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We synthesized the Cu(II) and Zn(II) complexes of the 2,7,12,17-tetrapropionic acid of 3,8,13,18-

tetramethyl-21H,23H porphyrin (coproporphyrin-I) and successfully employed them as sensitizers in

dye-sensitized solar cells. Copper(II) coproporphyrin-I exhibits a power conversion efficiency of 3.8%

measured under irradiation of AM 1.5G full sunlight (100 mW cm!2).

1. Introduction

Dye-sensitized solar cells (DSC) have attracted considerable

attention over the past decade as a viable alternate technology

for renewable energy.1 In the search of new sensitizers, recent

improvements in the design and synthesis of new ruthenium dyes

have made it possible to overcome the previously attained

threshold of 11% light-to-energy conversion.2 In view of the

limited availability of ruthenium, much effort has been directed

towards the development of noble metal-free sensitizers because

of their lower cost, high molar extinction coefficient and easy to

tune the spectral properties.3–5

The interest in using porphyrins as sensitizers in photovoltaic

applications has recently intensified and has led to a better

understanding of the key role of porphyrins found in the natural

photosynthetic processes. In fact there are several analogies

between natural photosynthesis and dye-sensitized PV devices

employing nanocrystalline semiconductor electrodes; the effi-

cient light harvesting witnessed in plants has been successfully

imitated by absorbing a monolayer of the chlorophyll derivates

on nanostructured TiO2 films.6,7 Previous studies on chlorophyll

derivatives showed that conjugation with the p-electron system

of the chromophore is not critical for efficient electron transfer,

but that the insertion of free carboxylic groups is important for

anchoring on the surface of TiO2.
6,8,9 Numerous reports on

porphyrin based DSCs have been published.10–16

The nature of the carboxylic acid linker on the porphyrin has

a significant influence on the performance of the devices.17

Mesoporphyrin IX is a free-base porphyrin that contains two

carboxylic groups found at the b-position. When utilizing its Cu(II)

and Zn(II) complexes as sensitizers in DSC, the energy conversion

efficiency of the cell was reported to be y 2.6%.4 The study of

Zn(II) and Cu(II) complexes of 4-(trans-20-(200-(50 0,100 0,1500,2000-

tetraphenylporphyrinato-copper(II)yl)ethen-10-yl)-1-benzoic acid,

and 4-(trans-20-(20 0-(500,100 0,150 0,2000-tetraxylylporphyrinato-zinc(II)yl)-

ethen-10 0-yl)-1-benzoic acid porphyrins that contain one

carboxylic group in the b-position, have been undertaken.

The highest conversion efficiencies were obtained when

employing the Zn-porphyrin complexes, with a yield of 4.11 and

4.80%, respectively.18 Moreover, with zinc tetraaryl porphyrin

malonic acids, an efficiency of 7.10% was found.19 Using SnO2 as

photoanode, the influence of the metal substitution on the

photocurrent efficiency of carboxyphenyl metalloporphyrins,

(containing one carboxylic group in meso-position) as photo-

sensitizer has been studied by Otero et al.20 In this manuscript,

the 2,7,12,17-tetrapropionicacid of 3,8,13,18-tetramethyl-

21H,23H-porphyrin (coproporphyrin-I or CPI) metal complexes

of Cu(II) and Zn(II) (Fig. 1) have been synthesized and their use as

sensitizers in DSC has been evaluated.

2. Experimental

2.1 Reagents

CPI-dihydrochloride, ZnCl2 and CuCl2 are analytical grade

reagent obtained from Sigma-Aldrich. Ethanol, analytical grade,

Fig. 1 Molecular structures of Coproporphyrin-I sensitizers,

R ¼ -CH2CH2COOH; CPI ¼ M is no metal, CPIZn ¼ M is Zn(II),

CPICu ¼ M is Cu(II).
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and 1-ethyl-3-methylimidazolium tetracyanoborate (EMI+B(CN)4
!)

were purchased from Fluka and Merck, respectively.

2.2 Synthesis and characterization

2.2.1 Synthesis of CPIZn. CPI dihydrochloride (96 mg,

132 mM) was dissolved in 200 ml of ethanol solution and mixed

with 6 ml zinc chloride (19 mg, 139 mM) under nitrogen atmo-

sphere, and the mixture stirred for 3 h at room temperature. The

solvent was then evaporated under vacuum, and the residue dried

under nitrogen atmosphere. The compound obtained was dis-

solved in 40 ml ethanol and precipitated following the addition of

100 ml water. The solid compound was collected by filtration

and washed with 200 ml water. This procedure was repeated

four times. and the pink solid was collected and dried under

nitrogen atmosphere. Elemental analysis: calc. (%) for

C36H36N4O8Zn$H2O: C, 58.7; H, 5.2; N, 7.6; found: C, 59.0; H,

5.5; N, 7.2. 1H NMR (400 MHz, DMSO, 45 #C): d 12.28 (s, 4H);

10.27 (s, 4H), 4.37–4.29 (t, 8H), 3.17–3.13 (t, 8H). ESI-Mass: MS

(API-ES): (M ¼ 718,04) neg, (m/z): 717, 653.4, 479.4, 357.1,

293.2.

2.2.2 Synthesis of CPICu. The copper coproporphyrin

complex was synthesized following the same procedure as out-

lined above by replacing zinc(II) chloride by copper(II) chloride.

Elemental analysis: calc. (%) for C36H36N4O8Cu$H2O: C, 58.9;

H, 5.2; N, 7.6; found: C, 58.9; H, 5.5; N: 7.2. 1HNMR (400MHz,

DMSO, 45 #C): d 12.231 (s, 4H); 10.21 (s, 4 H), 4.36–4.28 (t, 8H),

3.21–3.41 (t, 8H). ESI-Mass: MS (API-ES) (M¼ 716), neg, (m/z):

715, 476.7, 367.7, 356.6, 237.6

2.2.3 Characterization. The UV-visible absorption spectra

were recorded on a Hewlett- Packard 8452A diode array spec-

trophotometer employing a 1 cm quartz cell connected to

a Lauda K2R thermostat, by monitoring the spectral change

against a blank, at constant temperature (20 #C). Cyclic vol-

tammetry experiments were performed using a computer-

controlled EG&G PAR 273 potentiostat in a three-electrode

single-compartment cell with a platinum working electrode,

a platinum wire counter electrode, and an Ag/AgCl reference

electrode. All potentials were internally referenced to the ferro-

cene–ferrocenium couple.

2.3 Device fabrication and characterization:

2.3.1 Device fabrication. Screen-printed double layers of

TiO2 particles were used as photoelectrodes in this study.

A 7.5 mm thick film of 20 nm-sized TiO2 particles was first printed

on the fluorine doped SnO2 (FTO) conducting glass electrode

and coated with a second layer (5 mm thick) composed of 400 nm

light-scattering anatase particles (CCI, Japan). The porosity was

evaluated as 67% for the 20 nm TiO2 transparent layer and 42%

for the 400 nm TiO2 scattering layer, determined from BET

measurements. After sintering at 500 #C and cooling to 80 #C, the

sintered TiO2 electrodes were immersed for 5 h in the respective

dye solutions (0.3 mM in 10% DMSO and ethanol with cheno-

deoxycholic acid (2 mM) as a co-adsorbent), and then assembled

using a thermal platinized FTO/glass counter electrode. The

working and counter electrodes were separated by a 25 mm thick

hot melt ring (Surlyn, DuPont) and sealed by heating. The cell’s

internal space was filled with appropriate electrolyte using

a vacuum pump. The hole for electrolyte-injection on the ther-

mally platinized FTO glass counter electrode was finally sealed

with a Surlyn sheet and a thin glass cover by heating.

2.3.2 Photovoltaic characterization. A 450 W xenon light

source (Oriel, USA) was used to characterize the solar cells.

The spectral output of the lamp was matched in the region of

350–750 nm with the aid of a Schott K113 Tempax sunlight filter

(Pr€azisions Glas & Optik GmbH, Germany) so as to reduce the

mismatch between the simulated and true solar spectra to less

than 2%. The current–voltage characteristics of the cell under

these conditions were obtained by applying an external potential

bias to the cell and measuring the generated photocurrent with

a Keithley model 2400 digital source meter (Keithley, USA).

A similar data acquisition system was used to control the incident

photon-to-current conversion efficiency (IPCE) measurement.

Under computer control, light from a 300 W xenon lamp (ILC

Technology, USA) was focused through a Gemini-180 double

monochromator (Jobin Yvon Ltd., UK) onto the photovoltaic

cell under test. The devices were masked to attain an illuminated

active area of 0.158 cm2.

2.3.3 Laser study. The nanosecond laser flash photolysis

technique was applied to dye-sensitized, 8 mm-thick, transparent

TiO2 mesoporous films deposited on normal flint glass. Pulsed

excitation (l¼ 532 nm, 7 ns pulse duration, 30 Hz repetition rate)

was carried out by a Powerlite 7030 frequency-doubled

Q–switched Nd:YAG laser (Continuum, Santa Clara, Cal-

ifornia, USA). The laser beam output was expanded by a pla-

noconcave lens to irradiate a large cross-section of the sample,

whose surface was kept at a 30# angle to the excitation beam. The

laser fluence on the sample was kept at a low level (30 mJ cm!2 per

pulse) to ensure that, on average, less than one electron is injected

per nanocrystalline TiO2 particle on pulsed irradiation. The

probe light, produced by a continuous wave xenon arc lamp, was

first passed through a monochromator tuned at 650 nm, various

optical elements, the sample, and then through a second mono-

chromator, before being detected by a fast photomultiplier tube

(Hamamatsu, R9110). Data waves were recorded on a DSA

602A digital signal analyser (Tektronix, Beaverton, Oregon,

USA). Satisfactory signal-to-noise ratios were typically obtained

by averaging over 1500 laser shots.

2.3.4 Transient photoelectrical measurements. Transient

photovoltage and photocurrent decay characteristics were

measured using methodology developed in our group.21,22 In the

transient photovoltage decay experiments, different steady-state

light levels were supplied with a home-made white light-emitting

diode array by tuning the driving voltage. A red light-emitting

diode array controlled with a fast solid-state switch was used to

generate a perturbation pulse with a width of 50 ms. Both the

pulsed red- and steady-state white-lights were both incident on

the photoanode side of the cell being tested. The pulsed red lights

were carefully controlled by utilizing the driving potential of the

red diode array to keep the modulated photovoltage below

10 mV. The red light generated carriers causing a small photo-

voltage increase near the Voc of the cell subjected to the white
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bias light and the voltage decay process was thereafter measured.

Normally, the decay follows closely a monoexponential form,

thus the recombination rate constant can be extracted from the

slope of the semi-logarithmic plot. The capacitance of the

TiO2/electrolyte interface and density of states (DOS) at the Voc

are calculated as Cm ¼ DQ/DV, where DV is the peak of the

photovoltage transient and DQ is the number of electrons

injected during the red light flash. The latter is obtained by

integrating a short-circuit photocurrent transient generated from

an identical red-light pulse. Electron densities in the titania film

under the same given white light intensity were determined by

a charge extraction method, in which the light intensity was

switched off completely, and simultaneously the solar cell was

switched from open circuit to short circuit. The resulting current

was integrated and based on the amount of extracted charge the

electron density was calculated.

3. Results and discussion

The absorption spectra of these compounds are shown in Fig. 2.

All coproporphyrin-I dyes used in this work exhibit maxima

attributed to p–p* transitions in the range 350–450 nm for the

Soret band and 500–650 nm for the Q bands. The molar extinction

coefficients for the Soret band of these coproporphyrin-I dyes lie in

the range (1.6–2.3) $ 105 dm3 mol!1 cm!1, whereas those of the

Q(0,0) band are in the range (4.2–14.6) $ 103 dm3 mol!1 cm!1.

Both the Soret and Q bands for CPIZn and CPICu show oscil-

lator strengths comparable with that of CPI, with red shift in the

absorption spectra due to the influence of metal ions (Table 1).

We employed cyclic voltammetry to determine the oxidation

and reduction potentials of these coproporphyrins; the electro-

chemical reactions of these compounds were measured under

ambient conditions. The electrochemical data are summarized in

Table 1. All coproporphyrin-I dyes exhibit reversible waves for

the oxidation, corresponding to the HOMO energy of the dye, at

a potential greater than that of I!/I3
! couple, which assures

regeneration of the neutral dye from its oxidized state.

A reversible oxidation reaction was observed at E1/2 ¼ +0.52 V

corresponding to the formation of [CPI]+ whereas an irreversible

reduction wave was observed at about Epc ¼ !1.81 V. For

example, the oxidation occurs at +0.52 V for CPI, shifts to

+0.32 V for CPICu, and further shifts to +0.18 V for CPIZn,

whereas the reduction potential occurs at Epc ¼ !1.81 V for CPI

and in a small range of !1.89 to !2.01 V for CPICu and CPIZn.

The oxidation potential of CPIZn and CPICu is lower than CPI

showing that the presence of metal ion influences the electron

density at the CPI core structure (Table 1). Incorporation of

metal ion onto the porphyrin ring decreases the electrochemical

HOMO–LUMO energy gap, consistent with red shifts of both

Soret and Q bands in the absorption spectra.

The I–V characteristic curve of the solar cell under illumina-

tion with standard AM 1.5G simulated sunlight (100 mW cm!2)

is displayed in Fig. 3. The CPICu-sensitized cell (device C)

provides a Jsc of 7.8 mA cm!2, a Voc of 0.636 V and a fill factor

Fig. 2 Electronic absorption spectra of CPI measured in ethanol and

CPIZn, CPICu in 10% DMSO–ethanol mixture.

Table 1 Optical and electrochemical data of coproporphyrin-I sensi-
tizers

Dye Solvent l/nm (e/L mol!1 cm!1) E0
ox

a/V E0
Red

a/V

CPI Ethanol 396 (1.62 $ 105) 0.52 ! 1.81
496 (1.32 $ 104)
530 (9.17 $ 103)
568 (5.7 $ 103)
620 (4.2 $ 103)

CPIZn 10%
DMSO–ethanol

408 (2.26 $ 105) 0.18 ! 2.01
538 (1.46 $ 104)
574 (1.42 $ 104)

CPICu 10%
DMSO–ethanol

396 (2.16 $ 105) 0.32 ! 1.89
524 (1.21 $ 104)
560 (2.23 $ 104)

a Measured by cyclic voltammetry in DMF using 0.1 M
tetrabutylammonium hexafluorophosphate as a supporting electrolyte
scan rate ¼ 100 mV s!1, vs. Fc+/Fc.

Fig. 3 Photocurrent density–voltage (J–V) characteristics of device C

(Table 2) using CPICu as a sensitizer under AM 1.5G illumination

(100 mW cm!2). Double layer 7.5 mm + 5 mm TiO2 film. Electrolyte Z960

composition: 1,3-dimethylimidazolium iodide ¼ 1.0 M, iodine ¼ 0.03 M,

tert-butylpyridine¼ 0.5M, LiI¼ 0.05M, guanidinium thiocyanate¼ 0.1M,

in acetonitrile–valeronitrile mixture (85 : 15 v/v). Cells were tested using

a metal mask with an aperture area of 0.158 cm2. Inset is the incident

photon to current conversion efficiency of the same device.
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(FF) of 0.75, yielding an overall power conversion efficiency of

3.8%. The thin-film (3.3 um) device D based on CPICu with the

same electrolyte provides a Jsc of 5.7 mA cm!2, a Voc of 0.655 V

and a FF of 0.695, yielding an overall conversion efficiency of

2.6% under illumination with AM 1.5G simulated sunlight

(100 mW cm!2). The open-circuit photovoltage of a DSC

decreases with increasing film thickness, since an increase in the

surface area enhances the undesired dark current. Fig. 3 inset

shows the incident photon to current conversion efficiency

(IPCE) of a CPICu device in the presence of the volatile elec-

trolyte (Z960), which exhibits a broad range of absorption from

400 to 675 nm with a peak maximum of 70% at 575 nm. Table 2

summarizes the photovoltaic parameters for devices made with

the three different coproporphyrins using volatile electrolyte

Z960. The overall power conversion efficiencies vary as a func-

tion of the metal ion. First, CPIZn shows a cell performance

much better than for our reference cell, CPI. Secondly, the

substitution of zinc with copper, in the CPICu containing device,

showed higher Voc and Jsc values than that of CPIZn to obtain

3.8% efficiency.

Nanosecond time-resolved laser experiments were performed

to elucidate the dye cation dynamics of interception by

iodide (Fig. 4). The pulsed laser intensity was kept at a low level

(# 30 mJ cm!2 per pulse) so as to ensure that, on average, less

than one S+/e! charge-separated sensitizer–electron pair was

produced per nanocrystalline particle upon pulsed irradiation.

Ultrafast electron injection into the conduction band of TiO2

(reaction (1), Scheme 1) is followed by a positive transient

absorbance change that was observable at l ¼ 650 nm corre-

sponding to absorption by oxidized coproporphyrin-I sensitizer.

This positive transient permitted direct monitoring of the

concentration of the oxidized state of the coproporphyrin-I

sensitizers. In the absence of redox electrolyte, in pure acetoni-

trile, the decay of the transient absorbance reflected the dynamics

of the recombination of conduction band electrons with the

oxidized dye S+ (reaction (2), Scheme 1). For the three cop-

roporphyrins studied, decays were well fitted by mono-

exponential curves with s ¼ 673 ms, 1.03 ms and 1.8 ms for free

base CPI, CPIZn and CPICu, respectively.

In the presence of acetonitrile based redox electrolyte (Z960),

monitoring the transient at l ¼ 650 nm thus permitted moni-

toring of the dye cation interception by iodide. The decay of the

oxidized dyes were markedly accelerated under these conditions.

Monoexponential functions fitted the decays with s ¼ 23 ms,
7.7 ms and 6.7 ms for devices A, B and C, respectively. These

results indicate that the sensitizer is quickly regenerated, the

dye cation being efficiently intercepted by the redox mediator

(reaction (3) in Scheme 1). Insertion of the metal ions into the

CPI base enhances the dye regeneration process by a factor of 2.9

for zinc(II) ion, and 3.4 for copper(II) ion. Surprisingly for the

three compounds, we observed the absorbance transient to reach

a pseudo-plateau at approximately 30% of the initial signal

magnitude. This residual absorbance, eventually decays down to

the baseline within hundreds of ms, as observed for the recom-

bination process in the absence of redox electrolyte, The origin of

this residual absorption remains to be assigned.

By comparing monoexponential rate constants reported for

the interception and recombination reactions, one is able to

calculate the yield of interception by iodide.23 The values thus

obtained are 96.7, 99.3 and 99.6% for CPI, CPIZn and CPICu,

respectively. Despite this large kinetic redundancy, a fraction of

the dye cation is not fully intercepted by the electrolyte. There-

fore, this could be one of the reasons for the low performance of

the devices prepared with these three dyes, as 30% of the injected

electrons might be lost due to recombination with the oxidized

form of the dye.

Unraveling of the details of the electron recombination

dynamics between the photoinjected electrons at the TiO2 and

the oxidized electrolyte in various devices was undertaken by

employing transient photovoltage and photocurrent decay

measurements. As presented in Fig. 5a, the chemical capacity Cm

of devices D and E rise exponentially with the increase of Voc. As

the density of states (DOS), including surface and bulk traps, is

proportional to Cm (Cm z e2g(E), where e is electron charge, g(E)

is the DOS distribution function21), an exponential distribution

of DOS could be obtained. As shown in Fig. 5a, the device E has

a larger chemical capacitance than that of device D. Hence for

both devices utilizing the same TiO2 film thickness (3.3 mm),

a higher trap states density is found in device E at a given Voc.

The chemical capacitance of device C increases as a function of

the film thickness because a geometric area was used. Fig. 5b

Table 2 Detailed photovoltaic parameters of DSCs made with cop-
rorphyrins-I and Z960 electrolyte using TiO2 films with two different
thicknesses

Device Dye
Film
thickness/mm Voc/mV Jsc/mA cm!2 FF Eff. (%)

A CPI 7.5 + 5 490 2.55 0.74 0.9
B CPIZn 7.5 + 5 565 6.0 0.75 2.6
C CPICu 7.5 + 5 636 7.9 0.75 3.8
D CPICu 3.3 655 5.7 0.70 2.6
E CPIZn 3.3 504 3.17 0.72 1.1

Fig. 4 Transient absorbance decay of the oxidized state of cop-

roporphyrin-I sensitizers adsorbed on nanocrystalline TiO2 films. The

kinetics observed with acetonitrile, no iodide added (black curve), and in

the presence of electrolyte Z960 (red/grey curve) under similar conditions.

Scheme 1
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illustrates the extracted charge density vs. open circuit voltage

plot for various DSCs. As shown in Fig. 5b, for DSC devices

sensitized with CPICu and CPIZn, the experimental points

merge almost into the same curve. Note, as indicated on the

figure, that the cells have different Voc when illuminated at 1 sun

as expected from the results illustrated before. The differences in

voltage between the three devices may be due to: (a) a shift on the

TiO2 conduction band with respect to the electrolyte potential or

(b) differences in the ecb
-/mediator+ recombination rate. In our

case, the change of metal center does not shift the curve, thus,

the differences in voltage could be due to the increase in the

ecb
-/mediator+ recombination reaction rate in device E. Fig. 5c

shows the recombination lifetime for various devices. It is noted

that as the extracted charge density from the TiO2 film increases,

the recombination lifetimes (se) are shortened, due to the higher

electron density at the TiO2 and larger driving forces for the

interfacial recombination. Clearly, the trend of the charge

recombination lifetime of the various devices is well in agreement

with that of the above measured photocurrent densities. The

recombination lifetime of the CPICu devices (C and D in Fig. 5c)

employing two different film thicknesses exhibits only minor

differences, showing an almost complete independence with

respect to the film thickness. The device E shows the shortest

recombination lifetime at a given extracted charge density, which

is consistent with the photovoltaic performance.

Conclusion

In conclusion, we have synthesized two metal coproporphyrins-I

containing Zn(II) and Cu(II) metal ions and successfully

employed them as sensitizers in dye-sensitized solar cell. The

photovoltaic performance of the Cu(II) coproporphyrin out

performs that of the free base and the Zn(II) coproporphyrin.

Now we are searching for new concepts to enhance the perfor-

mance of dye-sensitized solar cells using metal porphyrins as

sensitizers.

Acknowledgements

The authors thank Dr C. Gr€atzel and Prof. Vito Bartocci for

fruitful discussions. Financial support from the Swiss National

Science Foundation is gratefully acknowledged.

Notes and references

1 M. Gr€atzel, Nature, 2001, 414, 338.
2 (a) M. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni,
G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Gr€atzel, J. Am.
Chem. Soc., 2005, 127, 16835; (b) Y. Chiba, A. Islam, Y. Watanabe,
R. Komiya, N. Koide and L. Han, Jpn. J. Appl. Phys., 2006, 45,
L638; (c) F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing,
R. Humphry-Baker, P. M. Wang, S. Zakeeruddin and M. Gr€atzel,
J. Am. Chem. Soc., 2008, 130, 10720; (d) C. Chen, M. Wang, J. Li,
N. Pootrakulchote, L. Alibabaei, C. Ngoc-le, J.-D. Decoppet,
J. H. Tsai, C. Gr€atzel, C.-G. Wu, S. M. Zakeeruddin and
M. Gr€atzel, ACS Nano, 2009, 3, 3103.

3 (a) K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga and
H. Arakawa, Chem. Commun., 2001, 569; (b) K. Hara,
M. Kurashige, S. Ito, A. Shinpo, S. Suga, K. Sayama and
H. Arakawa, Chem. Commun., 2003, 252; (c) K. Hara,
M. Kurashige, Y. Danoh, C. Kasada, A. Shinpo, S. Suga,
K. Sayama and H. Arakawa, New J. Chem., 2003, 27, 783;
(d) Z.-S. Wang, Y. Cui, Y. Dan-oh, C. Kasada, A. Shinpo and
K. Hara, J. Phys. Chem. C, 2007, 111, 7224; (e) T. Horiuchi,
H. Miura and S. Uchida, Chem. Commun., 2003, 3036;
(f) T. Horiuchi, H. Miura, K. Sumioka and S. Uchida, J. Am.
Chem. Soc., 2004, 126, 12218; (g) T. Kitamura, M. Ikeda,
K. Shigaki, T. Inoue, N. A. Anderson, X. Ai, T. Lian and
S. Yanagida, Chem. Mater., 2004, 16, 1806; (h) K. Hara, T. Sato,
R. Katoh, A. Furabe, T. Yoshihara, M. Murai, M. Kurashige,
S. Ito, A. Shinpo, S. Suga and H. Arakawa, Adv. Funct. Mater.,
2005, 15, 246; (i) S. Kim, H. Choi, D. Kim, K. Song, S. O. Kang
and J. Ko, Tetrahedron, 2007, 63, 9206; (j) S. Kim, H. Choi,
C. Baik, K. Song, S. O. Kang and J. Ko, Tetrahedron, 2007, 63, 11436.

4 (a) Z.-S. Wang, Y. Cui, K. Hara, Y. Dan-ho, C. Kasada and
A. Shinpo, Adv. Mater., 2007, 19, 1138; (b) A. Mishra,
M. K. R. Fischer and P. B€auerle, Angew. Chem., Int. Ed., 2009, 48,
2474; (c) I. Jung, J. K. Lee, K. H. Song, K. Song, S. O. Kang and
J. Ko, J. Org. Chem., 2007, 72, 3652; (d) M. Velusamy,
K. R. J. Thomas, J. T. Lin, Y. Hsu and K. Ho, Org. Lett., 2005, 7,

Fig. 5 (a) Chemical capacitance as a function of open circuit voltage,

(b) photo-induced charge as a function of open circuit voltage, and

(c) apparent electron lifetime with extracted charge obtained from tran-

sient voltage decay measurements. Device C was fabricated using

a double layer (7.5 + 5 mm) TiO2 film, a volatile electrolyte and using

CPICu as a sensitizer. Devices D and E were fabricated using a 3.3 mm

TiO2 film, a volatile electrolyte and using CPICu and CPIZn as sensi-

tizers, respectively.

960 | Energy Environ. Sci., 2010, 3, 956–961 This journal is ª The Royal Society of Chemistry 2010



1899; (e) D. P. Hagberg, T. Edvinsson, T. Marinado, G. Boschloo,
A. Hagfeldt and L. Sun, Chem. Commun., 2006, 2245; (f) S. Ferrere,
A. Zaban and B. A. Greg, J. Phys. Chem. B, 1997, 101, 4490;
(g) S. Ferrere and B. A. Greg, New J. Chem., 2002, 26, 1155;
(h) Y. Shibano, T. Umeyama, Y. Matano and H. Imahori, Org.
Lett., 2007, 9, 1971; (i) A. Ehret, L. Stuhl and M. T. Spitler, J.
Phys. Chem. B, 2001, 105, 9960; (j) S. Ushiroda, N. Ruzycki, Y. Lu,
M. T. Spitler and B. A. Parkinson, J. Am. Chem. Soc., 2005, 127,
5158.

5 (a) S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska,
R. Charvet, P. Comte, M. K. Nazeeruddin, P. P"echy, M. Takata,
H. Miura, S. Uchida and M. Gr€atzel, Adv. Mater., 2006, 18, 1202;
(b) M. Liang, W. Xu, F. Cai, P. Chen, B. Peng, J. Chen and Z. Li,
J. Phys. Chem. C, 2007, 111, 4465; (c) S. Tatay, S. A. Haque,
B. O’Regan, J. R. Durrant, W. J. H. Verhees, J. M. Kroon,
A. Vidal- Ferran, P. Gavi~na and E. Palomares, J. Mater. Chem.,
2007, 17, 3037; (d) Q.-H. Yao, L. Shan, F.-Y. Li, D.-D. Yin and
C. H. Huang, New J. Chem., 2003, 27, 1277; (e) Y.-S. Chen, C. Li,
Z.-H. Zeng, W.-B. Wang, X.-S. Wang and B.-W. Zhang, J. Mater.
Chem., 2005, 15, 1654.

6 A. Kay and M. Gr€atzel, J. Phys. Chem., 1993, 97, 6272.
7 L. Otero, H. Osora, W. Li and M. A. Fox, J. Porphyrins
Phthalocyanines, 1998, 2, 123.

8 K. Kalyanasundaram and M. Gr€atzel, Coord. Chem. Rev., 1998, 177,
347.

9 A. Kay, R. Humphry-Baker andM. Gr€atzel, J. Phys. Chem., 1994, 98,
952.

10 (a) W. M. Campbell, A. K. Burrell, D. L. Officer and K. W. Jolley,
Coord. Chem. Rev., 2004, 248, 1363; (b) C.-W. Lee, H.-P. Lu,
C.-M. Lan, Y.-L. Huang, Y.-R. Liang, W.-N. Yen, Y.-C. Liu,
Y.-S. Lin, E. W.-G. Diau and C.-Y. Yeh, Chem.–Eur. J., 2009, 15,

1403; (c) H.-P. Lu, C.-L. Mai, C.-Y. Tsia, S.-j. Hsu, C.-P. Hsieh,
C.-L. Chiu, C.-Y. Yeh and E. W.-G. Diau, PhysChemPhys, 2009,
11, 10270.

11 R. Dabestani, A. J. Bard, A. Campion, M. A. Fox, T. E. Mallouk,
S. E. Webber and J. M. White, J. Phys. Chem., 1988, 92, 1872.

12 G. K. Boschloo and A. Goossens, J. Phys. Chem., 1996, 100,
19489.

13 C. C. Wamser, H.-S. Kim and J.-K. Lee, Opt. Mater., 2003, 21, 221.
14 S. Cherian and C. C. Wamser, J. Phys. Chem., 2000, 104, 3624.
15 H. Imahori, T. Umeyama and S. Ito, Acc. Chem. Res., 2009, 42, 1809.
16 T. Ma, K. Inoue, K. Yao, H. Noma, T. Shuji, E. Abe, J. Yu, J. Wang

and B. Zhang, J. Electroanal. Chem., 2002, 537, 31.
17 Q. Wang, W. M. Campbell, E. E. Bonfantani, K. W. Jolley,

D. L. Officer, P. J. Walsh, K. Gordon, R. Humphry-Baker,
M. K. Nazeeruddin, and M. Gr€atzel, J. Phys. Chem. B, 2005, 109,
15397.

18 Md. K. Nazeeruddin, R. Humphry-Baker, D. L. Officer,
W. M. Campbell, A. K. Burrell and M. Gr€atzel, Langmuir, 2004,
20, 6514.

19 W. M. Campbell, K. W. Jolley, P. Wagner, K. Wagner, P. J. Walsh,
K. C. Gordon, L. Schmidt-Mende, M. K. Nazeeruddin, Q. Wang,
M. Gr€atzel and D. L. Officer, J. Phys. Chem. Lett., 2007, 111, 11760.

20 M. Gervaldo, F. Fungo, E. N. Durantini, J. J. Silber, L. Sereno and
L. Otero, J. Phys. Chem. B, 2005, 109, 20953.

21 M. Wang, P. Chen, R. Humphry-Baker, S. M. Zakeeruddin and
M. Gr€atzel, ChemPhysChem, 2009, 10, 290.

22 M. Wang, C. Gr€atzel, S. J. Moon, R. Humphry-Baker, N. Rossier-
Iten, S. M. Zakeeruddin and M. Gr€atzel, Adv. Funct. Mater., 2009,
19, 2163.

23 Z. Zhang, S. Ito, J.-E. Moser, S. M. Zakeeruddin and M. Gr€atzel,
ChemPhysChem, 2009, 10, 1834.

This journal is ª The Royal Society of Chemistry 2010 Energy Environ. Sci., 2010, 3, 956–961 | 961


