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Abstract

Being able to recover the shape of 3D deformable surfaces from a single video
stream would make it possible to field reconstruction systems that run on widely avail-
able hardware without requiring specialized devices. However, because many different
3D shapes can have virtually the same projection, such monocular shape recovery is
inherently ambiguous.

In this survey, we will review the two main classes of techniques that have proved
most effective so far: The template-based methods that rely on establishing correspon-
dences with a reference image in which the shape is already known, and non-rigid
structure-from-motion techniques that exploit points tracked across the sequences to
reconstruct a completely unknown shape. In both cases, we will formalize the approach,
discuss its inherent ambiguities, and present the practical solutions that have been pro-
posed to resolve them. To conclude, we will suggest directions for future research.
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C H A P T E R 1

Introduction
Deformable surface 3D reconstruction from monocular images is an active area of re-
search in the Computer Vision community. This encompasses recovering both the shape
of thin objects that can be treated as surfaces without perceptible thickness and the
visible envelope of fully 3D objects. Whereas this may seem easy for a human being, it
remains a challenging and ambiguous problem for computer-based techniques. This is
especially true when the sensor data is noisy, which is typically the case when dealing
with real images.

Apart from being a fascinating problem, non-rigid 3D shape recovery has appli-
cations in many different domains:

• The entertainment industry could benefit greatly from improved techniques for
video-based shape recovery. In animation movies, video games, or special effects,
many things are still done manually, image after image. As illustrated by Fig. 1.1,
there are already effective techniques for handling 2D surface deformations in an
Augmented Reality context. However, they must be extended to full 3D deforma-
tions to better account for phenomena such as self-occlusion and self-collisions that
become prevalent as the deformations become larger. This could be used to draw
virtual advertisement logos on athletes’ or fashion models’ clothes, thus avoiding
the need to physically print them and making it easy to change them as necessity
dictates. Similarly, a lot of time could be saved if the deformations of the clothes
of animated characters, such as those of Fig. 1.2, could simply be obtained by
filming a real person performing some motion, reconstructing his or her clothes in
3D, and re-applying the resulting deformations to the animated character.

• Many sports could benefit from a system that reconstructs non-rigid 3D shapes
from video. For example, as shown in Fig. 1.3 (a,b), sailors want to analyze the
effect of their maneuvers on the shape of their sails, or, sometimes even more inter-
estingly, study the sails of their opponents. In this context, video presents a clear
advantage over other sensors that should be placed on the sail itself, thus changing
its behavior. Similarly, analyzing the deformations of any sports structure, such
as the skis or the plane wings of Fig. 1.3 (c,d), in realistic situations could help
improving their design.

• More speculatively, in the medical field, the current trend is to make surgery ever
less invasive. This implies smaller and smaller cuts in the patient’s skin, which do
not give the surgeons a direct view of their work. They only leave enough space
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(a) (b) (c)

Figure 1.1: Augmented Reality. (a) A deformed piece of paper. (b) The illustration has been

virtually removed. (c) It has been replaced by the properly deformed and reshaded logo of a

conference [Pilet et al., 2008].

Figure 1.2: The entertainment industry could use 3D reconstruction from video for different

applications. For example, animating the cloth of virtual characters could be guided by video,

thus limiting manual intervention [Bhat et al., 2003]. Courtesy of K. Bhat.

for small cameras to be introduced into the patient’s body. In such conditions, the
resulting images are of poor quality and make the surgeons’ work much harder. As
shown in Fig. 1.4, having a full 3D representation of the organ’s surface recovered
from the images, or an augmented view of the organs, would be of great use. In
particular, it could help the surgeons orient themselves more easily and improve
their perception of where their tools are with respect to the relevant surfaces.

In all these cases, using more than one camera greatly simplifies matters by al-
lowing the use of multi-view stereo techniques. Consequently, there has been increasing
interest in relying on stereo to recover the complex shapes of clothes [Starck and Hilton,
2007]. This constitutes a very hard application since the folds and wrinkles of clothing
produce many self-occlusions and make simple matching techniques fail. Various match-
ing techniques have been proposed, such as spherical matching [Starck and Hilton, 2005],
as well as different shape representations such as Laplacian surfaces [de Aguiar et al.,
2007]. The resulting motion capture techniques have been successfully applied with spe-
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(a) (b) (c) (d)

Figure 1.3: Many sports design tasks could benefit from 3D shape recovery. (a,b) Sailors are

interested in knowing the shape of their own sails and that of their opponents. (c,d) Recovering

the true deformations of skis during a race or of a wing in flight could help improve their design.

(a) (b)

Figure 1.4: Surface reconstruction applied to medical imaging. (a) Schematic representation

of non-invasive surgery. (b) Image acquired during endoscopic coronary artery bypass surgery

using the da Vinci robotic system. Courtesy of Mingxing Hu.

cific markers printed on the garments [White et al., 2007], and, more recently, without
any such markers [Bradley et al., 2008]. However, using multiple cameras also makes
the deployement of the corresponding system much harder since the cameras have to
be synchronized and calibrated. The multiple cameras can be replaced by a structured-
light projector that can be bundled together with a single camera [Microsoft, 2010].
This can produce very reliable depth-maps in real-time but has limited range and can-
not exploit ordinary video footage. Alternatively, photometric stereo [Woodham, 1980,
Hertzmann and Seitz, 2003, Hernandez et al., 2007] could be employed to reconstruct
deformable surfaces by using several images taken under different lighting conditions.
This technique is very reliable and yields outstanding results, but, as multiview-stereo,
it requires an elaborate setup and is not well adapted to capturing rapidly deforming
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(a) (b) (c) (d)

Figure 1.5: Examples of deformed surfaces. (a) Textured and developable surface undergoing

a simple deformation. Its 3D shape can be recovered using many existing approaches that rely

either on textural or edge information. (b) Here, the sharp creases would result in failure of

techniques that rely heavily on geometric smoothness. (c,d) With much less textured surfaces,

whose contours may be partially occluded, the shape of uniform parts must be inferred from that

of the textured ones. This requires deformation models that accurately represent the properties

of the surfaces, or the ability to use additional cues, such as shading.

shapes. From a practical standpoint, there is therefore a strong incentive for achieving
this kind of reconstruction from a single video stream.

Unfortunately, recovering the 3D shape of surfaces such as those shown in Fig. 1.5
from a single video-stream is an ill-constrained problem. The high number of parameters
and the noisy image information make it impractical to solve without prior knowledge of
the possible deformations that the surface can undergo. All successful approaches to this
problem exploit the fact that real surfaces do not deform randomly and cannot assume
completely irrational shapes. As a consequence, one may introduce some knowledge of
what is feasible and what is not to constrain the recovery and resolve the ambiguities.

In this survey, we will therefore introduce a number of state-of-the-art methods
that address these issues. More specifically, we will first review the techniques that
have been proposed over the years to model the deformations of non-rigid surfaces. We
will discuss their strengths and weaknesses for monocular 3D shape recovery purposes
and will introduce two more recent classes of techniques that have been designed to
overcome these weaknesses. The first includes template-based approaches that rely on
establishing correspondences with a reference image in which the shape is known a
priori. The second comprises structure-from-motion algorithms that are template-free
but require points to be tracked across video sequences. For both classes, we will first
formalize the problem and its inherent ambiguities. We will then describe the various
methods that have been introduced to overcome them. Finally, we will conclude with
some perspectives on potential avenues of research to extend the scope of all these
techniques and to take them from the laboratory into the real world.
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C H A P T E R 2

Early Approaches to Non-Rigid

Reconstruction
Modeling the behavior of non-rigid surfaces has been an active area of research for
the past twenty years. Many approaches have been proposed in the context of both
Computer Vision and Computer Graphics. These two fields are closely related since
Computer Vision aims at solving the inverse problem of Computer Graphics, that is,
recovering the shape of real objects as opposed to simulating the deformations of virtual
ones. It is therefore not surprising that similar representations often appear in both
domains.

Throughout the years, approaches to non-rigid surface reconstruction have relied
on many different techniques to represent and constrain surface deformations. These
techniques can be roughly classified into those that are physics-based, rely on statistical
learning methods, or parameterize the shape to implicitly regularize its deformations.

Some of them have proved very successful for their intended purposes but not
necessarily for generic monocular 3D surface reconstruction. In this chapter, we briefly
review these techniques. We discuss their strengths, which the more recent methods
described in the remainder of this survey exploit, and their weaknesses that these same
methods attempt to correct.

2.1 PHYSICS-BASED MODELS

In both the Computer Vision and Computer Graphics fields, most early approaches to
modeling deformations of non-rigid objects were inspired by Mechanical Engineering
concepts. The key idea was to model the behavior of an object by describing the true
physical laws that govern it. A seminal work in this field [Kass et al., 1988] advocated
using this approach to delineate 2D image shapes and was quickly extended to 3D
modeling [Terzopoulos et al., 1987, Terzopoulos et al., 1988]. In the proposed formalism,
a global energy, written as the sum of an internal one and an external one, is minimized.
The internal energy derives from physical surface properties and typically acts as a
regularizer that enforces global smoothness. It is often taken to be quadratic to convexify
the minimization problem and make its resolution simpler. The external energy encodes
the image information and allows image features to act as attraction forces that tend
to deform the surface to make it conform to these features.

The formulation introduced in [Kass et al., 1988] and many of the subsequent
methods [Fua, 1996] are directly inspired by Mechanical Engineering techniques, es-
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pecially the Finite Element Method (FEM) [Bathe, 1982, Zienkiewicz, 1989]. In the
remainder of this section, we briefly introduce FEM. We then discuss why it is too com-
plex to be used in its complete form in either Computer Graphics or Computer Vision
applications and introduce some of the simplified versions that have proved effective in
these fields.

2.1.1 The Finite Element Method
FEM [Bathe, 1982, Zienkiewicz, 1989] is the method of choice to accurately simulate
the deformations of structures such as beams, plates, shells, and 3D volumes under
various loads. The structure of interest is represented by a discrete set of elements,
such as segments, triangles, or tetrahedra, that are linked by their nodes. Following
the laws of mechanics, mass, damping, and stiffness matrices are built for each element
separately. These matrices typically depend on physical parameters such as Young’s
modulus, Poisson’s ratio, shear modulus, and thickness of the structure. They are then
assembled to write the equations of motion that govern the deformations of the whole
structure as

Mü + Du̇ + Ku = f , (2.1)

where u is the unknown vertex displacement, M, D, and K are the mass, damping,
and stiffness matrices, respectively, and f represents the external forces. This models
the full dynamical behavior, which can be simplified by ignoring the terms depending
on temporal derivatives when only attempting to compute static deformations.

When considering only small deformations of a materially linear object, that is
deformations that are only barely visible, the matrices of Eq. 2.1 can be assumed to be
independent of the deformation, and the system can be solved directly. However, almost
by definition, both Computer Vision and Computer Graphics are concerned by much
larger deformations that are clearly visible. This introduces geometrical nonlinearities
that can be compounded with the fact that the material may be subject to either
hyper-elasticity or plasticity phenomena. Consequently, the stiffness matrices become
functions of the displacements, and the whole problem becomes much more complex
because they have to be recomputed very often. This results not only in an additional
computational burden but often also in instabilities due to buckling or the appearance
of critical points that yield different solutions.

Many resolution methods have been proposed over the years to overcome these
difficulties. The best known ones are the following [Zienkiewicz, 1989]:

• The Total Lagrangian approach. The solution is computed from a reference
configuration that remains unchanged throughout the computation.
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• The Updated Lagrangian approach. It operates along the same lines as the
Total Lagrangian approach, except for the fact that the reference configuration is
replaced by the current solution every so often.

• The Corotational Approach. It involves decomposing large deformations into
rigid transformations of the elements and small deformations, which allows for
stable resolution.

The last two are the most commonly used today. They are successful in Mechanical
Engineering but require both tremendous computational power, which makes them ill-
suited for real-time Computer Graphics applications, and a precise knowledge of the
physical properties of the surfaces being modeled, which is only rarely available to
Computer Vision applications. Consequently, in both fields, a lot of effort has gone into
simplifying these approaches to the point where they become practical in their respective
contexts. Below, we distinguish between the methods used in Computer Graphics and
in Computer Vision.

2.1.2 Physics-Based Methods for Computer Graphics
A key driver behind the use of physics-based models in Computer Graphics has been the
need to model the deformations of clothes [House and Breen, 2000], preferably in real-
time. In the absence of good deformation models, artists must manually design the shape
of the virtual characters’ garments in each frame of a sequence. Physics-based models
both constrain the feasible deformations and make animation much easier. Several cloth
models have been proposed, ranging from early versions [Volino et al., 1995, Ng and
Grimsdale, 1996] that only achieved visually plausible results to much more physically-
accurate and realistic ones [Bridson et al., 2002, Bridson et al., 2003].

While physics-based approaches produce good results, they typically yield compu-
tationally expensive solutions. Therefore, there have been many attempts at improving
the speed and robustness of the solvers [Volino and Magnenat-Thalmann, 2001]. For ex-
ample, to overcome the perennial problem that very small time steps have to be taken
to avoid numerical instabilities, implicit time integration was introduced [Baraff and
Witkin, 1998]. Another example is the use of the Boundary Element Method [James
and Pai, 1999], an alternative to FEM where the original differential equations are
replaced by integral equations over the boundary of the object, to speedup the simula-
tions.

In addition to improving the resolution speed, more accurate nonlinear FEM was
also studied in Computer Graphics. This was done in particular for surgery simulation
purposes [Picinbono et al., 2000], and for general deformable objects modeling [Hirota
et al., 2000, Wu et al., 2001, Barbič and James, 2005]. The corotational approach proved
succesful in this context of large deformations [Müller et al., 2002, Hauth and Strasser,
2004], as well as other representations such as discrete shells [Grinspun et al., 2003],
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or invertible finite elements [Irving et al., 2004]. Accurate nonlinear representations
being very complex, simplifications have been proposed to yield physically plausible
deformations based on elastically coupled rigid cells [Botsch et al., 2007].

Finally, while advances in Mechanical Engineering have resulted in improved Com-
puter Graphics methods, the process sometimes also went the other way. Subdivision
surfaces [Catmull and Clark, 1978, Doo and Sabin, 1978], already well-known in the
Graphics community, were introduced to the Mechanical Engineering community in
the context of finite elements. They involve representing a surface with a coarse mesh,
which can then be refined following a subdivision scheme [Loop, 1987]. This reduced
the complexity of the finite element models, thus yielding more efficient representa-
tions [Cirak et al., 2000].

2.1.3 Physics-Based Methods for Computer Vision
As they became very popular in Computer Graphics for simulation and animation
purposes, physics-based models also gained acceptance in Computer Vision for non-
rigid motion analysis [Kambhamettu et al., 1994]. In both fields, their main purpose
was to restrict the potential deformations of an object to plausible ones only. However,
in Computer Graphics where the simulation results have to look realistic, physical
accuracy, or at least plausibility, is more important than in Computer Vision. There, the
main concern is quality of fit to image data and robustness to erroneous measurements.
The role of the model is that of a regularizer that turns the model fitting process into
one that is easier to perform.

The original Snakes [Kass et al., 1988] are a good example of this. The external
energy that serves as a regularizer is written as a quadratic function that approximates
the sum of the square of the curvatures along the surface, which itself is an approxima-
tion of the true elastic deformation energy. The fact that it is not a particularly accurate
approximation of the true energy is more than made up by the fact that it can be ex-
pressed in quadratic form, thereby allowing a very effective semi-implicit optimization
scheme. The same formulation was later extended to 2D shape recovery [Pilet et al.,
2008] and 3D surface modeling from stereo [Fua and Leclerc, 1995] using triangulated
meshes.

Many other variations of the physics-based models have been proposed since to
reconstruct surfaces from images. In the medical imaging domain, balloon forces [Co-
hen and Cohen, 1993] were introduced to make the surface expand from its initial
state so that it could be started from inside the object to be outlined. Deformable
superquadrics [Terzopoulos and Metaxas, 1991, Metaxas and Terzopoulos, 1993] were
proposed to reconstruct more complex shapes by modeling both global and local de-
formations. Finally, in [McInerney and Terzopoulos, 1993, McInerney and Terzopoulos,
1995], the FEM formulation was followed more closely, and a deformable surface was
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modeled as a thin-plate under tension. More recently, the use of the Boundary Element
Method has also been advocated to track deformable objects in 2D [Greminger and
Nelson, 2003] and in 3D [Greminger and Nelson, 2008]. Comparisons of these different
FEM formulations are available both specifically for medical imaging [McInerney and
Terzopoulos, 1996] and in a broader context [Montagnat et al., 2001].

There has been some interest in more accurate modeling of the true physics of
deformable objects via the nonlinear finite element method in Computer Vision. How-
ever, unlike in Computer Graphics where one can tune the forces and material parame-
ters until satisfactory deformations are produced, recovering surface shape by fitting a
model to the image data requires these parameters to be fixed during the optimization
process. Some approaches that rely on sophisticated models have nonetheless been pro-
posed for fitting a mesh to 3D range data [Huang et al., 1995, Jojic and Huang, 1997,
Tsap et al., 1998] and for video-based shape recovery [Tsap et al., 2000, Bhat et al.,
2003]. They involve an analysis-by-synthesis approach and a more-or-less exhaustive
search through the parameter space until those that yield the best fit are found. Re-
cently, a nonlinear FEM formulation [Ilić and Fua, 2007] has been proposed to recover
the deformations of beam structures in the image plane, where image features act as
forces, as in the original Snakes [Kass et al., 1988]. To the best of our knowledge no
similar nonlinear model has yet been used in a continuous optimization framework for
automatic 3D surface shape recovery from noisy image measurements.

In short, the nonlinear FEM models are more accurate but very complex and, in
the end, only adapted to very specific applications. One recurring problem is their very
high dimensionality, which makes fitting to noisy data problematic. Modal analysis has
emerged as one potential solution to this problem. Given a surface represented by an
Nv-vertex triangulated mesh, it reduces the number of degrees of freedom by coupling
the motion of the vertices into deformation modes obtained by solving the generalized
eigenproblem

Kφ = ω2Mφ , (2.2)

where K and M are the stiffness and mass matrices of Eq. 2.1. The individual φi and
ωi are the modes and their corresponding frequencies. The displacement of the mesh
vertices can then be written as

u =
3Nv∑

i=1

wiφi , (2.3)

where wi is the amplitude assigned to mode i. The values wi therefore parameterize
the deformation. In theory, there are 3Nv modes and thus parameters. In practice, the
lower-frequency modes have far more influence on the global surface shape than the
higher-frequency ones. It is therefore a valid approximation to discard the latter and to
retain only a comparatively small number of the former. Fitting a surface parameterized
in this way to image data thus becomes a much lower-dimensional problem. Initially
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introduced in the field of Computer Vision for image segmentation purposes [Pentland,
1990, Pentland and Sclaroff, 1991], modal analysis was also successfully applied to
medical imaging [Nastar and Ayache, 1996], and non-rigid motion tracking [Tao and
Huang, 1998].

While computationally efficient, modal analysis, as usually applied in our field,
assumes a constant stiffness matrix, which implies geometrically and materially linear
deformations. This, unfortunately, never is the case since it is only true for barely
visible deformations. Such models are, therefore, only rough approximations of the true
nonlinear behavior.

2.2 LEARNED DEFORMATION MODELS

The physics-based approach is very attractive because it aims at modeling the true
behavior of an object. However, as discussed above, it is very difficult to come up
with accurate models. This is both because key physical parameters are often unknown
and because there are pervasive nonlinear effects that are very complicated to handle.
Doing so would involve computationally expensive algorithms that can get trapped into
undesirable local minima. Furthermore, given the usual noisiness of image data, it is
not even entirely clear that this expense would truly result in improved accuracy.

As a result, learning models from training data was proposed as an alternative.
Rather than trying to guess unknown physical parameters, shape statistics are inferred
from available examples and used to instantiate the models. In the following, we briefly
introduce the statistical learning methods that have been applied to non-rigid shape
recovery.

2.2.1 Statistical Learning Methods
Many surface parameterizations involve a large number of degrees of freedom. This, for
example, is the case when specifying the shape of a triangulated mesh in terms of its
vertex coordinates. However, these degrees of freedom are often coupled and therefore
lie on a much lower-dimensional manifold. Rather than explicitly adding constraints
to the problem at hand, the core idea behind statistical learning is to discover this
manifold and express the problem in terms of its low-dimensional representation, thus
implicitly enforcing the constraints. The different methods are divided into linear and
nonlinear ones.

In the linear dimensionality reduction case, an example x is linked to its latent,
possibly low-dimensional, representation c through the linear relationship

x = x0 + Sc + ǫ , (2.4)

where x0 is the mean data value, ǫ accounts for noise, usually taken as Gaussian dis-
tributed, and the matrix S contains the new basis vectors. Typically, S is obtained by
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Principal Component Analysis (PCA) [Jolliffe, 1986]. More specifically, the columns of
S are taken to be the eigenvectors of the data covariance matrix. For non-rigid surfaces,
this naturally sorts the deformations from low to high frequencies, as was the case with
modal analysis. In fact, when applied to surfaces for which stiffness matrices are also
available and modal decomposition can be performed, the resulting deformation modes
often look very similar. A probabilistic interpretation of PCA was introduced [Tipping
and Bishop, 1999] and used to build the distribution of the data in the new space from
the eigenvalues of the data covariance matrix. To obtain the basis S, PCA can also be
replaced by Independent Component Analysis (ICA) [Comon, 1994]. Instead of yielding
uncorrelated components, the basis found by ICA minimizes the dependencies between
its potentially non-orthonormal components.

In many cases, however, the low-dimensional manifold onto which the training ex-
amples lie is not linear. Therefore, a linear model gives high probabilty to truly unlikely
data, or vice-versa. As a result, several nonlinear dimensionality reduction techniques,
such as Kernel PCA [Schoelkopf et al., 1999], Isomap [Tenenbaum et al., 2000], Locally
Linear Embedding [Roweis and Saul, 2000], Laplacian Eigenmaps [Belkin and Niyogi,
2001], and Maximum Variance Unfolding [Weinberger and Saul, 2004] were introduced.
However, these techniques are not very well-suited to the problem of non-rigid recon-
struction, since they do provide a mapping from the low-dimensional representation to
the high-dimensional one. Such a mapping must be learned separately, in terms of Ra-
dial Basis Functions (RBF) for example, which makes these nonlinear techniques prone
to errors both in the direct and the inverse mappings.

As an alternative, one can use the Gaussian Process Latent Variable Model
(GPLVM) [Lawrence, 2004], which was originally introduced as a generalization of prob-
abilistic PCA. The advantage of the GPLVM over the previous nonlinear techniques
is that it directly defines a mapping from the low-dimensional representation to the
high-dimensional one. This mapping can be written as

x =
∑

i

wifi(c) + ǫ , (2.5)

where wi are the weights of the possibly nonlinear functions fi of the low-dimensional
representation of the manifold c. By placing a simple Gaussian prior on the weights wi,
they can be marginalized out. This yields a multivariate Gaussian conditional density
for the data, which can be written as

p(X |C,Θ) =
1

√

(2π)ND|K|D
exp

(

−
1

2
tr
(
K−1XXT

)
)

, (2.6)

where X and C are the matrices containing the N D-dimensional training examples and
their latent representations respectively. K is a positive-definite covariance matrix whose
elements are obtained by evaluating a kernel function k, such that Ki,j = k(ci, cj). This
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kernel function is entirely defined by its hyper-parameters Θ, which are optimized at
training together with the latent variables C, so as to maximize p(X |C,Θ)p(C)p(Θ).
At inference, the predictive distribution p(x∗|c∗,C,X) of a new deformation x∗ given
its latent representation c∗ is a Gaussian with mean and variance

µ(c∗) = XTK−1k∗ (2.7)
σ(c∗) = k(c∗, c∗) − kT

∗ K−1k∗ , (2.8)

where k∗ ∈ ℜN×1 is the vector containing the covariance function evaluated between
the training and the test data. This has the advantage of modeling the uncertainty on
the output space to account for the high or low density of training examples in different
regions of the space. As a consequence, it allows to build a prior for the shape and its
latent representation.

Several extensions of the original GPLVM have been proposed. For instance,
to extend the GPLVM to motion data, the Gaussian Process Dynamical Model
(GPDM) [Wang et al., 2005] was introduced. The GPDM allows to model nonlinear
relationships between the latent variables corresponding to consecutive frames in a se-
quence. In a different context, to overcome the burden of evaluating the kernel function
between each training latent variable, and thus of having a computation time cubic
in N , sparse representations were proposed [Lawrence, 2007]. In this sparse GPLVM,
the kernel is defined in terms of a much smaller number of inducing variables. This
makes the GPLVM practical for problems involving many degrees of freedom, therefore
requiring large training sets, as is the case of deformable surfaces.

2.2.2 Learned Models for Non-Rigid Modeling
In Computer Vision, the linear learning techniques quickly became very popular. The
original Active Shape Models [Cootes and Taylor, 1992] were extended to full 2D Ac-
tive Appearance Models (AAM) [Cootes et al., 1998, Matthews and Baker, 2004] to
track 2D face deformations. In this case, the model is separated into shape and tex-
ture components, both modeled as linear combinations of basis vectors. Adaptations
of this were also proposed to group appearance and shape in a single vector and to
mix physics-based approaches with statistical learning [Nastar et al., 1996]. To ac-
count for illumination variations, an Active Illumination and Appearance model was
introduced [Kahraman et al., 2007]. In a similar spirit of being robust to illumina-
tion changes, a light-invariant AAM was proposed [Pizarro et al., 2008], which relies
on a light-invariant transformation [Finlayson et al., 2006]. Finally, hierarchical AAM
were introduced to make image fitting more robust and efficient [Cosker et al., 2004,
Peyras et al., 2007]. To this end, the fitting process is done in a coarse-to-fine manner,
starting from the whole face and refining individual parts.

The AAM were later turned into a Morphable Model [Blanz and Vetter, 1999,
Romdhani and Vetter, 2003] designed to recover the full 3D shape of a face, which
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(a) (b) (c)

Figure 2.1: Morphable face models [Blanz and Vetter, 1999]. (a) The average face. (b)

Weighted of sum of deformation modes that depicts the face of a specific person. (c) Setting the

weights to half the values used in (b) produces an intermediate face. Courtesy of T. Vetter.

produced extremely impressive results using a single properly-lit high resolution image.
It was also used to model various expressions of a same face [Blanz et al., 2003] and
combined to an AAM to further account for appearance of the face instead of shape
only [Xiao et al., 2004a]. Fig. 2.1 depicts the model and illustrates the fact that the
space of faces modeled in this way can indeed be considered as linear since a weighted
sum of such models still looks like a face. Because the shape and texture recovery may
be perturbed by large cast shadows or specularities, it was later shown that the sensi-
tivity to illumination could be reduced by replacing the appearance-based component
of the model by information provided by 2D point correspondences in all pairs of con-
secutive images of a video sequence in which the head moves rigidly [Dimitrijević et al.,
2004], as shown in Fig. 2.2. This is because such correspondences tend to be affected
comparatively little by illumination changes given proper normalization.

Nonlinear methods have also proved useful for Computer Vision applications. In
particular, the GPLVM was used to learn a prior on human pose and proved able to gen-
eralize well from a small number of training examples [Urtasun et al., 2005]. Similarly,
the GPDM was also applied to constrain the 3D estimation of humans poses in video
sequences [Urtasun et al., 2006]. For non-rigid surface reconstruction, a sparse GPLVM
was employed to learn a prior over the deformations of local surface patches [Salzmann
et al., 2008b]. The resulting local models have the advantage over the global ones that
they can be trained from smaller training sets because local deformations are more
constrained than those of a global surface. Furthermore, surface patches can be assem-
bled into arbitrarily shaped global surface meshes, whose 3D deformations can then be
recovered without any additional training. This cures one weakness of global models
that have to be relearned for each individual surface, even when they all are made of a
material seen previously.
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Figure 2.2: Fitting a morphable face model to a low-resolution video sequence.

While nonlinear learned models have proved effective to reconstruct complex de-
formations, they can only be fitted by an iterative scheme that requires an accurate
initial estimate. This is due to the non-convexity of the objective functions they yield.
As a consequence, they are best suited to tracking application where the initial estimate
is provided by the shape computed in the previous frame.

2.3 REGULARIZATION VIA SHAPE PARAMETERIZATION

Learned models have proved very effective for many applications. They remove the need
to estimate unknown and hard to measure material parameters, while yielding accurate
representations of surface deformations. However, some issues remain unsolved. First,
gathering enough examples to build a meaningful database represents a very significant
amount of work, especially in the case of highly deformable surfaces with many degrees
of freedom. Second, registering the examples typically involves a painstaking process.
For example, in the case of faces [Blanz and Vetter, 1999], laser scans first had to be
aligned and then remeshed in order to have the same topology. This is why many other
models and parameterizations besides physics-based and statistical-learning based ones
have also been proposed. Again, several of these approaches were first introduced in
the Computer Graphics field for simulation purposes and were later adapted to recover
surface deformations from images.

Modeling a deformable surface as a triangulated mesh typically yields many de-
grees of freedom. However, as mentioned earlier, many of these degrees of freedom are
coupled, which can be enforced by using physics-based constraints or by representing
the deformations as a combination of basis shapes. An alternative solution to modeling
this coupling is to represent the motion of all mesh vertices as a function of a much
smaller number of control points. The fine mesh is then obtained by interpolating the
deformation between these control points.
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One way to achieve this is through the use of Free-Form Deformations. Origi-
nally introduced for animation purposes [Sederberg and Parry, 1986], they were quickly
adapted to recover shapes from images [Delingette et al., 1991]. Interpolation can
be done through Bézier volumes [Coquillart, 1990], polynomial curves [Welch and
Witkin, 1994], or B-splines [Krishnamurthy and Levoy, 1996, Eck and Hoppe, 1996,
Faloutsos et al., 1997]. A disadvantage of standard free-form deformations is their lack
of ability to model local deformations. This was overcome by introducing Dirichlet Free-
Form Deformations, first to animate a hand [Moccozet and Magnenat-Thalmann, 1997],
and then for model-fitting purposes [Ilić and Fua, 2002, Ilić and Fua, 2006]. Similarly,
RBFs have shown good ability at modeling local deformations when fitting a surface
to 3D data [Carr et al., 2001]. In that case, the control points act as the centers of the
RBFs. A drawback, however, of the control points based techniques is that there is no
automated way to create the appropriate set of control points.

An alternative to explicitly relying on control points that define the surface
shape is to introduce a multi-resolution approach [Hoppe et al., 1994]. In this case,
the deformation of an initial coarse mesh is computed, and, following a subdivision
strategy [Catmull and Clark, 1978, Doo and Sabin, 1978], the mesh and its deforma-
tions are then refined. Several subdivision schemes have been proposed [Loop, 1987,
Dyn et al., 1990, Kobbelt, 2000]. Such multi-resolution approaches were also used
with dynamic vertex connectivity [Kobbelt et al., 2000], and for mesh editing [Zorin
et al., 1997]. In the latter, a limitation arose from the fact that the editable regions
were defined only in the initial coarse mesh. Laplacian surfaces [Sorkine et al., 2004,
Zhou et al., 2005] were thus proposed to overcome this problem. However, to the best
of our knowledge, multi-resolution methods have not been applied in the context of
image-based shape recovery. A potential reason might be that the surface is interpo-
lated, which tends to yield visually pleasing results but may not correspond to what is
observed in the images.

2.4 LEGACY OF THE PREVIOUS APPROACHES

In the remainder of this survey, we will focus on approaches that tend to be more recent
than those discussed above and do not belong to any of the three categories introduced
in the previous sections of this chapter. Nevertheless, these newer methods build on
some of the components of the earlier ones.

In particular, many methods described below rely on linear subspace models to
regularize the shape of the reconstructed surface. For example, in Chapter 4, we will
study the use of global and local learned linear models to constrain shape reconstruction
from monocular images. In Chapters 5 and 6, we will show that linear global models have
also been extensively applied in the context of non-rigid structure-from-motion. In this
case, the modes are directly estimated from the 2D tracks of points throughout a video
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sequence instead of being learned from training data. Representing the deformations
of a surface as a linear combination of modes not only bears strong connections to
statistical learning techniques, but also to physics-based models and modal analysis.

Even though using linear subspace models effectively reduces the number of de-
grees of freedom of the problem, monocular reconstruction remains ill-posed and in-
volves many ambiguities. Competing methods can therefore be distinguished by how
they go about finding the “best” solution in the space of all possible ones. As we will
see, among other things, it can be the one that yields the smoothest surface, that is
most temporally consistent, or that best preserves geodesic distances on the surface.
Although in general not physically exact, the constraints used for reconstruction are
typically inspired by the observed physics of the object of interest.

In Chapter 4, we will also discuss alternative parameterizations that implicitly
regularize a surface shape. Specifically, we will present a method that relies on free-
form deformations to reconstruct inextensible surfaces. Furthermore, we will discuss
approaches designed to model the deformations of developable surfaces, whose shape
can be parameterized with very few degrees of freedoms.

Finally, as mentioned in the previous sections for nonlinear FEM and learning
techniques, there often is a tradeoff between the accuracy of the model and its practi-
cality. To overcome this weakness, several methods among those described below have
introduced regularizers that are both realistic and easy to optimize. For instance, con-
vex formulations were proposed for template-based approaches, as well as closed-form
solutions to non-rigid structure-from-motion. While these techniques do not always give
the best solutions, they yield a good initial estimate for non-convex, but more accurate
formulations of the problem.
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C H A P T E R 3

Formalizing Template-Based

Reconstruction
In this chapter, we focus on template-based approaches to monocular 3D reconstruc-
tion and introduce the general formulation of this problem that is common to most
such methods. To this end, we rely on a triangulated surface representation and two
different kinds of camera models, which we introduce first. We then discuss the 3D-
to-2D correspondences that serve as input and derive a linear problem formulation. It
is undersconstrained but forms the basis of many of the techniques of Chapter 4 that
impose different kinds of constraints to resolve the ambiguities.

3.1 PROBLEM DEFINITION

Template-based, non-rigid 3D reconstruction can be defined as the problem of inferring
the 3D shape of a surface in an input image, given a reference image in which the 3D
surface shape is known. Although other surface parameterizations are possible, trian-
gulated meshes are the most common in these kinds of approaches. We will therefore
assume that the 3D shape is represented as a triangulated mesh with Nv vertices and
Nt facets. The goal then is to recover the 3D vertex locations such that the shape best
corresponds to what is observed in the input image.

3.1.1 Motivation
To derive the formulation below, we assume that we can establish correspondences such
as those depicted by Fig. 3.1 between the reference and input images. Two main reasons
motivated this choice:

• Establishing correspondences between two images does not involve strong assump-
tions, apart from requiring the surface to be textured. Furthermore, given a refer-
ence image, correspondences can be established using either a single input image
or a whole video sequence, which means we do not have to track points from im-
age to image, but can if we want to. Consequently, the insights presented here can
be used to understand the behavior both of algorithms that rely on correspon-
dences between model and input images, such as those discussed in Chapter 4,
and of structure-from-motion algorithms, such as those introduced in Chapter 5
and Chapter 6.
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Figure 3.1: Correspondences between a reference image and an input image. The point-to-

point correspondences are shown as red lines going from the first image to the second one.

• As shown in [Salzmann et al., 2007b], relying on image correspondences makes it
possible to formalize the shape recovery problem as one of solving an ill-conditioned
linear system and to explicitly exhibit its underlying ambiguities. More specifically,
in the weak perspective case, which will be defined below, a third of the degrees
of freedom is unconstrained. By contrast, in the full perspective case, there theo-
retically is only a scale ambiguity. However, for most realistic scenarios, the same
number of degrees of freedom as before are so poorly constrained as to be uncon-
strained for all practical purposes.

Shape-from-shading techniques [Horn and Brooks, 1989] offer an alternative to shape-
from-correspondences for monocular shape recovery. However, despite many generaliza-
tions of the original formulation to account for more realistic shading effects, such as
interreflections [Nayar et al., 1991, Forsyth and Zisserman, 1991], specularities [Oren
and Nayar, 1996], shadows [Kriegman and Belhumeur, 1998], or non-lambertian ma-
terials [Ahmed and Farag, 2006], the resulting solutions are only valid in specific en-
vironments. As a consequence, we will only discuss techniques that rely on shading in
conjunction with texture.

3.1.2 Camera Models
In the following analysis, we will assume the internal camera parameters to be known
and, as indicated above, we will distinguish between the behavior under the weak and
full perspective camera models. We therefore define them below.
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Under the weak perspective model, the projection of a 3D point qi can be written
as

d

[

ui

vi

]

= A′ (Rqi + t) , (3.1)

where A′ is the 2 × 2 matrix of camera internal parameters, R contains the first two
rows of the full camera rotation matrix, t is the 2×1 camera translation vector, and d
is a scalar. In general, d is the same for all the considered 3D points. In the case of the
projection of a mesh, we can define a more accurate version of this model by assuming
a different affine transform, and thus a different d, for each facet of the mesh. This
approximation neglects depth variation across individual facets, rather than across the
whole surface. Under this assumption, the projection of a 3D point qi lying on facet f
of the mesh can be expressed as

df

[

ui

vi

]

= A′
([

I2×2 0
]

qi + 0
)

, (3.2)

where df accounts for the average depth of facet f . Here, without loss of generality, we
expressed the 3D point in the camera referential, and therefore replaced R with the
first two rows of the 3 × 3 identity matrix and the translation with a zero vector. Note
that this does not prevent us from accounting for camera motion. It simply means that
it will be interpreted as a rigid motion of the object of interest.

Under the full perspective model, the projection of a 3D point qi is written as

di






ui

vi

1




 = A (I3×3qi + 0) , (3.3)

where the matrix of internal camera parameters A is now a 3 × 3 matrix, and each
point i has a different depth factor di.

3.2 3D-TO-2D CORRESPONDENCES

Detecting feature points in images has received enormous attention in the Computer
Vision community. For most template-based approaches, feature points are typically
detected with either the SIFT keypoints detector [Lowe, 2004] or Harris’s corners de-
tector [Harris and Stephens, 1988]. Once feature points have been detected in two
images, they need to be matched to produce correspondences. When using SIFT, this
can be done by a simple dot-product between specific vector representations of the
feature points. For Harris’s corners, methods based on Randomized Trees have proved
efficient [Lepetit and Fua, 2006]. From a large set of views obtained by applying ran-
dom affine transformations to a reference image, a tree that models the relationships
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between neighboring keypoints is built. Each leaf-node of the tree then corresponds to
a specific keypoint, and matching can be done by dropping the feature points of a new
image down the tree.

Another way to establish correspondences is to first tackle the 2D non-rigid im-
age registration problem. Non-rigid image registration aims at finding a transformation
between two images of the same surface undergoing different deformations. Different pa-
rameterizations have been proposed to represent the transformation, such as RBFs [Bar-
toli and Zisserman, 2004], thin-plate splines [Bookstein, 1989], or 2D meshes [Pilet et
al., 2008]. Since the resulting warp is defined over the entire image, discrete correespon-
dences can then be obtained by sampling it. Note that, while 2D non-rigid registration
can be thought of as related to 3D non-rigid reconstruction, we believe that methods
addressing the 2D case deserve their own separate review. Therefore, we will limit the
study in this survey to 3D reconstruction techniques.

For template-based approaches, the matches are established between the current
image of interest and the reference image, in which the 3D shape and the camera cali-
bration are known, as depicted in Fig. 3.2. Under such assumptions, the 3D locations of
the feature points on the template can be computed by intersecting the ray between the
camera center and the 2D image measurement with the facets of the triangulated mesh.
This lets us represent a 3D point in terms of its barycentric coordinates with respect to
the vertices of the facet intersected by the ray. This yields 3D-to-2D correspondences
for the current image, where the 3D positions of the feature points are defined with
respect to the unknown 3D positions of the mesh vertices. To recover the 3D shape,
the idea is then to find the position of the mesh vertices that minimizes the distance
between the detected 2D features and the 3D points locations projected into the image.

3.3 LINEAR FORMULATION

In this section, we show that recovering the 3D shape of a non-rigid surface from 3D-to-
2D correspondences such as those introduced in Section 3.2 amounts to solving a linear
system. Under the weak perspective projection model, exactly one third of the singular
values of the corresponding matrix are zero, which accounts for depth ambiguities.
Under the full perspective model, only one is strictly zero, but the same one third are
so small as to make the system extremely ill-conditioned.

3.3.1 Ambiguities under Weak Perspective Projection
We now show how computing the 3D mesh vertex coordinates given 3D-to-2D corre-
spondences in the weak perspective case can be formulated as the solution to a linear
system and discuss its degeneracies. We start with a mesh containing a single triangle
and extend our result to a complete one.
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Figure 3.2: Obtaining image correspondences. A feature point is detected in the reference

image, shown in the middle. Knowing the reference 3D shape of the mesh, on the left, and the

camera projection matrix, we can retrieve the facet to which the feature point belongs, and

we can define the point in terms of its barycentric coordinates. The feature point can then be

matched against points detected in the input image, shown on the right. This yields 3D-to-2D

correspondences in terms of the unknown 3D mesh vertices in the input image.

Projection of a 3D Surface Point

Recall from Eq. 3.2 that under a weak perspective model, the projection to a 2D image
plane of a 3D point qi whose coordinates are expressed in the camera referential can
be written as

d

[

ui

vi

]

= P′qi , P′ = A′
[

I2×2 0
]

(3.4)

where d is a depth factor associated to the weak perspective camera and A′ is a 2 × 2
matrix representing the camera internal parameters.

If qi lies on the facet of a triangulated mesh, it can be expressed as a weighted
sum of the facet vertices. Eq. 3.4 becomes

d

[

ui

vi

]

= P′(aiv1 + biv2 + civ3) , (3.5)

where vi ,1≤i≤3 are the vectors of 3D vertex coordinates and (ai, bi, ci) the barycentric
coordinates of qi.

Reconstructing a Single Facet

Let us assume that we are given a list of N t
c 3D-to-2D correspondences for points lying

inside one single facet. The coordinates of its three vertices vi ,1≤i≤3 can be computed
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by solving the linear system
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where d is treated as an auxiliary variable to recover as well. Since we only have one
facet, we also only have one projection matrix. Thus, only a single d corresponding
to the average depth of the facet is necessary and all [ui, vi]

T
can be put in the same

column.
Since P′ is of size 2 × 3, it has at most rank 2. Moreover, we can show that the

last column of the global matrix also is a linear combination of the two first columns of
P′ by writing
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]

, (3.7)

where vi,j is the jth coordinate of vertex vi. The coefficients of Eq. 3.7 are independent
of the correspondence considered and are therefore valid for any row i of the matrix.
This means that the entire last column can be expressed as a linear combination of the
other columns of the matrix. Thus, when N t

c ≥ 3, the rank of the matrix of Eq. 3.6 is
always 6.

Reconstructing the Whole Mesh

As discussed above, when there are several triangles, using the weak perspective model
amounts to introducing a projection matrix per facet. However, since in reality we only
have one camera, its internal parameters, rotation matrix, and center are bound to be
the same for each triangle. This only lets us with a variable depth factor df for each
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facet f among the Nt facets of the mesh. We can then write the system
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The left half of M′
m, which is of size 2Nc × 3Nv, Nc being the total number of

correspondences, has at most rank 2Nv because P′ has rank 2. We can then show that
its right half, which is of size 2Nc × Nt, has at most rank Nt − 1. To this end, we need
to show that its last column can be expressed as a linear combination of the others.
Assuming point Nc belongs to facet f , we can write
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, (3.9)

where vf,i,j is the jth coordinate of the ith vertex of facet f . This shows that the bottom
two rows of the last column can be written as a linear function of the other columns.
However, computing this linear combination would introduce non-zero terms on the
higher rows of the last column. For points also belonging to facet f , these terms are
directly canceled, as suggested by Eq. 3.7. For points belonging to facets sharing no
vertices with facet f , these values will be zero. For point i belonging to a facet l sharing
two vertices with facet f , the value will be

−
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. (3.10)

Therefore, this value also is a linear combination of the other columns of M′
m. Similar

reasoning can be done for facets sharing a single vertex with f . As a consequence, all
terms introduced on the last column by using the linear combination of Eq. 3.9 can
be canceled, which means that this last column is a linear combination of the others,
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and thus that the right half of M′
m has at most rank Nt − 1. This means that for a

full mesh, M′
m has at most rank 2Nv + Nt − 1. This leaves us with Nv + 1 ambiguities.

This seems natural, due first to the scale ambiguity and, second, to the fact that each
vertex is free to move along its line of sight without affecting the reprojection of points
inside the facets.

3.3.2 Ambiguities under Full Perspective Projection
As in the weak perspective case, we show that, given 3D-to-2D correspondences, the
coordinates of the mesh vertices must be solution to a linear system by starting with a
mesh containing a single triangle and extending our result to a complete mesh.

Projection of a 3D Surface Point

Recall from Eq. 3.3 that the perspective projection of a 3D point qi expressed in camera
coordinates can be written as

di






ui

vi

1




 = Aqi , (3.11)

where A is the internal parameters matrix, and di a scalar accounting for depth.
As before, if qi lies on the facet of a triangulated mesh, it can be expressed as a

weighted sum of the facet vertices. Eq. 3.11 then becomes

di






ui

vi

1




 = A(aiv1 + biv2 + civ3) , (3.12)

where vi ,1≤i≤3 are the vectors of 3D vertices coordinates and (ai, bi, ci) the barycentric
coordinates of qi.

Reconstructing a Single Facet

Given the same N t
c 3D-to-2D correspondences lying inside one single facet as in the

weak perspective case, its vertex coordinates vi ,1≤i≤3 can be computed by solving the
following equation where the di are treated as auxiliary variables to be recovered as well

Mf

















v1

v2

v3

d1

...
di

...
dNt

c

















= 0 , (3.13)
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with

Mf =



















a1A b1A c1A −

[
u1

v1

1

]

0 ... ... ...

... ... ... ... ... ... ... ...

aiA biA ciA 0 ... −

[
ui

vi

1

]

0 ...

... ... ... ... ... ... ... ...

aNt
c
A bNt

c
A cNt

c
A 0 ... ... ... −





uNt
c

vNt
c

1























.

For N t
c > 4, if the columns of Mf had become linearly independent, the system would

then have had a unique solution. However, this is not what happens.
To prove that Mf is rank-deficient, we show that its last column can always be

written as a linear combination of the others as follows. From Eq. 3.12, we can write

−






uNt
c

vNt
c

1




 = aNt

c
Aλ1 + bNt

c
Aλ2 + cNt

c
Aλ3 , (3.14)

where λj = −vj/dNt
c

for 1 ≤ j ≤ 3. For all 1 ≤ i < N t
c , we have

aiAλ1 + biAλ2 + ciAλ3 = −
ai

dNt
c

Av1 −
bi

dNt
c

Av2 −
ci

dNt
c

Av3

= −
di

dNt
c






ui

vi

1




 .

This implies that the last column of the matrix Mf of Eq. 3.13 is indeed a linear com-
bination of the previous ones with coefficients (λT

1 , λT
2 , λT

3 ,−d1/dNt
c
, ...,−dNt

c−1/dNt
c
). In

the general case, none of these coefficients is zero. Furthermore, because A has full rank
and the barycentric coordinates are independent in general, the first 9 columns of Mf

are linearly independent. Thus, given the particular structure of the right half of Mf ,
trying to write any column as a linear combination of all others except the last one
would yield wrong values on the last three rows, which could only be corrected by using
the last column. This implies that, in general, Mf has full rank minus 1.
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Reconstructing the Whole Mesh

If we now consider a mesh made of Nv > 3 vertices with a total of Nc correspondences
well-spread over the whole mesh, Eq. 3.13 becomes

Mm












v1

...
vNv

d1

...
dNc












= 0 , (3.15)

with

Mm =





















a1A b1A c1A 0 ... ... −

[
u1

v1

1

]

0 ... ... ...

... ... ... ... ... ... ... ... ... ... ...

0 bjA cjA djA 0 ... 0 −

[
uj

vj

1

]

0 ... ...

... ... ... ... ... ... ... ... ... ... ...

alA 0 clA 0 elA ... 0 ... −

[
ul

vl

1

]

0 ...

... ... ... ... ... ... ... ... ... ... ...





















.

Coefficients similar to those of Eq. 3.14 can be derived to compute [uNc
, vNc

, 1]
T

as a linear combination of the non-zero columns of the last row. Following a similar
reasoning as in the weak perspective case, it can easily be checked that the last column
of the matrix can be expressed as a linear combination of the others, which then are
linearly independent. Thus matrix Mm of Eq. 3.15 has still full rank minus 1. This
reflects the well-known scale ambiguity in monocular vision.

Representing the problem as in Eq. 3.15 was convenient to discuss the rank of
the matrix. However, in practice, we want to recover the vertex coordinates but are
not interested in having the di as unknowns. We therefore eliminate them by rewriting
Eq. 3.15 as

M






v1

...
vNv




 = 0 , (3.16)
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(a) (b)

Figure 3.3: Effective rank of matrix M. (a) 88-vertex mesh seen from the viewpoint used

for reconstruction. (b) Singular values of M for the mesh of (a). Note how the values drop

down after the 2Nv = 176th one. Although M was obtained with a full perspective model, this

corresponds to the value predicted by the weak perspective model of Section 3.3.1. The small

graph on the right is a magnified version of the part of the graph containing the small singular

values. The last one is zero up to the precision of the Matlab routine used to compute it and

the others are not very much larger.

with

M =












a1T1 b1T1 c1T1 0 ... ...
... ... ... ... ... ...
0 bjTj cjTj djTj 0 ...
... ... ... ... ... ...

alTl 0 clTl 0 elTl ...
... ... ... ... ... ...












, and Ti = A2×3 −

[

uiA3

viA3

]

,

where A3 represents the last row of matrix A and A2×3 its first two rows. Since M has
the same rank as matrix Mm by construction, the previous and following results are
valid for both representations of the problem.

Effective Rank

In the previous paragraph, we showed that M has at most full rank minus one. However,
this does not tell the whole story: In general, it is ill-conditioned and many of its singular
values are so small that, in practice, it should be treated as a matrix of even lower
rank. To illustrate this point, we projected randomly sampled points on the facets of
the synthetic 88-vertices mesh of Fig. 3.3 (a) using a known camera model. We then
computed the singular values of M, which we plot in Fig. 3.3 (b). Even though only
one of these values is exactly zero, we can see that they drop down drastically after the
first 2Nv = 176. This shows that, even though the matrix may have full rank minus 1,
the solution of the linear system would be very sensitive to noise. Therefore, in a real
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(a) (b) (c)

Figure 3.4: Visualizing vectors associated to small singular values. (a) Reference mesh and

mesh to which one the vectors has been added seen from the original viewpoint, in which they

are almost indistinguishable. (b) The same two meshes seen from a different viewpoint. (c) The

reference mesh modified by adding the vector associated to the zero singular value. Note that

the resulting deformation corresponds to a global scaling.

situation, we would actually be closer to having Nv ambiguities. In Fig. 3.4, we show
the effect of adding two of the corresponding singular vectors—one associated to the
zero singular value and the other to a small one—to the mesh in its reference position.

Intuitively, the 3D-to-2D correspondences constrain the mesh vertices to move
along lines of sight but their exact distance to the camera is poorly constrained because
changing it only results in minor reprojection errors for points lying inside the facets.
As a consequence, the number of degrees of freedom corresponds to the one derived
for the weak perspective case in Section 3.3.1, except that the global scale is directly
related to the position of the vertices along the lines of sight, which produces one fewer
small singular value.

The fact that the depth of the mesh vertices is ill-constrained shows that 3D-to-2D
correspondences on their own are not sufficient to reconstruct the shape of a surface from
a monocular image. Therefore, additional knowledge must be introduced in the problem.
This can be done by taking into account other sources of image information, such as
shading. However, as mentioned earlier, the resulting methods typically rely on strong
assumptions that are only valid for specific cases. Instead, in the next chapter, we will
study the introduction of additional shape constraints, and discuss several formulations
that range from specific to a particular problem to more generally applicable.
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Performing Template-Based

Reconstruction
As discussed in Chapter 3, given Nc point correspondences between a reference image
in which the 3D shape is known and an input image, recovering the new shape in that
image amounts to solving the linear system of Eq. 3.16. We write it here again as

Mx = 0 ,where x =






v1

...
vNv




 , (4.1)

vi contains the 3D coordinates of the ith vertex of the Nv-vertex triangulated mesh
representing the surface, and M is a matrix that depends on the coordinates of cor-
respondences in the input image and on the camera internal parameters. A solution
of this system defines a surface such that 3D feature points that project at specific
locations in the reference image reproject at matching locations in the input image.
Solving this system in the least-squares sense therefore yields surfaces for which the
overall reprojection error is small.

Note, however, that this is not strictly equivalent to minimizing the reprojection
error because computing the actual reprojection of a 3D point on the image plane
would involve a division by the depth factors di of Eq. 3.15, thus yielding nonlinear
terms. In essence, solving this linear system is equivalent to performing a Direct Linear
Transformation (DLT) [Hartley and Zisserman, 2000], which gives a different weight to
each correspondence according to its distance to the camera and therefore potentially
reduces accuracy. Even more problematically, M is a 2Nc × 3Nv matrix with at least
Nv singular values that are very small, as shown in Fig. 3.3. Because the system is so
ill-conditioned, many different shapes can produce very similar projections, and even
small imprecisions in the point coordinates, and consequently in the coefficients of M,
can lead to large reconstruction errors.

In this chapter, we will review some of the approaches that have been proposed to
overcome these ambiguities and increase accuracy either by enforcing temporal consis-
tency across images in video sequences, or by enforcing additional geometric constraints,
such as smoothness and preservation of geodesic distances across the surface.
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Figure 4.1: Singular values for a 5 frames sequence under perspective projection [Salzmann et

al., 2007b]. Left: Without temporal consistency constraints between frames, the linear system is

ill-constrained. Right: Bounding the frame-to-frame displacements transforms the ill-conditioned

linear system into a well-conditioned one. The smaller singular values have increased and are

now clearly non-zero. Since our motion model introduces more equations than strictly necessary,

the other values are also affected, but only very slightly.

4.1 IMPOSING TEMPORAL CONSISTENCY

When dealing with video sequences, one can assume that the surface does not move
randomly between consecutive frames, whatever its physical properties. One way to
overcome the rank deficiency of the matrix of Eq. 4.1 is therefore to perform the recon-
struction over several frames simultaneously. This amounts to stacking the coordinate
vectors x of Eq. 4.1, one for each time frame, and creating a block diagonal matrix whose
elements are matrices M, again one for each time frame. Without temporal constraints
to link the coordinate vectors across frames, this system is just as ill-conditioned as
before. However, because displacement speeds are limited, the range of frame-to-frame
motion is always bounded, which can be expressed as a set of additional linear con-
straints of the form

xt − xt−1 = 0 , 2 ≤ t ≤ Nf , (4.2)

where xt is the coordinate vector for frame t and Nf is the total number of frames.
These constraints link the coordinate vectors and can be added to the correspondence
equations in the joint system for all Nf frames. The resulting linear system is much
better-conditioned as depicted by Fig. 4.1. Since this system is solved in the least-
squares sense, the motion equations will not be truly enforced, and thus some motion
will be allowed. As a result, given the shape at the beginning and at the end of a
sequence, the surface can be simultaneously reconstructed over the whole sequence as
shown in Fig. 4.2.

These simple temporal constraints, however, do not accurately model the true
dynamical behavior of a non-rigid surface and, as a result, the reconstructions are
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Figure 4.2: Reconstruction results for a very flexible plastic sheet. In spite of the many creases,

the overall shape is correctly recovered up to small errors due to erroneous correspondences.

not necessarily very accurate. Furthermore, as discussed above, solving the linear sys-
tem of Eq. 4.1 in the least-squares sense is not strictly equivalent to minimizing the
true reprojection error. In [Salzmann et al., 2007a], this was remedied by exploiting
techniques proposed for rigid object modeling [Kahl, 2005, Ke and Kanade, 2005,
Sim and Hartley, 2006] that expressed the minimization of the true reprojection er-
ror as a Second Order Cone Programming (SOCP) problem [Boyd and Vandenberghe,
2004]. In its general form, an SOCP can be written as

minimize
x

fTx (4.3)

subject to ‖Aix + bi‖2 ≤ cT
i x + di , 1 ≤ i ≤ m ,

where f is the vector that defines the objective function, Ai is a matrix, bi and ci

are vectors, and di is a scalar. Problems of this type are convex and, thus, have a
unique minimum that can be found very effectively using available packages such as Se-
DuMi [Sturm, 1999]. Furthermore, SOCP can be used to formulate problems more gen-
eral than linear programming, quadratic programming, and quadratically-constrained
quadratic programming.

For the specific case of deformable surface reconstruction, minimizing the repro-
jection error can be expressed as

minimize
γ,x

γ (4.4)

subject to ‖[(P1 − uiP3)hi, (P2 − viP3)hi]‖2
≤ γP3q̃i , 1 ≤ i ≤ Nc ,

where Pk contains the kth line of the projection matrix, and q̃i = [qT
i , 1]T is the vector of

homogeneous coordinates of the 3D point matching the ith feature point. q̃i is obtained
from the vertex coordinates x and barycentric coordinates. γ is an additional slack
variable that encodes the maximum reprojection error for all feature points.

While a solution of the above problem minimizes the true reprojection error, it
still is underconstrained. This is why temporal consistency was introduced in [Salzmann
et al., 2007a], to prevent the orientation of mesh edges from varying excessively from
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Figure 4.3: The orientation of the edge between vi and vj at time t + 1 is predicted to be the

same as at time t. The distance between the true vertex vt+1
j and its prediction ṽt+1

j is then

constrained to be less than some specified value.

one frame to the next, as illustrated in Fig. 4.3. This can be expressed as additional
SOCP constraints of the form

∥
∥
∥
∥
∥
vt+1

j −

(

vt+1
i + li,j

vt
j − vt

i

‖vt
j − vt

i‖2

)∥
∥
∥
∥
∥

2

≤ λli,j , (4.5)

where li,j is the original length of the edge between vertices i and j, and λ encodes the
amount of possible motion. These temporal constraints have the advantage of being
more realistic than the ones of Eq. 4.2 and can handle highly-deformable surfaces such
as the one of Fig. 4.4 without adding unwarranted smoothness. It was later shown that
the resulting problem could be reformulated as an unconstrained quadratic optimiza-
tion problem, which is even easier to solve [Zhu et al., 2008]. To this end, the SOCP
correspondence constraints of the problem in Eq. 4.4 are turned into equalities by in-
troducing one slack variable for each correspondence. The sum of these slack variables
can then be expressed as a quadratic function of the shape, and directly minimized in
the objective function. The edge orientation constraints are either kept as constraints
to yield a QP problem or re-written as a quadratic regularizer, thus resulting in an
unconstrained optimization problem. Fig. 4.5 depicts the reconstruction error of these
two formulations and compares them against the results of the SOCP approach. The re-
construction error is given as the mean vertex-to-vertex distance between ground-truth
and the recovered surface.

4.2 IMPOSING GEOMETRIC CONSTRAINTS

The methods discussed in the previous section are very generic in that they make very
few assumptions on the smoothness or physical properties of the surface. However, they
are all limited by the fact that they involve frame-to-frame tracking and are therefore
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Figure 4.4: Recovering the deformations of a plastic bag with a sharp crease in it from an

86-frames video using the [Salzmann et al., 2007a] method.
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Figure 4.5: Comparison of the accuracies obtained with the SOCP formulation of [Salzmann

et al., 2007a] with the QP and unconstrained (QO) formulations of [Zhu et al., 2008]. Recon-

structions were obtained with image noise variance 1 (left) and 2 (right). Note that the QP and

QO approaches yield better results than the SOCP one. Courtesy of J. Zhu.

subject to drift and irrecoverable failure if there are too few valid correspondences in
any given frame. Furthermore, they require a full video sequence, as well as an initial
shape estimate for the first frame, either of which may not be available.

A useful alternative is therefore to replace temporal consistency constraints by
geometric ones that allow reconstruction using a single input image or a very short
sequence of consecutive ones. The difficulty then is to design the constraints so as to
make as few unwarranted assumptions on the allowable surface deformations as possible.
In the remainder of this section, we classify approaches according to how stringent
the constraints are. We start with developable surfaces, whose deformations are very
strongly constrained. We then move on to surfaces that deform smoothly, including
those that remain globally smooth and those that need only be locally smooth and can
therefore develop creases. We conclude by discussing inextensible surfaces.
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Figure 4.6: In [Perriollat and Bartoli, 2007], a developable surface is parameterized with a set

of guiding rules, drawn in pink, and their corresponding bending angle. Courtesy of A. Bartoli.

4.2.1 Developable Surfaces
Developable surfaces are surfaces with zero Gaussian curvature, meaning that, for all
points and all possible deformations, one of the principal curvatures must be zero. Such
3D surfaces can be flattened onto a plane without distortion and are ruled surfaces. For
example, initially flat pieces of paper are developable and are often used to demonstrate
techniques that rely on this property.

As shown in [Gumerov et al., 2004], given only surface boundaries in both the
reference and input image acquired by a calibrated camera, it is possible to recover
the 3D structure by solving Ordinary Differential Equations. Another approach is to
explicitly parameterize the reference surface in terms of guiding rules and their bending
angles [Perriollat and Bartoli, 2007], as depicted in Fig.4.6. The resulting model can
then be fit to the image by minimizing the reprojection error of matching points in the
reference and input images.

The fact that sheets of paper are developable surfaces has been extensively used
in the document processing community, for example to synthetically flatten the images
of curved documents and remove shadows. The resulting approaches do not necessarily
rely on correspondences. Because of the very specific layout of printed pages, they can
take advantage of shading [Zhang et al., 2004] or of textural information [Liang et al.,
2005] to infer 3D shape.

4.2.2 Smooth Surfaces
While the methods that assume the surfaces to be developable may be effective in
the specific context they have been designed for, they do not generalize naturally to
broader classes of surface deformations such as those of cloth. One way to achieve such
generalization is to replace the zero Gaussian curvature constraint by weaker ones that
only force the curvature to remain small and the deformations to be smooth.
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(a) (b) (c)

Figure 4.7: Specifying the 3D shape of a triangulated mesh. (a) We fix the shape of the bottom

row from left to right by rotating each facet with respect to its left neighbor. For each following

row, we only need to set the angle between the leftmost facet and the one below and the angle

between the rightmost facet and its left neighbor. (b) The angles between the facets of the

bottom row are first set from left to right. For each upper row, only the angle of the first facet

need be set. (c) Attaching two hexagonal patches together. Because the base of each triangular

patch is attached to the body, only one single angle is required to fully specify their first row.

Such regularization constraints can be introduced by enforcing a uniform level of
smoothness across the whole surface, which is simple to do but tends to preclude the
modeling of sharp folds and creases. A powerful alternative is to only force the surface
to be locally or piecewise smooth, which increases the algorithms’ descriptive power at
the cost of introducing slightly more complex models.

Global Smoothness

As discussed in Chapter 2, a well-known approach to enforcing smoothness is to reg-
ularize shape deformations with a linear subspace model. While, in essence, assuming
that the shape is generated with a small number of deformation modes does not nec-
essarily enforce smoothness, the usual ways of obtaining these modes, such as Modal
Analysis or PCA of a reprentative set of deformed versions of the surface, typically
yield smooth basis shapes representing low deformation frequencies. This makes sense
because these techniques tend to be employed to create general purpose deformation
modes. It is in contrast to the shape bases used by the NRSFM techniques that will
be discussed in Chapter 6, which are recomputed for each new sequence and are not
restricted to smooth deformations.

Under a linear subspace model, surface deformations are represented as linear
combinations of a relatively small number of basis vectors. This can be expressed as

x = x0 +
Ns∑

i=1

cisi = x0 + Sc , (4.6)

where x is the coordinate vector or Eq. 4.1, the si are the basis vectors, and the ci their
associated weights. S is a matrix whose columns are the si and c the vector of weights.
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Figure 4.8: Screen capture of the semi-automated system that was delivered to Team Alinghi

to compute the 3D shape of their sails after training sessions.

In the absence of either a stiffness matrix or sufficient amounts of training data,
an approach to automatically generating deformed shapes was proposed in [Salzmann
et al., 2007c]. It relies on the fact that the shape of an inextensible triangulated mesh
can be parameterized in terms of a small subset of the angles between its facets, as
depicted by Fig. 4.7. Thus, given a reference shape represented as a triangulated mesh,
a representative set of deformed shapes can be synthesized by randomly sampling this
set of angles and generating the corresponding shapes. The resulting modes, computed
via PCA, were shown to allow reconstructing very general deformable surfaces. In fact,
it was observed that they produced better results than those obtained from a stiffness
matrix computed using a finite element package when the exact physical parameters of
the surface were not known and had to be guessed [Salzmann, 2009]. In practice, these
modes have been used to reconstruct surfaces by optimizing their weights so as to min-
imize an objective function combining information provided by point correspondences,
surface boundaries, and occluding contours. The resulting algorithm was integrated into
a semi-automated system, depicted by Fig. 4.8, that was designed to recover the 3D
shape of sails and delivered to the Team Alinghi, the syndicate that won the America’s
Cup in 2003 and 2007. For a surface such as the one of Fig. 4.8 that is modeled by
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Figure 4.9: (a) Singular values of the linear system of Eq. 4.1 written in terms of the 243

vertex coordinates of a mesh. As mentioned in Chapter 3, the number of singular values close to

zero is the number of vertices. (b) Describing the shape with 50 PCA modes helps constraining

the corresponding linear system. However, there are still a number of near zero eigenvalues.

a 1200-vertex mesh, involving 3600 degrees of freedom, 30 to 40 modes are typically
enough to model smooth deformations.

By reducing the number of variables to be optimized, the modal representation
makes it easy to integrate additional information sources, which require the minimiza-
tion of a nonlinear criterion. However, while effective, this kind of approach suffers from
the fact that a non-convex objective function must be minimized, and that, therefore,
convergence to a desirable local optimum cannot be guaranteed. When using correspon-
dences alone, this limitation can be removed as follows [Salzmann et al., 2008a]. Recall
that the 3D mesh representing the surface must be such that the vector x obtained by
stacking the coordinates of its vertices must satisfy the linear system of Eq. 4.1. Inject-
ing the formulation of Eq. 4.6 into Eq. 4.1 means that the weights c must be solution
of

MSc = −Mx0 . (4.7)

Since the vectors si are computed as eigenvectors of a covariance matrix, following
standard practice in modal analysis, it then makes sense to solve

[

MS Mx0

λrL 0

] [

c
1

]

= 0 , (4.8)

in the least squares sense, where L is a diagonal matrix whose elements are the in-
verse values of the eigenvalues associated to the eigenvectors, and λr is a regularization
weight. This favors the modes that correspond to the lowest-frequency deformations
and therefore further enforces smoothness.
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In practice, the linear system of Eq. 4.8 is less poorly conditioned than the one
of Eq. 4.1, but, as depicted by Fig. 4.9, its matrix still has a number of near zero
singular values, indicating that there are several smooth shapes that all yield virtually
the same projection. As a consequence, additional constraints still need to be imposed
for the problem to become well-posed. We will see in Section 4.2.3 that forcing geodesic
distances to be preserved across the surface is one way of doing this. Another is to
exploit additional sources of image information, as discussed below.

In [Salzmann et al., 2008a], it was proposed to treat the small singular values of
Eq. 4.8 as if they were exactly zero and write potential solutions as linear combinations
of the corresponding singular vectors. In other words, the mode weights can be written
as

c =
∑

βimi , (4.9)

where the mi are the singular vectors associated to the smallest singular values of the
matrix of Eq. 4.8. The unknowns become the weights βi. Each set of weights produces a
different 3D surface that projects at approximately the correct place in the input image.
Therefore, additional information must be brought to bear to choose the best possible
values of βi.

When the surface can be assumed to be lit by a distant light source, these ad-
ditional constraints can be obtained from shading information around corresponding
points to constrain the intensities of surrounding surface patches in the input and ref-
erence images to be related through a Lambertian reflectance model [Moreno-Noguer
et al., 2009]. The shading information yields a system of cubic equations on the weights
βi. Since there are many such cubic constraints, they are solved by extended lineariza-
tion [Courtois et al., 2000]. While extended linearization does not guarantee an exact
solution of the constraints, it is more practical than other techniques such as Groebner
bases, which cannot handle that many equations. In [Moreno-Noguer et al., 2010], the
approach of [Moreno-Noguer et al., 2009] was extended to allow the use of more generic
shading models. Instead of writing the vector c as a weighted sum of singular vectors,
the fact that solving the system of Eq. 4.7 is ill-conditioned was addressed as follows.
The least-squares solution of Eq. 4.7 can be expressed as

c = (B⊤B)−1B⊤b , (4.10)

where B = MS and b = −Mx0. Recall from Chapter 3 that the coefficients of the ma-
trix M of Eq. 4.1 are ultimately derived from point correspondences, which contain
some amount of uncertainty. Assuming the image coordinates of these point correspon-
dences to be normally distributed around their true values, the covariance matrix for
the distribution of c can be expressed as

Σc = JβΣuJ
⊤
β , (4.11)
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where

Jβ =
∂(B⊤B)−1

∂u
B⊤b + (B⊤B)−1 ∂B⊤b

∂u
(4.12)

is the Jacobian of (B⊤B)−1B⊤b with respect to the 2D correspondence coordinates,
which can be computed analytically. Σu is a diagonal covariance matrix representing
the distribution of the 2D point coordinates around their true locations. The algorithm
then samples the possible shapes around the mean shape, given by the least-squares
solution of Eq. 4.10 according to the covariance matrix Σc of Eq. 4.11. An additional
source of information, such as motion or shading, is then used to evaluate the quality
of the samples and resample the solution space more finely around the most promising
ones. When using shading, a single light source whose position is unknown and may
be either distant or nearby is assumed. For each sample c, the light source position
is estimated so that the image synthesized by shading the corresponding surface is as
similar as possible to the original one. To speedup convergence, the samples for which
this optimization yields the smallest residuals are favored in the resampling step. The
fact that the algorithm provides a reliable way to generate 3D shape hypotheses makes
the use of nearby light-sources practical. Without these hypotheses, such illumination
conditions are difficult to handle since they involve solving a non-convex minimization
problem. This is all the more true since the lighting parameters are initially unknown
and must be estimated from the images. In other words, while the lighting model used
in [Moreno-Noguer et al., 2010] is still too simple to be truly general, the approach
could, in theory at least, handle much more sophisticated ones and therefore use shading
information more effectively than is currently done.

A different approach to combining texture and shading cues was proposed
in [White and Forsyth, 2006]. Textural information is exploited by first triangulating
the image and then computing normal estimates by template-matching the individ-
ual triangles against frontal reference views. This gives accurate normal information
up to a two-fold normal ambiguity, which is resolved by using shading information
and, when necessary, smoothness constraints. This approach uses more of the textu-
ral information than all those that rely solely on interest points, which ignore most
of the image pixels. As discussed in Chapter 2, when operating in a well-defined do-
main such as face reconstruction for which there exists not only a geometric model
but also an appearance model, it becomes possible to use the image texture even
more extensively by using an analysis-by-synthesis approach [Blanz and Vetter, 1999,
Romdhani and Vetter, 2003] to estimate both shape and illumination parameters, as
shown in Fig. 4.10.

While the mesh-based parameterization is the most common representation for
template-based reconstruction, it is not the only possible one. As mentioned in Sec-
tion 2.3, control points based parameterizations have been proposed to model non-rigid
objects. Recently, in [Brunet et al., 2010], a free-form deformation model was recently
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Figure 4.10: Matching a morphable model to a single sample image [Blanz and Vetter, 1999].

(1) of a face results in a 3D shape (2) and a texture map estimate. The texture estimate can be

improved by additional texture extraction (4). The 3D model is rendered back into the image

after changing facial attributes, such as gaining (3) and loosing weight (5), frowning (6), or

being forced to smile (7). Courtesy of T. Vetter

used for monocular reconstruction. This model has the advantage of making it easy to
compute a global smoothness regularizer by exploiting the second derivatives of the B-
spline basis functions that define the deformations. This regularizer used in conjunction
with additional distance constraints was shown to outperform several state-of-the-art
methods in terms of reconstruction accuracy.
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Figure 4.11: Reconstruction of deformable surfaces made of different materials undergoing

complex deformations. In all four cases, we show the reconstructed 3D mesh overlaid on the

input image and below a side view of the same mesh.

Local Smoothness

The methods of Section 4.2.2, which rely on regularization models expressed as linear
combinations of deformation modes, are good at recovering the shape of surfaces that
deform relatively smoothly. However, they do not perform as well when deformations are
more local or sharper, such as those depicted by Figs. 4.4 and 4.11 where folds appear
on the surface. In theory, handling such local deformations could be achieved by using a
much larger number of global modes. However, in practice, this would mean introducing
far more variables—the weights associated to the modes—which, for computational
reasons, could easily make the previous approaches impractical.

An approach to overcoming this problem by replacing global smoothness con-
straints with local ones was introduced in [Salzmann et al., 2008b]. It starts from the
following observations. First, locally, all parts of a physically homogeneous surface obey
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Figure 4.12: Local deformation models. The surface mesh is divided into overlapping patches,

whose deformations are modeled either as linear combinations of modes or in terms of a GPLVM.

This can be used to represent surfaces of arbitrary shape or topology by adequately assembling

local patches.

the same deformation rules. Second, these local deformations are more constrained than
those of the global surface and can be learned from fewer examples. To exploit this, it
is the manifold of local, as opposed to global, surface deformations that is represented.
In [Salzmann et al., 2008b], these local models were learned using a nonlinear technique.
However, this yields non-convex objective functions, and is therefore only appropriate
in a tracking framework. Thus, these nonlinear models were later replaced by linear
ones, where each local patch is represented as a linear combination of modes [Salzmann
and Fua, 2011].

In [Salzmann and Fua, 2011], this representation was used to regularize the re-
construction of the global surface by penalizing large local shape deviations from the
learned linear manifold. To this end, as shown in Fig. 4.12, the mesh representing the
surface is subdivided into overlapping patches. Each patch is taken as an Np × Np square
mesh, with Np = 5 in [Salzmann and Fua, 2011]. Note that this does not truly limit
the approach to rectangular surfaces since patches can be defined partially outside the
global shape. Given an instance of a surface, each one of its local patches is assigned a
penalty proportional to its Mahalanobis distance to the mean shape. To avoid optimiz-
ing the individual patches independently, and therefore having to enforce consistency a
posteriori, the technique exploits the fact that the local mode weights c̃ can be directly
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Figure 4.13: Repetitive texture. Top Row The established correspondences between the ref-

erence and the target image, reconstructed 3D mesh reprojected into the target image, and

the same mesh seen from a different viewpoint for the method of [Salzmann and Fua, 2011].

Bottom Row Similar outputs for the method of [Shaji et al., 2010].

obtained from the vertex coordinates as

c̃ = S̃T (x̃ − x̃0) , (4.13)

where S̃ is the matrix of local modes, and x̃ is the vector containing the mesh vertices
associated to a single patch. Note that this amounts to marginalizing out the mode
weights, as is done in probabilistic PCA [Tipping and Bishop, 1999]. The resulting
regularization term for a single patch can then be expressed as

∥
∥
∥L̃1/2c̃

∥
∥
∥ =

∥
∥
∥L̃1/2ST (x̃− x̃0)

∥
∥
∥

2
, (4.14)

where L̃ is the diagonal matrix containing the inverse eigenvalues associated with the
eigenvectors in S̃. As in the global case, this regularizer could be written as a linear
system, and added as a penalty term to the correspondence equations of Eq. 4.1. Un-
fortunately, without additional constraints, linear local models suffer from the same
shortcomings as global ones: Some of the singular values of the matrix of the resulting
linear system remain small and additional knowledge must be introduced.

As a consequence, in [Salzmann and Fua, 2011], the shape regularization term of
Eq. 4.14 was used in conjunction with the geodesic distance preservation constraints
introduced in Section 4.2.3. An iterative scheme where each correspondence equation is
re-weighted according to the current reprojection error allow the algorithm of [Salzmann
and Fua, 2011] to tolerate up to 30% of erroneous correspondences between the reference
and input image. This is enough in many practical applications, but may not suffice
in truly difficult situations, such as when the texture is highly repetitive, as shown
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in Fig. 4.13. Reliable correspondences then become very difficult to establish because,
based on image appearance alone, a 2D interest point in the reference image could
match equally well any number of points in the input image. In [Shaji et al., 2010],
the problem is recast as one of simultaneously solving for shape and correspondences,
which makes it possible to use geometrical consistency constraints when establishing
the correspondences. As a result, when faced with a repetitive pattern such as the one
of Fig. 4.13, it yields more reliable correspondences and, as a consequence, a better
3D shape. The approach starts with the formulation of [Salzmann and Fua, 2011] and
extends it by allowing one point in the reference image to potentially correspond to
more than one point in the input image. This amounts to adding new lines in the
matrix M of Eq. 4.1 and to introducing indicator variables that encode which ones of
these correspondences are truly active. The quadratic problem of [Salzmann and Fua,
2011] becomes a mixed integer quadratic problem, which is NP-hard. Nevertheless, a
branch-and-bound strategy was shown to yield good approximate solutions [Shaji et
al., 2010], at the cost of increased computational complexity with respect to [Salzmann
and Fua, 2011]. In [Sanchez-Riera et al., 2010], correspondences are also established
simultaneously as the shape is recovered. In that case, given a shape prior modeled as a
mixture of Gaussians, a strategy based on Kalman filtering is employed to progressively
reduce the number of 2D point candidates that can be matched to a 3D point.

4.2.3 Distance Constraints
As discussed in Section 4.2.2, whether enforced locally or globally, smoothness by itself
does not suffice to make the 3D monocular surface reconstruction problem well-posed
and to guarantee a unique solution. Additional constraints are required. Enforcing dis-
tances across the deforming surface to be preserved has proved an effective way of
disambiguating shape recovery.

In [Salzmann et al., 2008a], reconstruction was performed under a global linear
subspace model. The modal weights c were expressed as the weighted sum of Eq. 4.9
and the weights βi became the unknowns of the problem. Overcoming the ambiguities
left by the smoothness constraints was done by choosing the weights βi that result
in a surface in which the Euclidean distances between neighboring vertices remain as
similar as possible to their value in the reference configuration. These constraints can
be expressed as

‖vi − vj‖
2
2 = l2i,j , ∀(i, j) ∈ E , (4.15)

where E is the set of mesh edges. These constraints are quadratic in the vi, and thus
in the βi, but not convex. Furthermore, there are typically many of them—several
thousands in the case of the mesh of Fig. 4.8—since there is one per edge of the mesh.
As in [Moreno-Noguer et al., 2009], extended linearization [Courtois et al., 2000] is used
to solve the resulting large quadratic system in terms of the βi, from which the shape
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(a) (b)

Figure 4.14: (a) Under orthographic projection, even when the average depth and length of

a segment are known, the location of its 3D points is only determined up to a front to back

reversal ambiguity. (b) Under perspective projection, knowing the length of a segment can be

used to establish upper bounds on the depth of its points. Note that, for a point belonging to

two segments, several disagreeing upper bounds can be obtained.

can then be computed. In [Salzmann and Fua, 2011], it was first suggested to exploit
the same Euclidean distance constraints as in [Salzmann et al., 2008a], and to rely on
the same extended linearization technique, but using a local deformation model. In
practice, however, using local instead of global models in this way does not significantly
change the results as the surface is effectively prevented from developing sharp creases
by the constraints.

Approaches to exploiting inextensibility constraints by considering distances be-
tween interest points on the surface instead of between mesh vertices have also been
proposed. The one of [Ecker et al., 2008] relies on the fact that, under orthographic
projection, preserving the distance between two points constrains the segment linking
them up to a potential front to back reversal, illustrated by Fig. 4.14(a). Reconstructing
these segments whose orientation presents a binary ambiguity and regularizing them
with a spline-based smoothness term amounts to solving a Semi Definite Programming
problem, for which effective software tools exist [Sturm, 1999]. A similar philosophy is
pursued in [Perriollat et al., 2010] but in the full projective case. In that situation, forc-
ing the distance between two feature points to remain constant can be used to establish
upper bounds on their depth, as shown in Fig. 4.14(b). The surface reconstruction pro-
cess starts by computing these bounds for all pairs of neighboring points, and iteratively
refines them to make them consistent with each other. The resulting point cloud can be
taken as the final solution, or it can be smoothed by fitting a thin-plate spline to it. A
strength of these approaches as compared to [Salzmann et al., 2008a] is that, initially
at least, no assumptions need be made about surface smoothness.
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Figure 4.15: Demonstrating why constant Euclidean length constraints are ill-suited for sharp

folds. Left: Two points of the discrete representation of a continuous surface in its rest config-

uration. Right: When the surface deforms, while the geodesic distance between the two points

is preserved, the Euclidean one decreases. This suggests that distance inequality constraints

should be used rather than equalities.

While preserving Euclidean distances has proved effective, it remains an approx-
imation of the true physical behavior: What is truly preserved on a deforming inex-
tensible surface is the geodesic, as opposed to Euclidean, distance between points. To
be most effective, the techniques proposed in [Ecker et al., 2008, Perriollat et al., 2010]

therefore require relatively evenly placed feature points that can be detected and whose
distance from each other is relatively small so that the Euclidean distance is a reason-
able approximation of the geodesic one. This also true of the [Salzmann et al., 2008a]

approach, but this requirement is more readily satisfied since the distances constrained
are those between neighboring mesh vertices, independently of the surface texture. As
long as inter-vertex distances remain reasonably small with respect to the local radius
of curvature, the requirement will be met.

As illustrated by Fig. 4.15, when creases develop on an inextensible surface,
the Euclidean distance between vertices of the mesh representing it may decrease.
It is the geodesic distance that remains constant and, in effect, bounds the Eu-
clidean one. In [Salzmann and Fua, 2011], it was therefore proposed to replace
the constant distance constraints of [Salzmann et al., 2008a, Ecker et al., 2008,
Perriollat et al., 2010] by inequality constraints that force the distance between neigh-
boring vertices to remain smaller than their geodesic distance, which can be computed
in the reference image. Because of scale ambiguities, these inequality constraints by
themselves do not sufficiently constrain the solution as they do not prevent the mesh
from globally shrinking. This is handled by adding a balloon force not unlike the one
proposed in [Cohen and Cohen, 1993] that pushes the mesh away from the camera as
far as possible without violating any of the constraints. All these constraints and forces
can be expressed directly in terms of the mesh vertex coordinates, which results in an
optimization problem of the form

minimize
X

‖Mx‖
2
+ ‖Λ(x − x0)‖2

− λdx
Td (4.16)

subject to ‖vk − vj‖ ≤ lj,k , ∀(j, k) ∈ E ,
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Figure 4.16: Mean vertex-to-vertex distance between reconstructions and ground-truth

meshes. The reconstructions were obtained from synthetic correspondence (left) and SIFT cor-

respondences (right). Results were obtained with the linear local models of [Salzmann and

Fua, 2011] with distance equalities and inequalities, as well as with the nonlinear local models

of [Salzmann et al., 2008b] (green) and the global models of [Salzmann et al., 2008a] with dis-

tance equalities (cyan). The largest deformation appears around frame 60, where the difference

in accuracy is the greatest.

where M is the matrix of Eq. 4.1, Λ is a matrix that groups the regularization term
of Eq. 4.14 for all patches, and d is the vector that encodes the balloon forces, which
amount to maximizing the depth of surface points. wd is a weight that controls the
influence of the balloon forces relative to the magnitude of reprojection errors. This is a
convex minimization problem that can be efficiently formulated as an SOCP problem by
introducing slack variables [Boyd and Vandenberghe, 2004]. Doing so allows to re-write
the problem as

minimize
X,ǫc,ǫr

ǫc + ǫr − λdx
Td (4.17)

subject to ‖Mx‖
2
≤ ǫc ,

‖Λ(x − x0)‖2
≤ ǫr ,

‖vk − vj‖ ≤ lj,k , ∀(j, k) ∈ E ,

which, like the problem of Eq. 4.4, can be solved using a standard solver [Sturm, 1999].
As depicted by Fig. 4.16, the resulting solution of [Salzmann and Fua, 2011] tends to
outperform the global smoothness methods of [Salzmann et al., 2008a], as well as the
nonlinear local models of [Salzmann et al., 2008b].

While the optimization problem of Eq. 4.16 is convex, it also is very large and takes
a long time to solve. As a result, this approach is ill-suited to real-time applications. One
way to alleviate this problem is to leverage the availability of a good initial solution to
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Figure 4.17: Modeling the deformations of a main sail by minimizing an objective function

under constraint. The black circles in the leftmost image are targets that can be automatically

detected and were used to establish correspondences with the reference configuration. The al-

gorithm can estimate the 3D deformations at a rate of approximately 10 Hz on a standard

PC.

exploit efficient least-squares resolution techniques. To this end, the problem of Eq. 4.16
can be reformulated as the constrained least-squares minimization problem

minimize
X

‖Mx‖
2

2
+ ‖Λ(x − x0)‖

2

2
(4.18)

subject to ‖vk − vj‖ = lj,k , ∀(j, k) ∈ E .

Note that, in this formulation, the length constraints are again equality constraints.
Consequently, the balloon forces are no longer necessary and have been dropped. We
will relax the constraints into inequalities below. Solving the problem of Eq. 4.18 is
equivalent to solving in the least-squares sense

MΛx = bΛ subject to e(x) = 0, (4.19)

where MΛ = [M; Λ] is the matrix obtained by stacking up the lines of M and those
of Λ, bΛ = [0;−Λxo], and e(x) is the vector of deviations from the desired lengths. Its
components are terms of the form ‖vk − vj‖ − lj,k, one for each edge in E .

Assuming the mesh contains Nv vertices and Ne edges, this constrained opti-
mization problem involves n = 3Nv variables and m = Ne edge length constraints, with
m < n in all practical cases. It can therefore be solved very effectively using an itera-
tive algorithm inspired by inverse kinematics approaches to solving underconstrained
problems [Baerlocher and Boulic, 2004]. At each iteration, given the current state x,
the computation goes through the two following steps:
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1. Project the n-dimensional x onto the space of constraints by finding dx such that

e(x + dx) = 0 . (4.20)

By doing a first-order Taylor approximation of the previous equation, we can write
this projection as

Adx = −e(x) ⇒ dx = −A†e(x) + (I − A†A)β , (4.21)

where A is the m × n Jacobian matrix of the m-dimensional constraint vector e(x),
and A† its pseudo-inverse. β is an arbitrary n-dimensional vector that is projected
into the null space of the linearized constraints by multiplying it by the matrix
P = I− A†A, also known as the projector onto A’s kernel. dx0 = −A†e(x) is the
minimum norm solution of Eq. 4.21. Given these notations, the dx of Eq. 4.21 can
be written as

dx = dx0 + Pβ , (4.22)

where β acts as the new unknown of the problem. This formulation reflects the
fact that, because there are fewer constraints than variables, the projection is
not unique. Since m < n, A† can be computed as limδ→0A

T (AAT + δI)−1, which
involves inverting an m × m matrix and can be done even if AAT itself is non
invertible. When m ≪ n, which is the case in practice, performing the inversion in
m-dimensional rather than n-dimensional space helps reducing the computational
cost.

2. To minimize the criterion of Eq. 4.19, β is taken to be the vector that yields a
value of x that solves the equation Mλx = bλ in the least-squares sense. In other
words, β is the least-squares solution of

Mλ(x + dx0 + Pβ) = bλ , (4.23)

or, equivalently,

MλPβ = bλ − Mλ(x + dx0) . (4.24)

Solving this equation yields a value of β that is used to increment x by dx0 + Pβ.
The resulting coordinate vector can then be used as the new current state, and A
and e(x) can be recomputed.

The process stops when dx becomes small enough. For reconstructions such as those
depicted by Fig. 4.17 where the deformations around the rest shapes are relatively
small, the optimization typically converges to a local minimum in about 10 iterations,
which allows for real-time performance. To account for larger deformations, the same
procedure can be used in a frame-to-frame tracking context, where the initial solution in
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each frame is taken as the result of the previous one. This corresponds to the framework
proposed in [Shen et al., 2009], where the shape regularization term was dropped. As
a result, the method of [Shen et al., 2009] simply involves finding the displacement
within the null-space of the linearized inextensibility constraints that minimizes the
reprojection errors. This, unfortunately, is only possible when correspondences are well-
spread over the whole surface. By contrast, combining the regularization and constraint
terms in the above-mentioned way gives good results even when there are relatively few
correspondences.

For the same reasons as those discussed in the context of the [Salzmann and
Fua, 2011] approach and depicted by Fig. 4.15, even better results can be obtained by
replacing the length equality constraints e(x) = 0 of Eq. 4.19 by inequality constraints
of the form e(x) ≤ 0. As before, this means that edge lengths can shrink but not
extend beyond a certain value. This only involves a trivial modification of the algorithm
above: At each iteration, only currently active constraints are taken into account in the
computation of e(x) and its Jacobian A. Shrinkage to a trivial solution can then be
prevented by replacing the matrix Λ of Eq. 4.19 by a stiffness matrix chosen so that
the regularization term ‖Λ(x − x0)‖

2

2
approximates the sum of the squares of second

derivatives of the vector (x − xo), such as the one used in [Fua and Leclerc, 1995]. This
term both penalizes non-smooth deformations and prevents scaling. Note that such
a stiffness matrix also defines local geometric constraints, since it only encodes links
between neighboring mesh vertices.

The constrained least-squares minimization method is effective and fast, but, due
to its iterative nature and to the specific formulation of the regularization term, it re-
quires an initial shape estimate that is not too different from the desired result. It is
therefore well adapted either in a frame-to-frame tracking context, or to surfaces that
deform relatively little so that the reference shape can be used to initialize the compu-
tation. For situation where a single image of a surface undergoing large deformations
is given as input, it was recently shown that an initialization to this problem can be
computed with a discriminative predictor [Salzmann and Urtasun, 2010].

The many different shape regularizers and constraints that have been discussed
in this chapter have made it possible to design effective algorithms for monocular non-
rigid template-based reconstruction. In particular, local smoothness used in conjunction
with inequality constraints has proved able to recover the shape of surfaces undergoing
complex deformations with folds and creases. The major drawback of these techniques
arises from the fact that they require a reference image in which the shape of the surface
is known. In the next chapters, we will discuss another class of methods that do not
rely on this assumption.
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C H A P T E R 5

Formalizing Non-Rigid Structure from

Motion
The template-based methods discussed in Chapter 4 are effective at resolving the am-
biguities inherent to deformable surface 3D reconstruction from a single input image,
given that another image in which the shape is known can be used as a reference. How-
ever, in practice, such a reference may not always be available and there is a need for
methods that can operate without one.

One important approach to overcoming this limitation is to take advantage of the
fact that tracking points over sequences can also be used to resolve ambiguities, with-
out the need for a reference shape. This has long been known in the context of rigid
shape recovery and exploited by Structure-from-Motion (SFM) algorithms, usually us-
ing a variant of the factorization method [Tomasi and Kanade, 1992]. Although initially
studied in [Ullman, 1983], Non-Rigid Structure-from-Motion (NRSFM) as formulated
by most recent methods was introduced in [Bregler et al., 2000] and has been vigorously
pursued since then.

As in the template-based case, we first start by describing the settings under
which most NRSFM methods operate. We then present the most common NRSFM
formulations and discuss their ambiguities.

5.1 PROBLEM DEFINITION

In contrast to template-based reconstruction, NRSFM does not rely on a reference
image where the surface shape is known. Instead, it exploits the availability of multiple
images of the object of interest, generally in the form of a video sequence. Note that
these images are not acquired simultaneously, and, therefore, the shape of the object
is different in each image. Given frame-to-frame 2D correspondences, which can be
obtained as discussed in Section 3.2, NRSFM can be formulated as the problem of
estimating the 3D locations of the individual feature points in each input image.

In NRSFM, the motion of the camera is explicitly modeled and taken as an addi-
tional unknown of the problem. As a consequence, 3D points need to be expressed in a
common world coordinate system. Furthermore, in general, camera internal parameters
are not assumed to be known. In the following analysis, we will consider the same two
projection models as in the template-based case, which we redefine here for the reader’s
convenience.
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We will first introduce a general formulation of NRSFM under a weak perspective,
or affine, camera model. In this case, the projection of a 3D point qi can be written as

d

[

ui

vi

]

= Rqi + t , (5.1)

where R contains the first two rows of the full camera rotation matrix, and t is the
2×1 camera translation vector. Assuming no distortion, the matrix of internal camera
parameters reduces to a single focal length, which was here absorbed by the scalar d.
Since, in NRSFM, the notion of facet is absent, the same d is used for all the points.
We will then discuss NRSFM under full perspective projection, where the projection of
a 3D point qi is expressed as

di






ui

vi

1




 = A (Rqi + t) , (5.2)

with A the 3 × 3 matrix of internal camera parameters.
As in the case of template-based reconstruction, correspondences alone are insuf-

ficient for unambiguous reconstruction. To reduce the ambiguities, most NRSFM meth-
ods rely on a linear subspace model to constrain the deformations of the 3D points.
Whereas in the template-based case, the deformation modes could be infered from the
reference mesh using a technique such as [Salzmann et al., 2007c], this is no longer the
case for NRSFM. Consequently, the modes are typically taken as additional unknown
variables and recovered at the same time as their coefficients, along with the rotation
and translation for each frame of the sequence. Note that, since the modes are obtained
neither from a large dataset of deformed surfaces as in [Salzmann et al., 2007c] nor by
modal analysis, they do not necessarily favor smooth deformations. Depending on the
number of basis shapes involved, they rather encourage the deformations to remain sim-
ple. Since most NRSFM techniques exploit this linear subspace representation, we will
describe it as part of the general approach. However, as will be discussed in Chapter 6,
some very recent methods depart significantly from this initial formulation.

In theory, NRSFM is more generally applicable than template-based shape recov-
ery, since it requires neither a calibrated camera, nor a reference template. In practice,
however, because of the higher number of degrees-of-freedom, NRSFM methods are
subject to more ambiguities and are more sensitive to measurement noise. As a con-
sequence, to be as effective as template-based approaches, they often require stronger
constraints and a good initialization. In many cases, the latter is obtained by applying
a rigid structure-from-motion algorithm.

In the remainder of this chapter, we start by reviewing the problem formulation
for the weak perspective case as introduced in [Bregler et al., 2000]. We then discuss
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NRSFM in the perspective case, as proposed by [Xiao and Kanade, 2005, Hartley and
Vidal, 2008].

5.2 NRSFM UNDER WEAK PERSPECTIVE PROJECTION

Recall from Eq. 5.1 that under the weak perspective model, the projection of a 3D point
qi can be written as

[

ui

vi

]

=
1

d
(Rqi + t) , (5.3)

where R contains the first two rows of a full rotation matrix, t is a 2×1 translation
vector, and d is a scalar.

Given Nc such 3D points on a surface, the corresponding equations can be grouped
in matrix form, which yields the system of equations

[

u1 · · · uNc

v1 · · · vNc

]

=
1

d
(RQ + T) , (5.4)

where Q is the 3 × Nc matrix of 3D point coordinates, and T is the 2 × Nc translation
matrix whose columns all contain the same vector t. Without loss of generality, and
as was proposed in the factorization algorithm of Tomasi and Kanade [Tomasi and
Kanade, 1992], the translation T can be eliminated by subtracting the mean of all 2D
points, which is equivalent to assuming that the shape is centered at the origin. This
also removes the translation ambiguity mentioned in [Aanaes and Kahl, 2002].

A standard assumption of NRSFM methods is that the shape can be approximated
with a linear subspace model, meaning that the shape can be expressed as a linear
combination of Ns basis shapes. Under this model, Eq. 5.4 can be re-written as

[

u1 · · · uNc

v1 · · · vNc

]

= R
Ns∑

k=1

ckSk , (5.5)

where each Sk is a 3 × Nc matrix containing one basis shape, and ck is its associated
coefficient. Note that since no mesh representation is available here, the basis shapes will
depend on the specific configuration of feature points on the surface. Therefore they
cannot be pre-computed as in Chapter 4 and must be recovered together with their
coefficients. Note also that, without loss of generality, the scalar d has been absorbed
in the shape coefficients.

Given outlier-free frame-to-frame correspondences between the 2D surface features
in an Nf frame video sequence, we can write Eq. 5.5 for each frame, and group all the
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resulting equations in a system of the form
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, (5.6)

where W is the 2Nf × Nc measurement matrix, C is a 2Nf × 3Ns matrix, and B is
the 3Ns × Nc matrix containing the shape basis. In general, we expect 3Ns < 2Nf and
3Ns < Nc. Therefore, W should have rank 3Ns. In practice, because of measurement
noise, W usually has full rank. However, its practical rank can be obtained by finding a
significant drop in its singular values. This also gives a practical solution to the problem
of estimating the number of basis shapes Ns.

Since W is directly obtained from the video sequence, a typical solution to obtain-
ing C and B is by singular value decomposition. The left-singular vectors corresponding
to the largest 3Ns singular values are taken as an estimate Ĉ of C, and the correspond-
ing right-singular vectors as an estimate B̂ of B. As will be discussed in Section 5.4, this
decomposition is not unique, and additional constraints are required to obtain mean-
ingful estimates. Given Ĉ, the rotation matrices and shape coefficients in each frame
can be recovered individually. This is done by re-ordering and re-writing the rows ĉj of
Ĉ corresponding to frame j as

ĉj =







cj
1r

j
1 cj

1r
j
2 cj

1r
j
3 cj

1r
j
4 cj

1r
j
5 cj

1r
j
6

...

cj
Ns

rj
1 cj

Ns
rj
2 cj

Ns
rj
3 cj

Ns
rj
4 cj

Ns
rj
5 cj

Ns
rj
6







, (5.7)

where rj
1, ..., r

j
6 are the coefficients in the rotation matrix for frame j taken row-wise.

This matrix can then be decomposed into

ĉj =







cj
1

...

cj
Ns







[

rj
1 rj

2 rj
3 rj

4 rj
5 rj

6

]

, (5.8)

which can be done by singular value decomposition. Note that, as for the decomposition
of W into C and B, this decomposition is not unique and need to be corrected to ensure
that the rj

i truly form a rotation matrix.
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5.3 NRSFM UNDER FULL PERSPECTIVE PROJECTION

While the weak perspective camera model can be sufficient when the variation in depth
over the whole object is fairly small, it is known that the full perspective model is
often truer to what is observed in real images. Therefore, several authors have proposed
NRSFM formulations for the full perspective case [Xiao and Kanade, 2005, Vidal and
Abretske, 2006, Bartoli et al., 2008, Hartley and Vidal, 2008, Llado et al., 2010, Wang
and Wu, 2010]. Here, we derive the main equations underlying these techniques and
describe the different approaches introduced to solving them.

Recall from Eq. 5.2 that the projection under the perspective camera model of a
3D point qi represented by its homogeneous coordinates q̃i = [qT

i , 1]T can be written
as

di






ui

vi

1




 = Pq̃i , P = A[R|t] , (5.9)

where A is the matrix of internal camera parameters, R is the camera rotation matrix,
and t is the camera translation vector. Although A is often assumed to be unknown,
calibrating the camera better constrains the problem [Hartley and Vidal, 2008]. Recall
that unlike in the weak perspective case, the scalar accounting for depth di is different
for every point i.

As before, we can group in matrix form the equations corresponding to Nc such
points found in a single frame, which yields






d1u1 · · · dNc
uNc

d1v1 · · · dNc
vNc

d1 · · · dNc




 = PQ̃ , (5.10)

where Q̃ is the 4 × Nc matrix of homogeneous point coordinates. By assuming again
that the shape can be described as a linear combination of basis shapes Sk, we can
re-write the previous system as






d1u1 · · · dNc
uNc

d1v1 · · · dNc
vNc

d1 · · · dNc




 = AR

Ns∑

k=1

ckSk + AT , (5.11)

where we have explicitly decomposed the projection matrix into internal parameters,
rotation and translation, and where each column of T contains the translation vector
t.
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From the outlier-free correspondences between points in Nf frames, we can build
the system of equations representing all projections of all points as
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, (5.12)

where W is the 3Nf × Nc matrix of scaled measurements, C is a 3Nf × (3Ns + 1)
matrix, and B is the (3Ns + 1) × Nc matrix containing the shape basis.

Unfortunately, while in the weak perspective case W was known, here it depends
on the unknown perspective depth scalars dj

i . As a consequence, the solution cannot be
directly estimated by a simple singular value decomposition. To overcome this difficulty,
several solutions have been proposed. In [Xiao and Kanade, 2005], an iterative proce-
dure was introduced to alternatively compute the structure and motion from fixed
depths, and vice-versa. Initially, the depths dj

i were set to 1. In [Llado et al., 2010],
some parts of the surface were assumed to move rigidly. Therefore, an initial solution
was computed using the results obtained with a rigid structure from motion techniques
on these parts and refined using a nonlinear optimization method. Recently, in [Hart-
ley and Vidal, 2008], it was shown that the solution to perspective NRSFM could be
obtained in closed-form by exploiting the tensor estimation and factorization method
of [Hartley and Schaffalitzky, 2004]. While this gives an exact solution in the noise-free
case, the approach is sensitive to noise. As observed in [Hartley and Vidal, 2008], this is
mainly due to the fact that the tensor estimation and factorization method they relied
on [Hartley and Schaffalitzky, 2004] lacks robustness to noise, as many purely algebraic
methods do.

5.4 AMBIGUITIES OF NRSFM

Even though, in many NRSFM methods, the shape is already regularized by a linear
subspace model, ambiguities remain. This makes sense, since the shape basis also is an
unknown of the problem. Furthermore, while for template-based reconstruction going
from weak to full perspective theoretically yields a better-posed problem, perspective
NRSFM still suffers from the same ambiguities as the weak persective formulation.
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First, the decomposition of W into C and B can only be computed up to an
invertible transformation. Indeed, for any invertible 3Ns × 3Ns matrix G, we can write

W = ĈGG−1B̂ = CB . (5.13)

This was also observed for the rigid structure-from-motion problem in the factorization
method of [Tomasi and Kanade, 1992]. This matrix G is known as the corrective trans-
formation. Since, in theory, any G would do, a way must be found to choose the best
one. Typically, this is done by finding a G that ensures that the rotation matrices are
orthonormal. Details on the different manners to exploit this will be given in Chapter 6.
In [Xiao et al., 2004b, Xiao and Kanade, 2004], it was argued that, even when enforc-
ing orthonormality constraints, ambiguities remained in the reconstruction. However, it
was later shown in [Akhter et al., 2009] that all solutions in this ambiguous space yield
equal structures up to a 3D rotation.

In addition to the corrective transformation, other ambiguities inherent to
NRSFM were discussed in [Aanaes and Kahl, 2002]. One of them is the relative trans-
lation and scale between the camera center and the object. As in the template-based
case of Chapter 3, it is impossible to differentiate between a fixed camera seeing an
expanding object and a camera moving closer to a constant-size object. This, in gen-
eral, is overcome either by fixing the object scale, or by imposing temporal smoothness.
Similarly, there also is an ambiguity between the magnitude of the basis shapes and
their corresponding coefficients.

Furthermore, the same global rotation-translation ambiguity as in the rigid case
remains in non-rigid structure from motion solutions. In the full perspective case, it
was shown in [Hartley and Vidal, 2008] that, in the uncalibrated case, the solution is
only determined up to a linear transformation. However, with a calibrated camera, this
ambiguity reduces to the same undetermined global rotation as in the weak perspective
case.

Finally, in addition to the ambiguities inherent to the problem that have been
formally proved in the above-mentioned papers, other ambiguities have been observed
in practice. In [Torresani et al., 2003], it was noted that if too many basis shapes were
required, the reconstruction problem became ambiguous. Similarly, in [Bartoli et al.,
2008], the problem that treating all modes equally results in ambiguities due to the
potential dependencies of the modes. Solutions to these problem involving higher order
deformation models, or coarse-to-fine modes computation will be discussed in Chapter 6.

5.5 THE MISSING DATA PROBLEM

A weakness of non-rigid structure-from-motion techniques is their sensitivity to missing
data and mismatches. Several solutions to these problems have been proposed.
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The first publications to address the missing data problem were [Torresani et al.,
2001, Brand, 2001]. Both proposed to exploit fully tracked points to infer the missing
data. In particular, they follow the idea introduced by [Irani, 1999] for optical flow esti-
mation, and they establish a basis flow using the fully tracked points. More specifically,
assuming that W has rank r, all columns of W can be modeled as linear combinations
of r basis tracks. If at least r points have been tracked throughout the whole sequence,
this basis can be obtained by singular value decomposition of the corresponding part of
W. To fill in the missing data in matrix W, they follow the formulation of [Lucas and
Kanade, 1981], and express the locations of the image points in terms of the basis coeffi-
cients. The resulting system of equations is then solved iteratively to obtain the correct
coefficients and thus predict the location of points that were lost during tracking.

While this is effective when some points have been tracked in all images, it would
still fail in the more realistic case where points are visible for some frames and then
disappear. In [Olsen and Bartoli, 2008], this problem was addressed by separating the
sequence into blocks of frames whose motion parameters can then be estimated. Given
the motion in the individual blocks, the basis shapes can be estimated later by exploiting
priors.

A different line of works followed the idea introduced in [Marques and Costeira,
2009] to deal with missing data in rigid structure-from-motion. In this paper, it was
noted that rigid SFM with missing data can become ambiguous when the available
points are in a degenerate configuration, such as on a plane. To overcome this issue,
the authors introduced the notion of motion manifold, which constrains the recovered
motion to be feasible. The available tracks can then be projected on this manifold,
which makes reconstruction robust to those degenerate scenarios. In [Paladini et al.,
2009], this was extended to reconstruction of deformable and articulated objects seen
under orthographic projection. Other methods were proposed in [Wang et al., 2008,
Del Bue et al., 2010] to allow for different camera models, as well as to improve the
convergence properties of the original algorithm.

The above-mentioned techniques were designed to cope with missing data. A dif-
ferent problem arises from the presence of mismatches in the point tracks. To overcome
these outliers, the most common scheme is to rely on a RANSAC [Fischler and Bolles,
1981] procedure [Olsen and Bartoli, 2008, Zhu et al., 2010]. Another solution involves
using a robust estimator to weight the points according to the uncertainty of the mea-
surements [Shaji and Chandran, 2008]. This technique also deals with missing data by
assigning a zero weight to the lost points.

In any event, even though there are techniques designed to overcome the missing
data problem, the theoretical solutions discussed in this chapter are not sufficiently con-
strained to recover meaningful structure and motion by themselves. As for template-
based reconstruction, additional knowledge needs to be introduced in NRSFM algo-
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rithms. In the next chapter, we will discuss the different types of knowledge that have
been proposed so far.
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C H A P T E R 6

Performing Non-Rigid Structure from

Motion
In the previous chapter, we have shown that recovering non-rigid structure and mo-
tion from Nc points tracked in Nf frames could theoretically be done by factorizing a
measurement matrix into a product of two matrices. This can be expressed as

W = CB , (6.1)

where W is the measurement matrix, C contains products of the shape coefficients
with the motion parameters, and B contains the shape basis. However, as mentioned
in Section 5.4, this factorization is subject to ambiguities. The decomposition can only
be computed up to an invertible transformation G, up to a global scale, and up to
ambiguities between shape coefficient values and basis shape magnitudes. In addition
to those theoretical ambiguities, the problem also is ill-conditioned due to the presence
of image noise. As a consequence, constraints must be incorporated into the factorization
to overcome these issues.

In general, adding constraints to the factorization of Eq. 6.1, yields an optimiza-
tion problem that can be parameterized in two different ways. The first one involves
expressing the reconstruction in terms of the corrective transform G only. This implic-
itly satisfies the measurement constraints, since W = ĈB̂ = ĈGG−1B̂, where Ĉ and B̂
are the matrices obtained by SVD. Therefore, only the additional regularization terms
are taken into account to find the best G. The second way is to write the objective in
terms of the original variables Sk, cj

k, and Rj of Eqs. 5.6 or 5.12, as well as A and tj if
also optimized. This yields an optimization problem of the form

minimize
Sk,cj

k
,Rj

∥
∥
∥W − C(cj

k,R
j)B(Sk)

∥
∥
∥

2

F
, (6.2)

where C and B are expressed as functions of the variables, and ‖ · ‖F is the Frobenius
norm. Additional knowledge can then be introduced either as hard constraints or as
regularizers in the objective function.

In this chapter, we review the different kinds of additional constraints that have
been proposed in recent years. As in the case of template-based reconstruction, temporal
and geometric consistency constraints have been used. In addition to these, an NRSFM-
specific constraint arises from the fact that the estimated rotation matrices must be
orthonormal. We will start with this one and then move on to temporal and geometric
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ones. Note that we do not differentiate between the weak and full perspective cases
since these constraints generally apply to both.

6.1 ORTHONORMALITY CONSTRAINTS

The first natural constraints that have been used to disambiguate NRSFM are orthonor-
mality constraints [Bregler et al., 2000]. As in rigid structure from motion [Tomasi and
Kanade, 1992], they were introduced to encode the fact that the rotation matrices are
orthonormal. Therefore, the goal is to find the invertible corrective transformation G
that satisfies this property.

More specifically, from the formulation of Eq. 5.6, one can write orthonormality
constraints for each of the individual blocks of C. This yields equations of the form

Ĉ2j−1:2jGkG
T
k ĈT

2j−1:2j = (cj
k)

2RjRjT

= (cj
k)

2I2×2 , 1 ≤ j ≤ Nf , 1 ≤ k ≤ Ns , (6.3)

where Ĉ2j−1:2j is a 2 × 3Ns matrix containing the two consecutive rows of Ĉ correspond-
ing to frame j, Gk is a 3Ns × 3 matrix containing three consecutive columns of G, and
cj

k is the weight of the kth basis shape in frame j. These constraints are quadratic in G
and typically need to be solved by nonlinear optimization methods.

In the closed-form solution of [Xiao et al., 2004b], the authors proposed an
approach to making this step easier. To this end, they introduced new variables
Hk = GkG

T
k . Given these quadratic variables, the constraints are re-written as

Ĉ2j−1HkĈ
T
2j−1 − Ĉ2jHkĈ

T
2j = 0 , 1 ≤ j ≤ Nf , 1 ≤ k ≤ Ns , (6.4)

Ĉ2j−1HkĈ
T
2j = 0 , 1 ≤ j ≤ Nf , 1 ≤ k ≤ Ns . (6.5)

The first constraint encodes both diagonal terms of Eq. 6.3 simultaneously, thus remov-
ing the dependency on the unknown coefficients cj

k. The second constraint represents
the off-diagonal terms. Only one such constraint needs to be added since Hk can be
made implicitly symmetric, which makes both off-diagonal terms identical.

Unfortunately, it was shown in [Xiao et al., 2004b] that this linearized version of
the orthonormality constraints is not sufficient to fully disambiguate the reconstruction
problem. This led the authors to argue that orthonormality constraints were insufficient
on their own. However, as was suggested in [Brand, 2005] and later proved in [Akhter
et al., 2009], under noise-free observations, orthonormality constraints are sufficient
to overcome the corrective transformation ambiguity of NRSFM. The reason for the
remaining ambiguities found in [Xiao et al., 2004b] was that no constraint was added to
force the rank of Hk to be 3. In [Akhter et al., 2009], it was shown that this additional
rank constraint was sufficient to determine the structure. More specifically, Gk can
still only be determined up to a Euclidean transformation, but this ambiguity has no
influence on the reconstructed structure. This is depicted in Fig. 6.1, which illustrates
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Figure 6.1: Ambiguities of orthonormality constraints [Akhter et al., 2009]. (Left) Reconstruc-

tion of a face. The cost function suggests that many shapes satisfy orthonormality constraints.

However, the shapes in this region are all the same up to a Euclidean transformation. (Right)

Reconstruction of a cube from noise-free data. While the method of [Bregler et al., 2000] does

not give a correct solution (a), using orthonormality constraints gives a perfect reconstruction

(b). As before, there exist several solutions, but they are all the same up to a global rotation

(d-f). Courtesy of I. Akhter.

the fact that a family of shapes satisfies the orthonormality constraints, but that any
point in this region gives the same structure up to a 3D rotation.

While orthonormality constraints were shown to be sufficient to resolve ambigui-
ties, solving the true constraints still involves a nonlinear optimization problem, which
can lead to undesirable local minima. Several approaches to tackling this problem were
proposed. For instance, in [Torresani et al., 2001], the authors relied on an iterative
scheme that involved alternatively optimizing rotations, shape basis, and shape co-
efficients. Orthonormality constraints were implicitly satisfied by parameterizing the
rotations with exponential coordinates. For similar reasons, in [Llado et al., 2010], the
rotations were parameterized with quaternions. By contrast, in [Brand, 2005] it was
proposed to directly minimize the squared error induced by the orthonormality con-
straints of Eq. 6.3. A variable-metric quasi-Newton scheme was used and the constraint
‖Gk‖F = 1 was added. In a similar constrained optimization paradigm, an algorithm
that enforced orthonormality by constraining the solution to remain on a Riemannian
manifold was developed in [Shaji and Chandran, 2008]. Fig. 6.2 depicts the results ob-
tained with this method on the shark sequence of [Torresani et al., 2008], which is used
in many publications.

Despite the fact that orthonormality constraints strongly reduce the ambiguities
of NRSFM, resulting solutions often remain sensitive to image noise. As a consequence,
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Figure 6.2: Reconstruction of the shark data using the method of [Shaji and Chandran, 2008].

Here, orthonormality is enforced by constraining the solution to remain on a Riemannian mani-

fold. Red circles correspond to ground-truth points, and blue dots to reconstructed ones. Cour-

tesy of S. Chandran.

additional constraints need to be introduced. These constraints can be roughly classified
into temporal consistency and geometric constraints, both of which are discussed below.

6.2 IMPOSING TEMPORAL CONSISTENCY

As shown in Chapter 4 for template-based reconstruction, accounting for the fact that,
in a video sequence, the shape does not vary arbitrarily from frame to frame gives very
strong reconstruction cues. This kind of knowledge is even better adapted to NRSFM
since it is specifically designed to deal with sequences as opposed to single frames. As
a consequence, various types of temporal constraints have been proposed to improve
structure and motion recovery.

In Section 4.1, we showed that zeroth order motion models are effective to con-
strain template-based frame-to-frame reconstruction. This remains true in NRSFM,
where they have been used extensively [Aanaes and Kahl, 2002, Del Bue et al., 2007,
Rabaud and Belongie, 2008]. The intuition behind such models simply is that the vari-
ation of the shape Q =

∑

k ckSk between two consecutive frames is small. Therefore,
the term

λs

Nc∑

i=1

Nf∑

j=2

‖Qj
i −Qj−1

i ‖2
2 (6.6)

can be added to the objective function of Eq. 6.2. Typically, the weight λs, which
accounts for the relative influence of the two terms, is set manually. In [Torresani et
al., 2008], a similar, though more general, linear dynamical model was introduced in a
probabilistic framework. In that case, the temporal structure takes the form

cj = Φcj−1 + ηj , (6.7)
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where cj is the vector of all shape coefficients for frame j, Φ is an Ns × Ns transition
matrix, and ηj is a zero-mean Gaussian noise vector. This model represents the shape
coefficients in a frame as a linear function of those in the previous one. If Φ is taken to
be the identity matrix, this essentially becomes equivalent to the previous zeroth order
motion model.

For the same reasons that make it permissible to penalize large frame-to-frame
shape variations, it can be assumed that the camera motion between two consecutive
frames is small. In [Rabaud and Belongie, 2008, Rabaud and Belongie, 2009], this was
done by relying on the same zeroth order motion model as before and introducing the
term

λr

Nf∑

j=2

‖Rj − Rj−1‖2
F (6.8)

in the objective function of Eq. 6.2. As before, λr is the weight that controls the relative
influence of the terms in the objective function. A similar regularizer can also be added
for the translation when it is optimized.

In [Olsen and Bartoli, 2008], a single term was introduced to subsume both shape
and camera temporal consistency regularizers by noting that their respective parameters
appear simultaneously in C. This yields a regularizer of the form

λm

Nf∑

j=2

‖C2j−1:2j − C2j−3:2j−2‖
2
F , (6.9)

where, as before, C2j−1:2j is the 2 × 3Ns matrix containing the two rows of C corre-
sponding to frame j.

Recently, it was proposed to exploit a very different kind of temporal informa-
tion [Rabaud and Belongie, 2008, Rabaud and Belongie, 2009, Zhu et al., 2010]. Instead
of assuming that frame-to-frame motion is small, these methods rely on the concept of
repetitions and assume that, given a sufficiently long video sequence, similar shapes will
appear several times, but seen from different viewpoints. Under this assumption, several
frames picturing the same shape up to a rigid transformation can be used together to
estimate the 3D shape.

In [Rabaud and Belongie, 2008, Zhu et al., 2010], the images were clustered based
on a reprojection error criterion. Given a pair of images, epipolar geometry can be used
to decide whether both images were generated by the same rigid object. Unfortunately,
some cases remain ambiguous, and therefore triplets of images need to be compared.
Once the image clusters in which the shape moves rigidly have been found, a stan-
dard rigid structure from motion technique, such as [Tomasi and Kanade, 1992], can be
applied to reconstruct the shape in each cluster. To further improve the global recon-
struction in the whole sequence, and account for temporally continuous deformations
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(a) (b)

Figure 6.3: Comparison of the results of [Rabaud and Belongie, 2009](CSFM) with those

of [Xiao et al., 2004b](XCK) and [Torresani et al., 2008](THB) on the shark data. (a) Recon-

struction error for all frames in the sequence. (b) For a single frame, convergence speed and

reconstruction error as a function of noise. Errors are given as mean distances between the

reconstructed points and their true location, divided by the span of the true shape. Courtesy of

V. Rabaud.

rather than piecewise rigid ones, an additional refinement step is performed. The major
difference between [Rabaud and Belongie, 2008] and [Zhu et al., 2010] arises from the
fact that the former uses independent clusters of at least 3 frames, whereas the latter
looks for as large as possible overlapping groups of images.

In [Rabaud and Belongie, 2009], a different method to account for these repetitions
was proposed. Instead of using reprojection errors, a measure of similarity between
triplets of shapes {Qi,Qj,Qk} was introduced. It can be written as

aF (i, j, k) =
∑

h∈{i,j,k}

∥
∥
∥
∥
∥
Qh −

Qi + Qj + Qk

3

∥
∥
∥
∥
∥

2

F

. (6.10)

Of course, this measure cannot be directly computed, since it depends on the 3D
shapes, which are unknown. However, its infimum and supremum can be obtained
from the measurement matrix W. This is used to build a set of pairs of triplets
F = {((i, j, k), (i′ , j′, k′))|aF (i, j, k) ≤ aF (i′, j′, k′)}, which implicitly defines an order-
ing of triplets based on the similarity measure. Furthermore, it can be shown that aF

is related to the values of the shape coefficients, such that

aF (i, j, k) =
1

3

(
‖ci − cj‖2

2 + ‖ci − ck‖2
2 + ‖cj − ck‖2

2

)
. (6.11)

Therefore, the relations in set F can be used to define constraints in a Generalized
Non-metric Multi-Dimensional Scaling problem [Agarwal et al., 2007] written as a semi-
definite program (SDP). Solving this SDP yields an estimate of the shape coefficients
c in each frame. Given the shape coefficients, the shape basis and rotations are then
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Figure 6.4: Comparison of shape and trajectory spaces. (a) In traditional approaches, a 3D

object is represented as a point in shape space. (b) By contrast, in the approach of [Akhter

et al., 2008], the trajectory is represented by a single point in trajectory space. Courtesy of I.

Akhter.

computed. Fig. 6.3 compares the reconstruction accuracy of [Rabaud and Belongie,
2009] with other methods on the shark dataset. The reconstruction errors are given as
mean distances between the reconstructed points and their true location, divided by the
span of the true shape. Note that the method of [Rabaud and Belongie, 2009] converges
quickly and yields better accuracy than the other approaches.

While the zeroth order motion model and the shape repetition assumption are
very helpful, they both have their shortcomings. The former usually does not really
apply to the true dynamics of a deformable surface, and the latter requires having long
enough sequences such that the same shape appears several times. Furthermore, in
the above-mentioned works, temporal consistency was not sufficient to fully constrain
reconstruction. As a consequence, the resulting techniques had to exploit additional
geometric constraints, as described in Section 6.3.

6.2.1 From Basis Shapes to Basis Trajectories
As mentioned in Chapter 5, while most NRSFM approaches represent the shape with a
linear subspace models, some recent works have proposed different formulations. Among
them, the method of [Akhter et al., 2008] introduced an alternative approach to enforc-
ing temporal consistency by formulating NRSFM in trajectory space. In other words,
instead of reconstructing the whole shape at each time instant, the trajectory over the
whole sequence of each 3D point is estimated.

To this end, the usual shape basis is replaced by a trajectory basis, as shown
in Fig. 6.4. More specifically, the x−, y−, and z−trajectories of a 3D point qi =
[xi, yi, zi]

T in Nf frames are defined as tx
i = [x1

i , · · · , x
Nf

i ]T , ty
i = [y1

i , · · · , y
Nf

i ]T , and

tz
i = [z1

i , · · · , z
Nf

i ]T , respectively. Assuming that these trajectories can be described as
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a linear combination of Nt basis trajectories θk, this yields

tx
i =

Nt∑

k=1

ax
i,kθk , ty

i =
Nt∑

k=1

ay
i,kθk , tz

i =
Nt∑

k=1

az
i,kθk , (6.12)

where ax
i,k, ay

i,k, and az
i,k are the x−, y−, and z−coefficients for point i and basis tra-

jectory k, and θk is an Nf -dimensional vector. Given this formulation, NRSFM can be
re-written as the factorization problem

W =






R1

. . .
RNf
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β1

β1
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βNf
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βNf
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︸ ︷︷ ︸

Λ

, (6.13)

where βj = [θj
1, · · · , θj

Nt
] contains the jth element of all θk, and W is the same mea-

surement matrix as before. W is then factorized into Γ and Λ, and the resulting cor-
rective transform is estimated by ensuring that the rotation matrices are orthonormal.
In practice, the [Akhter et al., 2008] method assumes that the basis trajectories θk

are known and can be generated from the Discrete Cosine Transform. While this might
seem restrictive, it was shown to generalize to many different trajectories. The results
are compared to those of [Torresani et al., 2008] and [Xiao et al., 2004b] in Fig. 6.5.
Note that the reconstructions of [Akhter et al., 2008] correspond more closely to what
is depicted by the images.

In addition to its originality, this method has the advantage of only requiring
orthonormality constraints as additional knowledge to yield accurate reconstruction.
This is due to the fact that the basis is fixed, and therefore fewer unknowns need be
determined in the reconstruction process.

6.3 IMPOSING GEOMETRIC CONSTRAINTS

While temporal consistency regularizers have proved effective in many situations, they
still assume that the input images have been acquired in an orderly sequence and,
therefore, do not generalize to cases where the images are independent. Furthermore,
they are not always sufficient to fully disambiguate the reconstruction problem. As a
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Figure 6.5: Comparison of several approaches on a dance sequence from the CMU mocap

database. The images were taken from [Akhter et al., 2008]. Note that their method produces

more accurate results than the others. Black dots represent the ground-truth points, whereas

gray circles are the reconstructed ones. Courtesy of I. Akhter

consequence, many techniques have also exploited geometric properties for structure
and motion estimation. Here, as in the template-based case, we distinguish between
global and local shape constraints.

6.3.1 Global Constraints
In contrast to the template-based approach presented in Chapter 3, the basic formu-
lation of non-rigid structure from motion techniques introduced in Chapter 5 includes
a global linear deformation model by design since the surface is assumed to be gener-
ated from a linear combination of basis shapes. Note, however, that, in NRSFM, the
basis shapes are unknown, and thus do not provide as strong constraints as they did in
the template-based case, where they were pre-computed and fixed. This explains why
additional smoothness constraints are often necessary in NRSFM.

One of the first global geometric constraints employed in NRSFM involved as-
suming that the mean shape is the dominant component of the shape in each frame.
Constraining the surface reconstruction can then be done by encouraging the shape in
each frame to remain close to the unknown mean shape [Brand, 2001] or close to an
initial estimate computed using rigid structure from motion techniques [Aanaes and
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Figure 6.6: Comparison of the results of a weak perspective camera model [Xiao et al., 2004b]

and a full perspective one [Xiao and Kanade, 2005] when relying simultaneously on orthonor-

mality constraints and basis constraints. (1,4) Two input images. (2,5) Reconstruction with a

perspective model. (3,6) Reconstruction with a weak perspective model. Note that, in the latter

case, some distortion can be observed. Courtesy of T. Kanade

Kahl, 2002]. In essence, this assumption simply means that the object mostly moves
rigidly, and it is thus only valid for small deformations.

As mentioned in Section 5.4, recovering the basis shapes is an ambiguous problem
since there may be dependencies between them. As a consequence, there is a global
affine ambiguity of the shape basis. Therefore, other types of geometric constraints were
proposed to disambiguate the computation of the shape basis. The methods of [Xiao
et al., 2004b, Xiao and Kanade, 2005] established basis constraints in a similar manner
as the orthonormality constraints of Eqs. 6.4 and 6.5. To this end, they rely on the
condition number of sub-matrices of W to find the most independent Ns images in the
sequence. The corresponding, unknown 3D shapes are then taken as the basis shapes.
Therefore, constraints arise from the fact that the surface in the chosen frames must be
generated by a single basis shape. Ordering the frames so that the chosen ones are the
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first Ns frames in the sequence, this yields constraints of the form

ci
i = 1 , 1 ≤ i ≤ Ns , (6.14)

cj
i = 0 , 1 ≤ i, j ≤ Ns , i 6= j .

Following the same approach as for the orthonormality constraints of Eqs. 6.4 and 6.5,
these constraints can be used to derive linear equations in terms of the quadratic correc-
tive transform Hk. When used in conjunction with the orthonormality property, these
constraints were shown to be sufficient to remove the ambiguity in NRSFM [Xiao et al.,
2004b]. In Fig. 6.6, we compare the results obtained with orthonormality constraints
and basis constraints under a weak perspective model [Xiao et al., 2004b] and a full
perspective one [Xiao and Kanade, 2005]. Note that the weak perspective reconstruction
is distorted.

A similar idea as in [Xiao et al., 2004b] was proposed in [Zhu et al., 2010]. The
shape in a particular image is assumed to be generated by only a subset of all the basis
shapes, and, therefore, the coefficients vectors cj should be sparse. This is enforced by
adding the penalty term

λc

Nf∑

j=1

‖cj‖1 , (6.15)

to the objective function, while imposing ‖cj‖2
2 = 1 ∀j. This proved effective to remove

the rotation ambiguity of the shape basis.
Two other approaches have also been proposed to more directly encourage the

basis shapes to remain independent. In [Bartoli et al., 2008], a coarse-to-fine approach
to recovering the modes was introduced. It starts by computing the mean shape, and
then iteratively adds modes to explain as much of the remaining variance of the data as
possible. A stopping criterion based on cross-validation was defined to avoid overfitting
to measurement noise. In [Brandt et al., 2009], it was proposed to find independent
basis shapes by following an ICA-based approach. To this end, a regularization term
that minimizes the mutual information of the individual modes was introduced.

In the same spirit of constraining the reconstruction of the shape basis, the notion
of shape priors was introduced in [Del Bue, 2008]. The general idea was to make use of
known 3D shapes, and assume that they were generated by part of the same shape basis
as the deformation observed in the input images. More specifically, let L be the 3l × Nc

matrix of known 3D shapes. The factorization problem of Eq. 6.1 can be re-written as

W = [CJ |CI ]

[

BJ

BI

]

, (6.16)

to which can be added constraints for the shape prior as

L = NBJ , (6.17)
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Figure 6.7: Comparison of the results of the various algorithms proposed in [Torresani et al.,

2008] (BCD-LS, EM-PPCA, EM-LDS), as well as of the methods in [Xiao et al., 2004b] (XCK)

and in [Brand, 2005] (B05) on the shark data. Green circles are the ground-truth points, and

blue dots the reconstructed ones. Courtesy of A. Hertzmann.

where J is the set of indices of the basis shapes that are common to the prior shapes
and the unknown ones, and I is the set containing the remaining indices. The factoriza-
tion of both equations can then be done simultaneously via generalized singular value
decomposition. The shapes given as prior were shown to significantly help reducing the
ambiguities in the reconstructed shape basis, and, thus, in the overall factorization.
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Figure 6.8: Evaluation of the robustness to the number of basis shapes on the shark data for

the algorithms proposed in [Torresani et al., 2008] (BCD-LS, EM-PPCA, EM-LDS) and the

methods in [Xiao et al., 2004b] (XCK) and in [Brand, 2005] (B05). The plot in (b) shows a

zoomed version of the one in (a) to highlight the differences between the [Torresani et al., 2008]

algorithms. Courtesy of A. Hertzmann.

Instead of adding explicit constraints on the shape coefficients, in [Torresani et
al., 2008], it was proposed to replace the linear subspace model with probabilistic PCA
(PPCA) [Tipping and Bishop, 1999], and to introduce a Gaussian prior on the coef-
ficients. A benefit of using PPCA is that it makes it possible to marginalize out the
shape coefficients. Therefore, the weights cj

k are never explicitly computed, which re-
moves them from the variables to optimize. This is similar in spirit to the formulation
of Section 4.2.2 for local deformation models where the coefficients were directly ob-
tained from the mesh vertices. By assuming Gaussian noise over the measurements
and over the shape, the distribution over the measurements is also Gaussian. In this
framework, NRSFM can be formulated as maximizing the joint likelihood of the image
measurements whose negative logarithm can be written as

L =
1

2

Nf∑

j=1

(
wj − Ejq̄

)T
(

Ej
(
VVT + σ2

mI
)
EjT

+ σ2I
) (

wj − Ejq̄
)

+
1

2

Nf∑

j=1

ln
∣
∣
∣Ej

(
VVT + σ2

mI
)
EjT

+ σ2I
∣
∣
∣+ NcNf ln(2π) , (6.18)

where wj is the vector containing the two rows of W associated to frame j, Ej replicates
djRj across the diagonal, with dj the scalar accounting for depth in frame j, V is
the matrix whose kth column contains the vectorized basis shape Sk, and q̄ contains
the vectorized mean shape. σm and σ are the Gaussian noise variance of the shape
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Figure 6.9: While standard NRSFM approaches assume that the shapes lie on a linear sub-

space, the true manifold can be nonlinear. This manifold can be better approximated by locally

smooth manifold learning [Rabaud and Belongie, 2008]. Courtesy of V. Rabaud.

and of the measurements, respectively. This negative log likelihood is minimized via
an EM procedure, whose initialization is obtained using a rigid structure from motion
technique. A comparison of the results of the different algorithms proposed in [Torresani
et al., 2008] and of other techniques on the shark data is shown in Fig. 6.7. Fig. 6.8
depicts the robustness to the number of basis shapes of the same algorithms. As before,
the error is defined as the ratio between the 3D distance to ground-truth and the span
of the true shape. Note that the error obtained by the EM procedure of [Torresani et
al., 2008] is relatively stable with respect to the number of basis shapes.

All the above-mentioned algorithms still rely on a linear subspace model to repre-
sent the deformations of the object of interest. In practice, this only applies to relatively
simple deformations, especially since existing methods are only reliable when using a
small number of basis shapes. Recently, two publications have advocated the use of
alternative models to capture more complex deformations. The first one [Rabaud and
Belongie, 2008] exploits the concept of locally smooth manifold learning (LSML) [Dollar
et al., 2007]. As suggested by Fig. 6.9, this relaxes the implicit constraint that the shapes
lie on a linear subspace. Instead of optimizing basis shapes and their coefficients, the
3D coordinates of the object’s points are optimized directly, and the resulting shapes
are regularized to form a locally smooth manifold. This is done in an iterative manner.
At each iteration, the manifold is learned from the current shape estimates. This yields
a gradient for the LMSL error term, which is combined with a gradient computed from
a temporal smoothness term explained in Section 6.2. As shown in Fig. 6.10, this ap-
proach has proved particularly well-adapted to model large deformations that do not
lie on linear manifolds, and therefore cannot be captured by a linear subspace.

The second approach [Fayad et al., 2009] to replacing the linear subspace model
with a higher-order one exploits a quadratic deformation model, which was originally
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Figure 6.10: Comparison of NRSFM using a locally smooth manifold representation of

the shape space [Rabaud and Belongie, 2008] (MSFM) with a classical NRSFM method

(CSFM) [Torresani et al., 2008] and with PCA learned from known 3D shapes. Note that

the method of [Rabaud and Belongie, 2008] is better adapted to cope with this non-smooth

deformation of a circular shape. Courtesy of V. Rabaud.

introduced in the Computer Graphics community for simulation purposes [Müller et
al., 2005]. In this case, the shape of a set of points is expressed as

Q =
[

Γ Ω Λ
]



















x1 · · · xNc

y1 · · · yNc

z1 · · · zNc
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︸ ︷︷ ︸

Q̂

, (6.19)

where Γ, Ω, and Λ are 3 × 3 matrices containing the coefficients of the linear, quadratic,
and mixed terms, respectively. This formulation relies on the availability of a rest shape
Q̂ that can be obtained from a rigid factorization algorithm. One advantage of this
shape parameterization is that the basis is completely determined by the rest shape.
Therefore, there is no need to optimize it. Some of the corresponding basis shapes are
depicted in Fig. 6.11. One drawback of this model is that, if the values of the coefficients
are left unconstrained, it can produce unrealistic shapes. On the other hand, when
the coefficients are initialized correctly and are appropriately bounded, the resulting
technique allows for the reconstruction of complex shapes, as depicted by Fig. 6.12.

6.3.2 Local Constraints
As for template-based reconstruction, while global geometric constraints are mostly ef-
fective to reconstruct simple global deformations, local approaches are in general better



76 CHAPTER 6. PERFORMING NON-RIGID STRUCTURE FROM MOTION

Figure 6.11: Quadratic deformation modes applied to a synthetic planar patch [Fayad et al.,

2009]. Courtesy of A. Del Bue.

BA-Quad

BA-Lin

EM-LDS

Figure 6.12: Comparison of the results obtained with global quadratic models [Fayad et al.,

2009], global linear models with bundle adjustment [Del Bue et al., 2007] and the EM-LDS

algorithm of [Torresani et al., 2008]. Note that the quadratic models are better suited to model

these large deformations. Courtesy of A. Del Bue.

suited to account for complex deformations. This is still the case when compared to the
quadratic models, which, as depicted in Fig. 6.11, produce deformation modes similar
to those of the learned linear models of Section 4.2.2, but without requiring training
data. In this section, we present several approaches to incorporating local smoothness
in NRSFM. While some of them are introduced to replace the linear subspace model,
others are used in conjunction with it: Since the shape basis is learned during recon-
struction, which is underconstrained, it can still be improved by imposing additional
smoothness.

The first local smoothness term in NRSFM was introduced in [Torresani et al.,
2001]. As in the original Snakes [Kass et al., 1988], the local constraints are encoded
as a regularizer on neighboring points. More specifically, for neighboring points qi1 and
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qi2 , the regularization term is written as

α2
i1,i2

Ns∑

k=1

(Sk,i1 − Sk,i2)
2 , (6.20)

where Sk,i contains the 3D coordinates corresponding to point i in basis Sk. The neigh-
borhood can be established by nearest neighbor search or Delaunay triangulation in
image space. The weights αi1,i2 are taken to be inversely proportional to the 2D dis-
tance between points i1 and i2.

In [Olsen and Bartoli, 2008], a similar idea was proposed, but with an additional
temporal component. The regularizer exploits the fact that the tracks of two simulta-
neously visible points should have similar shapes. This can be written as

αi1,i2

∥
∥qJ

i1
− qJ

i2

∥
∥

2

2
, (6.21)

where qJ
i is the vector concatenating the 3D coordinates of point i in the set of frames

J . As before, the weights αi1,i2 are taken as inversely proportional to the 2D distance
between the points. These constraints are included for all pairs of points that have been
tracked simultaneously for at least 10 frames.

Another approach to incorporating local constraints into NRSFM is to assume
local rigidity of the deforming surface. In [Llado et al., 2010], it was assumed that,
while some points on the surface deform, others only move rigidly throughout the se-
quence. The problem then becomes one of distinguishing rigid from non-rigid motion,
which can be done automatically [Llado et al., 2010]. As the methods relying on shape
repetitions [Rabaud and Belongie, 2008, Zhu et al., 2010] introduced in Section 6.2,
this involves verifying how well points satisfy epipolar geometry. Since many points
also move non-rigidly, and therefore should be considered as outliers in the fundamen-
tal matrices computation, a RANSAC algorithm is employed. Furthermore, to speedup
this procedure, a degree of non-rigidity score is defined and used to build a prior to
guide the RANSAC algorithm. The segmented rigid points are then used to compute
the motion parameters. Finally, the non-rigid structure is estimated via a nonlinear
optimization procedure. In this case, the surface is still computed as a linear combi-
nation of basis shapes. This assumption of rigidly moving points proved valid for face
reconstruction, or when several objects are moving with respect to each other, as shown
in Fig. 6.13. However, this does not generalize to arbitrary non-rigid objects.

While geometric constraints have proved effective at disambiguating reconstruc-
tion, all the methods described above still treat the object of interest as a whole. As
a consequence, similarly as the global models of Chapter 4, they often are limited to
relatively simple deformations. In the next section, we present approaches that address
this shortcoming by separating the object of interest into local regions.
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Frame 5 Frame 30 Frame 60

Figure 6.13: Reconstruction of a deforming cushion [Llado et al., 2010]. The approach re-

lies on the rigid chair to constrain the motion estimation. On the second and third rows, the

reconstructed surface is shown from two different viewpoints. Courtesy of A. Del Bue.

6.4 SPLITTING A GLOBAL SURFACE INTO LOCAL ONES

As discussed in Section 4.2.2, even when the global deformations are large, purely
local ones tend to be smaller and easier to recover. Therefore, it has recently been
proposed to also perform NRSFM locally, so that more complex deformations can be
handled. As we will see, local deformations can often be modeled as planar [Varol et
al., 2009], quadratic [Fayad et al., 2010], or isometric [Taylor et al., 2010]. In essence,



6.4. SPLITTING A GLOBAL SURFACE INTO LOCAL ONES 79

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

������������������������������������

������������������
������������������
������������������
������������������

��
��
��
��
�
�
�
�

��
��
��
��

�
�
�
�

����
�
�
�
�

��
��
��
��
�
�
�
�

�
�
�
��
�
�
�

��

�� ������

��

��

����
��

��
��
��
��
��
�
�
�
���

��
��
����
��
��
��

�
�
�
�

�
�
�
�

��

��
����

����
��

�
�
�
�

�
�
�
�

����

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�

��
��
��
��
���

�
�
�

�
�
�
���
��
��
��

������
��
��
��

�
�
�
� ��

��
��
��
�
�
�
�
�
�
�
�

��
��
��
��
��
����
������
��
��
��
����������

��
��
��
��
�
�
�
�

�� ��
��

��
��
��
��
��
��
��
��

����
����

����

�
�
�
�

����
�
�
�
�

��
��
��
��

��
��
��
��
��

��
��
��
����
��
��
��
��

��
��
��
��

����
�
�
�
�

��
��
��
��

��

�
�
�
�

����
��

��
��
��
��
��
�
�
�
�����

��
��
��
��

����

��

��
����

����
�
�
�
�

����

����

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

���������
���������
���������
���������

���������
���������
���������
���������

�����
�����
�����
�����

���������
���������
���������
���������

���������
���������
���������
���������
����
����
����
����

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
���
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

(a) (b) (c)

Figure 6.14: Modeling the surface as a consistent collection of planar patches [Varol et al.,

2009]. (a) Image patches are reconstructed individually up to a scale ambiguity which causes

their reconstructions not to be aligned. (b) Using shared correspondences between these patches

(blue points), consistent scales for all patches are recovered and the whole surface is recon-

structed up to a single global scale. (c) Optionally, a triangulated mesh is fitted to the resulting

3D point cloud to account for holes and outliers. It can be used to provide a common surface

representation across the frames and to enforce temporal consistency.

these approaches therefore perform NRSFM to recover local surface patches and then
enforce consistency between these patches to build a global surface. These methods
have significanlty departed from the formulation presented in Chapter 5.

The method introduced in [Varol et al., 2009] and depicted by Fig. 6.14 relies on
the fact that, when the global deformations are not too severe, local surface patches
remain approximately planar. It takes advantage of the fact that the motion of a plane
from one image to the next can be represented as a homography [Hartley and Zisser-
man, 2000]. Given corresponding points in an image pair, the first image is subdivided
into overlapping patches such as those of Fig. 6.14(a), which are assumed to remain
roughly planar. Within each individual patch, the correspondences are used to compute
a homography that relates its appearance in the first image to that in the second one.
From this homography, the rotation, translation and patch normal can be computed up
to a global scale ambiguity and a twofold normal ambiguity [Zhang and Hanson, 1995,
Malis and Vargas, 2007]. In other words, each 2D point in a patch can be assigned
one of several 3D interpretations. These ambiguities are resolved by using points that
belong to multiple patches, such as those shown in blue in Fig. 6.14(a), to enforce con-
sistency. This is done by guaranteeing that they receive the same interpretation, no
matter what patch is used to reconstruct them. First, normal orientations are chosen
consistently across patches. Then, the scale of each patch is optimized such that the
distance between the 3D reconstruction of the same 2D point from different patches
is minimized. One strength of this approach is that each step only involves solving a
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Figure 6.15: Using local quadratic models [Fayad et al., 2010]. Top and middle rows: Recon-

struction results on a real sequence. Bottom row: Comparison with the reconstructions of [Varol

et al., 2009], depicted by a mesh with green vertices. Note that the [Fayad et al., 2010] recon-

struction is more accurate both because it was obtained from a whole video sequences and

because it allows for deformations of the patches. Courtesy of A. Del Bue.

linear system, which can be done in closed-form. Furthermore, as opposed to classical
NRSFM techniques, this method allows reconstruction from only two images depicting
two different shapes of the same surface.

One drawback of the [Varol et al., 2009] method is that it requires sufficiently many
correspondences per local patch to reliably estimate the homography. As a consequence,
relatively large portions of the surface are asssumed to be planar, which limits the
range of global deformation. In [Fayad et al., 2010], the authors extended this approach
to allow for more complex deformations of the individual patches, given 2D points
tracked across a video sequence. Instead of imposing local planarity, local deformation
are regularized using the quadratic deformation model discussed in Section 6.3.1 [Fayad
et al., 2009]. Each overlapping group of tracked 2D points is reconstructed independently
using the quadratic deformation model of Eq. 6.19. As in the global case, this requires a
rest shape, which can be obtained from the first few initial frames of the sequence using
a rigid structure-from-motion technique. As in [Varol et al., 2009], the scale ambiguity
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Figure 6.16: Reconstruction of a piece of paper being torn apart [Taylor et al., 2010]. Courtesy

of A. Jepson.

of each patch, is resolved by exploiting the overlap between the patches. The top two
rows of Fig. 6.15 depict results obtained on real images of a piece of paper undergoing
large deformations. The bottom row features a comparison of this approach with [Varol
et al., 2009]. Note that the reconstructions of [Fayad et al., 2009] are more accurate than
those of [Varol et al., 2009]. This seems reasonable both because the method of [Fayad
et al., 2009] exploits the whole sequence instead of just two images and because allowing
the patches to deform is a better approximation of the observed phenomenon.

The two methods described above implicitly assume some amount of smoothness
in the local deformations. By contrast, the method of [Taylor et al., 2010] relies exclu-
sively on the preservation of local Euclidean distances between feature points found on
the surface, much as the [Ecker et al., 2008, Perriollat et al., 2010] methods introduced
in Section 4.2.2. Note, however, that in the NRSFM framework, the true distances be-
tween pairs of points are unknown. To overcome this problem, triplets of neighboring
points that move rigidly are identified and the global shape reconstructed as a soup of
triangles whose vertices remain at a fixed distance from each other. More specifically,
under orthographic projection, the 3D length of an edge between points qi1 and qi2 is
related to the length of its projection in the image plane by

‖qi1 − qi2‖
2
2 − ‖pi1 − pi2‖

2
2 = (di1 − di2)

2 , (6.22)

where pi is the 2D projection of point i, and di is its depth. Furthermore, the sum of
pairwise depth differences within a single triangle is always equal to zero, which can be
written as

(d2 − d1) + (d3 − d2) + (d1 − d3) = 0 . (6.23)

Combining these two equations for a single triangle moving rigidly in Nf frames results
in the system of equations

dT Λd− 2dT Λl1 + l1
T

Λl1 = 0
...

dT Λd − 2dT ΛlNf + lNf
T

ΛlNf = 0 , (6.24)
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where

d =






‖q2 − q1‖
2
2

‖q3 − q2‖
2
2

‖q1 − q3‖
2
2




 , lj =






‖pj
2 − pj

1‖
2
2

‖pj
3 − pj

2‖
2
2

‖pj
1 − pj

3‖
2
2




 , Λ =






1 −1 −1
−1 1 −1
−1 −1 1




 . (6.25)

Since the quadratic term in d is the same in all the equations, it can easily be eliminated.
This yields a linear system of equations in d, which can be solved in closed-form.
From d, the 3D triangle can be reconstructed up to a depth sign flip and a global
depth ambiguity. These ambiguities are then solved by accounting for all rigidly moving
triangles in the images. The non-rigid triangles are discarded based on their reprojection
error. A strength of this approach is that it can handle topology changes, as when the
sheet of paper depicted by Fig. 6.16 is being torn in two. A potential limitation that
it shares with the [Salzmann et al., 2008a, Ecker et al., 2008, Perriollat et al., 2010]

methods discussed in Section 4.2.2, which also rely on 3D distance constraints, is that
the Euclidean distances between triplets of surface points does not truly remain constant
when the surface deforms. The approximation is only valid when the curvature of the
triangle linking them is small, which means that the points cannot be too distant from
each other.

In short, there has been a number of exciting recent advances in NRSFM that are
now departing from its early formulations [Ullman, 1983, Bregler et al., 2000]. These
new techniques are starting to produce results and appear to be more robust to noise
and able to handle much larger deformations than before. This indicates that reliable
solutions to this problem might be found in spite of its complexity.
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Future Directions
In this survey, we have reviewed several template-based and non-rigid structure-from-
motion techniques that can be used to robustly recover 3D shape given point corre-
spondences. The former can be made very reliable when a template is available but
are, of course, inappropriate otherwise, which is often the case in practice. When video
sequences are available, the latter can be invoked instead and are very effective when
the deformations are not too complex.

In both cases, shape recovery implies solving an ill-posed problem and additional
geometric or temporal consistency constraints are needed for good results. Furthermore,
when there are too few correspondences, for example, because the surfaces are relatively
featureless, neither class of techniques performs well, which greatly limits their applica-
bility. To remedy this situation, we believe that future research should focus on taking
advantage of additional sources of image information, such as

• Silhouettes: The projected contours of a surface give powerful clues as to
their 3D shape. They already have been extensively exploited to reconstruct
developable surfaces [Gumerov et al., 2004, Perriollat and Bartoli, 2007], as
discussed in Chapter 4. However, these approaches do not naturally gener-
alize to non-developable surfaces whose shape cannot be inferred from their
outlines, which often are occluding contours. Such contours have been used
for 3D surface reconstruction [Sullivan et al., 1994, Szeliski and Weiss, 1998,
Ilić et al., 2007] but most existing approaches rely on iterative schemes in which
the occluding contours are predicted from a current shape estimate and compared
to their observed image locations. This runs contrary to the spirit of the most ef-
fective template-based method that perform reconstruction, either in closed form
or by finding the minimum of a convex function. Further work is therefore required
to merge these two different strands of research.

• Texture: Inferring shape from correspondences requires texture, since the corre-
spondences typically only are established between interest points. However, this
only uses a fraction of the available information. The orientation of the patches sur-
rounding the interest points can also be inferred from textural deformations [Hin-
terstoisser et al., 2011]. In other words, when correspondences can be established,
it is usually also possible to estimate the surface normals. In [Moreno-Noguer et al.,
2009], such estimates were used to relax the inextensibility constraints required by
an earlier template-based method [Salzmann et al., 2008a], while still computing
the 3D shape in closed-form. Other approaches discussed in this survey could and
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should be similarly extended to make the most of the texture, especially when the
surface is not uniformly well-textured.

• Shading: It has long been known as a useful but fragile source of shape informa-
tion [Horn and Brooks, 1989], which naturally complements textural cues where
the albedos are constant or vary slowly [Fua and Leclerc, 1995]. As discussed in
Chapter 4, it was used in [White and Forsyth, 2006] to disambiguate the direc-
tion of normals obtained from textural clues, in [Moreno-Noguer et al., 2009] to
provide normal estimates around interest points, and in [Moreno-Noguer et al.,
2010] to choose among competing shapes that all result in roughly the same im-
age projections. The shading models used by these algorithms, however, remain
simplistic. They would need to be extended further to prove truly useful outside
of very specialized applications, such as virtually flattening a book to produce
better photocopies [Zhang et al., 2004]. We believe that a promising direction is to
use modern statistical learning techniques to relate gray level patterns within im-
age patches to local 3D shape estimates using realistic training data and without
making unwarranted assumptions.

In addition to means of exploiting the image data more thoroughly, better and
more widely applicable deformation models are required to break the ambiguities that
plague monocular 3D surface reconstruction. When the surface is made of a material
that is known a priori, effective models can be learned offline using training data. In
the more general case when the surface material is not known beforehand, the model
could be learned online using the parts of the surface that are sufficiently well-textured
for a very simple regularizing prior to be enough to obtain valid reconstructions. This
model could then be used to constrain the reconstruction of the rest of the surface.
For similar purposes, one could also exploit transfer learning techniques that leverage
labeled data of related problems to learn a model for a different problem where no,
or very few, labeled data is available. In our context, given the training examples for
some materials, we could learn a deformation model for a new material from very small
amounts of reconstructed 3D shapes.

In short, current monocular approaches to 3D surface reconstruction can be well
formalized and already yield promising results on well-textured surfaces. Much work is
still required to make them fully operational on less well-textured surfaces, but the way
forward seems relatively clear.
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