Abstract

We present a combination of self-interference microscopy with lateral super-resolution microscopy and introduce a novel approach for localizing a single nano-emitter to within a few nanometers in all three dimensions over a large axial range. We demonstrate nanometer displacements of quantum dots placed on top of polymer bilayers that undergo swelling when changing from an air to a water environment, achieving standard deviations below 10 nm for axial and lateral localization.

Details

Actions