Validation of Monte Carlo predictions of LWR-PROTEUS safety parameters using an improved whole-reactor model

The recent experimental programme conducted in the PROTEUS research reactor at the Paul Scherrer Institute (PSI) has concerned detailed investigations of advanced light water reactor (LWR) fuels. More than fifteen different configurations of the multi-zone critical facility have been studied, each of them requiring accurate estimation of operational safety parameters, in particular the critical driver loadings, shutdown rod worths and the effective delayed neutron fraction eff. The current paper presents a full-scale 3D Monte Carlo model for the facility, set up using the MCNPX code, which has been employed for calculation of the operational characteristics for seven different LWR-PROTEUS configurations. Thereby, a variety of nuclear data libraries (viz. ENDF/B6v2, ENDF/B6v8, JEF2.2, JEFF3.0, JEFF3.1, JENDL3.2, and JENDL3.3) have been used, and predictions of keff and shutdown rod worths compared with experimental values. Even though certain library-specific trends have been observed, the keff predictions are generally very satisfactory, viz. with discrepancies of 0.5% between calculation (C) and experiment (E). The results also confirm the consistent determination of reactivity variations, the C/E values for the shutdown (safety) rod worths being always within 5% of unity. In addition, the MCNP modelling of the multi-zone reactor has yielded interesting results for the delayed neutron fraction (eff) in the different configurations, a breakdown being made possible in each case in terms of delayed neutron group, fissioning nuclide, and reactor region. [All rights reserved Elsevier].

Published in:
Annals of Nuclear Energy, 36, 10, 1536-43
Elsevier Science Ltd.
Lab. for Reactor Phys. Syst. Behaviour, Paul Scherrer Inst., Villigen, Switzerland

 Record created 2010-09-17, last modified 2018-03-17

Rate this document:

Rate this document:
(Not yet reviewed)