. The
reachable and domedge predicates are based on the following definition of refer-
ence paths.

r ∈ dom(H)

[r] ∈ path(H, r, r)

H(r) = C(p)
∃i. P ∈ path(H, pi, r

′)

r :: P ∈ path(H, r, r′)

path(H, r, r′) 6= ∅
reachable(H, r, r′)

Basically, a reference path is a sequence of reference locations, where each refer-
ence (except the first) is stored in a field of the preceding location. The definition
of domedge is as follows.

domedge(H, q, i, r, r′)⇔
∀P ∈ path(H, r, r′). P = r . . . q, pi, . . . r

′ where H(q) = C(p)

This predicate expresses the fact that all paths from r to r′ must contain the se-
quence q, pi, which corresponds to selecting the i-th (unique) field of object q.

Σ ` H
Γ ; ∆ ; Σ ` V ; R
separation(V,H,R)
uniqF lds(V,H,R)

Γ ; ∆ ; Σ ` H ; V ; R
(WF-CONFIG)

Aside from the separation and unique fields invariants, well-formed configurations
must have well-formed environments and heaps.

Σ ` H Σ(r) = C

fields(C) = α l : D Σ ` p : D

Σ ` (H, r 7→ C(p))
(WF-HEAP)

Σ(r) = D D <: C

Σ ` r : C
(HEAP-TYPE)

The rule for well-formed heaps is completely standard: the heap typing Σ must
agree with the heap H on the type of each class instance. Moreover, the types of
instances referred to from its fields must be compatible with their declared types
using the HEAP-TYPE rule.
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Γ ; ∆ ; Σ ` V ; R
Σ ` r : C ρ ∈ ∆ iff β ∈ R

(Γ, y : ρ . C) ; ∆ ; Σ ` (V, y 7→ β . r) ; R
(WF-ENV)

In the rule for well-formed environments we require the type environment Γ to
agree with the heap typing Σ on the class type of instances referred to from vari-
ables. This rule also contains the key to relating static and dynamic capabilities:
the static capability of a variable is contained in the set of static capabilities if
and only if its dynamic capability in the environment is contained in the set of
dynamic capabilities. This precise correspondence allows us to prove that the re-
duction of a well-typed term will never get stuck because of missing capabilities
(see Section 4.5).

4.5 Soundness
In this section we present the main soundness result for the type system introduced
in Section 4.4. We prove type soundness using the standard syntactic approach
of preservation plus progress [135]. A complete proof of soundness appears in
Appendix A.

In a first step, we prove a preservation theorem: it states that the reduction of
a well-typed term in a well-formed context preserves the term’s type. Moreover,
the resulting context (heap, environment, and capabilities) is well-formed with
respect to a new type environment, static capabilities, and heap typing.

Theorem 1 (Preservation) If

• Γ ; ∆ ` t : T ; ∆′

• Γ ; ∆ ; Σ ` H ; V ; R

• H,V,R, t −→ H ′, V ′, R′, t′

then there are Γ′ ⊇ Γ, ∆′′, and Σ′ ⊇ Σ such that

• Γ′ ; ∆′′ ` t′ : T ; ∆′

• Γ′ ; ∆′′ ; Σ′ ` H ′ ; V ′ ; R′

This theorem guarantees that reduction preserves the separation and unique fields
invariants that we introduced in Section 4.4.2. These invariants are implied by
the well-formedness of the result context H ′, V ′, R′. Also note that the new type
environment Γ′ and the new heap typing Σ′ are super sets of their counterparts Γ
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and Σ, respectively. This means that merging two regions does not require strong
type updates in our system.

In a second step, we prove a progress theorem, which guarantees that a well-
typed term can be reduced in a well-formed context, unless it is a value. Variables
are the only values in our language.

Theorem 2 (Progress) If Γ ; ∆ ` t : T ; ∆′ and Γ ; ∆ ; Σ ` H ; V ; R, then
either t = y, or there is a reduction H,V,R, t −→ H ′, V ′, R′, t′.

The progress theorem makes sure that the reduction of a term does not get stuck,
because of missing capabilities; that is, if a term type-checks, all required capabil-
ities will be available during its reduction. Soundness of the type system follows
from Theorem 1 and Theorem 2.

We can formulate a uniqueness theorem as a corollary of preservation and
progress. Formally, separate uniqueness is defined as follows:

Definition 4 (Separate Uniqueness) A variable (y 7→ β . r) ∈ V such that
β ∈ R is separately-unique in configuration H,V,R, let x = t in t′ iff
∀ (y′ 7→ β′ . r′) ∈ V.
(¬separate(H, r, r′) ∧H,V,R, t −→∗ H ′, V ′, R′, e′)⇒ β′ /∈ R′

Intuitively, the definition says that the capabilities of aliases of a variable y are
unavailable when reducing t′ if y is separately-unique in t. By Theorem 2 and
the reduction rules, none of y’s aliases are accessed after the reduction of t, since
β′ /∈ R′.

The following corollary guarantees that a variable passed as an argument to
a method expecting a unique parameter is separately-unique; this means that all
variables that are still accessible after the invocation are separate from the argu-
ment.

Corollary 1 (Uniqueness) If

• Γ ; ∆ ` let x = t in t′ : T ; ∆′ where t = y.m(z) ∧ Γ(y) = _ . C

• Γ ; ∆ ; Σ ` H ; V ; R

• mtype(m,C) = ∃δ. δ . D → (TR,∆m) where δi /∈ ∆m

then zi is separately-unique in H, V,R, let x = t in t′.
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4.6 Immutable Types

In this section we introduce a family of immutable types. We use a very simple
notion of immutability: objects of immutable type cannot be mutated after they
have been constructed. This means that their fields can only be assigned once
as part of object creation. Furthermore, we require the types of the fields of an
immutable type to be immutable, too. This means that the graph of all objects
reachable from an immutable instance (i.e., an instance of an immutable type)
is not changeable after it has been constructed (i.e., after reducing an instance
creation expression).

Immutable objects are useful in a number of ways. We point out two use cases
that are particularly important for our purposes. First, in the context of unique
references, they enable more flexible aliasing while maintaining strong invariants
with respect to mutation through unique references. For instance, several differ-
ent unique objects may point to the same immutable object. The fact that the im-
mutable object is shared is not visible to the clients using the unique references.
Second, immutable objects may be shared among concurrent processes without
restrictions, since data races cannot occur.

4.6.1 Immutable classes

In the following we introduce a refinement of the class types of Section 4.4.2. We
split the vocabulary of classes into immutable classes I and regular classes C. By
adapting the reduction, typing, and well-formedness rules, we ensure instances of
classes in I are (deeply) immutable.

4.6.2 Reduction

In a first step, we adapt the operational semantics of Section 4.4.1 to enforce that
(the field values of) instances of classes in I cannot be modified during reduction.

V (y) = δ . r V (z) = δ . r′

H(r) = C(r) C /∈ I δ ∈ R
H ′ = H[r 7→ C([r′/ri]r)]

H, V,R, y.li := z −→ H ′, V, R, y
(R-ASSIGN)

The next step is to adapt the reduction rules to allow immutable objects to be
shared by multiple regions. We do this by never consuming the capabilities that
guard immutable objects. This means, an immutable object may be captured by
multiple regions, and, therefore, be referred to from multiple regions.
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Note that it is not sufficient to introduce a rule that allows duplicating capabil-
ities guarding immutable objects. The reason is that an immutable object may be
pointed to from a mutable object in the same region. Therefore, duplicating the
capability of an immutable object could allow consuming a regular unique object
more than once, which is unsound.

V (y) = β . r H ′ = (H, r 7→ C(r)) r /∈ dom(H) γ fresh
R′ = {βi ∈ β | immutable(ri, H)}

H, V,R⊕ β, let x = new C(y) in t −→ H ′, (V, x 7→ γ . r), R⊕R′ ⊕ γ, t
(R-NEW)

In the rule for instance creation we do not consume capabilities of arguments that
have an immutable (run-time) type. This allows an immutable object to become
part of the region of the newly created instance, while allowing it to be captured
by other regions subsequently. The immutable predicate is defined as follows.

Definition 5 (Immutable Location) A reference location r ∈ dom(H) is im-
mutable in heap H , written immutable(r,H), iff
∃C ∈ I, {ri | ri ∈ r̄} ⊆ dom(H). H(r) = C(r̄)

V (y) = β . r V (z) = γ . _
R′ = {β | immutable(r,H)}

H,V,R⊕ β ⊕ γ, let x = y capturedBy z in t
−→ H, (V, x 7→ γ . r), R⊕R′ ⊕ γ, t

(R-CAPTURE)

In the rule for capturedBy, we do not consume the capability of the captured
object if it is immutable. Therefore, multiple regions can capture the same im-
mutable object.

V (y) = β . r H(r) = C(r) γ fresh
V (z) = β′ . r′ H ′ = H[r 7→ C([r′/ri]r)]

R′ = {β′ | immutable(r′, H)}
H,V,R⊕ β ⊕ β′, let x = swap(y.li, z) in t
−→ H ′, (V, x 7→ γ . ri), R⊕R′ ⊕ β ⊕ γ, t

(R-SWAP)

The rule for swap is adapted in a way analogous to rule R-CAPTURE; the capa-
bility of z is not consumed if it refers to an immutable object.

4.6.3 Typing rules
With the modified reduction rules, it is impossible to prove a progress theorem
using the existing typing rules. We have to update the typing rules accordingly to
reflect the changes in the operational semantics.
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Γ ; ∆ ` y : ρ . C C /∈ I Γ ; ∆ ` z : ρ . Di

fields(C) = α l : D αi 6= unique

Γ ; ∆ ` y.li := z : ρ . C ; ∆
(T-ASSIGN)

The typing rules T-NEW, T-CAPTURE, and T-SWAP have to be adapted not to
consume the capabilities of immutable objects.

Γ ; ∆ ` y : ρ . D ∆ = ∆′ ⊕ ρ
fields(C) = α l : D ρ′ fresh

∆′′ = {ρi ∈ ρ | Di ∈ I}
Γ ; ∆ ` new C(y) : ρ′ . C ; ∆′ ⊕∆′′ ⊕ ρ′

(T-NEW)

Γ ; ∆ ` y : ρ . C Γ ; ∆ ` z : ρ′ . C ′

∆ =

{
∆′ if C ∈ I
∆′ ⊕ ρ otherwise

Γ ; ∆ ` y capturedBy z : ρ′ . C ; ∆′
(T-CAPTURE)

Γ ; ∆ ` y : ρ . C Γ ; ∆ ` z : ρ′ . Di

fields(C) = α l : D αi = unique

ρ′′ fresh ∆ =

{
∆′ if Di ∈ I
∆′ ⊕ ρ′ otherwise

Γ ; ∆ ` swap(y.li, z) : ρ′′ . Di ; ∆′ ⊕ ρ′′
(T-SWAP)

4.6.4 Well-formedness
To ensure that immutable objects are deeply immutable, and that this is pre-
served by sub-classing, we impose a number of well-formedness conditions on
immutable classes; these conditions are embodied in an extended rule for class
well-formedness:

C ` meth
D = Object ∨ P (D) = class D . . .

∀ (defm . . .) ∈ meth. override(m,C,D)

∀α l : E ∈ fld. l /∈ fields(D) ∧ (C ∈ I ⇒ E ∈ I)
D ∈ I ⇒ C ∈ I

` class C extends D {fld meth}
(WF-CLASS)

First, fields of an immutable class must have an immutable class type; this en-
sures the objects in the graph (transitively) reachable from a field of an immutable
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object are immutable. To ensure sub-typing preserves immutability, we require
subclasses of immutable classes to be immutable. Conversely, a regular class may
have fields of immutable class type.

Separation and uniqueness

Using the reduction and typing rules of the previous sections, well-typed programs
no longer preserve the separation invariant of Section 4.4.2 during reduction. The
reason is, of course, that the same immutable object may become reachable from
two different regions. Therefore, we have to modify the separation invariant to
take immutable objects into account. To do this, we first define a predicate sep−
imm that refines the predicate separate.

Definition 6 (Separate Immutable) sep− imm(H, r, r′)⇔
∀q, q′ ∈ dom(H). reachable(H, r, q) ∧ reachable(H, r′, q′)⇒
q 6= q′ ∨ immutable(q,H)

Based on sep− imm we can now define a refined separation invariant:

Definition 7 (Separation Immutability Invariant)
A configuration V,H,R satisfies the Separation Immutability Invariant, written
separation− imm(V,H,R), iff
∀ (x 7→ δ . r), (x′ 7→ δ′ . r′) ∈ V.
(δ 6= δ′ ∧ {δ, δ′} ⊆ R⇒ sep− imm(H, r, r′))

Compared to Definition 2 we only replaced the use of separate with sep− imm.
Analogously, we have to update the invariant for unique fields to allow sharing

of immutable objects.

Definition 8 (Unique Fields Immutability Invariant)
A configuration V,H,R satisfies the Unique Fields Immutability Invariant, written
uniqF lds− imm(V,H,R), iff
∀ (x 7→ δ . r) ∈ V. H(q) = C(p)⇒ ∀i ∈ uniqInd(C).
δ ∈ R∧reachable(H, pi, r′)⇒ (domedge(H, q, i, r, r′)∨immutable(r′, H))

Basically, the modified invariant says that the edge (q, pi) (following the pointer
stored in the i-th field of the object at location q) does not have to be dominating
on all paths from r to r′ if the object at location r′ is immutable.

To ensure immutable objects remain deeply immutable during reduction, we
add the following invariant.
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Definition 9 (Deep Immutability Invariant)
A heap H satisfies the Deep Immutability Invariant, written deep− imm(H), iff
∀ r ∈ dom(H). immutable(r,H)⇒
∀ r′ ∈ dom(H). reachable(H, r, r′)⇒ immutable(r′, H)

The separation − imm, uniqF lds − imm, and deep − imm invariants must
be preserved when reducing a well-typed term. Therefore, we include them in
a modified WF-CONFIG rule. The separation − imm and uniqF lds − imm
invariants replace their immutability-oblivious counterparts.

Σ ` H Γ ; ∆ ; Σ ` V ; R
separation− imm(V,H,R)
uniqF lds− imm(V,H,R)

deep− imm(H)

Γ ; ∆ ; Σ ` H ; V ; R
(WF-CONFIG)

4.6.5 Soundness
In this section we sketch a proof explaining why the addition of immutable types
as presented above is sound. We restrict ourselves to the preservation proof. Our
preservation proof in Section A.2 uses structural induction on the shape of terms
with a case analysis of the reduction rule that is applied. In the following we pro-
vide sketches for selected proof cases. In each case we consider a single reduction
step H,V,R, t −→ H ′, V ′, R′, t′.

• Case R-Capture. This case demonstrates why the deep − imm invariant is
necessary to establish that the successor configuration satisfies the extended
separation invariant separation − imm. Consider a configuration H,V,R
where a local variable y points to an immutable object r guarded by δ (i.e.,
V (y) = δ.r). Moreover, let r point to some mutable object r′. Reducing the
expression let x = y capturedBy z in twould create a binding for x in the
successor environment V ′ such that V ′(x) = δ′ . r, assuming V (z) = δ′ . _
(δ 6= δ′). In this case, separation− imm does not hold for V ′ and H , since
the mutable object r′ can be reached from both x and y, but δ 6= δ′ (we can
easily satisfy that {δ, δ′} ⊆ R). Requiring deep− imm to hold in H avoids
this problem by enforcing that r′ is immutable.

• Case R-New. This case demonstrates why the modified WF-CLASS rule is
necessary to establish deep − imm in the successor heap H ′. Without the
requirement of rule WF-CLASS that fields of immutable classes have im-
mutable class types, the expression let x = new C(y) would be well-typed
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t ::= terms
. . .
y ! z message send

e ::= expressions
. . .
receive[C] message receive
actor C actor creation

Figure 4.5: Language syntax extension for concurrent programming with actors

in an environment Γ,∆ such that Γ ; ∆ ` y : ρ.D, fields(C) = val l : D,
and D /∈ I, but C ∈ I. Therefore, we could reduce the expression in an
environment H, V,R where V (y) = δ . r and ¬immutable(r,H). As a
result, deep − imm(H ′) would not be satisfied, since H ′(r′) = C(r) and
immutable(r′, H ′).

4.7 Concurrency
In this section we extend our language to include constructs for concurrent pro-
gramming with actors. The goal of this section is to show that the type system
introduced in Section 4.4 can be used to enforce actor isolation in the presence of
a shared heap and efficient, by-reference message passing.

4.7.1 Syntax
The syntax extensions of our sequential core language are summarized in Fig-
ure 4.5. We add primitives for sending and receiving messages, as well as an
expression for creating actors. The term y ! z asynchronously sends (the location
of) z to the actor y. The expression receive[C] tries to remove a message of type
C from the current actor’s mailbox. This simplifies the more general receive ex-
pressions of Erlang and Scala, which allow arbitrary message patterns and choice.
If there is no message of type C in the actor’s mailbox, a receive[C] expression
cannot be reduced. Actors are created using the expression actor C. Here, C is
a subclass of Actor; the Actor class defines a single act method whose body the
new actor evaluates.

Figure 4.6 shows an example that uses the new terms and expressions. The
program defines two classes Adder and Client, whose act methods define the
behavior of actors created using those classes. An actor of type Adder receives
two objects of type Int (we assume the existence of a standard Int class type),
adds them, and sends the result to a sender actor. A Client actor creates a



90 CHAPTER 4. TYPE-BASED ACTOR ISOLATION

class Adder extends Actor {
def act(self: Adder) =
let x = receive[Int] in
let y = receive[Int] in
let z = x.plus(y) in
let sender = receive[Actor] in
sender ! z

}
class Client extends Actor {
def act(self: Client) =
let adder = actor Adder in
let x = 40 in
let y = 2 in
adder ! x; adder ! y; adder ! self;
let res = receive[Int]

}
let c = actor Client in c

Figure 4.6: Concurrent program showing the use of actor, receive, and the send
operator (!).

new Adder actor using the expression actor Adder. Using three asynchronous
messages it sends two integers and a reference to itself, respectively, to the adder
actor (following common practice we write t ; t′ for let x = t in t′ where x does
not occur free in t′). Finally, the Client actor receives the integer result from
adder.

4.7.2 Sharing and immutability
The type system for sequential programs introduced in Section 4.4 enforces that
variables guarded by different capabilities are separate if their capabilities are
available. In a concurrent setting this separation invariant must be extended to
multiple actors. Intuitively, we would like to enforce that objects accessible by
one actor are separate from objects accessible by any other actor that is active at
the same time. However, such a naive rule would be too restrictive for objects of
type Actor. When creating a new actor, both the creating actor and the created
actor obtain an accessible reference to the new actor; both actors must be able to
send messages to the new actor to enable dynamic changes in the communication
topology, which is fundamental to the actor model of concurrency [2].

We enable actor locations to be shared by making the Actor class immutable
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(Actor ∈ I). Therefore, by rule WF-CLASS of Section 4.6.4, all subclasses of
Actor are immutable. In our system, immutable objects may be shared freely
among actors.

4.7.3 Operational semantics
The configuration of an actor-based program consists of a shared heap H , and an
unordered “soup” of actors A. An actor is represented as a pair consisting of an
execution state and a mailbox containing messages that have been sent to the actor,
but not yet processed. Since messages can be arbitrary objects (including actors),
we represent the mailbox as a set of reference locations. An actor’s execution
state S = 〈V,R, t〉 consists of an environment V , a set of capabilities R, and a
continuation term t. Formally, an actor is written A = (S,M)r, where M is its
mailbox and r is the reference location of an object of type Actor.

r /∈ dom(H) H ′ = (H, r 7→ C(ε)) ρ, ρ′ fresh C ∈ I
V ′ = (V, x 7→ ρ . r) mbody(act, C) = (this, e)
A = (〈this 7→ ρ′ . r, {ρ′}, let y = e in y〉, ∅)r
H ; {(〈V,R, let x = actor C in t〉, _)} ∪ A
−→ H ′ ; {(〈V ′, R⊕ ρ, t〉, _)} ∪ A ∪ {A}

(R-ACTOR)

Reducing an actor expression creates a new actor based on a classC that contains
a method act; the body of this method defines the continuation term of the newly
created actor. Since actors are objects, actor returns the reference location of the
new actor. Note that both the creating and the created actor need access to the
new actor object; this is allowed since C is immutable. The fresh capability ρ′ is
available when reducing the continuation of the new actor.

V (y) = β . r V (z) = β′ . r′ H(r′) = C(_)
R = R′ ⊕ β′ R′′ = R′ ∪ {β′ | C ∈ I}
H ; {(〈V,R, y ! z〉, _), (_,M)r} ∪ A

−→ H ; {(〈V,R′′, y〉, _), (_, {r′} ∪M)r} ∪ A

(R-SEND)

Sending a message to y requires that the location of y corresponds to an existing
actor in the actor soup. The capability of the object z to be sent must be available.
It is not consumed, if z points to an immutable object. The location of z (without
its guard) is added to the mailbox of the target actor. The send expression reduces
to the (variable of the) target actor.

V ′ = (V, x 7→ β . r) H(r) = C(_) β fresh
H ; {(〈V,R, let x = receive[C] in t〉, {r} ∪M)} ∪ A

−→ H ; {(〈V ′, R⊕ β, t〉,M)} ∪ A

(R-RECV)
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Reducing a receive[C] expression removes an object of class type C from the
current actor’s mailbox. The objects in an actor’s mailbox are guaranteed to be
immutable or separate from all other messages and accessible variables (see be-
low). Therefore, it is sound to guard the removed location by a fresh capability in
the receiver’s environment.

The sequential reduction rules of Section 4.4.1 are integrated using the follow-
ing “step” rule, which reduces a single actor; its mailbox remains unchanged.

H,V,R, t −→ H ′, V ′, R′, t′

H ; {(〈V,R, t〉,M)} ∪ A
−→ H ′ ; {(〈V ′, R′, t′〉,M)} ∪ A

(R-STEP)

4.7.4 Typing
We extend the sequential typing rules to include the new actor, send (!), and
receive expressions.

C <: Actor ρ fresh
Γ ; ∆ ` actor C : ρ . Actor ; ∆⊕ ρ

(T-ACTOR)

Creating a new actor using actor requires C to be a subclass of Actor; C is
immutable, because Actor is (see Section 4.6.3). Therefore, it is sound to guard
the new Actor instance, which actor returns, by a fresh capability.

Γ ; ∆ ` y : ρ . Actor Γ ; ∆ ` z : ρ′ . C
∆ = ∆′ ⊕ {ρ′ | C /∈ I}

Γ ; ∆ ` y ! z : ρ . Actor ; ∆′
(T-SEND)

Sending a message requires the receiver y to have class type Actor. The message
object z to be sent must be guarded by a capability that is available; it is not
consumed if the class type of z is immutable. The result has the type of the target
actor (recall the corresponding reduction rule (R-SEND), which reduces the send
to y).

ρ fresh
Γ ; ∆ ` receive[C] : ρ . C ; ∆⊕ ρ

(T-RECV)

The result of receive is guaranteed to be immutable or a unique object; therefore,
it is guarded by a fresh capability, which is made available to the receiving actor.
The resulting class type is always C, since receive[C] removes only objects of
class type C from the actor’s mailbox.
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4.7.5 Well-formedness
This section introduces well-formedness rules that extend the rules for our sequen-
tial language that we discussed in Section 4.4.2 and Section 4.6.4. Note that none
of the existing well-formedness rules, such as the WF-CONFIG rule, have to be
changed; in particular, we reuse the Separation and Unique Fields Immutability
Invariants.

Σ ` H ; A
∃Γ,∆. Γ ; ∆ ; Σ ` H ; A
∀A′ ∈ A. isolated(H,A,A′)

Σ ` H ; {A} ∪ A
(WF-SOUP)

The WF-SOUP rule defines well-formed configurations consisting of a heap H
and a set of actors {A} ∪ A. The definition is by induction on the set of actors.
Each actor must be well-formed in the heap according to some per-actor type
environment Γ and static capabilities ∆. Finally, using the new isolated predicate
it expresses the fact that in a well-formed configuration all actors are mutually
isolated from each other. The isolated predicate is defined as follows:

isolated(H, (S,M), (S ′,M ′))⇔
isolated(H,S, S ′) ∧ isolated(H,S,M ′)∧
isolated(H,S ′,M) ∧ isolated(H,M,M ′)

Isolation of two actor execution states is defined as follows:

isolated(H, 〈V,R, t〉, 〈V ′, R′, t′〉)⇔
(V (x) = β . r ∧ β ∈ R ∧ V ′(x′) = β′ . r′ ∧ β′ ∈ R′)⇒ sep− imm(H, r, r′)

This definition says that two accessible variables in the environments of two dif-
ferent actors are separate up to immutable objects. Note that a variable in envi-
ronment V is accessible iff its capability is contained in the capability set R that
corresponds to V .

isolated(H, 〈V,R, t〉,M ′)⇔
(V (x) = β . r ∧ β ∈ R ∧ r′ ∈M ′)⇒ sep− imm(H, r, r′)

An accessible variable in the environment of some actor is separate (in the sense
of sep− imm) from all messages in the mailbox of some other actor.

isolated(H,M,M ′)⇔
∀r ∈M, r′ ∈M ′. sep− imm(H, r, r′)
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sepEnvMbox(H, V,R,M)⇔
∀ (x 7→ β . r) ∈ V, r′ ∈M. β ∈ R⇒ sep− imm(H, r, r′)

sepMbox(H,M)⇔
∀ r, r′ ∈M. sep− imm(H, r, r′)

uniqF ldsMbox(H,M)⇔
∀ r ∈M. H(q) = C(p)⇒
(∀i ∈ uniqInd(C).reachable(H, pi, r

′)⇒
(domedge(H, q, i, r, r′) ∨ immutable(r′, H)))

Figure 4.7: Definitions of auxiliary predicates for well-formed actors

Analogous to the previous overloaded definitions of isolated, two messages in
two different mailboxes are separate up to immutable objects.

Γ ; ∆ ` t : T ; ∆′

Γ ; ∆ ; Σ ` H ; V ; R
sepEnvMbox(H,V,R,M)

sepMbox(H,M)
uniqF ldsMbox(H,M)

Γ ; ∆ ; Σ ` H ; (〈V,R, t〉,M)
(WF-ACTOR)

The execution state of an actor must be well-formed: the actor’s continuation
t must be well-typed, and H,V,R must be well-formed according to rule WF-
CONFIG of the sequential system. The sepEnvMbox predicate ensures that vari-
ables accessible in the actor’s environment are separate from messages in its
mailbox (see Figure 4.7). Furthermore, two messages in an actor’s mailbox are
separate up to immutable objects (sepMbox). Finally, the Unique Fields Im-
mutability Invariant of Section 4.6.4 also holds for messages in an actor’s mailbox
(uniqF ldsMbox).

4.7.6 Isolation
In this section we present the main isolation result for our concurrent language.
Basically, we prove a preservation theorem, which guarantees that the isolation
invariants introduced above are preserved by reduction. The full proof appears in
Section A.5.
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Theorem 3 (Isolation) If Σ ` H ; A and H ; A −→ H ′ ; A′, then there is a
Σ′ ⊇ Σ such that Σ′ ` H ′ ; A′.

Given the above well-formedness rules (in particular, the definition of isolated),
this theorem states that accessible variables (i.e., variables whose capabilities are
available) in the environments of two different actors are separate up to immutable
objects. Together with Theorem 2, which guarantees that only variables whose ca-
pabilities are available are accessed during reduction, it follows that two different
actors will only access immutable objects concurrently.

4.8 Extensions

In this section we address some of the issues when integrating our type system into
full-featured languages like Scala or Java that we omitted from the formalization
for simplicity.

4.8.1 Closures

A number of object-oriented languages, such as Scala, have special support for
closures. In this section we discuss how our type system handles closures that
capture unique variables in their environment.

Consider the following example: a unique list of books should be inserted into
a hash map in a way that enables fast access to the books in a certain category.
The following code achieves this in an efficient way.

val list: List[Book] @unique = ...
val map = new HashMap[String, List[Book]]
list.foreach { b =>
val sameCat = map(b.cat)
map.put(b.cat, b :: sameCat)

}

For safety, we require the produced hash map to be unique. This means that the
capability of map must be available after the foreach. Intuitively, this is the case
if list and map are in the same region; the body of foreach only adds references
from the hash map to the books.

Technically, the closure is type-checked as follows. First, we collect the capa-
bilities of references that the closure captures. We require all captured references
to be guarded by the same capability, say, ρ. The reason is that all of these refer-
ences are stored in the same (closure) object, which must, therefore, be guarded
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by ρ.5 In a second step, the body is type-checked assuming that the closure’s pa-
rameters are also guarded by ρ. In addition, we require that ρ is not consumed in
the body. This check allows us to associate a single capability, ρ, with the clo-
sure. It indicates that ρ must be available when invoking the closure; moreover,
arguments must be guarded by ρ. The type of a closure guarded by ρ, written
ρ . (A⇒ B), effectively corresponds to the method type ρ . A→ (ρ . B, {ρ}).

Revisiting our example, the foreach method in class List can then be anno-
tated and type-checked as follows.

@transient def foreach(f: (A => Unit) @peer(this)) {
if (!this.isEmpty) { f(this.head); this.tail.foreach(f) } }

Here, f’s argument, this.head, must be guarded by the same capability as f;
this is the case, since f is a peer of this. It is important to note that this does
not break any existing code: the annotations merely express that the receiver and
the variables captured by f must be in the same region. Unannotated objects of
existing clients are (all) contained in the global “shared” region, and are therefore
compatible with the annotated foreach.

What if a closure does not capture a variable in the environment? In this case,
we assume that the closure’s parameters are guarded by some fresh capability, say,
δ, when checking the body. When a closure of type δ . (A ⇒ B) is passed to a
method invoked on an object guarded by ρ, we first capture the closure; this yields
a reference to the closure with type ρ . (A ⇒ B), consuming δ. Note that this
capturing can occur implicitly, without additions to the program.

Automatic Resource Management

Transient closures that do not capture variables in their environment prevent their
arguments to escape to the closure’s environment. An important application of
closures with non-escaping arguments is automatic resource management (ARM).
The goal of ARM is to automate aspects of resource management that are state-
dependent and prone to run-time errors. For example, consider operating on a
file object using a closure that expects a file argument. Furthermore, suppose that
before operating on the file, it must be opened; at the end the file must be closed
to free up operating system resources, such as its descriptor. The opening/closing
of a file could be done manually inside each closure that is used to operate on the
file. However, this would not guard against errors of the programmer where she
forgets to open or close the file.

5Captured references guarded by different capabilities would have to be stored in unique fields
of the closure object; accessing them would require swap. Currently, we do not see a practical way
to support that.
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var leaked: BufferedReader
doWith("example.txt", { reader: BufferedReader =>
val line = reader.readLine()
println(line)
leaked = reader

})
val line2 = leaked.readLine()

Figure 4.8: Leaking a managed resource

A more robust way to ensure that the argument file is accessed correctly is to
use ARM. We explain the ARM pattern using a library function in Scala; however,
some languages, such as C# [74], have built-in support for it. The goal of ARM is
to provide a library function doWith that enables operating on a file while ensuring
the file is opened before its use and closed afterwards. For example, doWith could
be used to read a line of text from a file as follows.

doWith("example.txt", { reader: BufferedReader =>
val line = reader.readLine()
println(line)

})

The closure’s reader argument provides a high-level interface (Java’s
BufferedReader class) to read lines of text from the file specified as the first ar-
gument of doWith. Note that the closure neither opens nor closes the reader that
is used to access the file. Instead, doWith opens the file with the name provided
as first argument, obtains a reader interface to it, applies the closure to the reader,
and then closes the reader again. Importantly, doWith ensures that the reader is
closed after the closure has been applied to it, even in the presence of exceptions.

Even though the above doWith automates some important tasks when man-
aging file resources, it can be misused resulting in run-time errors. An important
class of errors stems from leaking the managed resource out of the closure passed
to doWith; the example in Figure 4.8 illustrates this. Here, we assign the closure’s
reader argument to the variable leaked in the environment. The definition of
line2 shows why leaking the reader resource out of the closure’s scope is prob-
lematic: since doWith ensures that reader is closed after the closure has been
applied to it, reading a line using the leaked reader alias results in an exception.

The following implementation of doWith shows how to prevent leaking the
managed resource using capabilities.

def doWith(fileName: String,
fun: (BufferedReader => Unit)@transient) {
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val reader: BufferedReader @unique =
new BufferedReader(new FileReader(fileName))

try {
fun(reader)

} finally {
reader.close()

}
}

The idea is to require doWith’s argument closure to be transient. According to the
typing rules explained above this means that the closure’s argument must be tran-
sient. Therefore, the fun closure can be applied to the unique reader instance.
Since fun does not consume reader’s capability, we can close the reader in
the finally clause. Importantly, since the closure’s argument is transient, we en-
sure that it is not leaked to a variable in the closure’s environment. In particular,
the assignment of reader to the leaked variable in Figure 4.8 is rejected by the
type checker: the capability of reader is different from the capability of leaked,
which makes their types incompatible. In conclusion, transient closures can be
used to ensure important safety properties of abstractions for automatic resource
management.

4.8.2 Nested classes
Nested classes can be seen as a generalization of closures; a nested class may
define multiple methods, and it may be instantiated several times. An important
use case are anonymous iterator definitions in collection classes.

For instance, the SingleLinkedList class in Scala’s standard library pro-
vides the following method for obtaining an iterator (the A type parameter is the
collection’s element type):

def elements: Iterator[A] = new Iterator[A] {
var elems = SingleLinkedList.this
def hasNext = (elems ne null)
def next = { val res = elems.elem; elems = elems.next; res }

}

The nested Iterator subclass stores a captured reference to the receiver in its
elems field. Therefore, the iterator instance cannot be unique, since it is not
separate from the receiver. However, it is safe to create the iterator in the region
of the receiver.

In general, new nested class instances can be created in the region of captured
references if all those references are in the same region, say, ρ (similar to clo-
sures). If there are constructor arguments, they must also be guarded by ρ. Note
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that creating the instance does not consume ρ. This means, we are relaxing the
rule for instance creation introduced in Section 4.4, which requires the capabil-
ities of constructor arguments to be distinct and consumed; it applies equally to
non-nested classes. Note that nested classes may have unique fields; initializing
unique fields through constructor parameters must follow the same rule as normal
instance creation, that is, the arguments must be guarded by distinct capabilities,
which are consumed.

Revisiting the iterator example, we can use the @peer annotation to express
the fact that the iterator is created in the same region as the receiver:

@transient def elements: Iterator[A] @peer(this) = ...

This enables arbitrary uses of an iterator while the capability of its underlying
unique collection is available.

4.8.3 Transient classes

We say that a class is transient if none of its fields are unique and all of its meth-
ods can be annotated such that the receiver is marked as @transient and all
parameters are marked as @peer(this). This means that the receiver and the
parameters of a method must be guarded by the same capability. It ensures that
neither the receiver nor objects reachable from it are leaked to (potentially) shared
objects, since (1) shared objects are guarded by the special “shared” capability,
and (2) capabilities of method parameters are universally quantified, making them
incompatible with the shared capability. We have found that most classes used in
messages are transient (see Section 4.9). This means that most objects only inter-
act with objects from its enclosing aggregate, which is consistent with the results
for thread-locality in Loci [139]. To abbreviate the canonical annotation, we allow
classes to be annotated as @transient.

4.9 Implementation

We have implemented our type system as a plug-in [64] for the Scala compiler
developed at EPFL. The plug-in inserts an additional compiler phase that runs
right after the normal type checker. The extended compiler first does standard
Scala type checking on the erased terms and types of our system. Then, types
and capabilities are checked using (an extension of) the type rules presented in
Section 4.4 and Section 4.6. For subsequent code generation, all capabilities and
capturedBy expressions are erased, since they have no observable effects.
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4.9.1 Practical experience
In a first step, we annotated the (mutable) DoubleLinkedList, ListBuffer,
and HashMap classes from the collections of Scala 2.7 including all classes/traits
that these classes transitively extend, comprising 2046 lines of code. Making all
classes transient (see Section 4.8.3) required changing 60 source lines.

To evaluate our system in a concurrent setting, we use two applications: a sim-
ple ray tracer, and a parallel testing framework. We first report on our experience
with the ray tracer application; after that we discuss the testing framework.

Ray Tracer

The ray tracer application is parallelized by dividing the rendering of a single
image into multiple equal-sized chunks, such that each chunk is rendered by an
actor. To avoid copying completed chunks, the computed data is accumulated
in mutable pixel buffers supporting a constant-time append operation. Once all
chunks have been rendered, the pixel buffers are sent to an actor that creates an
image object that is displayed using classes of the Java Swing GUI library.

To ensure that all actors are isolated from each other, the (mutable) pixel
buffers must be sent using unique references. For this, the pixel buffer classes
are declared as transient. Moreover, code manipulating pixel buffers must do this
using unique references. The ray tracer application comprises 414 lines of code
(including whitespace). Enabling the compiler plug-in to check for uniqueness re-
quired changing or adding 18 lines of code (adding 3 @transient and 8 @unique
annotations). We found that programming with unique pixel buffers is straightfor-
ward, since our system permits local aliasing within method bodies. Interestingly,
the fact that the Java image class for displaying the computed images is unanno-
tated does not pose a problem, since instances of that class can be created locally
on the event dispatch thread of the GUI library; only the pixel buffers used to
create such image objects are transferred among multiple actors.

The annotation checker does, however, include an escape hatch for transfer-
ring objects that cannot be verified to be unique: an expression that has a type
annotated with @uncheckedUnique is checked as if its type were guarded by a
fresh capability, effectively treating it as unique. We did not make use of this
escape hatch in our case study.

Parallel Testing Framework

In Section 4.3, we have already introduced the partest testing framework, which
is used to run the check-in and nightly tests for the Scala compiler and standard
library. Although the majority of code deals with compiler/test set-up and re-
porting, the unique objects that are transferred among actors are used pervasively
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throughout large parts of the code. An example for such a class is LogFile,
which receives output from various sources (compiler, test runner etc.). For creat-
ing unique LogFile instances it is sufficient that the class is transient; However,
LogFile inherits from the standard java.io.File class, which is unchecked.
Fortunately, according to the Java version 6 API [34], “instances of the File class
are immutable.” We configured our type checker to skip checking immutable
classes. In general, however, this is unsound if such classes could mutate or leak
method parameters. Overall, the most important changes were:

1. Annotating the message classes. We found that all message classes could
be annotated as @transient.

2. Handling of unique fields. We had to annotate a field holding a list of created
log files as @unique. Three swap expressions were sufficient to cover all
accesses to the field.

In summary, out of the 4182 lines of code (including whitespace), we had to
change 32 lines and add 29 additional lines. The following observation helped
interoperability: passing a unique object to an unannotated method is often un-
problematic if the method expects an immutable type. However, this is unsound
in the general case, since instances of such types could be downcast to mutable
types. In our study we allowed passing a LogFile instance to methods of unan-
notated Java classes expecting a java.io.File.
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Chapter 5

Conclusion and Future Work

In this thesis we have explored concurrent programming based on message pass-
ing, specifically in the context of actors. We identified two challenges that we
believe are important to address before actors can be a viable solution for large-
scale concurrency.

The first challenge concerns actor implementations. Production systems, such
as Twitter, demand efficient actor implementations that scale to very large num-
bers of actors. At the same time, it is necessary that actors interoperate with the
threading model of the underlying platform to enable re-use of existing thread-
based code.

The second challenge concerns safety and efficiency of message passing. When
scaling an actor-based application from a single multi-core processor to a dis-
tributed cluster-based system, it is important that local and remote message sends
have the same semantics. At the same time, local message sends should be imple-
mented efficiently without introducing potential data races.

This thesis describes a practical approach that addresses both challenges. One
of the main insights is that a single actor-based abstraction can be used to pro-
gram both in a thread-based and in an event-driven style. The two programming
styles are embodied in two different operations for message reception. Event-
based actors only use event-based operations. They provide excellent scalability;
in a standard benchmark their throughput is about two times higher than that of
state-of-the-art JVM-based actor implementations. Moreover, we provide experi-
mental evidence that Erlang-style actors can be implemented with only a modest
overhead compared to simpler actor abstractions based on inversion of control.
Thread-based actors support blocking operations, but they are more heavyweight
because of the additional resources consumed by their associated VM threads.
Importantly, whether an actor is thread-based or not is not fixed at the time when
the actor is created; the same actor can use both thread-based and event-based
operations. This means that actors may become thread-based temporarily, even
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if they mostly use event-based operations. As a result, programmers can trade
the efficiency of event-based actors for the flexibility of thread-based actors in a
fine-grained way.

To address the second challenge we have introduced a new type-based ap-
proach to uniqueness in object-oriented programming languages. Simple capa-
bilities enforce both aliasing constraints for uniqueness and at-most-once con-
sumption of unique references. By identifying unique and borrowed references
as much as possible our approach provides a number of benefits: first, a simple
formal model, where unique references “subsume” borrowed references. Second,
the type system does not require complex features, such as existential ownership
or explicit region declarations. The type system has been proven sound and can be
integrated into full-featured languages, such as Scala. Practical experience with
collection classes and actor-based concurrent programs suggests that the system
allows type checking real-world Scala code with only few changes.

5.1 Future Work

We envision several avenues for further research. In this section we outline future
work in the areas of fault tolerance and type systems.

5.1.1 Fault tolerance

The Scala Actors library includes a runtime system that provides basic support
for remote (i.e., inter-VM) actor communication. To provide support for fault
tolerancy (for instance, in mobile ad-hoc networks), it would be interesting to
extend the framework with remote actor references that support volatile connec-
tions, similar to ambient references [36]. Integrating transactional abstractions
for fault-tolerant distributed programming (e.g., [52, 142]) into Scala Actors is
another interesting area for future work.

5.1.2 Type systems

Rich types for safe concurrency In this thesis we have introduced a type-and-
capability system to enforce race safety in actor-based programs. There are a
number of ways in which our initial results could be extended or applied to differ-
ent concurrency paradigms.

First, in recent work by Leino et al. [88] static permissions (similar to our ca-
pabilities) are used to verify the absence of deadlocks in concurrent programs that
use channels or locks for synchronization. This result suggests that our type-and-
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capability system could be extended to verify deadlock freedom in actor-based
programs.

Second, type systems based on capabilities/permissions could be used to check
interesting safety properties of high-level concurrency models different from ac-
tors such as data-parallel programming and software transactional memory. For
instance, it seems that capabilities could be used to verify safe publication and pri-
vatization idioms in programs using software transactional memory [115]. Sim-
ilarly, uniqueness types could allow the identification of parallelizable code por-
tions, thereby supporting a form of implicit parallelism. Finally, it would be inter-
esting to explore hybrid concurrency models where, e.g., actors can internally be
deterministically concurrent (using parallel collections, say).

Unified framework for types with stack wrappers A number of type sys-
tems that have recently been published, such as Loci [139], Like Types [138],
and our Capabilities for Uniqueness [69], are formalized using wrapped pointers
on the stack. For instance, in our system shape and uniqueness properties can be
enforced (transitively) by constraining stack values using appropriate wrappers,
called guarded types; these types depend on linear/affine capabilities. This sug-
gests that systems using this or a similar technique could be modeled as instances
of the same typing framework.



106 CHAPTER 5. CONCLUSION AND FUTURE WORK



Appendix A

Full Proofs

A.1 Lemmas
Lemma 1 (Weakening) If Γ ; ∆ ` t : T ; ∆′, x /∈ dom(Γ), then Γ, x : S ; ∆ `
t : T ; ∆′.

Proof: By induction on the typing derivation.

• Case (T-Var).

1. By the assumptions

(a) Γ(y) = ρ . C

(b) ρ ∈ ∆

2. Define Γ′ := (Γ, x : S). Since x /∈ dom(Γ), Γ′(y) = ρ . C.

3. By 1.b) and 2., Γ′ ; ∆ ` y : ρ . C ; ∆.

• Cases (T-Select), (T-Assign), (T-New), (T-Let), (T-Invoke), (T-Capture), (T-
Swap), (T-Sub) follow directly from the induction hypothesis.

2

Lemma 2 If Γ ; ∆ ` t : ρ . C ; ∆′, then ρ ∈ ∆′.

Proof: By induction on the typing derivation.

• Cases (T-Var), (T-New), (T-Swap) are immediate.

• Case (T-Sub).

1. By the assumptions

107
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(a) Γ ; ∆ ` e : T ′ ; ∆′

(b) T ′ <: ρ . C

2. By 1.b) and (<:-Cap), T ′ = ρ . D.

3. By 1.a), 2., and the IH, ρ ∈ ∆′.

• Case (T-Select). By the assumptions, Γ ; ∆ ` y : ρ . C ; ∆. The IH
provides ρ ∈ ∆.

• Case (T-Invoke).

1. By the assumptions

(a) mtype(m,D1) = ∃δ. δ . D → (R,∆m)

(b) σ = δ 7→ ρ ◦ δ 7→ ρ′ injective
(c) ρ′ fresh

2. By 1.a) and (WF-Method)

(a) R = δ′ . D

(b) δ′ ∈ ∆m

(c) δ =

{
δ′ if δ′ /∈ δ
fresh otherwise

3. If δ′ /∈ δ, then by 2.c), σδ′ = σδ = ρ′. By 1.b) and 2.b), σδ′ ∈ σ∆m.

4. If δ′ = δi ∈ δ, then by 1.b) and 2.b), σδ′ = σδi = ρi ∈ σ∆m.

• Case (T-Capture).

1. By the assumptions

(a) Γ ; ∆ ` z : ρ′ . C ′ ; ∆

(b) ∆ = ∆′ ⊕ ρ
2. By 1.a) and the IH, ρ′ ∈ ∆, and since ρ 6= ρ′, we have by 1.b), ρ′ ∈ ∆′.

• Case (T-Let).

1. By the assumptions

(a) Γ ; ∆ ` e : T ′ ; ∆′′

(b) Γ, x : T ′ ; ∆′′ ` t : ρ . C ; ∆′

2. By 1.b) and the IH, ρ ∈ ∆′.

• Case (T-Assign). By the assumptions, Γ ; ∆ ` y : ρ . C ; ∆. The IH
provides ρ ∈ ∆.
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2

Lemma 3 (Capability Weakening) If Γ ; ∆ ` t : T ; ∆′ and ∀ (x : ρ . C) ∈
Γ. ρ 6= δ, then Γ ; ∆⊕ δ ` t : T ; ∆′ ⊕ δ.

Proof: By induction on the typing derivation.

• Case (T-Let).

1. By the assumptions

(a) Γ ; ∆ ` e : ρ′ . C ′ ; ∆′′

(b) Γ, x : ρ′ . C ′ ; ∆′′ ` t : T ; ∆′

2. By 1.a) and the IH, Γ ; ∆⊕ δ ` e : ρ′ . C ′ ; ∆′′ ⊕ δ.
3. By 1.a) and Lemma 2, ρ′ ∈ ∆′′.

4. By 2. and 3., ∀ (y 7→ ρ . D) ∈ (Γ, x : ρ′ . C ′). ρ 6= δ.

5. By 1.b), 4., and the IH, Γ, x : ρ′ . C ′ ; ∆′′ ⊕ δ ` t : T ; ∆′ ⊕ δ
6. By 2., 5., (T-Let), Γ ; ∆⊕ δ ` let x = e in t : T ; ∆′ ⊕ δ

• All other cases follow directly from the induction hypothesis.

2

Lemma 4 (Capability Renaming) If Γ ; ∆ ` t : T ; ∆′ and σ ∈ Caps →
Caps is injective, then σΓ ; σ∆ ` t : σT ; σ∆′. σ extends to type environments,
capabilities, and types in the natural way:

• σ(Γ, x : T ) = (σΓ, x : σT )

• σ(∆⊕ ρ) = σ∆⊕ σρ

• σ(ρ . C) = σ(ρ) . C

Proof: By induction on the typing derivation with case analysis of the last type
rule used.

• Case (T-Var): Γ ; ∆ ` y : ρ . C ; ∆.

1. By the assumptions

(a) Γ(y) = ρ . C

(b) ρ ∈ ∆

2. By 1.a,b), def. of σ
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(a) (σΓ)(y) = σ(ρ) . C

(b) σ(ρ) ∈ σ∆

3. By 2.a,b), (T-Var), σΓ ; σ∆ ` y : σ(ρ) . C ; σ∆.

4. By 3., and the def. of σ, σΓ ; σ∆ ` y : σ(ρ . C) ; σ∆.

• Case (T-Select): Γ ; ∆ ` y.li : ρ . Di ; ∆.

1. By the assumptions

(a) Γ ; ∆ ` y : ρ . C

(b) fields(C) = α l : D

(c) αi 6= unique

2. By 1.a) and the IH, σΓ ; σ∆ ` y : σ(ρ . C).

3. By 2., and the def. of σ, σΓ ; σ∆ ` y : σ(ρ) . C.

4. By 1.b,c), 3., and (T-Select), σΓ ; σ∆ ` y.li : σ(ρ) . Di ; σ∆.

5. By 4. and the def. of σ, σΓ ; σ∆ ` y.li : σ(ρ . Di) ; σ∆.

• Case (T-Assign). Similar to case (T-Select) and therefore omitted.

• Cases (T-Let) and (T-Sub) follow directly from the IH.

• Case (T-New): Γ ; ∆ ` new C(y) : T ; ∆′.

1. By the assumptions

(a) Γ ; ∆ ` y : ρ . D ; ∆

(b) Has been removed.
(c) fields(C) = α l : D

(d) ρ′ fresh
(e) ∆ = ∆̂⊕ ρ
(f) ∆′ = ∆̂⊕ ρ′

(g) T = ρ′ . C

2. By 1.a) and the IH, σΓ ; σ∆ ` y : σ(ρ . D) ; σ∆.

3. By 1.e) and since σ is injective, we have |{σ(ρ)}| = |y|.
4. By 1.d,e,f) and the def. of σ

(a) σ(ρ′) fresh
(b) σ∆ = σ∆̂⊕ σ(ρ)

(c) σ∆′ = σ∆̂⊕ σ(ρ′)
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5. By 1.c), 2., 3., 4.a,b,c), (T-New), σΓ ; σ∆ ` new C(y) : σ(ρ′) .
C ; σ∆′.

6. By 1.g), 5. and the def. of σ, σΓ ; σ∆ ` new C(y) : σT ; σ∆′.

• Case (T-Invoke): Γ ; ∆ ` y.m(z) : T ; ∆′.

1. By the assumptions

(a) Γ ; ∆ ` y : ρ1 . D1 ; ∆

(b) ∀i ∈ 2..n. Γ ; ∆ ` zi−1 : ρi . Di ; ∆

(c) mtype(m,D1) = ∃δ. δ . D → (R,∆m)

(d) σ′ = δ 7→ ρ ◦ δ 7→ ρ injective
(e) ∆ = ∆̂ ] {ρ | ρ ∈ ρ}
(f) T = σ′R

(g) ∆′ = σ′∆m ⊕ ∆̂

(h) ρ fresh

2. By 1.a,b), the IH, and the def. of σ

(a) σΓ ; σ∆ ` y : σ(ρ1) . D1 ; σ∆

(b) ∀i ∈ 2..n. σΓ ; σ∆ ` zi−1 : σ(ρi) . Di ; σ∆

3. By 1.d), the def. of σ, and the fact that σ is injective, σ ◦ σ′ =
δ 7→ σ(ρ) ◦ δ 7→ σ(ρ) injective.

4. By 1.e,f,g), and the def. of σ

(a) σ∆ = σ∆̂ ] {ρ | ρ ∈ σ(ρ)}
(b) σT = (σ ◦ σ′)R
(c) σ∆′ = (σ ◦ σ′)∆m ⊕ σ∆̂

5. By 1.c), 2.a,b), 3., 4.a,b,c), (T-Invoke), σΓ ; σ∆ ` y.m(z) : σT ; σ∆′.

• The cases (T-Capture) and (T-Swap) are similar to case (T-Select) and are
therefore omitted.

2

Lemma 5 If Γ ; ∆ ` y : ρ . C ; ∆, Γ ; ∆ ; Σ `ϕ V ; R, and V (y) = β . r,
then Σ ` r : C and ρ ∈ ∆ iff β ∈ R.

Proof: By induction on the typing derivation with case analysis of the last rule
used in the derivation.

• Case (T-Var).
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1. By the assumptions and (T-Var), Γ(y) = ρ . C.

2. By 1., (WF-Env)

(a) Σ ` r : C

(b) ρ ∈ ∆ iff β ∈ R

• Case (T-Sub).

1. By the assumptions and (T-Sub)

(a) Γ ; ∆ ` y : T ; ∆

(b) T <: ρ . C

2. By 1.b), (<:-Cap)

(a) T = ρ . D

(b) D <: C

3. By 1.a), 2.a), and the induction hypothesis

(a) Σ ` r : D

(b) ρ ∈ ∆ iff β ∈ R
4. By 3.a), (Heap-Type)

(a) Σ(r) = E

(b) E <: D

5. By 2.b), 4.b), (<:-Trans), E <: C.

6. By 4.a), 5., (Heap-Type), Σ ` r : C.

2

Lemma 6 IfD <: C, fields(C) = fldC , fields(D) = fldD, and i ≤ |fields(C)|,
then ∀j ≤ i. f ldDj = fldCj .

Proof: By induction on the derivation of D <: C with case analysis of the last
rule used.

• Case (<:-P). Then, P (D) = class D extends C {fld meth}

1. By (WF-Class), ∀ β l : G ∈ fld. l /∈ fields(C)

2. By def. of fields, fields(D) = fldC , f ld. Therefore, fldDj =
fldCj , j ≤ i.

• Case (<:-Refl). We have fldC = fldD.

• Case (<:-Trans).
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1. There is a type E such that

(a) D <: E

(b) E <: C

2. Let fields(E) = fldE . By 1.b) and the IH, fldEj = fldCj , j ≤ i.

3. By 1.a), the IH, and 2., fldDj = fldCj , j ≤ i.

2

Lemma 7 If Γ ; ∆ ` t : T ; ∆′, x ∈ dom(Γ), x′ /∈ dom(Γ), then [x′/x]Γ ; ∆ `
[x′/x]t : T ; ∆′.

Proof: Straightforward induction on the typing derivation. 2

A.2 Proof of Theorem 1
Theorem 1 (Preservation) If

• Γ ; ∆ ` t : T ; ∆′

• Γ ; ∆ ; Σ ` H ; V ; R

• H, V,R, t −→ H ′, V ′, R′, t′

then there are Γ′ ⊇ Γ, ∆′′, and Σ′ ⊇ Σ such that

• Γ′ ; ∆′′ ` t′ : T ; ∆′

• Γ′ ; ∆′′ ; Σ′ ` H ′ ; V ′ ; R′

We use the following extended rules for well-formed configurations and environ-
ments, which maintain an injective mapping between static and dynamic capabil-
ities.

Σ ` H
Γ ; ∆ ; Σ `ϕ V ; R
separation(V,H,R)
uniqF lds(V,H,R)

ϕ injective ϕ(ς) = ς

Γ ; ∆ ; Σ ` H ; V ; R
(WF-CONFIG)

Γ ; ∆ ; Σ `ϕ V ; R
Σ ` r : C ρ ∈ ∆ iff β ∈ R ϕ(ρ) = β

(Γ, y : ρ . C) ; ∆ ; Σ `ϕ (V, y 7→ β . r) ; R
(WF-ENV)
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Proof: By induction on the reduction derivation with case analysis of the last
rule used in the derivation.

• Case (R-Assign). Then, t = y.li := z.

1. By (WF-Config)

(a) Σ ` H

(b) Γ ; ∆ ; Σ `ϕ V ; R

(c) separation(V,H,R)

(d) uniqF lds(V,H,R)

(e) ϕ injective

2. By the assumptions and (T-Assign)

(a) ∆′ = ∆

(b) Γ ; ∆ ` y : ρ . C

(c) Γ ; ∆ ` z : ρ . Di

(d) fields(C) = α l : D

(e) αi 6= unique

3. By 1.b), 2.b), Lemma 5

(a) V (y) = δ . r

(b) Σ ` r : C

(c) ρ ∈ ∆ iff δ ∈ R
4. By (R-Assign)

(a) V (z) = δ . r′

(b) H(r) = D(p)

(c) fields(D) = β l : G

(d) βi 6= unique

(e) H ′ = H[r 7→ D([r′/pi]p)]

5. By 1.a), 4.b,c), (WF-Heap)

(a) Σ ` p : G

(b) Σ(r) = D

6. By 3.b), 5.b), (Heap-Type), D <: C.

7. By 2.d,e), 4.c), 6., Lemma 6, Di = Gi.

8. By 1.b), 2.c), 4.a), Lemma 5, Σ ` r′ : Di.

9. By 1.a), 4.c), 5.a,b), 7., 8., (WF-Heap), Σ ` H ′.
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10. Let (x : γ . u), (x′ : γ′ . u′) ∈ V such that {γ, γ′} ⊆ R. Let rc be an
object reachable in H ′ from both u and u′.

(a) Case γ 6= δ ∧ γ′ 6= δ. By 1.c), 4.a), δ ∈ R
i. ¬reach(H, r′, rc), therefore

ii. rc reachable in H from both u and u′. By 1.c),
iii. γ = γ′

(b) Case γ = δ. We have to consider the following subcases:
i. rc is a common reachable object of u and u′ in H . By the IH,
γ = γ′.

ii. rc is a common reachable object of r′ and u′ inH and reach(H, u, r).
By 1.c), γ′ = δ = γ.

iii. rc is a common reachable object of r′ and u inH and reach(H, u′, r).
By 1.c), 3.a), γ′ = δ = γ.

Therefore, we have separation(V,H ′, R).

11. Let (x 7→ δ.o) ∈ V ,H ′(q) = C(q), j ∈ uniqInd(C), reach(H ′, qj, o
′).

(a) Case q 6= r. Then H ′(q) = H(q). Assume ¬reach(H, qj, o
′).

Then
i. reach(H, r′, o′)

ii. reach(H, qj, r)

By (a).ii, and the IH, domedgeH(q, j, o, r). This contradicts with
3.a). Therefore, reach(H, qj, o

′). By IH, domedgeH(q, j, o, o′).
Assume ¬domedgeH′(q, j, o, o′). Then

i. reach(H, o, r)

ii. reach(H, r′, o′)

where none of the paths goes through edge (q, j). By the second
case and the IH, domedgeH(q, j, r′, o′). Contradiction. Therefore,
we have domedgeH′(q, j, o, o′) as required.

(b) Case q = r. By (R-Assign), H ′(q) = D([r′/pi]p). Since i /∈
uniqInd(D), the rest of the proof is identical to the previous case.

12. By 2.b), (T-Var), Γ ; ∆ ` y : ρ . C ; ∆.

13. By 1.b,e), 9., 10., 11., (WF-Config), Γ ; ∆ ; Σ ` H ′ ; V ; R.

• Case (R-Invoke). Then, t = let x = y.m(z) in t′.

1. By (WF-Config)

(a) Σ ` H
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(b) Γ ; ∆ ; Σ `ϕ V ; R

(c) separation(V,H,R)

(d) uniqF lds(V,H,R)

(e) ϕ injective

2. By the assumptions and (T-Let)

(a) Γ ; ∆ ` y.m(z) : T ′ ; ∆′′

(b) Γ, x : T ′ ; ∆′′ ` t′ : T ; ∆′

3. By 2.a) and (T-Invoke)

(a) Γ ; ∆ ` y : ρ1 . C1

(b) ∀i ∈ 2..n. Γ ; ∆ ` zi−1 : ρi . Di ; ∆

(c) mtype(m,C1) = ∃δ. δ . D → (R,∆m)

(d) σ = δ 7→ ρ ◦ δ 7→ ρ injective
(e) ∆ = ∆r ] {ρ | ρ ∈ ρ}
(f) T ′ = σR

(g) ∆′′ = σ∆m ⊕∆r

(h) ρ fresh

4. By 1.b), 3.a), Lemma 5

(a) V (y) = β1 . r1

(b) Σ ` r1 : C1

5. By 1.b), 3.b,d,e), Lemma 5

(a) ∀i ∈ 2..n. V (zi−1) = βi . ri

(b) Σ ` r : D

(c) β ⊆ R, and by 1.e)
(d) ρ 7→ β injective

6. By 4.b), (Heap-Type)

(a) Σ(r1) = D1

(b) D1 <: C1

7. By 1.a), 6.a), (WF-Heap), H(r1) = D1(_).

8. By 4.a), 5.a,c), 7., (R-Invoke)

(a) mbody(m,D1) = (x, e)

(b) V ′ = (V, x 7→ β . r)

9. By 3.c), 8.a), (WF-Method)

(a) R = δ′ . D
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(b) x : δ . D ; {δ | δ ∈ δ} ` e : δ′ . D ; ∆m

10. By 3.d,h), 9.b), Lemma 4

(a) x : ρ . D ; {ρ | ρ ∈ ρ} ` e : ρ . D ; σ∆m

(b) ρ =

{
ρi if δ′ = δi
fresh otherwise

11. Has been removed.

12. By 3.d,e), 10.a), Lemma 3, x : ρ . D ; {ρ | ρ ∈ ρ} ⊕ ∆r ` e :
ρ . D ; σ∆m ⊕∆r.

13. WLOG, x ∩ dom(Γ) = ∅. By 12., Lemma 1, Γ, x : ρ . D ; {ρ | ρ ∈
ρ} ⊕∆r ` e : ρ . D ; σ∆m ⊕∆r.

14. By 3.d,f,h), 9.a), 10.b), ρ . D = σR = T ′.

15. By 2.b), Lemma 1, Γ, x : T ′, x : ρ . D ; ∆′′ ` t′ : T ; ∆′.

16. By 2.b), 3.e,f,g), 13., 14., 15., (T-Let), Γ, x : ρ . D ; ∆ ` let x =
e in t′ : T ; ∆′.

17. By 1.b), 3.e), 5.b,c), 8.b)

(a) Γ, x : ρ . D ; ∆ ; Σ `ϕ′ V ′ ; R and by 5.d)
(b) ϕ′ = ϕ ∪ ρ 7→ β injective

18. By 1.d), 4.a), 5.a), 8.b), separation(V ′, H,R).

19. By 1.e), 4.a), 5.a), 8.b), uniqF lds(V ′, H,R).

20. By 1.a), 17.a,b), 18., 19., (WF-Config), Γ, x : ρ . D ; ∆ ; Σ ` H ; V ′ ; R.

• Case (R-Swap). Then, t = let x = swap(y.li, z) in t
′.

1. By (WF-Config)

(a) Σ ` H

(b) Γ ; ∆ ; Σ `ϕ V ; R

(c) separation(V,H,R)

(d) uniqF lds(V,H,R)

(e) ϕ injective

2. By the assumptions and (T-Let)

(a) Γ ; ∆ ` swap(y.li, z) : T ′ ; ∆′′

(b) Γ, x : T ′ ; ∆′′ ` t′ : T ; ∆′

3. By 2.a) and (T-Swap)

(a) Γ ; ∆ ` y : ρ . C ; ∆
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(b) Γ ; ∆ ` z : ρ′ . Di ; ∆

(c) fields(C) = α l : D

(d) αi = unique

(e) ∆ = ∆̂⊕ ρ′

(f) T ′ = ρ′′ . Di where
(g) ρ′′ fresh
(h) ∆′′ = ∆̂⊕ ρ′′

4. By 1.b), 3.a), Lemma 5

(a) V (y) = δ . r

(b) Σ ` r : C

(c) ρ ∈ ∆ iff δ ∈ R
5. By 4.b), (Heap-Type)

(a) Σ(r) = D

(b) D <: C

6. By 1.a), 5.a), (WF-Heap), (R-Swap)

(a) H(r) = D(p)

(b) V (z) = γ . r′

(c) R = R′ ⊕ δ ⊕ γ
(d) γ′ fresh
(e) H ′ = H[r 7→ D([r′/pi]p)]

(f) V ′ = (V, x 7→ γ′ . pi)

(g) R′′ = R′ ⊕ δ ⊕ γ′

7. By 1.a), 5.a), 6.a), (WF-Heap)

(a) fields(D) = β k : E

(b) Σ ` p : E

8. By 3.c), 5.b), 7.a), Lemma 6, ∀j ∈ {1..i}.
(a) βj = αj

(b) kj = lj

(c) Ej = Dj

9. By 1.b), 3.b), 6.b), Lemma 5

(a) Σ ` r′ : Di

(b) ρ′ ∈ ∆ iff γ ∈ R
10. By 1.a), 5.a), 6.e), 7.a,b), 8.c), 9.a), (WF-Heap), Σ ` H ′.
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11. By 1.b), 3.b), 6.b), (WF-Env), Γ ; ∆ \ ρ′ ; Σ `ϕ V ; R \ γ.

12. By 3.a,e), Lemma 2, ρ ∈ ∆̂.

13. By 3.g), 6.d,e,h), 11., 12., (WF-Env), Γ ; ∆′′ ; Σ `ϕ V ; R′ ⊕ δ ⊕ γ′.
14. By 7.b), 8.c), Σ ` pi : Di.

15. By 3.f,h), 6.f), 13., 14., (WF-Env)

(a) Γ, x : T ′ ; ∆′′ ; Σ `ϕ′ V ′ ; R′ ⊕ δ ⊕ γ′ and by 1.e), 3.g), 6.d)
(b) ϕ′ = ϕ ∪ ρ′′ 7→ γ′ injective

16. By 1.d), 4.a), 6.b,c), sep(H, r, r′).

17. Let (w 7→ κ . q), (w′ 7→ κ′ . q′) ∈ V , κ ∈ R′′.
(a) Case w 6= x ∧ w′ 6= x (⇒ κ 6= γ′ ∧ κ′ 6= γ′ ∧ κ ∈ R). Let rc be a

common reachable object of q and q′ in H ′. We show that either
κ′ = κ or else κ′ /∈ R′′. Consider the following two cases:

i. Case reach(H, q, rc) ∧ reach(H, q′, rc). Then, by 1.d), κ′ =
κ.

ii. Case ¬reach(H, q, rc) (case ¬reach(H, q′, rc) is symmetric).
By def. H ′ and 13., we must have reach(H, r′, rc)∧reach(H, q, r).
Since reach(H ′, q′, rc), we have to consider the following
subcases:

A. reach(H, q′, r). If κ′ ∈ R, then by 1.d) and reach(H, q, r),
κ′ = κ.

B. ¬reach(H, q′, r). Then it must be the case that
reach(H, q′, rc). Assume that κ′ ∈ R′′. Then κ′ ∈ R
(since κ′ 6= γ′). By 1.d) and reach(H, r′, rc), κ′ = γ.
Contradiction. Therefore, κ′ /∈ R′′.

(b) Case w = x (⇒ κ = γ′ ∧ q = pi).
i. Assume ¬sep(H ′, q, q′). Then there is r̂ ∈ dom(H ′) such

that reach(H ′, q, r̂) ∧ reach(H ′, q′, r̂).
ii. By def. H ′, reach(H, q, r̂).

iii. There are two possible cases for reach(H ′, q′, r̂) (i):
A. the path from q′ to r̂ uses edge (r, i). Then, by ii. and def.

H ′, reach(H, q′, r̂).
B. the path from q′ to r̂ does not use edge (r, i). Then, by def.

H ′, reach(H, q′, r̂).
In both cases we have reach(H, q′, r̂).

iv. By ii. and iii., ¬sep(H, q, q′).
v. By iv. and 1.c), κ′ = γ′ ∨ κ′ /∈ R.
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vi. By v. and 6.c,g), κ′ = γ′ = κ ∨ κ′ /∈ R′′.
According to cases (a) and (b), we have separation(V ′, H ′, R′′).

18. We show uniqF lds(V ′, H ′, R′′). Let (w 7→ κ . q) ∈ V such that
¬sep(H ′, q, r) (the case where sep(H ′, q, r) is obvious) and κ ∈ R′′.
Since sep(H, r, r′) (16.) we only have to consider the case where
reach(H ′, r′, r̂) ∧ reach(H ′, q, r̂).

(a) By def. H ′ and 16., reach(H, r′, r̂).
(b) By 17. and κ ∈ R′′, κ = δ.
(c) By 1.d) and (b), sep(H, q, r′), and therefore, ¬reach(H, q, r̂).
(d) By def. H ′ and (c), we have domedgeH′(r, i, q, r̂).

19. By 10., 15.a,b), 17., 18., and (WF-Config), Γ, x : T ′ ; ∆′′ ; Σ `
H ′ ; V ′ ; R′′.

• Case (R-Capture). Then, t = let x = capture(y, z) in t′.

1. By (WF-Config)

(a) Σ ` H

(b) Γ ; ∆ ; Σ `ϕ V ; R

(c) separation(V,H,R)

(d) uniqF lds(V,H,R)

(e) ϕ injective

2. By the assumptions and (T-Let)

(a) Γ ; ∆ ` capture(y, z) : T ′ ; ∆′′

(b) Γ, x : T ′ ; ∆′′ ` t′ : T ; ∆′

3. By 2.a) and (T-Capture)

(a) Γ ; ∆ ` y : ρ . C

(b) Γ ; ∆ ` z : ρ′ . C ′

(c) ∆ = ∆′′ ⊕ ρ
(d) T ′ = ρ′ . C

4. By 1.b), 3.a,c), Lemma 5

(a) V (y) = β . r

(b) Σ ` r : C

(c) β ∈ R iff ρ ∈ ∆, and therefore by 3.c)
(d) R = R′ ⊕ β

5. By 1.b), 3.b,c), 4.d), Lemma 5
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(a) V (z) = β′ . r′

(b) Σ ` r′ : C ′

(c) ρ′ ∈ ∆′′ iff β′ ∈ R′

6. By 4.a,d), 5.a), (R-Capture), V ′ = (V, x 7→ β′ . r).

7. By 1.c,d), 4.a,d), 6.

(a) separation(V ′, H,R′)

(b) uniqF lds(V ′, H,R′)

8. By 1.b), 3.c), 4.c,d), (WF-Env), Γ ; ∆′′ ; Σ `ϕ V ; R′.

9. By 3.d), 4.b), 5.c), 6., 8., (WF-Env), Γ, x : T ′ ; ∆′′ ; Σ `ϕ V ′ ; R′.
10. By 1.a), 7.a,b), 9., and (WF-Config), Γ, x : T ′ ; ∆′′ ; Σ ` H ; V ′ ; R′.

• Case (R-New). Then, t = let x = new C(y) in t′.

1. By (WF-Config)

(a) Σ ` H

(b) Γ ; ∆ ; Σ `ϕ V ; R

(c) separation(V,H,R)

(d) uniqF lds(V,H,R)

(e) ϕ injective

2. By the assumptions and (T-Let)

(a) Γ ; ∆ ` new C(y) : T ′ ; ∆′′

(b) Γ, x : T ′ ; ∆′′ ` t′ : T ; ∆′

3. By 2.a), and (T-New)

(a) Γ ; ∆ ` y : ρ . D ; ∆

(b) Has been removed
(c) fields(C) = α l : D

(d) ρ′ fresh
(e) ∆ = ∆̂⊕ ρ
(f) ∆′′ = ∆̂⊕ ρ′

(g) T ′ = ρ′ . C

4. By 1.b), 3.a), Lemma 5

(a) V (y) = β . r

(b) Σ ` r : D

(c) ρ ⊆ ∆ iff β ⊆ R, and therefore by 1.e) and 3.e)
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(d) R = R′′ ⊕ β
5. By 4.a,d), (R-New)

(a) H ′ = (H, r 7→ C(r))

(b) V ′ = (V, x 7→ γ . r)

(c) R′ = R′′ ⊕ γ
(d) r /∈ dom(H)

(e) γ fresh

6. Define Σ′ := (Σ, r : C). Then, Σ′ ` r′ : C ′ ∀ r′ ∈ dom(Σ) such that
Σ ` r′ : C ′.

7. By 1.b), 3.d,e,f), 4.d), 5.c,e), (Γ(y) = ρ . C ∧ V (y) = β . r) ⇒ ρ ∈
∆′′ iff β ∈ R′.

8. By 3.a), 4.a,b), 6., 7., (WF-Env)

(a) Γ ; ∆′′ ; Σ′ `ϕ′ V ; R′, and by 1.e), 3.d), 5.e)
(b) ϕ′ = ϕ ∪ ρ′ 7→ γ injective

9. By 3.f), 5.b,c), 6., 8.a,b), (WF-Env), Γ, x : ρ′.C ; ∆′′ ; Σ′ `ϕ′ V ′ ; R′.

10. By 1.a), 5.a), 6., (WF-Heap), Σ′ ` H ′.

11. By 5.a,c), we have separation(V,H ′, R′). Let (x′ 7→ β′ . r′) ∈ V ,
and let r′′ be a common reachable object of r and r′ in H ′. Then, by
5.a), reach(H, ri, r

′′). By 1.c), β′ = βi ∨ β′ /∈ R. By 5.c), β′ /∈ R′.
Therefore, we have separation(V ′, H ′, R′).

12. By 5.a), the unique fields of objects other than r remain unique in
V ′, H ′, R′. Therefore, we only have to check whether the unique
fields of r are actually unique. Let (x′ 7→ β′ . r′) ∈ V such that
reach(H ′, r′, r′′)∧reach(H ′, ri, r

′′). Then, by 5.a), reach(H, r′, r′′)∧
reach(H, ri, r

′′), and therefore, ¬sep(H, r′, ri). By 1.c), β′ = βi ∨
β′ /∈ R. By 4.d) and 5.c), β′ /∈ R′. Therefore, we have
uniqF lds(V ′, H ′, R′).

13. By 8.b), 9., 10., 11., 12., (WF-Config), Γ, x : ρ′ . C ; ∆′′ ; Σ′ `
H ′ ; V ′ ; R′.

• Case (R-Let). Then, t = let x = t1 in t2.

1. By (WF-Config)

(a) Σ ` H

(b) Γ ; ∆ ; Σ `ϕ V ; R

(c) separation(V,H,R)
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(d) uniqF lds(V,H,R)

2. By the assumptions and (T-Let)

(a) Γ ; ∆ ` t1 : T ′ ; ∆′′

(b) Γ, x : T ′ ; ∆′′ ` t2 : T ; ∆′

3. By (R-Let), H,V,R, t1 −→ H ′, V ′, R′, t′1.

4. By the assumptions, 3., and the IH, there are Γ′, ∆̂, and Σ′ such that

(a) Γ′ ; ∆̂ ` t′1 : T ′ ; ∆′′

(b) Γ′ ; ∆̂ ; Σ′ ` H ′ ; V ′ ; R′

(c) Γ′ ⊇ Γ

(d) Σ′ ⊇ Σ

5. By 2.b), 4.c), and Lemma 1, Γ′, x : T ′ ; ∆′′ ` t2 : T ; ∆′.

6. By 4.a), 5., (T-Let), Γ′ ; ∆̂ ` let x = t′1 in t2 : T ; ∆′.

2
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A.3 Proof of Theorem 2
Theorem 2 (Progress) If Γ ; ∆ ` t : T ; ∆′ and Γ ; ∆ ; Σ ` H ; V ; R, then
either t = y, or there is a reduction H,V,R, t −→ H ′, V ′, R′, t′.

Proof: By induction on the shape of t.

• Case t = y.li := z.

1. By (WF-Config)

(a) Σ ` H

(b) Γ ; ∆ ; Σ `ϕ V ; R

(c) separation(V,H,R)

(d) uniqF lds(V,H,R)

2. By (T-Assign)

(a) Γ ; ∆ ` y : ρ . C ; ∆

(b) Γ ; ∆ ` z : ρ . Di ; ∆

(c) fields(C) = α l : D

(d) αi 6= unique

3. By 1.b), 2.a), Lemma 5

(a) Σ ` r : C

(b) V (y) = δ . r

(c) ρ ∈ ∆ iff δ ∈ R
4. By 1.b), 2.b), Lemma 5

(a) Σ ` r′ : Di

(b) V (z) = δ′ . r′

(c) ρ ∈ ∆ iff δ′ ∈ R
5. By 3.c) and 4.c), δ′ = δ.

6. By 3.a), (Heap-Type)

(a) Σ(r) = D

(b) D <: C

7. By 2.a), 3.c), Lemma 2, δ ∈ R.

8. By 1.a), 6.a), (WF-Heap), H(v) = D(p).

9. By 1.c), 6.b), (<:-Trans), (<:-P), (WF-Class), |p| ≥ i.

10. By 3.b), 4.b), 5., 7., 8., 9., rule (R-Assign) applies.
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• Case t = let x = y.m(z) in t′.

1. By (WF-Config)

(a) Γ ; ∆ ; Σ `ϕ V ; R

(b) Σ ` H

2. By (T-Let)

(a) Γ ; ∆ ` y.m(z) : T ′ ; ∆′′

(b) Γ, x : T ′ ; ∆′′ ` t′ : T ; ∆′

3. By 2.a) and (T-Invoke)

(a) Γ ; ∆ ` y : ρ1 . C1 ; ∆

(b) Γ ; ∆ ` zi−1 : ρi . Di ; ∆, i = 2 . . . n

(c) mtype(m,C1) = ∃δ. δ . D → (TR,∆m)

(d) σ = δ 7→ ρ ◦ δ 7→ ρ injective
(e) ∆ = ∆r ] {ρ | ρ ∈ ρ}
(f) T ′ = σTR

(g) ρ fresh

4. By 1.a), 3.a), Lemma 5

(a) V (y) = β1 . r1

(b) Σ ` r1 : C1

(c) ρ1 ∈ ∆ iff β1 ∈ R
5. By 4.b), (Heap-Type)

(a) Σ(r1) = E1

(b) E1 <: C1

6. By 1.a), 3.b), Lemma 5

(a) V (z) = β2 . r2 . . . βn . rn

(b) Σ ` ri : Di, i = 2 . . . n

(c) ρi ∈ ∆ iff βi ∈ R, i = 2 . . . n

7. By 3.d,e)

(a) ρ ⊆ ∆, and therefore by 4.c) and 6.c)
(b) β ⊆ R

8. By 3.c), 5.a, b), (<:-Trans), (<:-P), (WF-Class)

(a) mbody(m,E1) = (x, e), where
(b) |x| = |δ . D|
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9. By 1.b), 5.a), (WF-Heap), H(r1) = E1(_).

10. By 8.a,b), 7.b), 6.a), 9., rule (R-Invoke) applies.

• Case t = let x = y.li in t
′: similar to case y.li = z and therefore omitted.

• Case t = let x = capture(y, z) in t′.

1. By (WF-Config), Γ ; ∆ ; Σ `ϕ V ; R.

2. By (T-Let)

(a) Γ ; ∆ ` capture(y, z) : T ′ ; ∆′′

(b) Γ, x : T ′ ; ∆′′ ` t′ : T ; ∆′

3. By 2.a) and (T-Capture)

(a) Γ ; ∆ ` y : ρ . C ; ∆

(b) Γ ; ∆ ` z : ρ′ . C ′ ; ∆

(c) ∆ = ∆̂⊕ ρ
4. By 1., 3.a), and Lemma 5

(a) V (y) = β . r

(b) Σ ` r : C

(c) ρ ∈ ∆ iff β ∈ R
5. By 1., 3.b), and Lemma 5

(a) V (z) = β′ . r′

(b) Σ ` r′ : C ′

(c) ρ′ ∈ ∆ iff β′ ∈ R
6. By 3.c), 4.c), R = R′ ⊕ β.

7. By 4.a), 5.a), 6., rule (R-Capture) applies.

• Case t = let x = new C(y) in t′.

1. By (WF-Config)

(a) Γ ; ∆ ; Σ `ϕ V ; R

(b) ϕ injective

2. By (T-Let)

(a) Γ ; ∆ ` new C(y) : T ′ ; ∆′′

(b) Γ, x : T ′ ; ∆′′ ` t′ : T ; ∆′

3. By 2.a) and (T-New)
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(a) Γ ; ∆ ` y : ρ . D

(b) ∆ = ∆̂⊕ ρ
4. By 1.a), 3.a,b), Lemma 5

(a) V (y) = β . r and by 1.b)
(b) R = R̂⊕ β

5. By 4.a,b), rule (R-New) applies.

• Case t = let x = swap(y.li, z) in t
′: similar to case y.li = z and therefore

omitted.

• Case t = let x = t1 in t2, where t1 6= y.

1. By (T-Let), Γ ; ∆ ` t1 : T ′ ; ∆′′.

2. By the assumptions and 1., H,V,R, t1 −→ H ′, V ′, R′, t′1.

3. By 2., rule (R-Let) applies.

2

A.4 Proof of Corollary 1
Corollary 1 (Uniqueness) If

• Γ ; ∆ ` let x = t in t′ : T ; ∆′ where t = y.m(z) ∧ Γ(y) = _ . C

• Γ ; ∆ ; Σ ` H ; V ; R

• mtype(m,C) = ∃δ. δ . D → (TR,∆m) where δi /∈ ∆m

then zi is separately-unique in H, V,R, let x = t in t′.

Proof: Let y′ be a variable in V that is not separate from zi in H . We show
that y′ will not be accessed during reduction.

1. By the assumptions and (T-Let)

(a) Γ ; ∆ ` y.m(z) : T ′ ; ∆′′

(b) Γ, x : T ′ ; ∆′′ ` t : T ; ∆′

2. By 1.a), (T-Invoke)

(a) Γ(zi) = ρi . Ci
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(b) ρi /∈ ∆′′

3. By the assumptions and (WF-Config), separation(V,H,R).

4. By 3. and the definition of separation

(a) V (y′) = β′ . _

(b) β′ = βi ∨ β′ /∈ R
(c) V (zi) = βi . _

5. By the assumptions, 1.a), Theorem 1, and Theorem 2

(a) H,V,R, y.m(z) −→∗ H ′, V ′, R′, e′

(b) Γ′ ; ∆′′ ` e′ : T ′ ; ∆′′

(c) Γ′ ; ∆′′ ; Σ′ ` H ′ ; V ′ ; R′

(d) Γ′ ⊇ Γ

(e) Σ′ ⊇ Σ

(f) V ′ ⊇ V

6. By 2.a,b), 4.c), 5.c,d,f), βi /∈ R′.

7. By 4.b), 6., β′ /∈ R′.

8. By Theorem 2 and the reduction rules, y′ will not be accessed after the
method call returns, since β′ /∈ R′. Therefore, zi is separately-unique in
H,V .

2
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Lemma 8 If Γ, x : T ; ∆ ` t : T ′ ; ∆′ and S <: T , then Γ, x : S ; ∆ ` t :
T ′ ; ∆′.

Proof: By induction on the typing derivation.

• Case (T-Var). Then t = y.

1. By the assumptions

(a) Γ(y) = ρ . C

(b) T ′ = ρ . C

(c) ρ ∈ ∆

(d) ∆′ = ∆

2. Consider the following cases:

(a) Case y = x. Then T = ρ . C, S = ρ . D for some D <: C, and
Γ, x : S ; ∆ ` y : ρ . D ; ∆′. By (T-Sub), Γ, x : S ; ∆ ` y :
ρ . C ; ∆′.

(b) Case y 6= x. Then by 1.a), (Γ, x : S)(y) = ρ . C, and by 1.c),
Γ, x : S ; ∆ ` y : ρ . C ; ∆′.

• Cases (T-Select), (T-Assign), (T-New), (T-Invoke), (T-Capture), (T-Swap),
(T-Let), and (T-Sub) follow directly from the IH.

2

A.5 Proof of Theorem 3
Theorem 3 (Isolation) If Σ ` H ; A and H ; A −→ H ′ ; A′, then there is a
Σ′ ⊇ Σ such that Σ′ ` H ′ ; A′.

Proof: By induction on the typing derivation with case analysis of the last rule
used in the derivation.

• Case (R-Step).

1. By (WF-Soup)

(a) Σ ` H ; A′

(b) ∃Γ,∆. Γ ; ∆ ; Σ ` H ; A

(c) ∀A′′ ∈ A′. isolated(H,A,A′′)

2. By (R-Step)
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(a) A = (〈V,R, t〉,M)

(b) H,V,R, t −→ H ′, V ′, R′, t′

(c) A′ = (〈V ′, R′, t′〉,M)

3. By 1.b) and (WF-Actor)

(a) Γ ; ∆ ` t : T ; ∆′

(b) Γ ; ∆ ; Σ ` H ; V ; R

(c) sepEnvMbox(H,V,R,M)

(d) sepMbox(H,M)

(e) uniqF ldsMbox(H,M)

4. By 2.b), 3.a, b), and Theorem 1, there are Γ′,∆′′,Σ′ such that

(a) Γ′ ⊇ Γ

(b) Σ′ ⊇ Σ

(c) Γ′ ; ∆′′ ` t′ : T ; ∆′

(d) Γ′ ; ∆′′ ; Σ′ ` H ′ ; V ′ ; R′

5. We prove Σ′ ` H ′ ; A′ by induction on A′. Let A′ = {B} ∪ B. If
B 6= ∅ we can assume Σ′ ` H ′ ; B.

6. Let B = (SB,MB) where SB = 〈VB, RB, tB〉. By 1.c)

(a) isolated(H, 〈V,R, t〉, SB)

(b) isolated(H, 〈V,R, t〉,MB)

(c) isolated(H,SB,M)

(d) isolated(H,M,MB)

7. By 1.a), 5., and (WF-Soup)

(a) ∀B′ ∈ B. isolated(H,B,B′)

(b) ΓB ; ∆B ; Σ ` H ; B for some ΓB,∆B

8. By 7.b) and (WF-Actor)

(a) ΓB ; ∆B ` tB : TB ; ∆′B
(b) ΓB ; ∆B ; Σ ` H ; VB ; RB

(c) sepEnvMbox(H,VB, RB,MB)

(d) sepMbox(H,MB)

(e) uniqF ldsMbox(H,MB)

9. By 8.b) and (WF-Config)

(a) ΓB ; ∆B ; Σ `ϕ VB ; RB where ϕ injective
(b) separation− imm(VB, H,RB)
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(c) uniqF lds− imm(VB, H,RB)

(d) deep− imm(H)

10. Let (x 7→ β . r) ∈ V ′ such that β ∈ R′ and VB(z) = δ . q such that
δ ∈ RB and m ∈MB,m

′ ∈M .

(a) Case r ∈ dom(H). Let r′ ∈ dom(H) such that sep−imm(H, r, r′)∧
¬sep− imm(H ′, r, r′).

i. By (R-Assign) and (R-Swap), there are y, y′ ∈ dom(V ) such
that

A. V (y) = β . p ∧ β ∈ R ∧ reach(H, r, p)

B. V (y′) = β′ . p′ ∧ β′ ∈ R ∧ ¬sep− imm(H, p′, r′)

ii. By i.A,B), 6.a), and def. isolated
A. sep− imm(H, r, q)

B. sep− imm(H, p′, q), and therefore
C. sep− imm(H ′, r, q), and therefore
D. isolated(H ′, 〈V ′, R′, t′〉, 〈VB, RB, tB〉

iii. By i.A,B), 6.b), and def. isolated
A. sep− imm(H, r,m)

B. sep− imm(H, p′,m), and therefore
C. sep− imm(H ′, r,m), and therefore
D. isolated(H ′, 〈V ′, R′, t′〉,MB)

iv. Analogously, we have by i.A,B) and 6.c),
isolated(H ′, SB,M)

v. Analogously, we have by i.A,B) and 6.d),
isolated(H ′,M,MB)

(b) Case r /∈ dom(H). This case is proved analogously to case (a)
using (R-New).

11. Let q̂, s ∈ dom(H) such that reach(H, q, q̂) ∧ H ′(s) 6= H(s). By
(R-Assign) and (R-Swap), there is y ∈ dom(V ) such that V (y) =
β . s ∧ β ∈ R.

12. By 6.a) and def. isolated, sep− imm(H, q, s), and therefore

(a) H ′(q̂) = H(q̂)

(b) reach(H ′, q, q̂)

(c) ∀q′ ∈ dom(H ′). reach(H ′, q, q′)⇒ q′ ∈ dom(H)∧reach(H, q, q′)

13. By 9.b,c,d), 12.a,b,c), def. separation−imm, def. uniqF lds−imm,
def. sepEnvMbox, and def. deep− imm
(a) separation− imm(VB, H

′, RB)
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(b) uniqF lds− imm(VB, H
′, RB)

(c) sepEnvMbox(H ′, VB, RB,MB)

(d) deep− imm(H ′)

14. By 6.b), 8.d), 11., ∀r, r′ ∈MB.

(a) sep− imm(H, r, s)

(b) sep− imm(H, r′, s), and therefore
(c) sep− imm(H ′, r, r′)

15. By 8.e) and 9.c), ∀r ∈MB. H
′(q) = C(p)⇒

(∀i ∈ uniqInd(C). reachable(H ′, pi, r
′)⇒ (domedge(H ′, q, i, r, r′)∨

immutable(r′, H ′)))

16. By 4.b), 9.a), and (WF-Env), ΓB ; ∆B ; Σ′ `ϕ VB ; RB where ϕ
injective

17. By 4.d) and (WF-Config), Σ′ ` H ′.

18. By 13.a,b,d), 16., 17., and (WF-Config), ΓB ; ∆B ; Σ′ ` H ′ ; VB ; RB.

19. By 8.a), 13.c), 14.c), 15., 18., and (WF-Actor), ΓB ; ∆B ; Σ′ `
H ′ ; B.

20. Let B′ = (〈VB′ , RB′ , tB′〉,MB′). Let (y 7→ δ . p) ∈ VB, (y
′ 7→ δ′ .

p′) ∈ VB′ such that δ ∈ RB ∧ δ′ ∈ RB′ . By isolated(H,B,B′),
sep− imm(H, p, p′).

21. Let r, r′ ∈ dom(H) roots of V such that sep−imm(H, r, r′)∧¬sep−
imm(H ′, r, r′).

(a) By (R-Assign) and (R-Swap), there are z, z′ ∈ dom(V ) such that
i. V (z) = β . s ∧ β ∈ R ∧ reach(H, r, s)

ii. V (z′) = β′ . s′ ∧ β′ ∈ R ∧ ¬sep− imm(H, s′, r′)

(b) By a.i,ii), def. isolated, and def. separation − imm, there are
w,w′ ∈ dom(V ) such that V (w) = β . r ∧ V (w′) = β′ . r′.

(c) By a.i,ii), 6.a), and def. isolated
i. sep− imm(H, r, p)

ii. sep− imm(H, s′, p)

iii. sep− imm(H, r′, p), and therefore
iv. sep−imm(H ′, r, p)∧sep−imm(H ′, r′, p)∧sep−imm(H ′, s′, p)

(d) Analogously, we have sep− imm(H, q, p′) for q ∈ {r, r′, s′}.
(e) Therefore, sep− imm(H ′, p, p′).

22. By 20., 21., and def. isolated, isolated(H ′, 〈VB, RB, tB〉, 〈VB′ , RB′ , tB′〉).
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23. Analogously to 22., we have

(a) isolated(H ′, 〈VB′ , RB′ , tB′〉,MB)

(b) isolated(H ′, 〈VB, RB, tB〉,MB′)

(c) isolated(H ′,MB,MB′)

24. By 22., 23.a,b,c), and def. isolated, isolated(H ′, B,B′).

25. By 5., 19., 24., and (WF-Soup), Σ′ ` H ′ ; A′.
26. Let (x 7→ β . r) ∈ V ′ such that β ∈ R′ and m,m′ ∈M .

(a) Case r ∈ dom(H). Let r′ ∈ dom(H) such that sep−imm(H, r, r′)∧
¬sep− imm(H ′, r, r′).

i. By (R-Assign) and (R-Swap), there are y, y′ ∈ dom(V ) such
that

A. V (y) = β . p ∧ β ∈ R ∧ reach(H, r, p)

B. V (y′) = β′ . p′ ∧ β′ ∈ R ∧ ¬sep− imm(H, p′, r′)

ii. By i.A,B) and 3.c)
A. sep− imm(H, p,m)

B. sep− imm(H, p′,m)

C. sep− imm(H, p,m′)

D. sep− imm(H, p′,m′), and therefore
E. sep− imm(H ′, r,m)

F. sep− imm(H ′, r,m′)

G. sep− imm(H ′,m,m′)

iii. By ii.A,B) and 3.e), H ′(q) = C(p)⇒ (∀i ∈ uniqInd(C).
reach(H ′, pi,m

′′)⇒
(domedge(H ′, q, i,m,m′′) ∨ immutable(m′′, H ′))).

(b) Case r /∈ dom(H).
i. By (R-New)

A. t = let x = new C(y) in t′

B. V (y) = β . r

C. H ′ = (H, r 7→ C(r))

D. β fresh
E. R = R′′ ⊕ β
F. R′ = R′′ ⊕ β

ii. By i.B,E), 3.c), ∀ri ∈ r.
A. sep− imm(H, ri,m)

B. sep− imm(H, ri,m
′)
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iii. By i.C), ii.
A. sep− imm(H ′, r,m)

B. sep− imm(H ′, r,m′)

C. sep− imm(H ′,m,m′)

iv. By iii.A) and 3.e), H ′(q) = C(p)⇒ (∀i ∈ uniqInd(C).
reach(H ′, pi,m

′′)⇒
(domedge(H ′, q, i,m,m′′) ∨ immutable(m′′, H ′))).

27. By 4.c,d), 26., and (WF-Actor), Γ′ ; ∆′′ ; Σ′ ` H ′ ; A′.

28. By 10., 25., 27., and (WF-Soup), Σ′ ` H ′ ; {A′} ∪ A′.

• Case (R-Send). A = {A} ∪ A′′

1. By (WF-Soup)

(a) Σ ` H ; A′′

(b) ∃Γ,∆. Γ ; ∆ ; Σ ` H ; A

(c) ∀A′′ ∈ A′′. isolated(H,A,A′′)

2. Let A′′ = {B} ∪ A′′′ where B = (〈VB, RB, tB〉,MB)r. By (R-Send)

(a) A = (〈V,R, y ! z〉,MA)

(b) V (y) = β . r

(c) V (z) = β′ . r′

(d) R = R′ ⊕ β′

(e) A′ = (〈V,R′′, y〉,MA)

(f) B′ = (_, {r′} ∪MB)

(g) H(r′) = C(_)

(h) R′′ = R′ ∪ {β′ | C ∈ I}
3. By 1.b), 2.a), and (WF-Actor)

(a) Γ ; ∆ ` y ! z : T ; ∆′

(b) Γ ; ∆ ; Σ ` H ; V ; R

(c) sepEnvMbox(H,V,R,MA)

(d) sepMbox(H,MA)

(e) uniqF ldsMbox(H,MA)

4. By 3.a) and (T-Send)

(a) Γ ; ∆ ` y : ρ . Actor ; ∆

(b) Γ ; ∆ ` z : ρ′ . C ; ∆

(c) ∆ = ∆′ ⊕ {ρ′ | C /∈ I}



A.5. PROOF OF THEOREM 3 135

5. By 1.a) and (WF-Soup)

(a) Σ ` H ; A′′′

(b) ∃ ΓB,∆B. ΓB ; ∆B ; Σ ` H ; B

(c) ∀D ∈ A′′′. isolated(H,B,D)

6. By 5.b) and (WF-Actor)

(a) ΓB ; ∆B ` tB : TB ; ∆′B
(b) ΓB ; ∆B ; Σ ` H ; VB ; RB

(c) sepEnvMbox(H,VB, RB,MB)

(d) sepMbox(H,MB)

(e) uniqF ldsMbox(H,MB)

7. By 1.c) and def. isolated

(a) isolated(H, 〈V,R, _〉, 〈VB, RB, _〉)
(b) isolated(H, 〈V,R, _〉,MB)

(c) isolated(H, 〈VB, RB, _〉,MA)

(d) isolated(H,MA,MB)

8. By 2.c,d) and 7.a), ∀(x 7→ δ.p) ∈ VB. δ ∈ RB ⇒ sep−imm(H, p, r′).

9. By 2.c,d) and 7.b), ∀p ∈MB. sep− imm(H, p, r′).

10. Let D ∈ A′′′ such that D = (〈VD, RD, tD〉,MD). By 5.c) and def.
isolated

(a) isolated(H, 〈VB, RB, tB〉, 〈VD, RD, tD〉)
(b) isolated(H, 〈VB, RB, tB〉,MD)

(c) isolated(H, 〈VD, RD, tD〉,MB)

(d) isolated(H,MB,MD)

11. By 1.c) and def. isolated, isolated(H, 〈V,R, _〉, 〈VD, RD, tD〉).

12. By 10.c) and 11., isolated(H, 〈VD, RD, tD〉, {r′} ∪MB).

13. By 1.c) and def. isolated

(a) isolated(H, 〈V,R, _〉,MD), and by 10.d)
(b) isolated(H, {r′} ∪MB,MD)

14. Has been removed.

15. By 2.d,h), 7.a), and def. isolated, isolated(H, 〈V,R′′, y〉, 〈VB, RB, _〉).

16. By 2.d,h), 7.b), and def. isolated, isolated(H, 〈V,R′′, y〉, {r′}∪MB).

17. By 2.c) and 3.c), ∀p ∈MA. sep− imm(H, p, r′).

18. By 7.d) and 17., isolated(H,MA, {r′} ∪MB).
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19. By 3.b) and (WF-Config)

(a) Σ ` H

(b) Γ ; ∆ ; Σ `ϕ V ; R where ϕ injective
(c) separation− imm(V,H,R)

(d) uniqF lds− imm(V,H,R)

(e) deep− imm(H)

20. By 2.c,d), 19.d), and def. uniqF lds − imm, H(q) = C(p) ⇒ (∀i ∈
uniqInd(C). reach(H, pi, r

′′)⇒ domedge(H, q, i, r′, r′′)∨immutable(r′′, H)).

21. By 2.c,d), 4.b,c), 19.b), and (WF-Env), ϕ(ρ′) = β′.

22. By 19.b), ϕ|∆′ injective.

23. We show Γ ; ∆′ ; Σ `ϕ|∆′ V ; R′′.

(a) Case C ∈ I . Then R′′ = R∧∆ = ∆′. By 19.b), Γ ; ∆′ ; Σ `ϕ|∆′

V ; R′′.
(b) Case C /∈ I . Then R′′ = R′ ∧∆ = ∆′⊕ ρ′. By 2.d), 21., 22., and

(WF-Env), Γ ; ∆′ ; Σ `ϕ|∆′ V ; R′′.

24. By 4.a,c) and (T-Var), Γ ; ∆′ ` y : ρ . Actor ; ∆′.

25. By 2.d,h), 19.c,d)

(a) separation− imm(V,H,R′′)

(b) uniqF lds− imm(V,H,R′′)

26. By 19.a,e), 22., 23., 25.a,b), and (WF-Config), Γ ; ∆′ ; Σ ` H ; V ; R′′.

27. By 2.d), 3.c,d,e), 24., 26., and (WF-Actor),
Γ ; ∆′ ; Σ ` H ; (〈V,R′′, y〉,MA).

28. By 6.e) and 20., ∀p ∈ {r′}∪MB. H(q) = C(p)⇒ (∀i ∈ uniqInd(C).

reach(H, pi, p
′) ⇒ domedge(H, q, i, p, p′) ∨ immutable(p′, H)) and

therefore, uniqF ldsMbox(H, {r′} ∪MB).

29. By 7.c), 15., 16., 18., and def. isolated, isolated(H,A′, B′) whereB′ =
(〈VB, RB, tB〉, {r′} ∪MB).

30. By 1.c) and 29., ∀C ∈ Â. isolated(H,A′, C) where Â = {B′} ∪A′′′.
31. By 10.a,b), 12., 13.b), and def. isolated,
∀D ∈ A′′′. isolated(H,B′, D).

32. By 6.d) and 9., sepMbox(H, {r′} ∪MB).

33. By 6.c) and 8., sepEnvMbox(H, VB, RB, {r′} ∪MB).

34. By 6.a,b), 28., 32., 33., and (WF-Actor), ∃ ΓB,∆B. ΓB ; ∆B ; Σ `
H ; B′.
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35. By 1.a) and (WF-Soup), Σ ` H ; A′′′.
36. By 31., 34., 35., and (WF-Soup), Σ ` H ; Â where Â = {B′}∪A′′′.
37. By 27., 30., 36., and (WF-Soup), Σ ` H ; {A′, B′} ∪ A′′′.

• Case (R-Receive). A = {A} ∪ A′′

1. By (WF-Soup)

(a) Σ ` H ; A′′

(b) ∃ Γ,∆. Γ ; ∆ ; Σ ` H ; A

(c) ∀A′′ ∈ A′′. isolated(H,A,A′′)

2. By (R-Receive)

(a) A = (〈V,R, let x = receive[C] in t′〉, {r} ∪M)

(b) H(r) = C(_)

(c) β fresh
(d) V ′ = (V, x 7→ β . r)

(e) A′ = (〈V ′, R ∪ {β}, t′〉,M)

3. By 1.b), 2.a), (WF-Actor)

(a) Γ ; ∆ ` let x = receive[C] in t′ : T ; ∆′

(b) Γ ; ∆ ; Σ ` H ; V ; R

(c) sepEnvMbox(H,V,R, {r} ∪M)

(d) sepMbox(H, {r} ∪M)

(e) uniqF ldsMbox(H, {r} ∪M)

4. By 3.a), (T-Let)

(a) Γ ; ∆ ` receive[C] : T ′ ; ∆′′

(b) Γ, x : T ′ ; ∆′′ ` t′ : T ; ∆′

5. By 4.a), (T-Recv)

(a) T ′ = ρ . C

(b) ρ fresh
(c) ∆′′ = ∆⊕ ρ

6. By 3.b), (WF-Config)

(a) Σ ` H

(b) Γ ; ∆ ; Σ `ϕ V ; R where ϕ injective
(c) separation− imm(V,H,R)

(d) uniqF lds− imm(V,H,R)
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(e) deep− imm(H)

7. By 2.c) and 3.c), ∀y ∈ dom(V ), δ ∈ Guards, p ∈ dom(H). V (y) =
δ . p ∧ δ ∈ R⇒ δ 6= β.

8. By 5.b), 6.b), and 7.

(a) ϕ′ = (ϕ, ρ 7→ β) injective, and therefore
(b) Γ ; ∆⊕ ρ ; Σ `ϕ′ V ; R ∪ {β}

9. By 2.b), 6.a), and (WF-Heap), Σ(r) = C.

10. By 9., C <: C, and (Heap-Type), Σ ` r : C.

11. By 3.c), ∀(y 7→ δ . p) ∈ V. δ ∈ R⇒ sep− imm(H, p, r).

12. By 3.d), ∀p ∈M. sep− imm(H, p, r).

13. Has been removed.

14. Let B ∈ A′′ (A = {A} ∪ A′′) such that B = (〈VB, RB, tB〉,MB). By
1.c) and def. isolated

(a) isolated(H, 〈V,R, _〉, 〈VB, RB, _〉)
(b) isolated(H, 〈V,R, _〉,MB)

(c) isolated(H, 〈VB, RB, _〉, {r} ∪M)

(d) isolated(H, {r} ∪M,MB)

15. By 14.a,c), and def. isolated,
isolated(H, 〈V ′, R ∪ {β}, t′〉, 〈VB, RB, tB〉).

16. By 14.b,d), and def. isolated, isolated(H, 〈V ′, R ∪ {β}, t′〉,MB).

17. By 14.c,d), 15., 16., and def. isolated,
∀A′′ ∈ A′′. isolated(H,A′, A′′) where A′ = (〈V ′, R ∪ {β}, t′〉,M).

18. By 3.c), 7., and 12., ∀(x 7→ δ . p) ∈ V ′, p′ ∈ M. δ ∈ R ∪ {β} ⇒
sep−imm(H, p, p′), and therefore sepEnvMbox(H,V ′, R∪{β},M).

19. By 5.c), 8.a,b), 10., and (WF-Env), Γ′ ; ∆′′ ; Σ `ϕ′ V ′ ; R ∪ {β}
where ϕ′ injective and Γ′ = (Γ, x : ρ . C).

20. By 6.c), 7., 11., and def. separation− imm
(a) ∀(y 7→ δ . p) ∈ V. δ ∈ R⇒ sep− imm(H, p, r), and therefore
(b) ∀(y 7→ δ . p), (y′ 7→ δ′ . p′) ∈ (V, x 7→ β . r). (δ 6= δ′ ∧
{δ, δ′} ⊆ R∪{β})⇒ sep− imm(H, p, p′), and therefore by def.
separation− imm

(c) separation− imm(V ′, H,R ∪ {β})
21. By 3.e), 6.d), and 7.
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(a) ∀(y 7→ δ . p) ∈ (V, x 7→ β . r). H(q) = C(p) ⇒ (∀i ∈
uniqInd(C). δ ∈ R ∪ {β} ∧ reach(H, pi, p

′)⇒
(domedge(H, q, i, p, p′) ∨ immutable(H, p′))), and therefore by
def. uniqF lds− imm

(b) uniqF lds− imm(V ′, H,R ∪ {β})
22. By 3.b), 6.e), 19., 20.c), 21.b), and (WF-Config), Γ′ ; ∆′′ ; Σ `

H ; V ′ ; R ∪ {β}.
23. By 3.e), ∀p ∈M. H(q) = C(p)⇒ (∀i ∈ uniqInd(C).

reach(H, pi, p
′)⇒ (domedge(H, q, i, p, p′)∨immutable(H, p′))) and

therefore, uniqF ldsMbox(H,M).

24. By 3.d), 4.b), 18., 22., 23., and (WF-Actor), Γ′ ; ∆′′ ; Σ ` H ; A′.

25. By 1.a), 17., 24., and (WF-Soup), Σ ` H ; {A′} ∪ A′′.

• Case (R-Actor). A = {A} ∪ A′′

1. By (WF-Soup)

(a) Σ ` H ; A′′

(b) ∃ Γ,∆. Γ ; ∆ ; Σ ` H ; A

(c) ∀B ∈ A′′. isolated(H,A,B)

2. By (R-Actor)

(a) A = (〈V,R, let x = actor C in t′〉,M)

(b) r /∈ dom(H)

(c) H ′ = (H, r 7→ C(ε))

(d) V ′ = (V, x 7→ β . r)

(e) mbody(act, C) = (this, e)

(f) A′ = (〈V ′, R ∪ {β}, t′〉,M)

(g) B = (〈this 7→ β′ . r, {β′}, let y = e in y〉, ∅)
(h) β, β′ fresh
(i) C ∈ I

3. By 1.b) and (WF-Actor)

(a) Γ ; ∆ ` let x = actor C in t′ : T ; ∆′

(b) Γ ; ∆ ; Σ ` H ; V ; R

(c) sepEnvMbox(H, V,R,M)

(d) sepMbox(H,M)

(e) uniqF ldsMbox(H,M)
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4. By 3.a) and (T-Let)

(a) Γ ; ∆ ` actor C : T ′ ; ∆′′

(b) Γ, x : T ′ ; ∆′′ ` t′ : T ; ∆′

5. By 4.a) and (T-Actor)

(a) C <: Actor

(b) ρ fresh
(c) T ′ = ρ . Actor

(d) ∆′′ = ∆⊕ ρ
6. Has been removed.

7. By 3.b) and (WF-Config)

(a) Σ ` H

(b) Γ ; ∆ ; Σ `ϕ V ; R where ϕ injective
(c) separation− imm(V,H,R)

(d) uniqF lds− imm(V,H,R)

(e) deep− imm(H)

8. Define Σ′ := (Σ, r 7→ C).

9. By 2.c), 7.a), 8., and (WF-Heap), Σ′ ` H ′.

10. By 5.a), 8., and (Heap-Type), Σ′ ` r : Actor.

11. By 2.b), 7.b), 8., and (WF-Env), Γ ; ∆ ; Σ′ `ϕ V ; R.

12. By 2.d), 5.c), 7.b), 10., 11., and (WF-Env), Γ, x : T ′ ; ∆′′ ; Σ′ `ϕ′

V ′ ; R ∪ {β} where ϕ′ = (ϕ, ρ 7→ β) injective.

13. By 2.b,c,d), 7.c,d,e), def. separation− imm, def. uniqF lds− imm,
and def. deep− imm
(a) separation− imm(H ′, V ′, R ∪ {β})
(b) uniqF lds− imm(H ′, V ′, R ∪ {β})
(c) deep− imm(H ′)

14. By 9., 12., 13.a,b,c), and (WF-Config), Γ, x : T ′ ; ∆′′ ; Σ′ ` H ′ ; V ′ ; R∪
{β}.

15. By 1.c), 2.b,c,d,f), and def. isolated, ∀B′ ∈ A′′. isolated(H ′, A′, B′).

16. By 1.a), 2.b,c), 8., and (WF-Soup), Σ′ ` H ′ ; A′′.
17. By 2.b,c,d), 3.c), and def. sepEnvMbox,

sepEnvMbox(H ′, V ′, R ∪ {β},M).

18. By 2.b,c), 3.d), and def. sepMbox, sepMbox(H ′,M).
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19. By 2.b,c), 3.e), and def. uniqF ldsMbox, uniqF ldsMbox(H ′,M).
20. By 4.b), 5.d), 14., 17., 18., 19., and (WF-Actor), Γ, x : T ′ ; ∆′′ ; Σ′ `

H ′ ; A′.
21. Let D be the most direct super class of C that defines act. Then, by

(WF-Class)
(a) D ` def act[δ̂](this : δ . D) : (δ . Actor, {δ}) = e, and by

(WF-Method)
(b) (this 7→ δ . D) ; {δ} ` e : δ . Actor ; {δ}

22. By 21.b), Lemma 4, and Lemma 8, (this 7→ ρ′ . C) ; {ρ′} ` e :
ρ′ . Actor ; {ρ′}.

23. By (T-Var), (this 7→ ρ′ . C, y 7→ ρ′ . Actor) ; {ρ′} ` y : ρ′ .
Actor ; {ρ′}.

24. By 5.a), 22., 23., and (T-Let), (this 7→ ρ′ . C) ; {ρ′} ` let y =
e in y : ρ′ . Actor ; {ρ′}.

25. By 8., C <: C, and (Heap-Type), Σ′ ` r : C.
26. By 25. and (WF-Env), (this 7→ ρ′ . C) ; {ρ′} ; Σ′ `ϕB

(this 7→
β′ . r) ; {β′} where ϕB = (ρ′ 7→ β′) injective.

27. By 2.b,c), 7.c,d,e), def. separation − imm, def. uniqF lds − imm,
and def. deep− imm
(a) separation− imm(this 7→ β′ . r,H ′, {β′})
(b) uniqF lds− imm(this 7→ β′ . r,H ′, {β′})
(c) deep− imm(H ′)

28. By 9., 26., 27.a,b,c), and (WF-Config), (this 7→ ρ′ .C) ; {ρ′} ; Σ′ `
H ′ ; (this 7→ β′ . r) ; {β′}.

29. By def. sepEnvMbox, def. sepMbox, and def. uniqF ldsMbox

(a) sepEnvMbox(H ′, (this 7→ β′ . r), {β′}, ∅)
(b) sepMbox(H ′, ∅)
(c) uniqF ldsMbox(H ′, ∅)

30. By 24., 28., 29.a,b,c), and (WF-Actor), (this 7→ ρ′ .C) ; {ρ′} ; Σ′ `
H ′ ; B.

31. By 2.b,c) and def. isolated, ∀C ∈ A′′. isolated(H ′, B, C).
32. By 16., 30., 31., and (WF-Soup), Σ′ ` H ′ ; {B} ∪ A′′.
33. By 15. and isolated(H ′, A′, B),
∀B′ ∈ {B} ∪ A′′. isolated(H ′, A′, B′).

34. By 20., 32., 33., and (WF-Soup), Σ′ ` H ′ ; {A′, B} ∪ A′′.

2
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