
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. R. Urbanke, président du jury
Prof. D. Kostic, Prof. R. Guerraoui, directeurs de thèse

Dr C. Cachin, rapporteur
Prof. V. Kuncak, rapporteur
Dr V. Quéma, rapporteur

Model Checking of Distributed Algorithm Implementations

THÈSE NO 4858 (2011)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 18 mars 2011

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE SYSTÈMES EN RÉSEAUX

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2011

PAR

Maysam Yabandeh

Abstract

It is notoriously difficult to develop reliable, high-performance distributed sys-
tems that run over asynchronous networks. Even if a distributed system is based
on a well-understood distributed algorithm, its implementation can contain er-
rors arising from complexities of realistic distributed environments or simply
coding errors. Many of these errors can only manifest after the system has been
running for a long time, has developed a complex topology, and has experienced
a particular sequence of low-probability events such as node resets.

Model checking or systematic state space exploration, which has been used
for testing of centralized systems, is also not effective for testing of distributed
applications. The aim of these techniques is to exhaustively explore all the
reachable states and verify some user-specified invariants on them. Although ef-
fective for small software systems, for more complex systems such as distributed
systems the exponential increase in number of explored states, manifests itself
as a problem at the very early stages of search. This phenomenon, which is also
known as exponential state space explosion problem, prevents the model checker
from reaching the potentially erroneous states at deeper levels, in a realistic time
frame.

This thesis proposes Dervish, a new approach in testing that makes use of a
model checker in parallel with the running distributed system. Before the model
checker performance gets hampered by the exponential explosion problem, the
model checker restarts form the current live state of the system, instead of the
initial state. The continuously running model checker at each node predicts the
possible future inconsistencies, before they actually manifest. This approach,
not only helps in testing by checking more relevant states that could occur in a
real run, but also enables the application to steer the execution away from the
predicted inconsistencies. We identified new bugs in mature Mace implementa-
tions of RandTree, Bullet′, Paxos, and Chord distributed systems. Furthermore,
we show that if the bug is not corrected during system development, Dervish is
effective in steering the execution away from the inconsistent states at runtime.

To be feasible in practice, the state exploration algorithm in Dervish should
be efficient enough to explore some useful states in the period between each
two restarts. Our default implementation of this approach benefits from a new
search heuristic effective for distributed algorithms with short communications,

iii

Abstract

termed consequence prediction, which selectively explores future event chains of
the system. For consensus algorithms, however, which are known to be one of
the most complex of distributed algorithms, the exploration algorithms built
upon principles of model checking centralized systems are not scalable enough
to be installed in Dervish. Those approaches reduce the problem of model
checking distributed systems to that of centralized systems, by using the global
state, which also includes the network state, as the model checking state. This
thesis introduces LMC, a novel model checking algorithm designed specifically
for distributed algorithms. The key insight in LMC is to treat the local nodes’
states separately, instead of keeping track of the global states.

We show how Dervish equipped with LMC enables us to find bugs in some
complex consensus algorithms, including PaxosInside, the first consensus al-
gorithm proposed and implemented for manycore environments. A modern
manycore architecture can be viewed as a distributed system with explicit mes-
sage passing to communicate between cores. Yet, doing this efficiently is very
challenging given the non-uniform latency in inter-core communication and the
unpredicted core response time. This thesis explores, for the first time, the
feasibility of implementing a (non-blocking) consensus algorithm in a manycore
system. We present PaxosInside, a new consensus algorithm that takes up the
challenges of manycore environments, such as limited bandwidth of interconnect
network as well as the consensus leader. A unique characteristic of PaxosInside
is the use of a single acceptor role in steady state, which in our context, signifi-
cantly reduces the number of exchanged messages between replicas.

Keywords Distributed systems, testing, execution steering, inconsistency pre-
diction, consensus algorithms, manycore systems, consequence prediction, reli-
ability, execution steering, enforcing invariants.

iv

Résumé

Il est notoirement difficile de développer des systèmes distribués fiables, de
haute performance, qui s’exécutent sur des réseaux asynchrones. Même si un
système distribué est basé sur un algorithme bien compris, son implantation peut
contenir des erreurs découlant de la complexité des environnements distribués
réalistes ou tout simplement des erreurs de codage. Bon nombre de ces erreurs ne
peut se manifester qu’après que le système ait fonctionné pendant longtemps,
a mis au point une topologie complexe, et a connu une séquence particulière
d’événements de faible probabilité.

Les techniques de model-checking qui ont été utilisées pour tester des systèmes
centralisés ne sont pas efficaces pour des applications distribuées. Le but de
ces techniques est d’explorer de manière exhaustive tous les états accessibles
par l’algorithme et de vérifier certains invariants spécifiés par l’utilisateur. Bien
que l’efficacité de ces techniques est avérée sur des systèmes de petits logiciels,
l’augmentation exponentielle du nombre d’états explorés se manifeste comme
un problème à un stade très précoce de la recherche dans un système distribués.
Ce problème empêche le vérificateur deur d’atteindre des états potentiellement
erronées à des niveaux plus profonds, dans un laps de temps réaliste.

Cette thèse propose Dervish, une nouvelle approche qui consiste à exécuter un
vérificateur de modèle en parallèle avec le fonctionnement du système distribué.
Avant que le vérificateur de la performance du modèle ne se heurte au problème
d’explosion exponentielle, le redémarrage de modèle de formulaire de vérificateur
se fait à partir de l’état actuel en direct du système, au lieu de l’état initial.
Le fonctionnement continu du vérificateur de modèle à chaque noeud permet
de prédire d’éventuelles incohérences, avant qu’elles ne manifestent finalement.
Cette approche, permet non seulement dans les tests de vérifier les états les plus
pertinents qui pourraient se produire dans une exécution réelle, mais permet
également à l’application de diriger l’exécution loin des incohérences prédites.

Nous avons identifié de nouveaux bogues dans les implantations de proto-
coles connus tels que Mace de RandTree, Bullet′, Paxos, et Chord. En outre,
nous montrons que si le bogue n’est pas corrigé au cours du développement du
système, Dervish est efficace dans le pilotage de l’exécution au détriment des
états incompatibles de l’exécution.

Pour être réalisable dans la pratique, l’algorithme d’exploration d’état dans

v

Résumé

Dervish doit être suffisamment efficace pour explorer certains états utiles dans
la période qui sépare deux redémarrages. Notre implantation par défaut de
cette approche bénéficie d’une nouvelle recherche heuristique efficace pour les
algorithmes distribués avec des communications brèves qui explorent de façon
sélective les chaines s d’événements futurs du système.

Pour des algorithmes de consensus, cependant, qui sont connus pour être
des plus complexes en algorithmique distribuée, l’exploration des algorithmes
construits sur des principes de vérification de modèles de systèmes centralisés
ne sont pas suffisamment adaptables pour être installés dans Dervish. Dans ce
but, cette thèse introduit LMC, un nouveau modèle de contrôle algorithme conçu
spécifiquement pour les algorithmes distribués. La clé de LMC est de traiter les
états des noeuds locaux séparément, au lieu de garder la trace des états globaux.

Nous montrons comment Dervish équipé de LMC nous permet de trouver des
bogues dans certains algorithmes de consensus complexes, y compris PaxosIn-
side, un algorithme de consensus que nous avons proposé et mis en oeuvre pour
les environnements multicoeurs.

Une architecture multicoeur moderne peut être considérée comme un système
distribué avec des messages explicitement échangés entre les coeurs. Assurer la
cohérence des données dupliquées sur les coeurs nn’est pas une tâche facile du
fait de la latence non uniforme des communications.

Cette thèse explore, pour la première fois, la possibilité de mettre en ouvre
un algorithme(non bloquant) de consensus dans un système multicoeur. Nous
présentons PaxosInside, un nouvel algorithme de consensus qui relève les défis
des environnements multicoeurs, comme la bande passante limitée du réseau
d’interconnexion ainsi que le problème de l’élection dd’un leader. Une ca-
ractéristique unique de PaxosInside est l’utilisation d’un acceptor unique dans
l’état d’équilibre, ce qui dans notre contexte, réduit considérablement le nombre
de messages échangés entre les replicas.

Mots-clés Systèmes distribués, contrôle réparti, duplication, vérification,
consensus, système multicoeur, invariants.

vi

This thesis is dedicated to my parents.

Acknowledgments

First, I would like to thank my supervisor, Prof. Rachid Guerraoui, not only
for all his endless supports and advices, but also, more importantly, for the
freedom atmosphere in his laboratory, which made research be a joyful, pleasant
experience.

I would like to say a special thank you to Prof. Viktor Kuncak, whose manner
of life taught me modesty, generosity, honesty, and dignity. He had developed
the notion of execution steering as well as the main idea of the presented tool
in this thesis, Dervish, which was running a model checker in parallel with the
live system, and I am very grateful for the opportunity of working on such an
interesting idea.

I will never be able to properly thank Prof. Willy Zwaenepoel, for his selfless,
generous, continued supports. He kindly helped me in the toughest period of
my PhD, and if it was not because of his advices and generous helps, I would
not have been able to finish this PhD.

I also thank all the lab members and friends for the many useful discussions.

ix

Preface

This thesis includes the PhD work done under the supervision of Prof. Rachid
Guerraoui at the Distributed Programming Laboratory, School of Computer
and Communication Sciences, EPFL, from 2008 to 2010. The work presented
in this thesis is centered on consensus algorithms and techniques for testing
them. In addition to the presented material, I also worked on independent
faults in the cloud [GY10], new lower bounds for abortable Byzantine fault
tolerant protocols, model checking tools for software implementations [Yab10],
new programming model for distributed systems [YVKK09], dynamic partial
order reduction for distributed systems [YK09], and testing distributed systems
by detecting almost-invariants [YACK09].

The presented materials in this thesis are published in transaction on com-
puter systems (TOCS) [YKKK10], the NSDI conference [YKKK09], and a LPD
technical report [YFG10].

[YKKK10] Predicting and preventing inconsistencies in deployed distributed
systems. M. Yabandeh, N. Knežević, D. Kostić, and V. Kuncak.
In ACM Transactions on Computer Systems (TOCS), 28(1):1–49,
2010.

[YKKK09] CrystalBall: Predicting and Preventing Inconsistencies in De-
ployed Distributed Systems. M. Yabandeh, N. Knežević,
D. Kostić, and V. Kuncak. In NSDI, 2009.

[YFG10] One Acceptor is Enough. M. Yabandeh, L. Franco, and R. Guer-
raoui. Technical Report LPD-REPORT-2010-01, EPFL, January
2010.

xi

Table of Contents

Abstract iii

Résumé v

Acknowledgments ix

Preface xi

1 Introduction 1
1.1 Contributions . 3
1.2 Example . 4
1.3 Dervish Overview . 7
1.4 Thesis Organization . 10

2 Fundamental Concepts & Existing Approaches 11
2.1 System Model . 11
2.2 Model-Checking Distributed Systems 12
2.3 Consistent Global Snapshots . 14
2.4 Related Work . 15

2.4.1 Testing Distributed Systems 16
2.4.2 Runtime Mechanisms . 18

3 Dervish Design & Implementation 21
3.1 Consistent Neighborhood Snapshots 22

3.1.1 Discovering and Managing Snapshot Neighborhoods . . . 23
3.1.2 Enforcing Snapshot Consistency 23
3.1.3 Checkpoint Content . 23
3.1.4 Managing Checkpoint Storage 24
3.1.5 Managing Bandwidth Consumption 24

3.2 Consequence Prediction Algorithm 25
3.2.1 Exploring Chains . 26

3.3 Execution Steering . 28
3.3.1 Event Filters . 28
3.3.2 Granularity of Filters . 29
3.3.3 Point of Intervention . 29

xiii

Table of Contents

3.3.4 Non-Disruptiveness of Execution Steering 30
3.3.5 Rechecking Previously Discovered Violations 30
3.3.6 Immediate Safety Check 31
3.3.7 Liveness Properties . 31

3.4 Scope of Applicability . 31
3.5 Implementation . 32

3.5.1 Checkpoint Manager . 33
3.5.2 Consequence Prediction 33
3.5.3 Immediate safety check 34
3.5.4 Replaying Past Erroneous Paths 35
3.5.5 Event Filtering for Execution Steering 35
3.5.6 Checking Safety of Event Filters 36

3.6 Evaluation . 36
3.6.1 Experimental Setup . 37
3.6.2 Deep Online testing Experience 37
3.6.3 Comparison with MaceMC 46
3.6.4 Execution Steering Experience 47

3.7 Summary . 55

4 LMC: Local Model Checking 57
4.1 Local Model Checking: A Primer 60
4.2 Design . 62

4.2.1 LMC Algorithm . 63
4.2.2 Implementation Details 67
4.2.3 Scope of Applicability . 70

4.3 Evaluation . 71
4.3.1 LMC Speedup . 72
4.3.2 LMC Scalability Limits 74
4.3.3 LMC Memory Requirements 74
4.3.4 LMC Overheads . 75
4.3.5 Testing Paxos . 76
4.3.6 Testing PaxosInside . 77

4.4 Related Work . 78
4.5 Summary . 80

5 PaxosInside 81
5.1 PaxosInside: The Main Insight 84
5.2 Preliminaries . 86

5.2.1 Manycore Systems . 86
5.2.2 Blocking Agreement . 87
5.2.3 Consensus . 88
5.2.4 Failure Model . 93

5.3 PaxosInside: The Algorithm . 93
5.3.1 The Failure-free Case . 93

xiv

Table of Contents

5.3.2 Switching Acceptor . 94
5.3.3 Switching Leader . 95
5.3.4 Switching both Leader and Acceptor 96

5.4 PaxosInside: A Multicore Implementation 97
5.4.1 Message Queuing . 98
5.4.2 Message Delivery . 98
5.4.3 Agreement . 99
5.4.4 Description of C++ Code 100
5.4.5 Persistent Storage in Multi-Paxos 100

5.5 Evaluation . 100
5.5.1 Experimental Setup . 101
5.5.2 Workload . 101
5.5.3 Micro-benchmarks . 101
5.5.4 Scalability . 103
5.5.5 Throughput in Failure Scenarios 103

5.6 Related Work . 105
5.7 Summary . 107

6 Conclusion 109
6.1 Summary of Results . 110
6.2 Future Work . 111

6.2.1 On Symbolic Execution 111
6.2.2 On Incremental Model Checking 111
6.2.3 On Collaborative State Exploration 111
6.2.4 On Collaborative Filter Installation 111
6.2.5 On Model Checking Heuristics 112
6.2.6 On Invariants . 112
6.2.7 On Model Checking Distributed Algorithms 112
6.2.8 On PaxosInside . 112

A Example Run of Consequence Prediction on a Small Service 113

B PaxosInside: Pseudo Code 117

C PaxosInside: Proof of Correctness 121

D LMC: Soundness Verification Proofs 125

Bibliography 127

List of Figures, Algorithms, and Tables 135

About the Author 141

xv

After all, it could only cost you your life, and you got that

for free!

Tortian Sailor, EarthBound Game

1
Introduction

Complex distributed protocols and algorithms are used in enterprise storage sys-
tems, distributed databases, large-scale planetary systems, and sensor networks.
Errors in these protocols translate to denial of service to some clients, potential
loss of data, and monetary losses. The Internet itself is a large-scale distributed
system, and there are recent proposals [JKBK+08] to improve its routing reli-
ability by further treating routing as a distributed consensus problem [Lam98].
Design and implementation problems in these protocols have the potential to
deny vital network connectivity to a large fraction of users.

Unfortunately, it is notoriously difficult to develop reliable high-performance
distributed systems that run over asynchronous networks. Even if a distributed
system is based on a well-understood distributed algorithm, its implementation
can contain errors arising from complexities of realistic distributed environments
or simply coding errors [LGW+08]. Many of these errors can only manifest after
the system has been running for a long time, has developed a complex topology,
and has experienced a particular sequence of low-probability events such as node
resets. Consequently, it is difficult to detect such errors using testing and model
checking, and many of such errors remain unfixed after the system is deployed.

We propose to leverage the increases in computing power and bandwidth
to make it easier to find errors in distributed systems, and to enhance the
resilience of the deployed systems with respect to any remaining errors. In
our approach, distributed system nodes predict consequences of their actions
while the system is running. Each node runs a state exploration algorithm on
a consistent snapshot of its neighborhood and predicts which actions can lead
to violations of user-specified invariants. As Figure 1.1 illustrates, the ability to

1

Chapter 1. Introduction

a b c d

Figure 1.1: Execution path coverage by a) classic model checking, b) replay-
based or live predicate checking, c) Dervish in deep online testing mode, and
d) Dervish in execution steering mode. A triangle represents the state space
searched by the model checker; a full line denotes an execution path of the
system; a dashed line denotes an avoided execution path that would lead to an
inconsistency.

detect future inconsistencies allows us to address the problem of reliability in
distributed systems on two fronts: testing and resilience.

• Our technique enables deep online testing because it explores more states
than live runs alone or more relevant states than model checking from the
initial state. For each state that a running system experiences, our tech-
nique checks many additional states that the system did not go through,
but that it could reach in similar executions. This approach combines
benefits of distributed testing and model checking.

• Our technique aids resilience because a node can modify its behavior to
avoid a predicted inconsistency. We call this approach execution steering.
Execution steering enables nodes to resolve non-determinism in ways that
aim to minimize future inconsistencies.

To make this approach feasible, we need a fast state exploration algorithm:
the model checker should search till a reasonable depth in the period between
each two restarts. The exponential explosion in the state space size, however,
does not allow the classic global model checking algorithms to explore further
than a few steps in a limited time budget. To this aim, we propose consequence
prediction, a heuristic for model checking distributed systems with short commu-
nications. Using this approach, we identified bugs in Mace implementations of a
random overlay tree, and the Chord distributed hash table [SMLN+03]. These
implementations were previously manually tested as well as model-checked by
exhaustive state exploration starting from the initial system state.

2

1.1. Contributions

For more complex distributed systems, where lots of messages are triggered
after an event, we propose LMC, a new local model checking algorithm that
optimistically excludes the changes into the network state from the performed
transitions. Using the proposed model checking algorithms in parallel with the
running distributed system, therefore, enables the developer to uncover and cor-
rect bugs that were not detected using previous techniques. Moreover, we show
that, if a bug is not detected during system development, our approach is effec-
tive in steering the execution away from the predicted erroneous states, without
significantly degrading the performance of the distributed service. We then in-
strument Dervish with LMC to test PaxosInside, a new consensus algorithm
that takes up the challenges of manycore environments, such as limited band-
width of interconnect network as well as the consensus leader. Thanks to quick
exploration by LMC as well as deep exploration by Dervish, we managed to find
bugs in PaxosInside, which is an example of complex distributed algorithms.

1.1 Contributions

We summarize the contributions of this thesis as follows:

• We introduce the concept of continuously executing a state space explo-
ration algorithm in parallel with a deployed distributed system, and in-
troduce an algorithm that produces useful results even under tight time
constraints arising from runtime deployment;

• We present execution steering, a technique that enables the system to steer
execution away from the predicted inconsistencies;

• We describe Dervish [YKKK09], the implementation of our approach
on top of the Mace framework [KAB+07]. We evaluate Dervish on
RandTree [KAJV07], Bullet′ [KBK+05], Paxos [Lam98], and Chord dis-
tributed system implementations. Dervish detected several previously un-
known bugs that could cause system nodes to reach inconsistent states.
Moreover, in the case of remaining bugs, Dervish’s execution steering pre-
dicts them in the deployed system and steers execution away from them,
all with an acceptable impact on the overall system performance.

• We introduce LMC, a novel approach in model checking distributed al-
gorithms. LMC separates the network state from the global state and
focuses on the remaining system states, which is the required part for in-
variant checking. We show how this approach enables us to find bugs in
PaxosInside.

• We explore, for the first time, the feasibility of implementing a (non-
blocking) consensus algorithm in a manycore system. We present PaxosIn-
side, a new consensus algorithm that takes up the challenges of manycore

3

Chapter 1. Introduction

environments, such as limited bandwidth of interconnect network as well
as the consensus leader.

1.2 Example

We next describe an example of an inconsistency exhibited by a distributed
system, then later we show how Dervish predicts and avoids it. The inconsis-
tency appears in the Mace [KAB+07] implementation of the RandTree overlay.
RandTree implements a random, degree-constrained overlay tree designed to be
resilient to node failures and network partitions. The trees built by an earlier
version of this protocol serve as a control tree for a number of large-scale dis-
tributed services such as Bullet [KBK+05] and RanSub [KRA+03]. In general,
trees are used in a variety of multicast scenarios [CDK+03,CRSZ02] and data
collection/monitoring environments [JMK+08]. Inconsistencies in these envi-
ronments translate into denial of service to the users, data loss, inconsistent
measurements, and suboptimal control decisions. The RandTree implementa-
tion was previously manually debugged both in local- and wide-area settings over
a period of three years, as well as debugged using an existing model checking
approach [KAJV07] but, to our knowledge, this inconsistency has not been dis-
covered before (see Section 3.6 for some additional inconsistencies that Dervish
discovered.).

RandTree Topology. Nodes in a RandTree overlay form a directed tree of
bounded degree. Each node maintains a list of its children and the address of
the root. The node with the numerically smallest IP address acts as the root of
the tree. Each non-root node contains the address of its parent. Children of the
root maintain a sibling list. Note that, for a given node, its parent, children,
and siblings are all distinct nodes. The seemingly simple task of maintaining
a consistent tree topology turns out to be complicated across asynchronous
networks, in the face of node failures and machine slowdowns.

Joining the Overlay. A node nj joins the overlay by issuing a Join request to
one of the designated nodes. If the message has not been forwarded by the root,
then the receiver forwards the request back to the root. If the root already has
the maximal number of children, it asks one of its children to incorporate the
node into the overlay. Once the request reaches a node np that its number of
children is less than maximum allowed, node np inserts nj as one of its children,
and notifies nj about a successful join using a JoinReply message. (if np is
the root, it also notifies its other children about their new sibling nj using an
UpdateSibling message.)

Example System State. The first row of Figure 1.2 shows a state of
the system that we encountered by running RandTree in the ModelNet clus-
ter [VYW+02] starting from the initial state. We examine the local states of

4

1.2. Example

Figure 1.2: An inconsistency in a run of RandTree; Safety property: children
and siblings are disjoint lists

5

Chapter 1. Introduction

nodes n1, n9, and n13. For each node nj, we display its neighborhood view as
a small graph whose central node is n itself, marked with a circle. If a node is
root and in a “joined” state, we mark it with a triangle in its own view.

The state in the first row of Figure 1.2 is formed by n13 joining as the only child
of n9 and then n1 joining and assuming the role of the new root with n9 as its
only child (n13 remains as the only child of n9.). Although the final state shown
in first row of Figure 1.2 is simple, it takes 13 steps of the distributed system
(such as atomic handler executions, including application events) to reach this
state from the initial state.

Scenario Exhibiting Inconsistency. Figure 1.2 describes a sequence of ac-
tions that leads to the state that violates the consistency of the tree. We use
arrows to represent the sending and the receiving of some of the relevant mes-
sages. A dashed line separates distinct distributed system states (for simplicity
we skip certain intermediate states and omit some messages.).

The sequence begins by a silent reset of node n13 (such reset can be caused by,
for example, a power failure.). After the reset, n13 attempts to join the overlay
again. The root, node n1, accepts the join request and adds n13 as its child. Up
to this point node n9 has received no information on actions that followed the
reset of n13, thus n9 maintains n13 as its own child. When n1 accepts n13 as a
child, it sends an UpdateSibling message to n9. At this point, n9 simply inserts
n13 into its sibling list. As a result, n13 appears both in the list of children and
in the list of siblings of n9, which is inconsistent with the notion of a tree.

Challenges in Finding Inconsistencies. We would clearly like to avoid
inconsistencies such as the one appearing in Figure 1.2. Once we have realized
the presence of such inconsistency, we can, for example, modify the handler for
the UpdateSibling message to remove the new sibling from the children list.
Previously, researchers had successfully used explicit-state model checking to
identify inconsistencies in distributed systems [KAJV07] and reported a num-
ber of safety and liveness bugs in Mace implementations. However, due to
an exponential explosion of state space, current techniques capable of model
checking distributed system implementations take a prohibitively long time to
identify inconsistencies, even for seemingly short sequences such as the ones
needed to generate states in Figure 1.2. For example, when we applied the
Mace model checker’s [KAJV07] exhaustive search to the safety properties 1 of
RandTree starting from the initial state, it failed to identify the inconsistency in
Figure 1.2 even after running for 17 hours (on a 3.4-GHz Pentium-4 Xeon that
we used for some of our experiments in Section 3.6). The reason for this long
running time is the large number of states reachable from the initial state up to
the depth at which the bug occurs, all of which are examined by an exhaustive
search.

1In this thesis, we use the terms of ”safety property” and ”invariant” interchangeably.

6

1.3. Dervish Overview

1.3 Dervish Overview

Instead of running the model checker from the initial state, we propose to ex-
ecute a model checker concurrently with the running distributed system, and
continuously feed current system states into the model checker. When, in our
example, the system reaches the state at the beginning of Figure 1.2, this state
is fed to the model checker as initial state and the model checker will predict the
state at the end of Figure 1.2 as a possible future inconsistency. In summary,
instead of focusing only on inconsistencies starting from the initial state (which
for complex protocols means never exploring states beyond the initialization
phase), our model checker predicts inconsistencies that can occur in a system
that has been running for a significant amount of time in a realistic environment.

As Figure 1.1 suggests, compared to the standard model checking approach,
this approach identifies inconsistencies that can occur within much longer system
executions. Compared to simply checking the live state of the running system,
our approach has two advantages.

1. Our approach systematically covers a large number of executions that con-
tain low-probability events, such as node resets that ultimately triggered
the inconsistency in Figure 1.2. It can take a very long time for a running
system to encounter such a scenario, which makes testing for possible bugs
difficult. Our technique, therefore, improves system testing by providing a
new technique that combines some of the advantages of testing and static
analysis.

2. Our approach identifies inconsistencies before they actually occur. This
is possible because the model checker can simulate packet transmission in
time shorter than propagation latency, and because it can simulate timer
events in time shorter than the actual time delays. This aspect of our
approach opens an entirely new possibility: adapt the behavior of the
running system on the fly and avoid a predicted inconsistency. We call
this technique execution steering. Because it does not rely on a history of
past inconsistencies, execution steering is applicable even to inconsistencies
that were previously never observed in past executions.

Example of Execution Steering. In our example, a model checking algo-
rithm running in n1 detects the violation at the end of Figure 1.2. Given this
knowledge, execution steering causes node n1 not to respond to the join request
of n13 and to break the TCP connection with it. Node n13 eventually succeeds
joining the random tree (perhaps after some other nodes have joined first). The
stale information about n13 in n9 is removed once n9 discovers that the stale
communication channel with n13 is closed, which occurs the first time when n9

attempts to communicate with n13. Figure 1.3 presents one scenario illustrating
this alternate execution sequence. Effectively, execution steering has exploited

7

Chapter 1. Introduction

Figure 1.3: An example execution sequence that, thanks to execution steering,
avoids the inconsistency from Figure 1.2.

8

1.3. Dervish Overview

the non-determinism and robustness of the system to choose an alternative ex-
ecution path that does not contain the inconsistency.2

Fast Model Checking. We believe that inconsistency detection and execution
steering are compelling reasons to use an approach where a model checker is de-
ployed online to find future inconsistencies. To make this approach feasible, it is
essential to have a model checking technique capable of quickly discovering po-
tential inconsistencies till significant depths in a very short amount of time. The
classic global model checking technique is not sufficient for this purpose: when
we tried deploying it online, by the time a future inconsistency was identified,
the system had already passed the execution depth at which the inconsistency
occurs. We need an exploration technique that is sufficiently fast and focused
to be able to discover a future inconsistency faster than the time that it takes
node interaction to cause the inconsistency in a distributed system. We present
two such exploration techniques: consequence prediction and LMC.

Consequence Prediction. Consequence prediction heuristically filters some
non-network events. Our system identifies the scenario in Figure 1.2 by running
consequence prediction on node n1. Consequence prediction considers, among
others, the Reset action on node n13. It then uses the fact that the Reset action
brings the node into a state where it can issue a Join request. Even though
there are many transitions that a distributed system could take at this point,
consequence prediction focuses on the transitions that were enabled by the recent
state change. It will therefore examine the consequences of the response of n1

to the Join request and, using the knowledge of the state of its neighborhood,
discover a possible inconsistency that could occur in n9. Consequence prediction
also explores other possible sequences of events, but, as we explain in Section 3.2,
it avoids certain sequences, which makes it faster than applying the standard
search to the same search depth.

LMC. Consequence prediction focuses on pruning non-network events, which
turns out to be very efficient for algorithms with short communications. For
example, each join request in a random overlay tree initiates a couple of network
messages and then finishes by having the new node joined under its new parent
node. This is not the case for complex distributed algorithms such as consensus
algorithms. In these algorithms, each client request results into 10∼20 protocol
messages, which makes heuristics such as consequence prediction less effective.

For complex algorithms with long event chains, the exploration algorithms
built upon principles of model checking centralized systems are not scalable
enough to be installed in Dervish. Those approaches reduce the problem of
model checking distributed systems to that of centralized systems, by using
the global state as the model checking state. The frequent changes into the

2Besides external events, such as additional node joining, a node typically has sufficient
amount of choice to progress (e.g., multiple bootstrap nodes). In general however, it is
possible that enforcing safety can reduce liveness.

9

Chapter 1. Introduction

network state are a major contributor to the exponential increase in number of
global states. To tackle the challenges of testing complex distributed algorithms,
we introduce LMC, a novel approach in model checking especially designed
for distributed algorithms. LMC separates the network state from the global
state and focuses on the remaining system states, which is the required part for
invariant checking. Besides, instead of keeping track of the system states, LMC
keeps the traversed local states by each node separately; the system states are
created temporarily only to be verified against invariants.

PaxosInside. We then instrument Dervish with LMC to test PaxosInside, a
new consensus algorithm that takes up the challenges of manycore environments,
such as limited bandwidth of interconnect network as well as the consensus
leader. A unique characteristic of PaxosInside is the use of a single acceptor
role in steady state, which in our context, significantly reduces the number of
exchanged messages between replicas. Thanks to quick exploration by LMC as
well as deep exploration by Dervish, we managed to find bugs in PaxosInside,
which is an example of complex distributed algorithms.

1.4 Thesis Organization

The rest of the thesis is split into 5 chapters, organized as follows.

Chapter 2 presents a simple model for distributed systems, which is the basis
for all the model checking algorithms presented in this thesis. It then reviews
model checking algorithms as well as techniques for taking consistent global
snapshots. It then gives an overview of the previous, related works in testing
distributed systems.

Chapter 3 presents the design and implementation details of Dervish. It covers
the techniques for taking consistent neighborhood snapshots, consequence pre-
diction algorithm, and execution steering. At the end, it presents the evaluation
results of testing some distributed systems with Dervish.

Chapter 4 explains our novel model checking algorithm, LMC, which is specif-
ically designed for complex distributed algorithms. The evaluation results at the
end of this chapter analyze the scalability of LMC and verifies its ability in find-
ing bugs. The design and implementation of PaxosInside, which is an example
of complex distributed algorithms that will be used in benchmarking, is covered
in Chapter 5.

Finally, Chapter 6 concludes the thesis, by giving a summary of the results
as well as possible future works.

10

One can safely bet that all publicly received ideas, all established conven-

tions are mere foolishness, because these are convenient to the majority.

Nicolas Chamfort

2
Fundamental Concepts & Existing

Approaches

This chapter reviews some fundamental concepts of distributed systems and
existing approaches that tackle testing them. We next present a simple model
of distributed systems and describe a basic model checking algorithm based on
breadth-first search and state caching.

2.1 System Model

Figure 2.1 describes a simple model of a distributed system. We use this model
to describe system execution at a high level of abstraction, describe an exist-
ing model checking algorithm, and present our new algorithms, consequence
prediction and LMC.

System state. The global state of the entire distributed system encompasses
(1) the system state, i.e., local states of all nodes, and (2) in-flight network
messages. We assume a finite set of node identifiers N (corresponding to, for
example, IP addresses). Each node n ∈ N has a local state Ln ∈ S. A local
state encompasses node-local information, such as explicit state variables of
the distributed node implementation, the status of timers, and the state that
determines application calls. A network state corresponds to the set of in-flight
messages, I. We represent each in-flight message by a pair (N,M) where N is
the destination node of the message and M is the remaining message content
(including sender node information and message body).

11

Chapter 2. Fundamental Concepts & Existing Approaches

Node behavior. Each node in the system runs the same state-machine imple-
mentation. The state machine has two kinds of handlers: (i) a message handler
executes in response to a network message; (ii) an internal handler executes in
response to a node-local event such as a timer and an application call.

We represent message handlers by a set of tuples HM . The condition
((s1,m), (s2, c)) ∈ HM means that, if a node is in state s1 and it receives a
message m, then it transitions into state s2 and sends the set c of messages.
Each element (n′,m′) ∈ c is a message with target destination node n′ and con-
tent m′. An internal node action handler is analogous to a message handler, but
it does not consume a network message. Instead, ((s1, a), (s2, c)) ∈ HA repre-
sents the handling of an internal node action a ∈ A. (In both handlers, the fact
that c is the empty set means that the handler did not generate any messages.)

System behavior. The behavior of the system specifies one step of a transition
from one global state (L, I) to another global state (L′, I ′). We denote this
transition by (L, I);(L′, I ′) and describe it in Figure 2.1 in terms of handlers
HM and HA. (L0 and I0 in Figure 2.1 are subsets of L and I, respectively.) The
handler that sends the message, directly inserts the message into the network
state I, whereas the handler receiving the message simply removes it from I. To
keep the model simple, we assume that transport errors are particular messages,
generated and processed by message handlers.

Observations. The following observations can be derived from the definitions
of HM and HA in Figure 2.1: (i) Except the node in which the event is executed,
the state of other nodes, i.e., L0, is untouched. This implies that to execute an
event on node n, we require only the local state of node n. (ii) To execute HM

with message m on node n, the only required part from the network state is tuple
(n,m): the rest of the network state, i.e., I0, is untouched. These observations
indicate that the entire global state of the system is not required to execute a
handler in the model checker.

2.2 Model-Checking Distributed Systems

Figure 2.2 presents a standard depth-first search (DFS) for tracking invariant
violations in the transition system captured by relation ; of Figure 2.1. In
practice, model checkers usually use bounded depth-first search (B-DFS), in
which the maximum depth of the search is bounded and this bound is iteratively
increased. The search starts from a given global state firstState which, in
the standard approach, is the initial state of the system. By executing enabled
handlers (HM and HA) on the traversed global states, Procedure exploreState,
the search systematically explores reachable global states at larger and larger
depths and checks whether the states satisfy the given invariant condition. In
practice, the number of reachable states is very large and the search needs to

12

2.2. Model-Checking Distributed Systems

basic notions:
N − node identifiers
S − node states
M − message contents
N × M − (destination process, message)-pair
C = 2N×M − set of messages with destination
A − internal node actions (timers, application calls)

global state : (L, I) ∈ G, G = 2N×S × 2N×M

system state (local nodes’ states) : L ⊆ N × S (function from N to S)
in-flight messages (network) : I ⊆ N × M

behavior functions for each node :
message handler : HM ⊆ (S × M) × (S × C)
internal action handler : HA ⊆ (S × A) × (S × C)

transition function for distributed system :

node message handler execution :
((s1,m), (s2, c)) ∈ HM

before: (L0 ⊎ {(n, s1)}, I0 ⊎ {(n,m)});

after: (L0 ⊎ {(n, s2)}, I0 ⊎ c)

internal node action (timer, application calls) :
((s1, a), (s2, c)) ∈ HA

before: (L0 ⊎ {(n, s1)}, I);

after: (L0 ⊎ {(n, s2)}, I ⊎ c)

Figure 2.1: A simple model of a distributed system

be terminated upon reaching some bound such as running time or search depth
(StopCriterion).

To avoid search loops, the algorithm requires a duplicate state detection mech-
anism. This is done by keeping a history of the traversed global states, explored,
and checking this history for duplicate states before exploring any state by Pro-
cedure exploreState. For the sake of space efficiency, instead of the whole
state, a hash of the global states is stored in Variable explored. Note that
although the presented algorithm is recursive, DFS can also be implemented
non-recursively.

Soundness. The algorithm presented in Figure 2.2 is sound in the sense that
all violation reports in error could also occur in a real run of the system.
In other words, there is no false positive in the reported bugs. Moreover, all
traversed states in explored are valid and could also be created in a real run.

13

Chapter 2. Fundamental Concepts & Existing Approaches

1 proc findErrors(firstState : G, invariant : (G → boolean)) {
2 explored = emptySet(); errors = emptySet();
3 state = firstState;
4 exploreState(state);
5 }
6

7 proc exploreState(state : G, invariant : (G → boolean)) {
8 explored = explored ∪ hash(nextState);
9 if (!invariant(state))

10 errors.add(state);
11 foreach (nextState where (state ; nextState))
12 if (!StopCriterion && (hash(nextState) /∈ explored))
13 exploreState(nextState);
14 }

Figure 2.2: The classic DFS-based (Depth First Search) algorithm to model
checking distributed systems.

The sufficient part for soundness, however, is only the reported violations to the
developer, i.e., error. We will show later that our local model checking is also
sound, even though some system states created a priori might be invalid.

Completeness. An exploration algorithm is complete if, given enough time
and space, it can explore all system states. In other words, completeness is
satisfied if there is no false negative. Although DFS are both complete, due
to an inherently limited time budget, in practice they can explore only a small
fraction of the state space of complex algorithms.

2.3 Consistent Global Snapshots

Examining global state of a distributed system is useful in a variety of scenarios,
such as checkpointing/recovery, testing, and in our case, running a model check-
ing algorithm in parallel with the system. A snapshot consists of checkpoints of
nodes’ states. For the snapshot to be useful, it needs to be consistent. There
has been a large body of work in this area, starting with the seminal paper by
Chandy and Lamport [CL85]. We next describe one of the recent algorithms
for obtaining consistent snapshots [MS02]. The general idea is to collect a set
of checkpoints which do not violate the happens-before relationship [Lam78]
established by messages sent by the distributed service.

In this algorithm, the runtime of each node ni keeps track of the checkpoint
number cni (the role of checkpoint number is similar to the Lamport’s logical
clock [Lam78].). Whenever ni sends a message M , it stores cni in it (denote this
value M.cn). When node nj receives a message, it compares cnj with M.cn.
If M.cn > cnj , then nj takes a checkpoint C, assigns C.cn = M.cn, and sets

14

2.4. Related Work

N0

N1

0

0 1 2

1

C0
1

Regular checkpoint Forced checkpoint

m2

N2

N3

0

0

1 2

1 Req (1)

C 1

C1
1

C2
1

Time

m1

m2

Figure 2.3: Example illustrating the consistent snapshot collection algorithm.
Black ovals represent regular checkpoints. Messages m1 and m2 force check-
points (white ovals) to be taken before messages are processed at nodes 2 and
1, respectively, and so does the checkpoint request from node 3 when it arrives
at node 0.

cnj = M.cn. This is the key step of the algorithm that avoids violating the
happens-before relationship. A node ni can take snapshots on its own, and this
is done whenever the cni is locally incremented, which happens periodically.

To collect the required checkpoints, a node ni sends a checkpoint request mes-
sage containing a checkpoint request number cri. Upon receiving the request,
a node nj responds with the appropriate checkpoint. There are two cases: (1)
if cri > cnj (the request number is greater than any number nj has seen), then
nj takes a checkpoint, stamps it with C.cn = cri, sets cnj = cri, and sends that
checkpoint; (2) if cri ≤ cnj , the request is for a checkpoint taken in the past,
and nj responds with the earliest checkpoint C for which C.cn ≥ cri. The exam-
ple depicted in Figure 2.3, includes different scenarios that the algorithm forces
taking checkpoints in order to maintain the checkpoints globally consistent.

2.4 Related Work

Debugging distributed systems is a notoriously difficult and tedious process.
Developers typically start by using an ad-hoc logging technique, coupled with
strenuous rounds of writing custom scripts to identify problems. Several cate-
gories of approaches have gone further than the naive method, and we explain
them in more detail in the remainder of this section.

15

Chapter 2. Fundamental Concepts & Existing Approaches

2.4.1 Testing Distributed Systems

Collecting and Analyzing Logs Several approaches (Magpie [BDIM04], X-
trace [FPK+07], Pip [RKW+06]) have successfully used extensive logging and
off-line analysis to identify performance problems and correctness issues in dis-
tributed systems. Unlike these approaches, Dervish works on deployed systems,
and performs an online analysis of the system state.

Deterministic Replay with Predicate Checking Friday [GAM+07] goes
one step further than logging to enable a gdb-like replay of distributed sys-
tems, including watch points and checking for global predicates. WiDS-
checker [LLPZ07] is a similar system that relies on a combination of log-
ging/checkpointing to replay recorded runs and check for user predicate vio-
lations. WiDS-checker can also work as a simulator. In contrast to replay-
and simulation-based systems, Dervish explores additional states and can steer
execution away from erroneous states.

Online Predicate Checking Singh et al. [SMRD06] have advocated test-
ing by online checking of distributed system state. Their approach involves
launching queries across the distributed system that is described and deployed
using the OverLog/P2 [SMRD06] declarative language/runtime combination.
D3S [LGW+08] and MaceODB [DAKV09] enable developers to specify global
predicates which are then automatically checked in a deployed distributed sys-
tem. By using binary instrumentation, D3S can work with legacy systems.
Specialized checkers perform predicate-checking topology on snapshots of the
nodes’ states. To make the snapshot collection scalable, the checker’s snapshot
neighborhood can be manually configured by the developer. This work has shown
that it is feasible to collect snapshots at runtime and check them against a set of
user-specified properties. Dervish advances the state-of-the-art in online testing
in two main directions: (1) it employs an efficient algorithm for model check-
ing from a live state to search for bugs “deeper” and “wider” than in the live
run, and (2) it enables execution steering to automatically prevent previously
unidentified bugs from manifesting themselves in a deployed system.

Model Checking Model checking techniques for finite state systems [Hol97,
JEK+90] have proved successful in analysis of concurrent finite state systems,
but require the developer to manually abstract the system into a finite-state
model which is accepted as the input to the system. Several systems have used
sound abstraction techniques to verify sequential software implementation as
opposed to its models [BR02, HJMS02, CCG+03]. Recently, techniques based
on bounding the number of context switches in multi-threaded programs have
been applied to single-node software systems [MQ07,MQB+08]. Bounding the
number of context switches stands in contrast to consequence prediction, which
follows chains of actions across any number of different nodes. Early efforts on
explicit-state model checking of C and C++ implementations [MPC+02,ME04,

16

2.4. Related Work

YTEM06] have primarily concentrated on a single-node view of the system.
A continuation of this work, eXplode [YSE06], makes it easy to model-check
complex, layered storage systems, in some cases involving a client and a server.

MODIST [YCW+09] and MaceMC [KAJV07] represent the state-of-the-art
in model checking distributed system implementations. MODIST [YCW+09] is
capable of model checking unmodified distributed systems; it orchestrates state
space exploration across a cluster of machines. MaceMC runs state machines for
multiple nodes within the same process, and can determine safety and liveness
violations spanning multiple nodes. MaceMC’s exhaustive state exploration al-
gorithm limits in practice the search depth and the number of nodes that can
be checked. In contrast, Dervish’s consequence prediction allows it to achieve
significantly shorter running times for similar depths, thus enabling it to be
deployed at runtime. In MaceMC [KAJV07] the authors acknowledge the use-
fulness of prefix-based search, where the execution starts from a given supplied
state. Our work addresses the question of obtaining prefixes for prefix-based
search: we propose to directly feed into the model checker states as they are
encountered in live system execution. Using Dervish we found bugs in code
that was previously debugged in MaceMC and that we were not able to repro-
duce using MaceMC’s search. In summary, Dervish differs from MODIST and
MaceMC by being able to run state space exploration from live state. Further,
Dervish supports execution steering that enables it to automatically prevent the
system from entering an erroneous state.

Cartesian abstraction [BPR01] is a technique for over-approximating state
space that treats different state components independently. The independence
idea is also present in our consequence prediction but, unlike over-approximating
analyses, bugs identified by consequence prediction search are guaranteed to
be real with respect to the model explored. The idea of disabling certain
transitions in state-space exploration appears in partial-order reduction (POR)
[GW94, FG05]. Our initial investigation suggests that a POR algorithm takes
considerably longer than the consequence prediction algorithm.

To avoid loops created by exploring duplicate states, it is necessary to keep
track of the visited states. Obtaining a hash of the system state requires touch-
ing the whole state once, which can be nontrivial in the case of large states.
Although stateless approaches [God97] avoid this cost by not keeping track of
traversed states, visiting duplicate states can make them very inefficient. Thanks
to Mace [KAB+07] language, upon which we have implemented our tool, the
relevant state of the protocol is specified by the developer and it is, hence,
straightforward for MaceMC [KAJV07] to obtain its hash.

Partial Order Reduction Partial Order Reduction (POR) tech-
niques [God96] prune the state space of a concurrent system to avoid un-
necessary interleaving of events. If e1 and e2 are events on two separate nodes,
executing < s0

e1−→ s1
e2−→ s2 > and < s0

e2−→ s′1
e1−→ s2 > result in the same

17

Chapter 2. Fundamental Concepts & Existing Approaches

global state, exploring only one of them is enough for checking the thread-local
assert statements. In this case, e1 and e2 are called independent. Independence
is not enough to prune e2 from the state space graph because other events might
be enabled at state s′1, leading the search towards states that are not reachable
from s1. To be able to prune e2, one must first prove that e1 and e2 are in a
persistent set at s0.

Obtaining independent events and persistent sets requires static analysis of
the source code. Static analysis tools might not be available in all programming
languages; specifically if the operating system is included in the analysis, e.g.,
using communication objects in distributed algorithms. It is for instance not
easy to establish the independence of two operations using different system
calls. Furthermore, static analysis is not effective for dynamic data such as
pointers [FG05]. This is because the value referenced by the pointer is not
available at the time of analysis.

Dynamic Partial Order Reduction (DPOR) [FG05] was designed to address
these limitations in multi-threaded programs. The DPOR algorithm computes
the dependency during exploration, when the concrete values of the pointers are
available. According to the observed dependencies, it adds appropriate branches
to guarantee the completeness of the exploration. Although applicable to multi-
threaded programs, DPOR is not applicable to distributed systems [YK09].

LMC and consequence prediction are designed for distributed systems, in
which DPOR cannot be applied. To the best of our knowledge, the only re-
cent adaptations of DPOR for distributed systems are DPOR-DS [YK09] and
the work by Sen et al. [SA06a]. The performance of B-DFS that we used for
benchmarking in this chapter, could potentially improve by implementing this
techniques. However, we expect the improvement would be marginal because of
frequent changes in the global state; transmitting any message would change the
network state and consequently the global state. Moreover, lots of redundan-
cies avoided by POR-based techniques are already avoided by duplicate state
detection in LMC.

2.4.2 Runtime Mechanisms

In the context of operating systems, researchers have proposed mechanisms that
safely re-execute code in a changed environment to avoid errors [QTZS07]. Such
mechanisms become difficult to deploy in the context of distributed systems.
Distributed transactions are a possible alternative to execution steering, but
involve several rounds of communication and are inapplicable in environments
such as wide-area networks. Making such approaches feasible would require
collecting snapshots of the system state, as in Dervish. Our execution steering
approach reduces the amount of work for the developer because it does not re-

18

2.4. Related Work

quire code modifications. Moreover, our experimental results show an acceptable
computation and communication overhead.

In Vigilante [CCC+05] and Bouncer [CCZ+07], end hosts cooperate to detect
and inform each other about worms that exploit even previously unknown secu-
rity holes. These systems deploy detectors that use a combination of symbolic
execution and path slicing to detect infection attempts. Upon detecting an in-
trusion, the detector generates a Self-Certifying Alert (SCA) and broadcasts it
quickly over an overlay in an attempt to win the propagation race against the
worm that spreads via random probing. There are no false positives, since each
host verifies every SCA in sandbox (virtual machine), after receiving it. After
verification, hosts protect themselves by generating filters that block bad inputs.
Relative to these systems, Dervish deals with distributed system properties, and
predicts inconsistencies before they occur.

Researchers have explored modifying actions of concurrent programs to re-
duce data races [JM06] by inserting locks in an approach that does not employ
running static analysis at runtime. In another static approach to modifying
program behavior [JGB05], the authors formalize the problem as a game. Ap-
proaches that modify state of a program at runtime include [DR03,RCD+04];
these approaches enforce program invariants or memory consistency without
computing consequences of changes to the state.

A recent approach [WKK+08, WLK+09] first uses offline static analysis to
construct a Petri net model of the multi-threaded application. Authors then
apply Discrete Control Theory to identify potential deadlocks in the model,
and synthesize control logic that enables the instrumented application to avoid
deadlocks at runtime. This approach is applicable to multi-threaded applica-
tions and the particular property of avoiding deadlock. In contrast, Dervish is
designed to avoid general safety properties in distributed systems.

19

Although from west to east is the army of darkness, Dervishes have time

from the first moment of life till the eternity.

Hafez

3
Dervish Design & Implementation

We next sketch the design of Dervish. Figure 3.1 shows the high-level overview
of a Dervish-enabled node. We concentrate on distributed systems implemented
as state machines, as this is a widely-used approach [KAB+07,Lam78,Lam98,
RKB+04,Sch90].

The state machine interfaces with the outside world via the runtime mod-
ule. The runtime receives the messages coming from the network, demultiplexes
them, and invokes the appropriate state machine handlers. The runtime also
accepts application level messages from the state machines and manages the
appropriate network connections to deliver them to the target machines. This
module also maintains the timers on behalf of all services that are running.

The Dervish controller contains a checkpoint manager that periodically col-
lects consistent snapshots of a node’s neighborhood, including the local node.
The controller feeds them to the model checker, along with a checkpoint of
the local state. The model checker runs the consequence prediction algorithm
which checks user- or developer-defined properties and reports any violation in
the form of a sequence of events that leads to an erroneous state.

Dervish can operate in two modes. In the deep online testing mode, the con-
troller only outputs the information about the property violation. In the execu-
tion steering mode the controller examines the report from the model checker,
prepares an event filter that can avoid the erroneous condition, checks the filter’s
impact, and installs it into the runtime if it is deemed to be safe.

21

Chapter 3. Dervish Design & Implementation

Figure 3.1: High-level overview of Dervish. This figure depicts the high-level
architecture of Dervish and its main components.

3.1 Consistent Neighborhood Snapshots

To check system properties, the model checker requires a snapshot of the system-
wide state. Ideally, every node would have a consistent, up-to-date checkpoint of
every other participant’s state. However, given that the nodes could be spread
over a high-latency wide-area network, this goal is unattainable. In addition,
the sheer amount of bandwidth required to disseminate checkpoints might be
excessive.

Given these fundamental limitations, we use a solution that aims for scalabil-
ity: we apply model checking to a subset of all nodes in a distributed system.
We leverage the fact that in scalable systems, a node typically communicates
with a small subset of other participants (“neighbors”) and thus needs to per-
form model checking only on this neighborhood. In some distributed hash table
implementations, a node keeps track of O(log n) other nodes; in mesh-based
content distribution systems, nodes communicate with a constant number of
peers, or this number does not explicitly grow with the size of the system. Also
in a random overlay tree, a node is typically aware of the root, its parent, its
children, and its siblings. We therefore arrange for a node to distribute its state
checkpoints to its neighbors, and we refer to received checkpoints as snapshot
neighborhood. The checkpoint manager maintains checkpoints and snapshots.
Other Dervish components can request an on-demand snapshot to be gathered
by invoking an appropriate call on the checkpoint manager.

22

3.1. Consistent Neighborhood Snapshots

3.1.1 Discovering and Managing Snapshot Neighborhoods

To propagate checkpoints, the checkpoint manager needs to know the set of
a node’s neighbors. This set depends on the distributed service. We use two
techniques to provide this list. In the first scheme, we ask the developer to im-
plement a method that will return the list of neighbors. The checkpoint manager
then periodically queries the service and updates its snapshot neighborhood.

Because changing the service code might not always be possible, our second
technique uses a heuristic to determine the snapshot neighborhood. Specifi-
cally, the heuristic periodically queries the runtime to obtain the list of open
connections (for TCP), and recent message recipients (for UDP). It then clus-
ters connection endpoints according to the communication times, and selects a
sufficiently large cluster of recent connections.

3.1.2 Enforcing Snapshot Consistency

Dervish ensures that the neighborhood snapshot corresponds to a consistent
view of the distributed system at some point of logical time. Our starting point
is a technique similar to the one described in Section 2.3.

Instead of gathering a global snapshot, a node periodically sends a checkpoint
request to the members of its snapshot neighborhood. Even though nodes receive
checkpoints only from a subset of nodes, all distributed service and checkpointing
messages are instrumented to carry the checkpoint number (logical clock) and
each neighborhood snapshot is a fragment of a globally consistent snapshot. In
particular, a node that receives a message with a logical timestamp greater than
its own logical clock takes a forced checkpoint. The node then uses the forced
checkpoint to contribute to the consistent snapshot when asked for it.

Node failures are commonplace in distributed systems, and our algorithm has
to deal with them. The checkpoint manager proclaims a node to be dead if
it experiences a communication error (e.g., a broken TCP connection) with it
while collecting a snapshot. An additional cause for an apparent node failure
is change of a node’s snapshot neighborhood in the normal course of operation
(e.g., when a node changes parents in the random tree). In this case, the node
triggers a new snapshot gather operation.

3.1.3 Checkpoint Content

Although the total footprint of some services might be very large, this need not
necessarily be reflected in checkpoint size. For example, the Bullet′ [KBK+05]
file distribution application has non-negligible total footprint, but the actual file
content transferred in Bullet′ does not play any role in consistency detection.

23

Chapter 3. Dervish Design & Implementation

In general, the checkpoint content is given by a serialization routine. The de-
veloper can choose to omit certain parts of the state from serialized content and
reconstruct them if needed at de-serialization time. As a result, checkpoints
are smaller and the code compensates the lack of serialized state when a local
state machine is being recreated from a remote node’s checkpoint in the model
checker.

3.1.4 Managing Checkpoint Storage

The checkpoint manager keeps track of checkpoints via their checkpoint num-
bers. Over the course of its operation, a node can collect a large number of
checkpoints, and a long-running system might demand an excessive amount
of memory and storage for this task. It is therefore important to prune old
checkpoints in a way that nevertheless leaves the ability to gather consistent
snapshots.

Our approach to managing checkpoint storage is to enforce a per-node stor-
age quota for checkpoints. Older checkpoints are removed first to make room.
Removing older checkpoints might cause a checkpoint request to fail when the re-
quest is asking for a checkpoint that is outside the range of remaining checkpoints
at the node. In this case, the node responds negatively to the checkpoint re-
quester and inserts its current checkpoint number in the response (R.cn = cni).
Then, upon receiving the responses from all nodes in the snapshot neighbor-
hood, the requestor chooses the greatest among the R.cn received, and initiates
another snapshot round. Provided that the rate at which the snapshots are re-
moved is not greater than the rate at which the nodes are communicating, this
second snapshot collection will likely succeed.

3.1.5 Managing Bandwidth Consumption

For a large class of services, the relevant per-node state is relatively small, e.g.,
a few KB. It is nevertheless important to limit bandwidth consumed by state
checkpoints for a number of reasons: (1) sending large amounts of data might
congest the node’s outbound link, and (2) consuming bandwidth for checkpoints
might adversely affect the performance and the reaction time of the system.

To reduce the amount of checkpoint data transmitted, Dervish can use a
number of techniques. First, it can employ “diffs” that enable a node to transmit
only parts of state that are different from the last sent checkpoint. Second,
the checkpoints can be compressed on-the-fly. Finally, Dervish can enforce a
bandwidth limit by: (1) making the checkpoint data be a fraction of all data
sent by a node, or (2) enforcing an absolute bandwidth limit (e.g., 10 Kbps). If
the checkpoint manager is above the bandwidth limit, it responds with a negative
response to a checkpoint request and the requester temporarily removes the node

24

3.2. Consequence Prediction Algorithm

1 proc findConseq(currentState : G, property : (G → boolean))
2 explored = emptySet(); errors = emptySet();
3 localExplored = emptySet();
4 frontier = emptyQueue();
5 frontier.addLast(currentState);
6 while (!Stop Criterion)
7 state = frontier.popFirst();
8 if (!property(state))
9 errors.add(state); // predicted inconsistency found

10 explored.add(hash(state));
11 foreach ((n,s) ∈ state.L) // node n in local state s
12 // process all network handlers
13 foreach (((s,m),(s’,c)) ∈ HM where (n,m) ∈ state.I)
14 // node n handles message m according to st. machine
15 addNextState(state,n,s,s’,{m},c);
16 // process local actions only for fresh local states
17 if (!localExplored.contains(hash(n,s)))
18 foreach (((s,a),(s’,c)) ∈ HA)
19 addNextState(state,n,s,s’,{},c);
20 localExplored.add(hash(n,s));
21

22 proc addNextState(state,n,s,s’,c0,c)
23 nextState.L = (state.L \ {(n,s)}) ∪ {(n,s’)};
24 nextState.I = (state.I \ c0) ∪ c;
25 if (!explored.contains(hash(nextState)))
26 frontier.addLast(nextState);

Figure 3.2: Consequence Prediction Algorithm

from the current snapshot. A node that wishes to reduce its inbound bandwidth
consumption can reduce the rate at which it requests checkpoints from other
nodes.

3.2 Consequence Prediction Algorithm

The key to enabling fast prediction of future inconsistencies in Dervish is our
consequence prediction algorithm. The idea of the algorithm is to avoid explor-
ing internal (local) actions of nodes whose local state was encountered previously
at a smaller depth in the search tree. Recall that the state of the entire sys-
tem contains the local states of each node in the neighborhood. A standard
search avoids re-exploring actions of states whose particular combination of lo-
cal states was encountered previously; it achieves this by storing hashes of the
entire global state. We found this standard approach to be too slow for our
purpose because of the high branching in the search tree (Figure 3.7 shows an
example for RandTree.). Consequence prediction therefore additionally avoids
exploring internal actions of a node if this node was already explored with the

25

Chapter 3. Dervish Design & Implementation

same local state (regardless of the states of other nodes). Consequence predic-
tion implements this policy by maintaining an additional hash table that stores
hashes of visited local states for each node.

Figure 3.2 shows the consequence prediction pseudo code. In its overall struc-
ture, the algorithm is similar to the standard state-space search in Figure 2.2.
(We present the algorithm at a more concrete level, where the relation ; is
expressed in terms of action handlers HA and HM introduced in Figure 2.1.)
In fact, if we omitted the test at Line 17,

if (!localExplored.contains(hash(n,s)))

the algorithm would reduce precisely to Figure 2.2.

In Line 8 of Figure 3.2, the algorithm checks whether the explored state
satisfies the desired safety properties. To specify the properties, the developer
can use a simple language [KAJV07] that supports universal and existential
quantifiers, comparison operators, state variables, and function invocations.

3.2.1 Exploring Chains

To understand the intuition behind consequence search, we identify certain ex-
ecutions that consequence prediction does and does not explore. Consider the
model of Figure 2.1 and the algorithm in Figure 3.2. We view local actions
as triggering a sequence of message exchanges. Define an event chain as a se-
quence of steps eAeM1 . . . eMp (for p ≥ 0) where the first element eA is an internal
node action (element of HA in Figure 2.1, representing application or scheduler
event), and where the subsequent elements eMi are network events (elements of
HM in Figure 2.1). Clearly, every finite execution sequence can be written as a
concatenation of chains.

Executions explored: Consequence prediction explores all chains that start
from the current state (i.e. the live state of the system). This is because (1)
consequence search prunes only local actions, not network events, (2) a chain
has only one local action, namely the first one, and (3) at the beginning of the
search the localExplored hash tables are empty, so no pruning occurs.

Executions not necessarily explored: Consider a chain C of the form
eAeM1 . . . eMp and another chain C ′ of the form e′Ae′M1 . . . e′Mq, where e′A is
a local action applicable to a node n. Then consequence prediction will explore
the concatenation CC ′ of these chains if there is no previously explored reach-
able state (at the depth less than p) at which the node n has the same state
as after C. As a special case, suppose chains C and C ′ involve disjoint sets of
nodes. Then consequence prediction will explore both C and C ′ in isolation.

26

3.2. Consequence Prediction Algorithm

Figure 3.3: Full state space, consequence search, and partial order reduction in
an example with internal actions of three distinct nodes

However, it will not explore the concatenation CC ′, nor a concatenation C1C
′

1

where C1 is a non-empty prefix of C and C ′

1 is non-empty prefix of C ′.

The notion of avoiding interleavings is related to the techniques of partial or-
der reduction [GW94] and dynamic partial order reduction [FG05,SA06b], but
our algorithm uses it as a heuristic that does not take into account the user-
defined properties being checked. Note that user-defined properties in Dervish
can arbitrarily relate local states of different nodes. In the example of disjoint
nodes above, a partial order reduction technique would explore CC ′ but, as-
suming perfect independence information, would not explore C ′. Figure 3.3
illustrates this difference; the Appendix presents a larger example. The prefer-
ence for a longer execution makes partial order reduction less appropriate for
our scenario where we need to impose a bound on search depth.

Note that hash(n, s) in Figure 3.2 implies that we have separate tables cor-
responding to each node for keeping hashed local states. If a state variable is
not necessary to distinguish two separate states, the user can annotate the state
variable that he or she does not want to be included in the hash function, im-
proving the performance of Consequence Prediction (our experiments in Section
3.6 make use of this mechanism.). Instead of holding all encountered hashes,
the hash table could be designed as a bounded cache of explored hash entries
to fit into the L2 cache or main memory, favoring access speed while admitting
the possibility of re-exploring previously seen states.

Note that consequence prediction algorithm does not prune any message pro-
cessing events. For example, if a node resets, the other nodes in the system can
detect this reset by trying to communicate with the node and receiving an RST
signal.

27

Chapter 3. Dervish Design & Implementation

Although simple, the idea of removing from the search the internal actions of
nodes with previously seen states eliminates many (uninteresting) interleavings
from the search and has a profound impact on the search depth that the model
checker can reach with a limited time budget. This change was therefore the key
to enabling the use of the model checker at runtime. Knowing that consequence
prediction avoids considering certain states, the question remains whether the
remaining states are sufficient to make the search useful. Ultimately, the answer
to this question comes from our evaluation (Section 3.6).

3.3 Execution Steering

Dervish’s execution steering mode enables the system to avoid entering an er-
roneous state by steering its execution path away from the predicted incon-
sistencies. If a protocol was designed with execution steering in mind, the
runtime system could report a predicted inconsistency as a special program-
ming language exception, and allow the service to react to the problem using
a service-specific policy. Moreover, in the new programming model [YVKK09]
which has been suggested recently, the developer can explicitly define multiple
handlers for a given event. At run-time, the run-time support module picks the
one that satisfies the user-defined objective, such as consistency. In the present
thesis, however, we focus on generic runtime mechanisms that do not require
the developer to change the programming model or explicitly specify corrective
actions.

3.3.1 Event Filters

Recall that a node in our framework operates as a state machine and processes
messages, timer events, and application calls via handlers. Upon noticing that
running a certain handler could lead to an erroneous state, Dervish installs
an event filter, which temporarily blocks the invocation of the state machine
handler for the messages from the relevant sender.

The rationale for event filters is that a distributed system often contains
a large amount of non-determinism that allows it to proceed even if certain
transitions are disabled. For example, if the offending message is a Join request
in a random tree, ignoring the message can prevent violating a safety property.
The joining node can later retry the procedure with an alternative potential
parent and successfully join the tree. Similarly, if handling a message causes a
race condition manifested as an inconsistency, delaying message handling allows
the system to proceed to the point where handling the message becomes safe
again. Note that state machine handlers are atomic, so Dervish is unlikely to
interfere with any existing recovery code.

28

3.3. Execution Steering

3.3.2 Granularity of Filters

There is a trade-off in the granularity of the filter that we can install to steer
away from the inconsistency. By using a coarse granularity filter, we can cover
more cases that can possibly lead to the same inconsistency and hence reduce
the false negative rate. However, doing so might increase the false positive
rate by filtering other events which are not threatening the consistency of the
system. On the other hand, using a fine granularity filter would decrease the
false positive rate as it affects only the events that are more likely to reach the
inconsistency point. Doing so could result in a higher false negative rate since
there might be other erroneous paths which the model checker could not find in
time.

There has been related work that tries to determine the right granularity
for the filter by further processing around the erroneous path using symbolic
execution and path slicing [CCZ+07]. Although these techniques can be effective
in general, they are not directly applicable to execution steering, because the
filter needs to be installed very quickly to catch the erroneous events in time.

The granularity we adopt in this thesis is at the level of a handler identifier.
In particular, we filter on the handler whose execution in the model checker led
to an inconsistency. In the case of handlers for network messages, we include
the source address of the received message in the filter. It is worth noting that
we can have multiple handlers for the same event. They differ in the guard
condition (i.e., the boolean expression defined over the state variables) and the
received message header that determines which handler is allowed to execute.

3.3.3 Point of Intervention

In general, execution steering can intervene at several points in the execution
path. Given several choices with equal impact in terms of predicted errors, our
policy is to steer the execution as early as possible (subject to non-disruptiveness
criteria described below). For example, if the erroneous execution path involves
a node issuing a Join request after resetting, the system’s first interaction with
that node occurs at the node which receives its Join request. If this node dis-
covers the erroneous path, it can install the event filter.

We choose the earliest-point-of-intervention policy because it gives the system
more choices (a longer execution) to adjust to the steering action. Moreover,
we have a separate mechanism, the immediate safety check (described below),
that enables a node to perform last-minute corrections to its behavior.

29

Chapter 3. Dervish Design & Implementation

3.3.4 Non-Disruptiveness of Execution Steering

Ideally, execution steering would always prevent inconsistencies from occurring,
without introducing new inconsistencies due to a change in behavior. In general,
however, guaranteeing the absence of inconsistencies is as difficult as guaran-
teeing that the entire program is error-free. Dervish therefore makes execution
steering safe in practice through two mechanisms:

1. Sound Choice of Filters. It is important that the chosen corrective
action does not sacrifice the soundness of the state machine. A sound
filtering is the one in which the observed finite executions with filtering
are a subset of possible finite executions without filtering. Consequently,
if a finite execution appeared in the presence of execution steering, it was
also possible (even if less likely) for it to appear in the original system.
The breaking of a TCP connection is common in a distributed system
using TCP. This makes sending a TCP RST signal a good candidate for
a sound event filter, and is the filter we choose to use in Dervish. In the
case of communication over UDP, the filter simply drops the UDP packet,
which could similarly happen in normal operation of the network. The
sound filter for timer events is to avoid invoking the timer handler and to
reschedule the timer firing. This is a sound filter because there is no real-
time guarantees for invoking the scheduled timers on time, hence the timer
execution could have been postponed during normal system operation.

2. Exploration of Corrected Executions. Before allowing the event filter
to perform an execution steering action, Dervish runs the consequence
prediction algorithm to check the effect of the event filter action on the
system. If the consequence prediction algorithm does not suggest that the
filter actions are safe, Dervish does not attempt execution steering and
leaves the system to proceed as usual.

3.3.5 Rechecking Previously Discovered Violations

An event filter reflects possible future inconsistencies reachable from the current
state, and leaving an event filter in place indefinitely could deny service to
some distributed system participants. Dervish therefore removes the filters from
the runtime after every model checking run. However, it is useful to quickly
check whether the previously identified error path can still lead to an erroneous
condition in a new model checking run. This is especially important given
the asynchronous nature of the model checker relative to the system messages,
which can prevent the model checker from running long enough to rediscover
the problem. To prevent this from happening, the first step executed by the
model checker is to replay the previously discovered error paths. If the problem
reappears, Dervish immediately reinstalls the appropriate filter.

30

3.4. Scope of Applicability

3.3.6 Immediate Safety Check

Dervish also supports immediate safety check, a mechanism that avoids inconsis-
tencies which would be caused by executing the current handler. Such imminent
inconsistencies can happen even in the presence of execution steering because (1)
consequence prediction explores states given by only a subset of all distributed
system nodes, and (2) the model checker runs asynchronously and may not al-
ways detect inconsistencies in time. The immediate safety check speculatively
runs the handler, checks the consistency properties in the resulting state, and
prevents actual handler execution if the resulting state is inconsistent.

We have found that exclusively using immediate safety check would not be
sufficient for avoiding inconsistencies. The advantages of installing event filters
are: (i) performance benefits of avoiding the error sooner, e.g., reducing un-
necessary message transmission, (ii) faster reaction to an error, which implies
greater chance of avoiding a “point of no return” after which error avoidance
would be impossible, and (iii) the node that is supposed to ultimately avoid
the inconsistency by immediate safety check might not have all the checkpoints
needed to notice the violation; this can result in false negatives (as shown in
Figure 3.10).

3.3.7 Liveness Properties

The notion of safe filtering (presented above) ensures that no new finite ex-
ecutions are introduced into the system by execution steering. It is possible,
in principle, that applying an event filter would affect liveness properties of a
distributed system (i.e., introduce new infinite executions). In our experience,
due to a large amount of non-determinism (e.g., the node is bootstrapped with
a list of multiple nodes it can join), the system usually finds a way to make
progress. We focus on enforcing safety properties; according to a negative result
by Fischer, Lynch, and Paterson [FLP85], it is anyway impossible to have safety
and liveness in an asynchronous system.

3.4 Scope of Applicability

Dervish does not aim to find all errors; it is rather designed to find and avoid
important errors that can manifest in real runs of the system. Results in Sec-
tion 3.6 demonstrate that Dervish works well in practice. Nonetheless, we next
discuss the limitations of our approach and characterize the scenarios in which
we believe Dervish would be effective.

Up-to-Date Snapshots. For Consequence Prediction to produce results rel-
evant for execution steering and immediate safety check, it needs to receive

31

Chapter 3. Dervish Design & Implementation

sufficiently many node checkpoints sufficiently often. (this is not a problem for
deep online testing.) We expect the stale snapshots to be less of an issue with
stable properties, e.g., those describing a deadlock condition [CL85]. Since the
node’s own checkpoint might be stale (because of enforcing consistent neighbor-
hood snapshots for checking multi-node properties), immediate safety check is
perhaps more applicable to node-local properties.

Higher frequency of changes in state variables requires higher frequency of
snapshot exchanges. High-frequency snapshot exchanges in principle lead to: (1)
more frequent model checker restarts (given the difficulty in building incremental
model checking algorithms), and (2) high bandwidth consumption. Among the
examples for which our techniques is appropriate are overlays in which state
changes are infrequent.

Consequence Prediction as a Heuristic. Consequence Prediction is a
heuristic that explores a subset of the search space. This is an expected lim-
itation of explicit-state model checking approaches applied to concrete imple-
mentations of large software systems. The key question in these approaches is
directing the search towards most interesting states. Consequence Prediction
uses information about the nature of the distributed system to guide the search.
The experimental results in Section 3.6 show that it works well in practice, but
we expect that further enhancements are possible.

Applicability to Less Structured Systems. Dervish uses the Mace frame-
work [KAB+07] and presents further evidence that higher-level models make the
development of reliable distributed systems easier [DKK09,KAJV07]. Neverthe-
less, consequence prediction algorithm and the idea of execution steering are also
applicable to systems specified in a less structured way. While doing so is beyond
the scope of this thesis, recently proposed tools such as MODIST [YCW+09]
could be combined with our approach to bring the benefits of execution steer-
ing to a wider range of distributed system implementations. Given the need
for incomplete techniques in systems with large state spaces, we believe that
consequence prediction remains a useful heuristics for these scenarios.

3.5 Implementation

Our Dervish prototype is built on top of Mace [KAB+07]. Mace allows dis-
tributed systems to be specified succinctly, and it outputs high-performance
C++ code. We run the model checker as a separate process that communicates
future inconsistencies to the runtime. Our implementation includes a check-
point manager, which enables each service to collect and manage checkpoints
to generate consistent neighborhood snapshots based on the notion of logical
time. It also includes an implementation of the consequence prediction algo-
rithm, with the ability to replay the previously discovered paths which led to

32

3.5. Implementation

some inconsistencies. Finally, it contains an implementation of the execution
steering mechanism.

3.5.1 Checkpoint Manager

To collect and manage snapshots, we modified the Mace compiler and the run-
time. We added a snapshot on directive to the service description to inform
the Mace compiler and the runtime that the service requires checkpointing. The
presence of this directive causes the compiler to generate the necessary code. For
example, it automatically inserts a checkpoint number in every service message
and adds the code to invoke the checkpoint manager when that is required by
the snapshot algorithm.

The checkpoint manager itself is implemented as a Mace service, and it com-
presses the checkpoints using the LZW algorithm. To further reduce bandwidth
consumption, a node checks if the previously sent checkpoint is identical to the
new one (on per-peer basis), and avoids transmitting duplicate data.

3.5.2 Consequence Prediction

Our starting point for the consequence prediction algorithm was the publicly
available MaceMC implementation [KAJV07]. This code was not designed to
work with live state. For example, the node addresses in the code are assumed
to be of the form 0,1,2,3, etc. To handle this issue, we added a mapping from live
IP addresses to model checker addresses. Since the model checker is executing
real code in the event and the message handlers, we did not encounter any
additional addressing-related issues.

Another change we made allowed the model checker to scale to hundreds of
nodes and deal with partial system state. We introduced a dummy node that
represents all system nodes without checkpoints in the current snapshot. All
messages sent to such nodes are redirected to the dummy node. The model
checker does not consider the events of this node during state exploration.

To minimize the impact on distributed service performance, we decouple the
model checker from event processing path by running it as a separate process.
On a multi-core machine this CPU-intensive process will likely be scheduled
on a separate core. Operating systems already have techniques to balance the
load of processes among the available CPU cores. Furthermore, some kernels
(e.g., FreeBSD, Windows Vista, and Linux) already have interfaces support for
pinning down applications to CPU cores.

33

Chapter 3. Dervish Design & Implementation

3.5.3 Immediate safety check

Our current implementation of the immediate safety check executes the handler
in a copy of the state machine (using fork()), and avoids the transmission of
the messages. In general, delaying message transmission can be done by adding
an extra check in the messaging layer: if the code is running in the child process,
it ignores the messages which are waiting in queue for transmission. However,
because: (1) message transmission in the Mace framework is done by a separate
thread and (2) by running fork() we only duplicate the active thread, adding
the extra check would be redundant.

Our implementation must be careful about the resources that are shared be-
tween the parent (primary state machine) and the child process (copy). For
example, the file descriptors shared between two processes might cause a prob-
lem for the incoming packets: they might be received either by the parent or
the child process. The approach we took is to close all the file descriptors in
the child process (the one doing immediate safety check) after calling fork().
The fork() happens after the system has reacted to a message and the execu-
tion of the handler does not read further messages. In principle, file descriptors
can be used for arbitrary I/O, including sending messages and file system op-
erations. In our implementation however, messaging is under Mace’s control
and it is straightforward to hold message transmission. In our experiments,
only Bullet′ [KBK+05] was performing file system I/O and we manually imple-
mented buffering for its file system operations. A more flexible solution could
be implemented on top of a transactional operating system [PHR+09].

The other shared resources that we need to consider are locks. After forking,
the locks could be shared between parent and child process and waiting on them
in the child process might cause undesirable effects in both the parent and the
child process. We address this issue by adding an extra check in the Mace
library files which operate on locks; if the code is running as child process, the
library does not invoke locking/unlocking functions. This choice does not affect
the system operation because the locks are used for synchronization between
threads. In the child process, there is only one thread, which eliminates the
need for using locks.

Since modern operating system implementations of fork() use the copy-on-
write scheme, the overhead of performing the immediate safety check is relatively
low (and it did not affect our applications). In case of applications with high
messaging/state change rates where the performance of immediate safety check
is critical, one could obtain a state checkpoint [SKAZ04] before running the
handler and rollback to it only in case of an encountered inconsistency. Another
option would be to employ operating system-level speculation [NCF05].

Upon encountering an inconsistency in the copy, the runtime does not execute

34

3.5. Implementation

the handler in the primary state machine. Instead, it employs a sound event
filter (Section 3.3).

3.5.4 Replaying Past Erroneous Paths

To check whether an inconsistency that was reported in the last run of model
checker can still occur when starting from the current snapshot, we replay past
erroneous paths. Strictly replaying a sequence of events and messages that
form the erroneous path, on the new neighborhood snapshot might be incorrect.
For example, some messages could have only been generated by the old state
checkpoints and would thus be different from those the new state can generate.
Our replay technique therefore replays only timer and application events, and
relies on the code of the distributed service to generate any messages. We then
follow the causality of the newly generated messages throughout the system.

The high fidelity replay of erroneous paths necessitates a deterministic re-
play of pseudo-random numbers. Recall that the model checker systematically
explores all possible return values of the pseudo-random number generator. 1

This function is called in three cases: (i) in the protocol implementation by
the developer to get a random value, (ii) in the simulator to decide whether to
simulate a fault injection in the current event, and (iii) in the model checker to
pick one of the enabled events to be simulated in the next round. Because the
list of enabled events changes based on the recent received checkpoints, we only
aim to cover the first two cases for deterministically replaying pseudo-random
number generation.

Toward this end, we instrumented the pseudo-random number generator func-
tion. During simulation of events, we record the values returned by the pseudo-
random number generator; these values are then appended to the recorded in-
formation corresponding to the erroneous path. Later on, while replaying the
erroneous path, we supply these values instead of calling the pseudo-random
number generator.

3.5.5 Event Filtering for Execution Steering

Execution steering is driven by the reports received from the model checker;
reports are sequences of events which could lead to inconsistencies.

The Dervish controller then picks a subset of these events and installs the
corresponding filters. In general, the nodes could collaborate to install disjoint
sets of filters corresponding to each reported erroneous path. We have used

1Note that the pseudo-random number generator should be carefully invokes to pick a mem-
ber of a small set. Otherwise, large number of possible outcomes will quickly lead to an
exponential explosion in state space size.

35

Chapter 3. Dervish Design & Implementation

a simple but effective approach for picking the event to filter on: the node
which discovers the erroneous path looks for its first contribution to this path
and installs the filter for that event. Recall that filters are designed for protocol-
specific events, hence the events like node reset or message loss which are beyond
the control of the protocol, will be ignored. Upon checking the existence and
the potential impact of a corrective action, the Dervish controller installs an
event filter into the runtime.

3.5.6 Checking Safety of Event Filters

To check the safety of event filters, we modified our baseline execution steering
library. When the execution steering module wants to check the safety of an
event filter, it checks that if the code is running inside model checker, then it
randomly selects both safe and unsafe choices. Since a call to the pseudo-random
number generator causes a branch in the model checker, the model checker
explores both cases: (i) where handling the event is safe and its corresponding
handler will be called, and (ii) where handling the event is detected to be unsafe
and the filter will be installed.

Each handler execution then adds two branches into the state space: (1) nor-
mal execution branch and (2) filtered branch. Although important for checking
the safety of event filters, this technique increases the number of branches that
the model checker needs to check and hence has a negative impact on the model
checker efficiency. Assuming rare manifestation of erroneous paths, we can opti-
mize this technique by enabling the filtered branch only after an inconsistency is
reached in the exploration of the normal execution branch. The challenge how-
ever is that the B-DFS algorithm is implemented based on the assumption that
the paths will be re-explored deterministically, and exploration of new states in
the enabled branch would change the duplicate state detection behavior. We
address this issue by isolating the exploration of filtered branches. For example,
the states that are explored in this branch would not be reflected in the model
checker data structures.

3.6 Evaluation

Our experimental evaluation addresses the following questions:

1. Is Dervish effective in finding inconsistencies in live runs?

2. Can any of the inconsistencies found by Dervish also be identified by the
MaceMC model checker alone?

3. Is execution steering capable of avoiding inconsistencies in deployed dis-
tributed systems?

36

3.6. Evaluation

4. Are the Dervish-induced overheads within acceptable levels?

3.6.1 Experimental Setup

We conducted our live experiments using ModelNet [VYW+02]. ModelNet al-
lows us to run live code in a cluster of machines, while application packets are
subjected to packet delay, loss, and congestion typical of the Internet. Our clus-
ter consists of 17 older machines with dual 3.4 GHz Pentium-4 Xeons with hyper-
threading, 8 machines with dual 2.33 GHz dual-core Xeon 5140s, and 3 machines
with 2.83 GHz Xeon X3360s (for Paxos experiments). Older machines have 2
GB of RAM, while the newer ones have 4 GB and 8 GB, respectively. These
machines run GNU/Linux 2.6.17. One 3.4 GHz Pentium-4 machine running
FreeBSD 4.9 served as the ModelNet packet forwarder for these experiments.
All machines are interconnected with a full-rate 1-Gbps Ethernet switch.

We consider two deployment scenarios. For our large-scale experiments with
deep online testing, we multiplex 100 logical end hosts running the distributed
service across the 20 Linux machines, with 2 participants running the model
checker on 2 different machines. We run with 6 participants for small-scale
testing experiments, one per machine.

We use a 5,000-node INET [CGJ+02] topology that we further annotate with
bandwidth capacities for each link. The INET topology preserves the power law
distribution of node degrees in the Internet. We keep the latencies generated
by the topology generator; the average network RTT is 130 ms. We randomly
assign participants to act as clients connected to one-degree stub nodes in the
topology. We set transit-transit links to be 100 Mbps, while we set access links
to 5 Mbps/1 Mbps inbound/outbound bandwidth. To emulate the effects of
cross traffic, we instruct ModelNet to drop packets at random with a probability
chosen uniformly at random between [0.001,0.005] separately for each link.

3.6.2 Deep Online testing Experience

We have used Dervish to find inconsistencies (violations of safety properties) in
two mature implemented protocols in Mace, namely an overlay tree (RandTree)
and a distributed hash table (Chord [SMLN+03]). These implementation were
not only manually debugged in both local- and wide-area settings, but were
also model checked using MaceMC [KAJV07]. We have also used our tool
to find inconsistencies in Bullet′, a file distribution system that was originally
implemented in MACEDON [RKB+04], and then ported to Mace. We found 13
new subtle bugs in these three systems that caused violation of safety properties.
In 7 of inconsistencies, the violations were beyond the scope of exhaustive search
by the existing software model checker, typically because the errors manifested
themselves at depths far beyond what can be exhaustively searched.

37

Chapter 3. Dervish Design & Implementation

System Bugs found LOC Mace/C++

RandTree 7 309 / 2000

Chord 3 254 / 2200

Bullet′ 3 2870 / 19628

Table 3.1: Summary of inconsistencies found for each system using Dervish.
LOC stands for lines of code and reflects both the MACE code size and the gen-
erated C++ code size. The low LOC counts for Mace service implementations
are a result of Mace’s ability to express these services succinctly. The C++
numbers do not include the line counts for libraries and low-level services that
services use from the Mace framework.

Table 3.1 summarizes the inconsistencies that Dervish found in RandTree,
Chord and Bullet′. Typical elapsed times (wall clock time) until finding an
inconsistency in our runs have been from less than an hour up to a day. This
time allowed the system being tested to go through complex realistic scenarios.2

Dervish identified inconsistencies by running consequence prediction from the
current state of the system for up to several hundred seconds. To demonstrate
their depth and complexity, we detail four out of 13 inconsistencies we found in
the three services we examined.

Example RandTree Bugs Found

We next discuss bugs we identified in the RandTree overlay protocol presented
in Section 1.2. We name bugs according to the consistency properties that they
violate.

Children and Siblings Disjoint. The first safety property we considered
is that the children and sibling lists should be disjoint. The first identified
scenario by Dervish that violates this property is the scenario from Figure 1.2
in Section 1.2. The problem can be corrected by removing the stale information
about children in the handler for the UpdateSibling message. Dervish also
identified variations of this bug that require changes in other handlers.

Scenario #2 exhibiting inconsistency. During live execution, node na is ini-
tially the root of the tree and parent of node nb. Node nr tries to join the tree
by sending a join request to na. na accepts the request and decides that nr

should be the root of the tree, because it has a smaller identifier. Therefore,
na joins under nr. After receiving the JoinReply message, nr is the root of the
tree and na’s parent. At this point, consequence prediction detects the following

2During this time, the model checker ran concurrently with a normally running system. We
therefore do not consider this time to be wasted by the model checker before deployment;
rather, it is the time consumed by a running system.

38

3.6. Evaluation

scenario. Node nb resets, but its TCP RST packet to na is lost. Then, nb sends
a Join request to nr, which is accepted by nr because it has a free space in its
children list. Accordingly, nr sends a sibling update message to its child, na.
Upon receipt of this message, na updates its sibling list by adding nb to it, while
the children list still includes nb.

Scenario #3 exhibiting inconsistency. During live execution, node nr is the
root of the tree and parent of nodes na and nc. Then, node nb joins the tree
under na. At this point, consequence prediction detects the following scenario.
nb experiences a node reset, but its TCP RST packet to na is lost. Then, nb

sends a Join request to nr and nr forwards the request to nc. After that, nr

experiences a node reset and resets the TCP connections with its children na

and nc. Upon receiving the error signal, each of them removes nr from its parent
pointer and promotes itself to be the root. In addition, each of na and nc, sets
its join timer to find the real root. Join timer of na expires and sends a Join
message to nc, which is accepted by nc because it has a free space in its children
list. Upon receipt of JoinReply message, na adds nb to its sibling list, while nb

is in its children list as well.

Scenario #4 exhibiting inconsistency. During live execution, node nr is the
root of the tree and the parent of nodes na and nc. At this point, consequence
prediction detects the following scenario. Upon receiving the error signal, both
nodes remove nr from its parent pointer and promote themselves to be the root.
In addition, both na and nc start their join timer to find the real root. The join
timer of na expires and na sends a Join message to nc, which is accepted by nc

because it has a free space in its children list. Recall that na is still a sibling of
nc.

Possible corrections. In the message handler, check the children list before
adding a new sibling. In the case of a conflict, we can either simply trust the
new message and remove the conflicting node from the children list or query the
offending node to confirm its state.

Root is Not a Child nor Sibling. Dervish found violation of the property
that the root node should not appear as a child, identifying a node n69 that
considers node n9 both as its root and its child.

Scenario exhibiting inconsistency. During live execution, node n61 is initially
the root of the tree and parent of nodes n5, n65, and n69; n69 is also parent of
n9. At this point, consequence prediction detects the following scenario. Node
n9 resets, but its TCP RST packet to its parent (n69) is lost. n9 sends a Join
request to n61. Based on n9’s identifier, n61 considers n9 more eligible and
selects it as the new root and indicates it in the JoinReply message. Besides, it
also sends a Join message to the new root which would be n9. After receiving a
JoinReply from n9, n61 informs its children about the new root (n9) by sending

39

Chapter 3. Dervish Design & Implementation

Local View(61) Local View(69) Local View(9)

61

69

9

655 69

61 61

69

539

9 restarts

61
61

9
X

9

61

695 65

9

61

61

69

539

61

69

539

9

61

655 69

61

Figure 3.4: An inconsistency in a run of RandTree. Root (n9) appears as a
child.

NewRoot messages to them. However, n69 still thinks n9 is its child, which
causes the inconsistency.

Possible correction. Check the children list whenever installing information
about the new root node.

Root Has No Siblings. Dervish found violation of the property that the root
node should contain no sibling pointers, identifying a node na that considers
itself a root but at the same time has an address of another node nb in its
sibling list.

Scenario exhibiting inconsistency. During live execution, node na is initially
the root of the tree and parent of nodes nb and nc. Node nr sends a Join request
to na. Based on nr’s identifier, na considers nr more eligible to be the root and
thus informs it of its new role. na notifies its children about the new root by
sending them the NewRoot messages. At this point, consequence prediction
detects the following scenario. na experiences a node reset and resets the TCP
connections with its children nb and nc. Upon receiving the error signal, nb

40

3.6. Evaluation

removes na from its parent pointer and promotes itself to be the root. However,
it keeps its stale sibling list, which causes the inconsistency.

Possible correction. Clean the sibling list whenever a node relinquishes the
root position in favor of another node.

Recovery Timer Should Always Run. An important safety property for
RandTree is that the recovery timer should always be scheduled. This timer
periodically causes each node to send Probe messages to the members of its
peer list with which it does not have an open connection. It is vital for the
tree’s consistency to keep the nodes up-to-date about the global structure of the
tree. The property that checks whether the recovery timer is always running was
written by the authors of MaceMC [KAJV07] but the authors did not report
any violations of it. We believe that our approach discovered it in part because
our experiments considered more complex join scenarios.

Scenario exhibiting inconsistency. Dervish found a violation of the property
in a state where node na joins itself, and changes its state to “joined” but does
not schedule any timers. Although this does not cause problems immediately,
the inconsistency occurs when another node nb with a smaller identifier tries to
join, at which point node na gives up the root position, selects nb as the root,
and adds nb it to its peer list. At this point na has a non-empty peer list but
no running timer.

Possible correction. Keep the timer scheduled even when a node has an empty
peer list.

Example Chord Bugs Found

We next describe violations of consistency properties in Chord [SMLN+03], a
distributed hash table that provides key-based routing functionality. Chord and
other related distributed hash tables form a backbone of a large number of
proposed and deployed distributed systems [JMK+08,RGK+05,RD01].

Chord Topology. Each Chord node is assigned a Chord Id (effectively, a key).
Nodes arrange themselves in an overlay ring where each node keeps pointers to
its predecessor and the list of its successors. Even in the face of asynchronous
message delivery and node failures, Chord has to maintain a ring in which the
nodes are ordered according to their ids, and each node has a set of “fingers”
that enables it to reach exponentially larger distances on the ring.

Joining the System. To join the Chord ring, a node na first identifies its
potential predecessor by querying with its Id. This request is routed to the
appropriate node np, which in turn replies to na. Upon receiving the reply, na

inserts itself between np and np’s successor, and sends the appropriate messages

41

Chapter 3. Dervish Design & Implementation

to its predecessor and successor nodes to update their pointers. A “stabilize”
timer periodically updates these pointers.

Local View(A)

A B C A B C
B crashes

A C

A C

A C

CA C

C reboots, rejoins with A

Local View(C)

A C

A C

A C

A crashes

C

U
p

d
a

te
P

re
d

 (
C

)

(m
e

ss
a

g
e

 t
o

 s
e

lf
)

C C

where succ(A)=C

Figure 3.5: An inconsistency in a run of Chord. Node nc has its predecessor
pointing to itself while its successor list includes other nodes.

If Successor is Self, So Is Predecessor. If a predecessor of a node na equals
na, then its successor must also be nA (because then na is the only node in the
ring). This is a safety property of Chord that had been extensively checked
using MaceMC, presumably using both exhaustive search and random walks.

Scenario exhibiting inconsistency: Dervish found a state where node na has
na as its predecessor but has another node nb as its successor. This violation
happens at depths that are beyond those reachable by exhaustive search from
the initial state. Figure 3.5 shows the scenario. During live execution, several
nodes join the ring and all have a consistent view of the ring. Three nodes na, nb,
and nc are placed consecutively on the ring, i.e., na is predecessor of nb and nb is
predecessor of nc. Then nb experiences a node reset and other nodes which have
established TCP connection with nb receive a TCP RST. Upon receiving this
error, node na removes nb from its internal data structures. As a consequence,
node na considers nc as its immediate successor.

Starting from this state, consequence prediction detects the following scenario
that leads to the violation. nc experiences a node reset, losing all its state. nc

42

3.6. Evaluation

then tries to rejoin the ring and sends a FindPred message to na. Because nodes
na and nc did not have an established TCP connection, na does not observe the
reset of nc. Node na replies to nc by a FindPredReply message that shows na’s
successor to be nc. Upon receiving this message, node nc (i) sets its predecessor
to na; (ii) stores the successor list included in the message as its successor list;
and (iii) sends an UpdatePred message to na’s successor which, in this case, is
nc itself. After sending this message, nc receives a transport error from na and
removes na from all of its internal structures including the predecessor pointer.
In other words, nc’s predecessor would be unset. Upon receiving the (loopback)
message to itself, nc observes that the predecessor is unset and then sets it to
the sender of the UpdatePred message which is nc. Consequently, nc has its
predecessor pointing to itself while its successor list includes other nodes.

Consequence of the Inconsistency. Services implemented on top of distributed
hash tables rely on its ability to route to any system participant. An incorrect
successor can therefore disrupt the connectivity of the entire system by discon-
necting the Chord ring.

Possible corrections. One possibility is for nodes to avoid sending UpdatePred
messages to themselves (this appears to be a deliberate coding style in Mace
Chord.). If we wish to preserve such coding style, we can alternatively place a
check after updating a node’s predecessor: if the successor list includes nodes in
addition to itself, avoid assigning the predecessor pointer to itself.

Node Ordering Constraint. According to the Chord specification, a node’s
predecessor pointer contains the Chord identifier of the immediate predecessor of
that node. Therefore, if a node na has a predecessor np and one of its successor
is S, then the Id of S should not be between the Id of np and the Id of na.

Scenario exhibiting inconsistency. Dervish found a safety violation where node
na adds a new successor nb to its successor list while its predecessor pointer is
set to nc and the Id of nb is between the Id of na and nc. The scenario discovered
is as follows (Figure 3.6). The Id of nb is less than the Id of na and the Id of
na is less than the Id of nc. During live execution, first, node nc joins the ring.
Then, nodes na and nb both try to join with nc by sending FindPred messages
to it. Node nc sends FindPredReply back to na and nb with exactly the same
information. Upon receipt of this message, nodes na and nb set their predecessor
and successor to nc and send UpdatePred message back to nc. Finally, node nc

sets its predecessor to na and successor to nb.

In this state, consequence prediction discovers the following actions. Stabilizer
timer of na fires and this node queries nc by sending it a GetPred message.
Node nc replies back to na with a GetPredReply message that shows the nc’s
predecessor to be na and its successor list to contain nb. Upon receiving this
message, na adds nb to its successor list while its predecessor pointer still points
to nc.

43

Chapter 3. Dervish Design & Implementation

C

LocalView(C)

B A

C

BC

A

C
AC

LocalView(B) LocalView(A)

P

P

P

P

P

C

B

A

BC

C

B

A

A

B

C

AC

ACC

B

A

BC

BC

Stabilizer Timer fires

P

P

P

P

P

P

P

Figure 3.6: An inconsistency in a run of Chord. For node na, its successor and
predecessor do not obey in ordering constraint.

Possible correction. The bug occurs because node na adds information to its
successor list but does not update its predecessor list. The bug could be fixed
by updating the predecessor after updating the successor list.

Bound on data structure size. An implicit property of the data structure
of a protocol is that there should be a reasonable limit on its size. Usually, this
limit is internally enforced by the data structure. Chord keeps a queue called
findQueue to store the received join requests while the node has not joined the
ring. The node feeds requests as loop back messages to itself to respond to them.
We set a property that puts a limit on the size of this queue.

Scenario exhibiting inconsistency. Dervish found a safety violation where the
size of this queue gets unreasonably large. This causes both (i) a performance
problem for processing all of the messages, and (ii) increase in the size of the
node checkpoint from a few KB to 1 MB. The bug occurs when the potential root
of the tree (i.e. nr) has not yet joined and other nodes of the tree stubbornly
send join requests to it. When nr finally joins the ring, it has a very long list of
request to process.

44

3.6. Evaluation

Possible correction. The bug exists because the Mace Chord implementation
does not avoid inserting duplicate messages in this queue. This bug was not
observable using MaceMC because it does not model check more than several
nodes (because of the state explosion problem). Our live 100-node run using
Dervish uncovered the bug.

Example Bullet′ Bug Found

Next, we describe our experience of applying Dervish to the Bullet′ [KBK+05]
file distribution system. The Bullet′ source sends the blocks of the file to a
subset of nodes in the system; other nodes discover and retrieve these blocks by
explicitly requesting them. Every node keeps a file map that describes blocks
that it currently has. A node participates in the discovery protocol driven by
RandTree, and peers with other nodes that have the most disjoint data to offer
to it. These peering relationships form the overlay mesh.

Bullet′ is more complex than RandTree, Chord (and tree-based overlay multi-
cast protocols) because of (1) the need for senders to keep their receivers up-to-
date with file map information, (2) the block request logic at the receiver, and
(3) the finely-tuned mechanisms for achieving high throughput under dynamic
conditions. The three bugs we found were results of inconsistencies involving
the variants of property (1). Since the conditions that led to the inconsistencies
are similar, we describe a bug involving the following property:

Sender’s File Map and Receivers View of it Should Be Identical. Every
sender keeps a “shadow” file map for each receiver informing it which are the
blocks it has not told the receiver about. Similarly, a receiver keeps a file map
that describes the blocks available at the sender. Senders use the shadow file
map to compute “diffs” on-demand for receivers containing information about
blocks that are “new” relative to the last diff.

Senders and receivers communicate over non-blocking TCP sockets that are
under control of MaceTcpTransport. This transport queues data on top of the
TCP socket buffer, and refuses new data when its buffer is full.

Scenario exhibiting inconsistency: In a live run lasting less than three min-
utes, Dervish quickly identified a mismatch between a sender’s file map and the
receiver’s view of it. The problem occurs when the diff cannot be accepted by
the underlying transport. The code then clears the receiver’s shadow file map,
which means that the sender will never try again to inform the receiver about
the blocks containing that diff. Interestingly enough, this bug existed in the
original MACEDON implementation, but there was an attempt to fix it by the
UCSD researchers working on Mace. The attempted fix consisted of retrying
later on to send a diff to the receiver. Unfortunately, since the programmer left

45

Chapter 3. Dervish Design & Implementation

the code for clearing the shadow file map after a failed send, all subsequent diff
computations will miss the affected blocks.

Consequence of the Inconsistency. Having some receivers not learn about
certain blocks can cause incomplete downloads because of the missing blocks
(nodes cannot request blocks that they do not know about.). Even when a
node can learn about a block from multiple senders, this bug can also cause
performance problems because the request logic uses a rarest-random policy to
decide which block to request next. Incorrect file maps can skew the request
decision toward blocks that are more popular and would normally need to be
retrieved later during the download.

Possible corrections. Once the inconsistency is identified, the fix for the bug is
easy and involves not clearing the sender’s file map for the given receiver when
a message cannot be queued in the underlying transport. The next successful
enqueuing of the diff will then correctly include the block info.

3.6.3 Comparison with MaceMC

To establish the baseline for model checking performance and effectiveness, we
installed our safety properties in the original version of MaceMC [KAJV07].
We then ran it for the three distributed services for which we had identified
safety violations. After 17 hours, exhaustive search did not identify any of the
violations caught by Dervish. Some of the specific depths reached by the model
checker are as follows (1) RandTree with 5 nodes: 12 levels, (2) RandTree with
100 nodes: 1 level, (3) Chord with 5 nodes: 14 levels, and Chord with 100 nodes:
2 levels.

Figure 3.7 illustrates the performance of MaceMC when is used for exhaustive
search. As depicted in figure, the exponential growth of elapsed time in terms
of search depth hardly lets it search deeper than 12-13 steps. This illustrates
the limitations of exhaustive search from the initial state.

In another experiment, we additionally employed random walk feature of
MaceMC. Using this setup, MaceMC identified some of the bugs found by
Dervish, but it still failed to identify 2 Randtree, 2 Chord, and 3 Bullet′ bugs
found by Dervish. In Bullet′, MaceMC found no bugs despite the fact that the
search lasted 32 hours. Moreover, even for the bugs found, the long list of events
that lead to a violation (on the order of hundreds) made it difficult for the pro-
grammer to identify the error (we spent five hours tracing one of the violations
involving 30 steps.). Such a long event list is unsuitable for execution steering,
because it describes a low probability way of reaching the final erroneous state.
In contrast, Dervish identified violations that are close to live executions and
therefore more likely to occur in the immediate future.

46

3.6. Evaluation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 2 4 6 8 10 12

T
im

e
 (

h
)

Depth (levels)

Elapsed time for RandTree with 5 nodes

Figure 3.7: MaceMC performance: the elapsed time for exhaustively searching
in RandTree state space.

3.6.4 Execution Steering Experience

We next evaluate the capability of Dervish as a runtime mechanism for steering
execution away from previously unknown bugs.

RandTree Execution Steering

To estimate the impact of execution steering on deployed systems, we instructed
the Dervish controller to check for violations of RandTree safety properties (in-
cluding the one described in Section 3.6.2). We ran a live churn scenario in
which one participant (process in a cluster) per minute leaves and enters the
system on average, with 25 tree nodes mapped onto 25 physical cluster ma-
chines. Every node was configured to run the model checker. The experiment
ran for 1.4 hours and resulted in the following data points, which suggest that
in practice the execution steering mechanism is not disruptive for the behavior
of the system.

When Dervish is not active, the system goes through a total of 121 states
that contain inconsistencies. When only the immediate safety check but not the
consequence prediction is active, the immediate safety check engages 325 times,
a number that is higher because blocking a problematic action causes further
problematic actions to appear and be blocked successfully. Finally, we consider
the run in which both execution steering and the immediate safety check (as
a fallback) are active. Execution steering detects a future inconsistency 480
times, with 65 times concluding that changing the behavior is unhelpful and
415 times modifying the behavior of the system. The immediate safety check

47

Chapter 3. Dervish Design & Implementation

Figure 3.8: Scenario that exposes a previously reported violation of a Paxos
safety property (two different values are chosen in the same instance.).

fallback engages 160 times. Through a combined action of execution steering
and immediate safety check, Dervish avoided all inconsistencies, so there were
no uncaught violations (false negatives) in this experiment.

To understand the impact of Dervish actions on the overall system behavior,
we measured the time needed for nodes to join the tree. This allowed us to
empirically address the concern that TCP reset and message blocking actions
can in principle cause violations of liveness properties (in this case extending
the time nodes need to join the tree). Our measurements indicated an average
joining time between 0.8 and 0.9 seconds across different experiments, with
variance exceeding any difference between the runs with and without Dervish.
In summary, Dervish changed system actions 415 times (2.77% of the total
of 14,956 actions executed), avoided all specified inconsistencies, and did not
degrade system performance.

Paxos Execution Steering

Paxos [Lam98] is a well-known fault-tolerant protocol for achieving consensus in
distributed systems. Recently, it has been successfully integrated in a number
of deployed [CGR07, LLPZ07] and proposed [JKBK+08] distributed systems.
In this section, we show how execution steering can be applied to Paxos to
steer away from realistic bugs that have occurred in previously deployed sys-
tems [CGR07,LLPZ07]. The Paxos protocol includes five steps:

48

3.6. Evaluation

Figure 3.9: Scenario that includes bug2, where node nb resets but after reset
forgets its previously promised and accepted values. This leads to violation of
the main Paxos safety property (two different values are chosen in the same
instance.).

1. A leader tries to take the leadership position by sending prepare request
messages to acceptors, and it includes a unique round number in the mes-
sage.

2. Upon receiving a prepare request message, each acceptor consults the last
promised round number. If the message’s round number is greater than
that number, the acceptor responds with a prepare response message that
contains the last accepted value if there is any.

3. Once the leader receives a prepare response message from a majority of
acceptors, it broadcasts an accept request to all acceptors. This message
contains the value of the prepare response message with the highest round
number, or is any value if the responses reported no proposals.

4. Upon the receipt of the accept message, each acceptor accepts it by broad-
casting a learn message containing the accepted value to the learners, un-
less it had made a promise to another leader in the meanwhile.

5. By receiving learn messages from a majority of the nodes, a learner con-
siders the reported value as chosen.

The implementation we used was a baseline Mace Paxos implementation that
includes a minimal set of features. In general, a physical node can implement
one or more of the roles (leader, acceptor, learner) in the Paxos algorithm; each
node plays all the roles in our experiments. The safety property we installed

49

Chapter 3. Dervish Design & Implementation

is the original Paxos safety property: at most one value can be chosen, across
all nodes. To speed up Consequence Prediction in the Paxos experiments, we
annotated the unnecessary state variables to exclude them from the state hash.

The first bug we injected [LLPZ07] is related to an implementation error in
step 3, and we refer to it as bug1: once the leader receives the prepare response
message from a majority of nodes, it creates the accept request by using the
submitted value from the last prepare response message instead of the pre-
pare response message with highest round number. Because the rate at which
the violation (due to the injected error) occurs was low, we had to schedule some
events to lead the live run toward the violation in a repeatable way.

The setup we use comprises three nodes and two rounds, without any artificial
packet delays (other than those introduced by the network). As illustrated in
Figure 3.8, in the first round the communication between node nc and the other
nodes is broken. Also, a learn packet is dropped from na to nb. At the end of
this round, na chooses the value proposed by itself (0). In the second round,
the communication between na and other nodes is broken. Node nb proposes
a new value (1) but its messages are received by only nodes nb and nc. Node
nb responds by a promise message containing value 0, because this value was
accepted by node nb in the previous round. However, node nc was disconnected
in previous round and responds back by the same value proposed by node nb

(1). Here bug bug1 shows up and node nb upon receipt of the prepare response
of node nc with value 1, broadcasts the accept message with this value (1). At
the end of this round, the value proposed by nb (1) is chosen by nb itself. In
summary, this scenario shows how a buggy Paxos implementation can choose
two different values in the same instance of consensus.

The second bug we injected (inspired by [CGR07]) involves keeping a promise
made by an acceptor, even after crashes and reboots. As pointed out in [CGR07],
it is often difficult to implement this aspect correctly, especially under various
hardware failures. Hence, we inject an error in the way an accepted value is not
written to disk (we refer to it as bug2.). To expose this bug we use a scenario
similar to the one used for bug1, with the addition of a reset of node nb. This
scenario is depicted in Figure 3.9. The first round is similar to the first round
in the scenario of bug1. At the end of this round, na chooses the value proposed
by itself (0). Then, node nb resets, but because of the bug2 explained above,
it forgets the values that were promised and accepted before the reset. In the
second round, communication between na and the other nodes is broken. Node
nb proposes a new value (1) but its messages are only received by nodes nb and
nc. Thus, both nodes nb and nc accept the default value proposed by nb because:
(1) node nc was disconnected and did not know about the chosen value and (2)
node nb has forgotten its accepted value (0) after the reset (due to the injected
bug2). At the end of this round, the value proposed by nb (1) is chosen by nb

50

3.6. Evaluation

 0

 20

 40

 60

 80

 100

 120

N
u
m

b
e
r

o
f
e
x
p
e
ri
m

e
n
ts

avoided by execution steering (bug1)
avoided by execution steering (bug2)

avoided by im. safety check (bug1)
avoided by im. safety check (bug2)

violations (bug1)
violations (bug2)

Figure 3.10: In 200 runs that expose Paxos safety violations due to two injected
errors, Dervish successfully avoided the inconsistencies in all but 1 and 4 cases,
respectively.

itself. Consequently, two different values have been chosen in the same Paxos
instance.

To stress test Dervish’s ability to avoid inconsistencies at runtime, we repeat
the live scenarios 200 times in the cluster (100 times for each bug) while varying
the time between rounds uniformly at random between 0 and 20 seconds. As
we can see in Figure 3.10, Dervish’s execution steering is successful in avoid-
ing the inconsistency at runtime 74% and 89% of the time for bug1 and bug2,
respectively. In these cases, Dervish starts model checking after node nc recon-
nects and receives checkpoints from other participants. After running the model
checker for 3.3 seconds, nc successfully predicts that the scenario in the second
round would result in violation of the safety property, and it then installs the
event filter. The avoidance by execution steering happens when nc rejects the
prepare request message sent by nb. Execution steering is more effective for
bug2 than for bug1, as the former involves resetting nb. This in turn leaves more
time for the model checker to rediscover the problem by: (i) consequence pre-
diction, or (ii) replaying a previously identified erroneous scenario. Immediate
safety check engages 25% and 7% of the time, respectively (in cases when model
checking did not have enough time to uncover the inconsistency), and prevents
the inconsistency from occurring later, by dropping the learn message from nc

at node nb. Dervish could not prevent the violation for only 1% and 4% of the
runs, respectively. The cause for these false negatives was the incompleteness
of the set of checkpoints.

51

Chapter 3. Dervish Design & Implementation

 0

 20

 40

 60

 80

 100

 120

N
u
m

b
e
r

o
f
e
x
p
e
ri
m

e
n
ts

avoided by execution steering (bug1)
avoided by execution steering (bug2)

avoided by im. safety check (bug1)
avoided by im. safety check (bug2)

violations (bug1)
violations (bug2)

Figure 3.11: In this experiment we run Paxos across an emulated wide area
network using ModelNet. The experiment contains 200 runs in which the same
two errors as in Figure 3.10 were injected. Dervish successfully avoided the
inconsistencies in all but 6 and 3 cases, respectively.

To evaluate the performance of Dervish’s execution steering over latencies and
packet drops typical of wide area networks, we run the same Paxos experiment,
but this time across the wide area network emulated by ModelNet. The results
are depicted in Figure 3.11. Overall, execution steering works well over wide
area networks as well. However, the number of cases where execution steering
and immediate safety check fail to detect the inconsistencies and prevent them
from occurring are slightly higher. This occurs because higher latency and loss
rate of wide area networks increases the chance that the model checker does not
receive the consistent neighborhood snapshot in time. In execution steering,
missing the updated checkpoint makes the model checker not to be able to
predict the actions which are the consequences of the updated state. Similarly,
the immediate safety check cannot detect the violation because of the stale
snapshots.

Dervish causes a two-fold increase in CPU utilization. One CPU core becomes
almost 100% utilized to run consequence prediction (up from zero utilization).
On the core running the application itself, the CPU utilization is 8% peak burst
compared to 6% without Dervish (in a one-second window). Given the avail-
ability of additional CPU cores and the fact that the model checking process is
decoupled from the application, we consider this increase acceptable. Our ap-
proach is therefore in line with related efforts to improve reliability by leveraging
increasing hardware resources (e.g. [BM05,AVY08]).

52

3.6. Evaluation

 0

 20

 40

 60

 80

 100

 120

N
u
m

b
e
r

o
f
e
x
p
e
ri
m

e
n
ts

avoided by execution steering
avoided by imm. safety check

violations

Figure 3.12: In 100 runs that expose a Chord safety violation we identified,
Dervish successfully avoided the inconsistencies in all cases.

Chord

In the final set of our execution steering experiments, we stress test Dervish’s
ability to avoid violations of Chord safety properties. We use a scenario that re-
peatedly exposes a violation described in Section 3.6.2. Figure 3.12 demonstrates
that Dervish’s execution steering is successful in avoiding this inconsistency at
runtime 100% of the time. Execution steering avoids 71% of the cases, while
immediate safety check avoids the rest.

Performance Impact of Dervish

Memory, CPU, and bandwidth consumption. Because consequence pre-
diction runs in a separate process that is most likely mapped to a different CPU
core on modern processors, we expect little impact on the service performance.
In addition, since the model checker does not cache previously visited states (it
only stores their hashes) the memory is unlikely to become a bottleneck between
the model-checking CPU core and the rest of the system.

One concern with state exploration such as model-checking is the memory
consumption. Figure 3.13 shows the consequence prediction memory footprint
as a function of search depth for our RandTree experiments. As expected, the
consumed memory increases exponentially with search depth. However, because
the effective Dervish’s search depth is less than seven or eight, the consumed
memory by the search tree is less than 1 MB and can thus easily fit into the

53

Chapter 3. Dervish Design & Implementation

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12

In
c
re

a
s
e
d
 M

e
m

o
ry

 S
iz

e
 (

k
B

)

Depth (levels)

Consequence Search on RandTree

Figure 3.13: The memory consumed by consequence prediction (RandTree,
depths seven to eight) fits in an L2 CPU cache.

L2 or L3 (most recently) cache of the state of the art processors. Having the
entire search tree in-cache reduces the access rate to main memory and improves
performance.

To precisely measure the consumed memory per each visited state by conse-
quence prediction algorithm, we divided the total memory used by search tree
by the number of visited states. As illustrated in the Figure 3.14, the per-state
memory gets stable at about 150 bytes as we take more states into consideration
and amortize the fixed amount of space used by the model checker.

In the deep online testing mode, the model checker was running for 950 sec-
onds on average in the 100-node case, and 253 seconds in the 6-node case. When
running in the execution steering mode (25 nodes), the model checker ran for
an average of about 10 seconds. The checkpointing interval was also 10 seconds.

The average size of a RandTree node checkpoint is 176 bytes, while a Chord
checkpoint requires 1028 bytes. Average per-node bandwidth consumed by
checkpoints for RandTree and Chord (100-nodes) was 803 bps and 8224 bps,
respectively. These numbers show that overheads introduced by Dervish are
low. Hence, we did not need to enforce any bandwidth limits in these cases.

Overhead from Checking Safety Properties. In practice we did not find
the overhead of checking safety properties to be a problem because: (i) the
number of nodes in a neighborhood snapshot is small, (ii) the most complex of
our properties have O(n2) complexity, where n is the number of nodes, and (iii)
the state variables fit into L2 cache.

54

3.7. Summary

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25

M
e
m

o
ry

 S
iz

e
 p

e
r

s
ta

te
 (

b
y
te

s
)

Depth (levels)

Consequence Search on RandTree

Figure 3.14: The average amount of memory consumed by each explored state.

Overall Impact. Finally, we demonstrate that having Dervish monitor a
bandwidth-intensive application featuring a non-negligible amount of state such
as Bullet′ does not significantly impact the application’s performance. In this
experiment, we instructed 49 Bullet′ instances to download a 20 MB file. Bullet′

is not a CPU intensive application, although computing the next block to request
from a sender has to be done quickly. It is therefore interesting to note that in
34 cases during this experiment the Bullet′ code was competing with the model
checker for the Xeon CPU with hyper-threading. Figure 3.15 shows that in this
case, using Dervish had a negative impact on performance by less than 5%.
Compressed Bullet′ checkpoints were about 3 KB in size, and the bandwidth
that was used for checkpoints was about 30 Kbps per node (3% of a node’s
outbound bandwidth of 1 Mbps). The reduction in performance is therefore
primarily due to the bandwidth consumed by checkpoints.

3.7 Summary

In this chapter, we presented a new approach for improving the reliability of
distributed systems, where nodes predict and avoid inconsistencies before they
occur, even if they have not manifested in any previous run. We believe that
our approach is the first to give running distributed system nodes access to such
information about their future. To make our approach feasible, we designed and
implemented consequence prediction, a heuristic for selectively exploring future
states of the system, and developed a technique for obtaining consistent infor-

55

Chapter 3. Dervish Design & Implementation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

F
ra

c
ti
o
n
 o

f
n
o
d
e
s

download time(s)

Bullet’ (baseline)
Bullet’ (Dervish)

Figure 3.15: Dervish slows down Bullet′ by less than 5% for a 20 MB file down-
load.

mation about the neighborhood of distributed system nodes. Our experiments
suggest that the resulting system, Dervish, is effective in finding bugs that are
difficult to detect by other means,

56

Society exists only as a mental concept; in the real world there are only

individuals.

Oscar Wilde

4
LMC: Local Model Checking

At each step of model checking a centralized system, (i) one of the traversed
states is selected, (ii) an enabled event is executed on that state, and (iii) the
resulting state is added to the list of traversed states. The user-specified invari-
ants are checked against the traversed states after each step and the set of these
states grows exponentially with the depth of the exploration, i.e., the length
of the sequence of enabled events considered. Current approaches to model
checking distributed systems [KAB+07,KAJV07,YKKK10,YCW+09,MPC+02]
reduce the problem to that of model checking a centralized system (Figure 4.1).
The sets explored are global states comprising the local states of the nodes in-
volved in the distributed system, i.e., the system state, as well as the network
state involving the exchange of messages.

The exponential state space explosion problem manifests itself very quickly
in this global approach, which makes the model checking of distributed systems
practically ineffective. This is because the global state changes following any
small change into a node local state or the network state. Consider for instance
the celebrated Paxos protocol [Lam98], in the simple setting with three nodes
where exactly one proposes at the start, i.e., no contention: it takes the global
model checking approach 1514s (running on a 3.00 GHz Intel(R) Pentium(R) 4
CPU with 1 MB of L2 cache) to explore the interleaving of messages. In this
very small state space, ∼180,000 transitions are executed by the model checker
which, after eliminating duplicate global states, results into exploring ∼160,000
global states.

The starting point of this chapter is a couple of simple, complementary obser-
vations: (1) in the global model checking approach, the invariants are checked

57

Chapter 4. LMC: Local Model Checking

Figure 4.1: State transition in model checking distributed systems. In (a) the
classic global approach, the model checker creates the entire state space of the
global states, whereas in (b) our proposed local approach, the network element
is eliminated from the stored states and the model checker keeps track of only
local states.

on each traversed global state, although these invariants are typically speci-
fied only on the system states, i.e., the invariants do not involve the network
states [KAJV07,YKKK10,YCW+09,MPC+02]; (2) for checking invariants that
are defined on system variables, visiting the system part is a priori sufficient.
Focusing on these states only, and ignoring the network states, significantly re-
duces the exploration space in comparison to the classic approach where each
system state is typically repeated in multiple global states that differ only in
the network part.

We present in this chapter a local model checking approach, which essen-
tially consists in keeping track of the traversed local nodes’ states separately
by ignoring the network, a priori. Combined, these states are sufficient for
invariant checking. As we explain in Section 4.4, our local model checking ap-
proach can be viewed as the combination of two approximation techniques: (i)
a Cartesian approximation [BPR01,MPR06] of the set of system states out of
independently explored local states, and (ii) a monotonic approximation of the
network [DY83,Mit02] which always keeps the delivered messages in a shared
state. We obtain by projection an overapproximation of the system state space,
which enables a complete, efficient search with, however, potential false positives.
We eliminate these with a complementary soundness verification technique.

Figure 4.1 contrasts our local approach with the global one. For the Paxos
example state space with one proposal, our approach explores the entire system
state in a few seconds by dropping the number of transitions to only ∼1000,
which, after eliminating duplicate local states, results into only 180 local states:
when compared to the classic approach, eliminating the network element induces
an order of magnitude drop in the number of transitions. The total number of

58

recreated system states by our local approach is reduced to ∼90,000 (in the
Paxos example). In contrast with the global model checking approach, in which
visiting the system states is part of the exploration process, our local approach
separates the exploration of transitions from the creation of system states. This
makes it possible to ignore all system states on which the user-specified invari-
ants can inherently not be violated: for instance, the Paxos invariant stipulates
that no two decisions should be different and all undecided states can system-
atically be eliminated.

We show that our approach is complete in the sense that any violation of a
system state invariant that could be detected by the global approach could be
detected by our local approach. Two important remarks are however in order.

First, the combination of local states does not induce system states that are
all valid : the fact that we ignore the network element, a priori, means that
some combinations of local states might not occur in a real run. In other words,
although complete, checking invariants on the retrieved system states is unsound
since it could report a violation on an invalid system state. We address this
problem by, a posteriori, verifying every preliminary violation report to make
sure the sequence of events leading to the corresponding system state could also
happen in a real run. An invariant violation is then reported to the user only
if passes this test. If the number of preliminary violations is low enough, which
turns out to be the case in our experiments, the performance penalty of verifying
them becomes negligible.

Second, although our local approach is several orders of magnitude faster
than the classic model checking approach, the state explosion problem is not
eliminated. (The cost of invalid states created by our approach, although low at
the start, will anyway eventually dominate in the general case.) Yet, we believe
this can, to a large extent, be addressed by online model checking tools where
the model checker is run for just a short period (a few seconds): in this case,
our approach is efficient enough to search till depths of 20∼30 for the Paxos
example state space.

To summarize, the contribution of this chapter is a new, local approach to
model checking distributed systems. Instead of keeping track of global states,
we eliminate the network element from the model checking states and keep only
track of local states. We thus eliminate the overhead of ensuring soundness
of every visited state (openning the door for effective invariant specific opti-
mizations) and instead we verify soundness only on the states that violate the
invariants. We present an efficient implementation of our approach and we show
how this approach tracks bugs in two variants of Paxos, known to be one of the
most complex distributed algorithms.

The rest of the chapter is organized as follows. Section 4.1 illustrates our
approach through a simple example. Section 4.2 presents our approach. After

59

Chapter 4. LMC: Local Model Checking

Figure 4.2: A simple distributed tree algorithm. Node 0 sends a message to all
its children. Each node forwards the message to its children.

presenting the evaluation results in Section 4.3, we summarize the chapter in
Section 4.5. We prove the correctness of our soundness verification procedure
in Appendix D.

4.1 Local Model Checking: A Primer

Here we use a simple example to highlight the difference between classic (global)
model checking and our proposed local approach. The example we consider here
does not attempt to illustrate the performance improvements obtained by our
approach but aims at explaining the main idea. The example system is a simple
distributed tree structure, depicted in Figure 4.2. Node 0 initiates a message
for node 4 and changes its state to sent. Each node, upon receiving a message,
forwards it to its children. Node 4 changes its state to received upon receiving
the message.

At each step of global model checking, the model checker transitions from a
global state to another by running an enabled event, such as handling a message.
The global state contains the network state besides the local state of all the
nodes, i.e., the system state. The global state space of the example system
is depicted in Figure 4.3. Each change into the network element causes the
creation of a new global state. As one can observe, the number of system states
covered by this global state space is much less than the global state space size.

Figure 4.4 illustrates our local approach on the same example system. Here,
the network element, i.e., the non-essential parts for invariant checking, is sep-
arated form the model checking state. Instead, we keep a shared network com-
ponent that receives the generated messages by all the transitions in the model
checking. Observe that the messages added to the network are not removed by
the executed transitions. In other words, the content of the shared network com-
ponent is always increasing. As we will explain in Section 4.2, this is necessary
for the completeness of the search.

60

4.1. Local Model Checking: A Primer

Figure 4.3: The global state space of the example tree in Figure 4.2 as explored
by a global model checking approach. The initial local state of each node is
denoted ”-”. The state of node 0 and 4 is changed to ”s” and ”r” after the send
and receive of the message, respectively. The network element of the global state
is represented by the set of in-flight messages. Each arrow depicts a transition in
the model checker from one global state to another. The label besides each arrow
indicates the event that triggers the transition. Although the global states inside
the rectangles are duplicates, they are not joined into one state, for simplicity
of presentation.

The last column of the figure depicts the new system states created after each
step. The system states are created temporarily for the sake of being checked
against the user-specified invariants. Observe that, in total, only 4 system states
are created in contrast with the 12 global states of Figure 4.3. Moreover, the last
system state, i.e., ”----r” is invalid since node 4 could not receive the message
before it is sent by node 0. Invalid states do not hurt the completeness of the
exploration. After an invariant is violated on a system state, we run a soundness
verification phase to ensure the validity of the system state.

61

Chapter 4. LMC: Local Model Checking

Figure 4.4: Local model checking approach of the example tree in Figure 4.2.
The first column indicates the changes into the shared network element. The
middle column shows the set of local states of node 0 to 4. The initial local
state of each node is denoted ”-”. The state of node 0 and 4 is changed to ”s”
and ”r” after the send and receive of the message, respectively. The first event
is the local event of node 0 that generates the message. The generated message
is then added to the shared network element. At each step, an event is selected
and is executed on all local states of the destination node. The resultant states
are added to the list of visited local states if they have not been visited before.
The last column shows the new system states created after each step.

4.2 Design

The classic approach to model checking distributed systems keeps track of the
traversed global states, e.g., Variable explored in Figure 2.2. (A global state
consists of nodes’ local states as well as the network state.)

The architecture of our local model checking approach is depicted in Fig-
ure 4.5. In this approach, the model checker keeps track of nodes’ local states
separately: set LSi contains all the traversed states of node Ni. This is enough
to recreate the system states upon which the invariants are checked. After a
preliminary violation report on a system state, the validity of the system state
is checked by a soundness verification module. If the system state is confirmed
to be valid, the error is then (and only then) reported to the developer.

As shown in Figure 4.5, the handler execution module receives input only

62

4.2. Design

Figure 4.5: In our local approach, the handler execution works only on local
states and produces new local states. Local and system states are denoted ”LS”
and ”SS”, respectively. The messages are not removed from the shared network
component after execution. The new system states are created after a new local
state is produced. The soundness verification checks the validity of a system
state, only after an invariant violation is reported.

form local states and the shared network module. Recall from Section 2 that,
to execute a handler on node Ni, the only required state is the local state of
node Ni, i.e., LSi. Therefore, the stored local states are enough to execute the
handlers and we do not need to recreate the system state for that. To execute
network handlers, however, we require also message (i,m) from the network (we
do not need the whole network state.).

Instead of keeping a separate network state for each global state, we keep one
single network state I+ that contains all generated messages during the model
checking (Figure 4.5). The execution of handlers must change to work with the
shared network state I+ (Figure 4.6). In the new handlers, H ′

M and H ′

A, the
network state of the input global state is replaced with the new shared network
state, I+. Furthermore, the received message, (n,m), is not removed from I+

after the execution of handler H ′

M . In other words, the content of I+ is always
increasing.

It is not hard to see that the altered handlers preserve the completeness of the
search: for each Transition (Lp, Ip);(Lq, Iq) in HM , there exist a corresponding
Transition (Lp, I

+);(Lq, I
+
q) in H ′

M . We discuss soundness later in this section
and we prove it Appendix D.

4.2.1 LMC Algorithm

Figure 4.7 presents our algorithm. Variable LS in Figure 4.7 refers to the set
of all visited local states, i.e., (n,s), where n is the node index and s is the
local state. Procedure findBugs takes the live state of the system as input,

63

Chapter 4. LMC: Local Model Checking

node message handler execution :
((s1,m), (s2, c)) ∈ H ′

M

before: (L0 ⊎ {(n, s1)}, I
+ ⊎ {(n,m)});

after: (L0 ⊎ {(n, s2)}, I
+ ⊎ {(n,m)} ⊎ c)

internal node action (timer, application calls) :
((s1, a), (s2, c)) ∈ H ′

A

before: (L0 ⊎ {(n, s1)}, I
+);

after: (L0 ⊎ {(n, s2)}, I
+ ⊎ c)

Figure 4.6: The altered handlers in local model checking.

to initialize Variable LS at Lines 3-4. As in classic (global) model checking
(Figure 2.2), the search terminates upon exceeding some bounds, such as running
time or search depth (Line 5).

Handler execution. At each step of the model checking, an enabled handler,
either network or local, is executed. For network handlers, the algorithm at each
step checks all network messages in Variable I+. To obtain the enabled network
events, for each message e of node n in network I+, all the currently visited
states of node n are considered (Line 6). The corresponding network handler is
then executed (Line 8) and Procedure addNextState is called on the resultant
state, s′, and the set of new network messages, c. Note that the messages that
are added to network I+ in this round of the loop (i.e., c in Figure 4.6) will be
considered on the local states in the next round.

As in the classic global model checking approach, the node local events, such
as timers and application calls, are defined based on the node local states. In
other words, the value of local state LSn

i determines which of the local events
are enabled. To obtain the enabled local events, we look at all visited local
states and retrieve their local events (Lines 7).

In Procedure addNextState, the set of new network messages is added to the
shared network, I+ (Line 12). If the state of node n has changed, it is added to
set LS (Line 13). Variable predecessors keeps track of all the last immediate
local states as well as the executed events on them that led to the current local
state (Line 21). We need more than one pointer in Variable predecessors, since
the same local state might be reached by executing different sequences of events.

Creating system states. The invariants are defined on system states. Since
we do not store the system states, they must be temporarily created for the sake
of invariant checking, which is performed by Procedure checkSystemInvariant.
The procedure is called after each change to LS. Each system state ss is created
by combining the local states of different nodes in LS. (We will explain in
Section 4.2.2 an optimization that prevents revisiting system states.)

64

4.2. Design

1 proc findBugs(liveState, invariant)
2 LS = emptySet(); I+ = emptySet();
3 foreach n ∈ N
4 LSn = LSn∪ {liveStaten};
5 while (! StopCriterion)
6 if (∃((s, e), (s′, c)) ∈ H ′

M where LSn
s ∈ LSn, (n, e) ∈ I+ ||

7 ∃((s, e), (s′, c)) ∈ H ′

A where LSn
s ∈ LSn)

8 addNextState(n, s, s′, e, c, LS);
9 checkSystemInvariant(n, s′, liveState, LS, invariant);

10

11 proc addNextState(n, s, s′, e, c, LS)
12 I+ = I+ ∪ c;
13 LSn = LSn ∪ s′;
14 LSn

s′ .predecessors.add(s, e);
15

16 proc checkSystemInvariant(n, s′, liveState, LS, invariant)
17 foreach ss : system state
18 where ∀nk. ssnk ∈ LSnk

19 if (! invariant(ss))
20 if (isStateSound(liveState, ss))
21 reportBug(ss); // a bug found
22

23 proc isStateSound(liveState, state)
24 //obtain all sequences following predecessor pointers
25 foreach h : list of event sequences where
26 hn ∈ (staten.predecessors)∗ // ∗ is closure operator
27 if (isSequenceValid(liveState, h))
28 return true;
29 return false;
30

31 proc isSequenceValid(liveState, h)
32 state = liveState;

33 while (∃n, nextState where state
hn.first()

; nextState)
34 state = nextState;
35 hn.popFirst();
36 return h == ∅;

Figure 4.7: Local model checker algorithm.

65

Chapter 4. LMC: Local Model Checking

The only purpose of system state creation is to verify the invariant on them.
Therefore, we can design invariant-specific system state creation to bypass the
system states that could not possibly violate the invariant. For example, the
Paxos invariant specifies that no two nodes should choose different values. In
system state creation, therefore, we can ignore the local states in which no value
is chosen yet. If the invariant is defined on local states separately, the invariant-
specific system state creation can also bypass the system states in which none of
local states have violated the invariant. For example, in RandTree distributed
tree structure, one invariant specifies that in all local states the children and
siblings must be disjoint sets.

Soundness verification. Since taking all combinations of local states could
result into some invalid system states, the preliminary violation of an invariant
could be unsound. Procedure isStateSound, therefore, verifies validity of the
system state upon which an invariant is violated. Variable predecessors in each
local state s′ contains all the last immediate local states that led to local state
s′. Following these pointers, we obtain the set of event sequences that could lead
to local state s′. If a system state is valid, then there exist at least one valid
combination of its local states’ event sequences.1 Line 25-26 loops on all these
combinations and invokes Procedure isSequenceValid on each to verify them.
The number of paths could exponentially increase with sequence size, which is
the major cost in soundness verification.

Procedure isSequenceValid receives n event sequences (hi, i ∈ N) corre-
sponding to n nodes in the system. The procedure then looks for a valid total
order for execution of the events, in which an event is executed only after it is
enabled. For example, to execute a network handler that receives message m
from node s, the message must first be generated by an event in s. At each
step, the procedure verifies whether any of the events on top of the hi stacks
are enabled (Line 33). The first enabled event is greedily selected for execution
based on definition of handlers in Figure 2.1 (the events are executed similar
to a real run of the distributed system.). The loop continues until there is no
enabled event on top the hi stacks. Afterward, the fact that h is empty (Line 36)
indicates that the set of sequenced events in h was possible to run and hence its
corresponding system state is valid.

Procedure isSequenceValid returns true if and only if the corresponding
input system state is valid. Appendix D provides formal arguments for the
above statement. Intuitively, since an event in not popped out from h unless it
is a valid, enabled event, the feasibility of executing all events implies that the
corresponding system state is valid. It actually does not matter which enabled

1Each event sequence must deterministically lead to the same local state. If the event han-
dler implementation is dependent on some non-deterministic values, those values must be
recorded as part of the event, to be replayed deterministically on a re-execution of the
event.

66

4.2. Design

event is selected for the next step, since the demanded order by the sequences
will be eventually enforced by receiving only the messages that are already
generated.

4.2.2 Implementation Details

Our prototype implementation of the local model checking approach, denoted
LMC, uses MaceMC [KAJV07], a model checker for distributed system im-
plementations in the Mace language [KAB+07]. Mace programs are basically
structured C++ implementations, in which the boundary of handlers and the
protocol messages need to be specified. This helps Mace automatically generate
the code for serialization and deserialization of the protocol state, and simplifies
the definition of events in the model checker.

We use Dervish for online running of the model checker, in parallel with a live
distributed system. The model checker is then periodically restarted from the
taken snapshot.

We changed MaceMC to work only on one global object of the network sim-
ulator, i.e., I+. To change the network handler implementations from HM to
H ′

M (Figure 4.6), we changed the network simulator not to remove a message
after its delivery.

MaceMC automatically generates specific functions for (de)serializing a mod-
ule state in the service. We added specific functions to save and restore the
whole service stack. This is required for multi-layer services such as PaxosIn-
side [YFG10] (one of the protocols we check), which uses Paxos as its lower
layer module. To efficiently check for duplicate states, we use the hash of the
serialized states. For each node n, the hash of the traversed states are kept in a
set structure. The serialized state itself is stored in a deque structure to benefit
from its efficiency in random access.

Each message keeps track of the number of local states on which it has been
executed. Therefore, in each round, each message is checked only on the newly
added states, by jumping over the old states. Instead of the actual event, its
hash is added into the predecessor pointers. These hash values will be checked
against the hash value of the enabled events, later when we verify the soundness
of the system state.

Test driver. The test in model checking a service is generally driven by an
application sending requests to the service. In Paxos for example, an application
sending propose requests to the service is the test driver of the model checker.
The more complex the test driver, the larger the generated state space is. A
careful design of the test driver could greatly impact the efficiency of model
checking. In our Paxos experiments, the test driver proposes values for a par-
ticular index. The index is selected from recent chosen proposals, where not all

67

Chapter 4. LMC: Local Model Checking

the nodes have learned the proposal yet. Otherwise, a new index is used for the
proposal.

System states. To avoid revisiting system states, checking invariants on
system states is performed only after visiting a new local state, which implies
the possibility for creating new system states. For each new local state (n,s), the
system states are created by iterating over the local states of all the nodes except
node n and loading them. This is because the combinations of the previously
visited states of node n and the local states of the other nodes have already
been verified in previous rounds. It is worth noting that this optimization could
make the model checking incomplete because the handler execution that has
not produced a new local state, could still change the pointers in predecessors,
which means the possibility of a valid event sequence for a previously rejected
system state. To address this issue we could cache the system states in which
an invariant is violated and reverify them after the changes into LS that affect
them.

Beside the general approach for system state creation, we also implemented an
invariant-specific variation, denoted LMC-OPT, optimized for the Paxos main
invariant. In this variation, we map the local states to the values that are
chosen in them. Because most of the local states have not chosen any value,
lots of them will not be included in this mapping. When creating system states,
we thus select only the local states that at least two of them are mapped to
different values. This optimization helps avoid the creation of lots of redundant
system states and consequently omits their corresponding invariant checking
and soundness verification steps.

Soundness verification. Procedure isStateSound uses pointers in Variable
predecessor to find event sequences that could lead to the input local states. For
the sake of simplicity in implementation, we ignore the self-references in follow-
ing the pointers in Variable predecessor. Although in theory this could make
the exploration incomplete, in practice the search in the limited time budget
is incomplete anyway and benefiting from the simplicity is, hence, preferable.
Moreover, after the soundness verification on a system state is finished, some
more pointers could be added into Variable predecessor by the process of lo-
cal model checking. Therefore, a complete exploration should invoke soundness
verification after each change into a predecessor. However, an efficient imple-
mentation of that would be complex since it should check only for the newly
added pointers. For the sake of simplicity in implementation, we invoke sound-
ness verification only after a new local state is visited.

Procedure isSequenceValid. The validity of a set of sequenced events could
in general be checked by executing them in a simulator (the same way the global
model checking approach transitions from one global state to another). If no
event from the sequences is enabled in the simulator, it indicates that sequence of
events is not valid. Although using the simulator simplifies the implementation,

68

4.2. Design

initializing the simulator at each run of the soundness verification is expensive
since it involves loading the test driver.

For efficient implementation of soundness verification module, we take advan-
tage of the following observation. The role of the simulator in executing event
e on node n is to (i) updates the local state of node n, (ii) remove the message
m from the network if e is a network event for delivery of message m, and (iii)
add the set c of messages, resulting from the execution of e, to the network.

The consumed message by a network event is specified by its corresponding
hash in the node event sequence, which was given as a part of the input to the
procedure. The set of the generated messages by an event execution can also
be remembered by keeping the hashes of the generated messages in Variable
predecessor. In this manner, the input to Procedure isSequenceValid is the
set of sequenced events as well as the set of generated messages by each event.
The execution of event e in Procedure isSequenceValid can then be simplified
as follows:

1. A local event e is always enabled. A network event e is enabled if the hash
of the required message is found in the set of generated message hashes,
net.

2. If event e is enabled, then pop it out from the sequence. If event e is
a network event, remove the hash of the corresponding message from set
net.

3. After popping out event e, add its generated message hashes to set net.

The above implementation simplifies Procedure isStateSound to some inte-
ger comparison operations and therefore makes checking the validity of a set of
sequenced events very efficient.

Local assertions. LMC checks for the system invariants defined on the system
state. The source code could still be instrumented by some local assertions by
which the developers have benefited in earlier stages of testing. The violation of
the local assert statements in the process of local model checking could imply
that either (i) the local state is invalid, perhaps because of delivering an unex-
pected message, or (ii) there is a bug in the system under test. Checking the
latter case necessitates (i) creating all the system states by combining the local
state with all local states from other nodes, and (ii) checking the validity of
those states by invoking soundness verification. This approach is very expensive
since it involves lots of invocation of soundness verification.

In general we could ignore violation of a local assert since a protocol bug
will eventually manifest itself by violating a system invariant. Alternatively,
we can discard the local state on which the assertion is violated assuming that
the assert violation implies the invalidity of the local state. In the applications
we tested, the assert statements were mostly used to exclude the receipt of

69

Chapter 4. LMC: Local Model Checking

unexpected messages, i.e., the case that could be caused by conservative message
delivery policy of LMC which delivers the message to all the local states of
the destination. We, therefore, benefited from the local assert violations by
discarding the corresponding local state.

Local events. The presented algorithm in Figure 4.7 is complete in the sense
that, given enough time and space, it explores all possible states. In practice,
however, we have a short time budget to check the reachable states from a
given current state. Therefore, the developers might be interested to favor some
events to be explored first in the search. Hence, in each round we put a bound
on the number of local events that each node can execute; after finishing the
round, the bounds are increased and the model checking is started from scratch.
This approach is in spirit similar to B-DFS search, where the search depth is
increased at each step.

Duplicate messages. In general, a node could infinitely issue duplicates of
the same message. For example, in the verified Paxos implementations, the
same Chosen message will be sent over and over to the proposer that insists for
an already chosen value. To favor the main protocol messages in the limited
time of search, we have put a limit on the number of duplicate messages sent
from a source to a destination node. This limit is set to zero for the results
reported in this chapter. Note that the duplicate messages can be postponed to
be processed later, after processing some main protocol messages.

As we explained, to ensure completeness, the messages are never erased from
the network object, I+. However, if local state s

m
; s′ where m is a network event,

execution of m on s′ is redundant since m is already executed in the sequence.
To avoid redundant executions, we keep the history of the messages that has
been executed to obtain the state: a network event is considered on a state only
if it is not in the history of the state. After executing message m on local state s
that results into local state s′, we apply the two following rules to maintain the
history: (i) s′.history = s.history, (ii) s′.history.addLast(m). Thus, message m
will never be executed on local state s′ as well as its descendants. Maintaining
history gets complicated if state s′ already exists since we need to maintain
separate histories for different sequences that lead to s′. We have simplified the
implementation by applying rule (i) only if the state does not exist. Since the
run of LMC in the limited time budget is not complete anyway, we decided to
favor simplicity over completeness here.

4.2.3 Scope of Applicability

In contrast with global model checking that validity of each traversed state is
ensured, local model checking optimistically allows visiting invalid states and
verifies the validity of a state only after it violates an invariant. If we have a few
preliminary violations, the optimistic approach of local model checking performs

70

4.3. Evaluation

better since it does not pay for ensuring validity of every single visited state.
Otherwise, the cost of soundness verification dominates. For example, in online
model checking, if a run of the model checker is revealing a bug in the protocol,
it is likely to see lots of violation reports caused by both valid and invalid event
sequences. Perhaps, one solution could be running both local and global model
checker in parallel and use the result of the one that finishes sooner.

By eliminating the network element from the model checking state, local
model checking reduces the explored state space since each system state is re-
peated in multiple global states that are different only in the network part. The
larger the network state space is, the more space and time is saved by eliminat-
ing it. Local model checking is, therefore, most effective for the protocols that
are chatty, i.e., exchange lots of messages to service a request. Otherwise, if the
nodes rarely communicate, the changes into the network is rare and therefore
there is not much to be saved by local model checking.

The current implementation of LMC assumes a best-effort, lossy network,
i.e., IP. The protocols that use UDP can, therefore, be directly model checked
with LMC. Although, TCP could be considered as part of the protocol stack, in
practice this is not efficient and TCP is usually simulated in the model checker.
To do so, LMC implementation should be also augmented to benefit from the
fact that reordered messages in a connection will eventually be rejected by TCP
and could, hence, be ignored, saving some unnecessary handler executions in
the model checker.

4.3 Evaluation

We evaluate in this section the performance of our local model checking approach
compared to a classic global one. We also illustrate the ability of our tool, LMC,
in finding bugs in Paxos and its variant, PaxosInside.

We use Paxos as a complex distributed testbed to evaluate the performance
of the proposed local model checking approach. In usual implementations of
Paxos, each node implements three roles: proposer, acceptor, and learner. Mul-
tiple proposers can concurrently propose values for the same index. The Paxos
invariant (also known as the Paxos safety property) stipulates that no two nodes
will choose different values for the same index. A proposition (i.e., proposing a
value for an index) starts by broadcasting prepare request messages to the ac-
ceptors. The acceptors respond by a prepare response message. After receiving
it from a majority of acceptors, the proposer broadcasts an accept message to
the acceptors. The value in the accept message is the value returned by the
prepare response message with the highest proposal number, which reflects the
accepted values from previous proposals, if there is any. Each acceptor then

71

Chapter 4. LMC: Local Model Checking

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25

E
la

ps
ed

 ti
m

e
in

 s
ec

on
d

Depth

B-DFS
LMC-GEN
LMC-OPT

Figure 4.8: The elapsed time in model checking Paxos where only one out of
three nodes proposes a value.

broadcasts a learn message to the learners. A value is chosen by the learners
after receiving the learn message from a majority of acceptors.

For benchmarking purposes, we use a state space of Paxos running between
three nodes, in which one node proposes a value once and the others react to this
proposal by communicating using Paxos messages. The long chain of messages
following each proposal could be received in a variety of orders, which all must
be considered by a model checker. For each experiment, we report on evaluation
of 3 algorithms: (i) B-DFS (explained in Section 2), (ii) LMC-GEN, which is
the non-optimized, general version of our local model checker (LMC), and (iii)
LMC-OPT, which is a version of our local model checker optimized for the Paxos
main invariant according to Section 4.2.2. The experiments are run on a 3.00
GHz Intel(R) Pentium(R) 4 CPU with 1 MB of L2 cache.

4.3.1 LMC Speedup

Here we evaluate the speedup in model checking that we can get by our tool,
LMC. Figure 4.8 presents the results for the example state space, in which
only one node proposes a value. This state space is relatively small and yet
effective in finding bugs when it is explored through an online model checker.
The depth of the state space is 22 events (three initialization, one propose local
event, three prepare request messages, three prepare response messages, three
accept messages, and nine learn messages). LMC explores also longer sequences
of events (up to 25) since it does not initially reject invalid sequences. The
elapsed time is depicted in a logarithmic scale to illustrate exponential state
space explosion problem. In B-DFS, the exponential explosion starts from the

72

4.3. Evaluation

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25

T
ot

al
 n

um
be

r
of

 s
ta

te
s

Depth

B-DFS
LMC-GEN-system
LMC-OPT-system

LMC-local

Figure 4.9: The number of explored states.

very early steps, which makes the exploration take 1514 s. The growth in LMC-
OPT is much less steep, which allows it to finish the model checking in just 189
ms (∼8,000 times faster than B-DFS).

The growth in LMC-GEN, although still much more gentle than B-DFS, is
steeper than LMC-OPT. The exploration finishes in 5.16 seconds which is still
∼300 times faster than B-DFS. The extra delay is due to the creation of the
system states out of the explored local states, which in LMC-OPT is optimized
to be performed only after a different value is chosen. Figure 4.9 depicts the
number of explored states. The number of created system states in LMC-GEN,
although is much less than B-DFS, is much more than the total number of local
states, denoted LMC-local in the figure. LMC-OPT on the other hand drops
the number of created system states to zero since there is no bug in the Paxos
implementation to lead to any preliminary violations. (LMC-OPT creates a
system state only if it is likely to invalidate the invariants.)

The total number of performed transitions in B-DFS is 157,332. LMC drops
this to 1,186, which is ∼132 times less. This is because a LMC transition
from local state LSn

i to local state LSn
j in node n, is redundantly executed

several times in global model checking approach (once for each global state that
encompasses LSn

i and its network event is enabled).

This state space of Paxos is very useful in online model checking, where we
expect the model checker to seek for a bug in the time budget of less than
a minute. Both LMC-OPT and LMC-GEN can finish this state space in this
duration and LMC-OPT can continue for more complicated state spaces where
there is some time left (as we explained in Section 4.2.2, the model checker, in
favor of time, starts with small state spaces by gradually increasing the number

73

Chapter 4. LMC: Local Model Checking

of allowed local events.). This is in contrast to B-DFS that will not go further
than depth 12 within a minute.

4.3.2 LMC Scalability Limits

We showed that LMC manages to finish a valuable state space in less than a few
seconds. This is already good enough for practical applications such as online
model checking that restarts the model checker every few seconds. From the
theoretical point of view at least, it is interesting to find the scalability limits
of LMC, i.e., the point where the postponed exponential explosion problem
eventually manifests and makes LMC ineffective for the rest of the exploration.
To this aim, we choose a much bigger state space, where two separate nodes
propose two values. The depth of the state space is 41 events, which is two times
the events in one error-free proposal. (LMC explores also longer sequences of
events, up to 68, since it does not initially reject invalid sequences.)

Due to exponential explosion problem, neither B-DFS nor LMC could finish
the state space, even after hours of running. Within this duration, B-DFS
explores till 20 steps (out of maximum depth of 41) and LMC searches till 39
steps (out of maximum depth 65). The major contributer to the slow down of
LMC is the expensive task of soundness verification. The number of different
event histories that must be considered for checking validity of a system state
exponentially increases by the search depth. In the above example that the
search depth of LMC is 39, each invocation of soundness verification induces
∼10 seconds into the algorithm.

Invocation of soundness verification is much lower in the smaller state space in
which only one node proposes a value. Running LMC-OPT on the buggy Paxos
implementation (explained in Section 4.3.5) triggers the soundness verification
for 773 times, and each time call takes 45 ms in average. Overall, 35,723 different
event histories were checked by the soundness verification module.

4.3.3 LMC Memory Requirements

Figure 4.9 depicts the very fact that the number of local states explored by
LMC is much less than the total number of system or global states. Because
LMC keeps track only of local states, and the system states are created only
temporarily, LMC is expected to require very low memory footprint. Figure 4.10
verifies this expectation by depicting the memory footprints of different algo-
rithms. LMC-no-system-state denotes the run of LMC in which the creation of
system states is disabled. The difference between the LMC-no-system-state and
LMC-OPT (resp. LMC-GEN) indicates the memory overhead of system state
creation as well as soundness verification. Although there is always a marginal

74

4.3. Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25

In
cr

ea
se

d
M

em
or

y
S

iz
e

(M
B

yt
es

)

Depth

B-DFS
LMC-GEN
LMC-OPT

LMC-OPT-no-system-state

Figure 4.10: The consumed memory.

overhead for system states, the memory eventually returns to the system by
reusing the deleted objects.

The consumed additional memory by all algorithms is less than 1 MB which
can totally fit into the L2 cache. However, the exponential trend in memory con-
sumption of B-DFS, promises the ineffectiveness of B-DFS for deeper searches.
LMC in contrast uses the memory very efficiently (∼200 KB in total) and this
amount grows linearly by increase in search depth.

4.3.4 LMC Overheads

Here we break down the overheads that limit the scalability of LMC. LMC
has two major overheads: (1) creation of system states out of traversed local
states, and (2) verifying soundness of the preliminary violations. To measure the
overhead of each, we run LMC-OPT on the buggy implementation of Paxos, for
which the corresponding bug is reported in Section 4.3.5. Figure 4.11 illustrates
the overheads of LMC-OPT. In LMC-no-sound-check the soundness verification
phase is disabled and in LMC-no-system-state the creation of system states is
eliminated.

The difference between LMC-no-sound-check and LMC-no-system-state cap-
tures the overhead of creating the system states and checking the invariant on
them. The overhead is zero until 21 steps since the unnecessary system states are
bypassed by the optimization in LMC-OPT. Afterwards, the overhead increases
with the depth search, because as the exploration moves forward, more local
states are explored and hence more combinations of them must be considered
for system state creation. The difference between LMC-OPT and LMC-no-
sound-check reveals the overhead of soundness verification. (LMC-OPT did not

75

Chapter 4. LMC: Local Model Checking

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25 30 35

E
la

ps
ed

 ti
m

e
in

 s
ec

on
d

Depth

LMC-OPT
LMC-OPT-no-sound-check

LMC-no-system-state

Figure 4.11: The overheads of LMC in model checking Paxos in which a bug is
injected.

go further than 28 steps, the level at which the injected bug is rediscovered.)
This overhead is the major contributor to the exponential increase in model
checking time. The reason is that not all combinations of local states are valid,
and the more local states are traversed, the more invalid system states will be
checked. The violation of an invariant on each invalid state induces the cost of
a soundness verification run on LMC. On the other hand, since the injected bug
is close to manifest in this run of the model checker, the number of invalid com-
binations of node states that violate the invariant increases. LMC-OPT triggers
the soundness verification for 773 times, and each call takes 45 ms in average.
Overall, 427731 different event sequences were checked by the soundness verifi-
cation module.

4.3.5 Testing Paxos

In this section, we report on our experiments in injecting a bug into a Paxos
implementation and then running our prototype to verify its ability to detect
the bug. The bug we injected was reported in a previous implementation of
Paxos [LLPZ07]: once the leader receives the prepare response message from a
majority of nodes, it creates the accept request by using the submitted value
from the last prepare response message instead of the prepare response mes-
sage with highest round number. The installed invariant is the original Paxos
invariant: no two nodes can choose different values.

Every one minute, the snapshot manager of Dervish takes the live system
state of a running Paxos application and use that to initialize the next run
of LMC. The application encompasses three nodes, each node proposes its Id

76

4.3. Evaluation

for a new index and then sleeps for a random time between 0 and 60 s. The
nodes communicate using UDP and 30% of non-loopback messages are randomly
dropped to allow rare states to be also created.

The bug was detected after 1150 seconds. The run of the LMC that detected
the bug was initialized with the following live state: for index ki, node N1 has
proposed value v1, nodes N1 and N2 have accepted this proposal, but due to
message losses only N1 has learned it. Starting from this system state, LMC
detected in 11 seconds a violation of the Paxos invariant in the following scenario:
N2 proposes a new value v2 but its prepare request messages is not received by
N1. N2 responds by a prepare response message containing value v1, because
this value was accepted by N2 in the previous round. However N3, since had not
accepted any value for index ki, responds back by the same value proposed by
N2, v2. Receipt of prepare response of N3 triggers the bug, and N2 broadcasts
an accept message for v2 instead of v1. Eventually this leads to choosing value
v2 in N2, which is different from the value chosen by N1, i.e., v1.

4.3.6 Testing PaxosInside

In this section, we report on running our prototype to find bugs on a variant
of Paxos, denoted PaxosInside [YFG10]: this is an efficient variation of Multi-
Paxos [CGR07] that uses only one acceptor. Upon failure, the active acceptor
is replaced with a backup acceptor by the global leader. To uniquely identify
the global leader and the active acceptor of the system, PaxosInside uses a
separate consensus protocol referred to as PaxosUtility [YFG10]. The global
leader and the active acceptor are identified by the last LeaderChange and
AcceptorChange entries in the PaxosUtility, respectively. In this experiment, we
have implemented PaxosUtility using Paxos itself. PaxosInside is more complex
than Paxos for it comprises more logic. Here we use the same setup that was used
for testing Paxos, with the difference that the application instead of proposing
a value triggers the fault detector with the probability of 0.1 to stress the fault
tolerance mechanisms of PaxosInside. In 225 seconds, the tool found one new
bug in PaxosInside that we report in the following.

The bug was created because of the wrong usage of the ”++” operator; if the
operator is used after the operand, the returned value is the original value and
not the increased one. The developer had made this mistake in the initialization
function, where the leader is set to the first node of the members and the acceptor
is set to the second. The used command was

acceptor = *(members.begin()++);

which makes the acceptor be the same node as the leader. The bug is of course
fixed by putting the ”++” operator before the operand, i.e.,

77

Chapter 4. LMC: Local Model Checking

acceptor = *(++members.begin());

During the live run, node N3 attempts to be the leader by inserting a Lead-
erChange entry into the PaxosUtility. At this moment, it obtains from the
PaxosUtility the correct value of the active acceptor, which is N2. After N3

becomes leader, it proposes value v3 for index ki, which is accepted by the ac-
ceptor, i.e., N2. N2 then broadcast a learn message, which is received by N3 as
well as itself. At this point the live system state, in which all nodes except N1

have chosen value v3 for the index ki, is taken to be used by LMC.

Starting from the above system state, LMC highlights the following scenario
that violates the Paxos invariant: N1, which still assumes it is the leader, pro-
poses value v1 for index ki to the acceptor. Since N1 considers itself to be the
leader, according to the protocol, it does not refer to PaxosUtility to get the
acceptor Id. Therefore, N1 uses its current value, which is set to N1, i.e., its
own id, due to the initialization bug described above. N1 accepts the proposal
and sends a learn message to N1. Upon receiving the loopback message, N1

assumes value v1 as chosen for index ki. This violates the Paxos invariant since
other nodes have chosen a different value, i.e., v3.

4.4 Related Work

Cartesian abstraction. This [BPR01] is an abstraction-based verification
technique where an overapproximated variant of the program is model checked,
instead of the original one. Due to overapproximation, the reported bugs are
not sound, which makes the technique mainly useful for correctness proving,
benefiting from the completeness of the search. Malkis et al. [MPR06] achieved
thread-modular model checking [FQ03,MPR10] using a Cartesian abstract inter-
pretation of multi-threaded programs. Each thread state consists of the thread
local variables plus the global variables. For each thread, the model checker
separately explores possible valuations of the thread local variables as well as
the global variables. The approximation comes from the fact that the valua-
tions of the global variables by a thread is also used by other threads, ignoring
the causal order for obtaining them. Again, the unsoundness, stemmed from
the approximation, makes the technique inappropriate for testing purposes. In
contrast, our reported bugs are sound and this is ensured by keeping track of
the events executed for obtaining a local state and checking the validity of the
combination of these histories after a preliminary invariant violation report.

We make use of the Cartesian product of independently explored local states
to obtain the system states. Cartesian abstraction is essential here in our ap-
proach in order to create the system states and check (system-wide) invariants
against them. In contrast, previous works benefited from the Cartesian abstrac-
tion by not creating system states; skipping the system states is possible since

78

4.4. Related Work

the invariants in multi-threaded programs are just thread-local assert statements
and could be verified on a local state of a thread without having the rest of the
system state. Our local model checking approach employs the Cartesian ab-
straction in a different way: namely, to explore the system state space without
exploring the global state space.

In [HJMQ03], Cartesian Abstraction is used on top of boolean abstraction
of threads to find race conditions in multi-threaded programs. After boolean
abstraction, each thread is represented by a long boolean expression over global
and local variables including an artificially added variable for line number. A
race condition is also represented by a boolean expression over the line numbers
in which the threads read and write the global variables. Race conditions are
detected by taking conjunction of the thread boolean expressions with race
conditions. Therefore, there is no need for system state creation. This approach
cannot be applied on general system invariants that would express a relation
between local variables of multiple threads. The approach applies a heuristic on
the detected races to eliminate some of the false positives.

One could indeed generalize the Cartesian abstract interpretation presented
in [MPR06] to distributed systems, by using the network as the global object.
However, the network would still be part of the model checking states, concate-
nated to the local states. In our approach, we exclude the network element from
the model checking state and use only a shared network element.

Monotonic abstraction. Monotonic abstraction [Mit02] of the network has
been used in verification of security protocols since it accounts for the maximal
knowledge learned by attacker. Dolev-Yao’s model [DY83] is one such model
in which the attacker remembers all messages that have been intercepted or
overheard. The shared network object in our local model checking approach is
essentially an application of a monotonic abstraction since the delivered mes-
sages are not removed from the network. The shared monotonic network is key
to ensuring the completeness of the search by applying the generated messages
also on future generated local states.

Stateful vs stateless search. To avoid loops created by exploring duplicate
states, it is necessary to keep track of the states visited by a model checker.
Obtaining a hash of the system state requires touching the whole state once,
which can be nontrivial for large states. (Although stateless approaches [God97]
avoid this cost by not keeping track of traversed states, visiting duplicate states
can make them very inefficient.) Thanks to Mace [KAB+07], a language upon
which we implemented our tool, the relevant state of the protocol is specified by
the developer and it is, hence, straightforward for MaceMC [KAJV07] to obtain
its hash.

Partial order reduction. Since stateless approaches are not able to avoid
loops, specific techniques are required to tackle the exponential explosion prob-

79

Chapter 4. LMC: Local Model Checking

lem. Partial Order Reduction (POR) techniques [God96] prune the state space
of a concurrent system to avoid unnecessary interleaving of events. The per-
formance of B-DFS (used in our benchmarks) could potentially improve by
implementing such technique. However, we expect the improvement would be
marginal because of frequent changes into the global state; transmitting any
message would change the network state and consequently the global state.
Moreover, lots of redundancies avoided by POR-based techniques are already
avoided by duplicate state detection in B-DFS. To the best of our knowledge,
no study has compared the performance of stateful searches with POR-based
techniques in distributed systems.

Furthermore, any application of a POR-based technique to model checking
distributed systems would be incomplete since it would not account for system-
wide invariants. For a set of local states, POR explores only one valid com-
bination of them among all possible valid Cartesian products. It is useful in
multi-threaded programs since the assert statements are defined on thread-local
states and visiting a local state once in a combination with any other local states
is enough. In contrast, we test the system against system-wide invariants such
as Paxos main invariant, which could be held in one combination of local states
and violated in another.

4.5 Summary

In this chapter, we have introduced a novel, local approach to model checking
distributed systems. Essentially, the underlying idea is to remove the network
state from the global state when model checking, and focus on the remaining
system state, which is the usual required part for invariant checking. The system
state is itself built temporarily out of local states, and these are maintained
separately. Although complete, the approach is not sound in the sense that
some system states could be invalid, i.e., could not have been produced by
an actual run of the system. We check the soundness of the system state, a
posteriori, only if an invariant is violated.

By removing the network from the global states, our local model checking ap-
proach creates much less system states than in the global approach. In addition,
and in contrast with the latter approach, in which visiting the system states is
an inherent part of the exploration process, our local approach separates the
exploration of transitions from the actual creation of system states. This makes
it possible to exploit the specificities of the user-specified invariants and a priori
eliminate all system states on which these invariants cannot be violated.

80

We cannot solve problems by using the same kind of thinking we used

when we created them.

Albert Einstein

5
PaxosInside

The consistency of cached data in manycore systems is usually guaranteed by
the hardware. Although this approach simplifies the software design, recent
studies show that it does not scale to a large number of cores [BBD+09]. An
alternative approach has been recently proposed, where the cores are viewed
as nodes of a distributed system [BBD+09] on which critical information is
explicitly replicated. Both the applications (at the user level) and the kernels
(at the operating system level [BBD+09]) ensure the consistency of the replicated
data, by explicitly exchanging messages to implement an agreement algorithm.

Barrelfish pioneered this approach by implementing a multikernel model
where the capability service is replicated on several cores [BBD+09]. These
cores exchange messages to execute a 2PC (two phase commit) agreement al-
gorithm [LS79], which ensure the consistency of the replicated state among the
kernels. The advantage of a 2PC is its simplicity. The drawback however is its
fragility: 2PC is blocking in the sense that, to progress, it requires responses
from all the nodes. As a consequence, the whole system slows down if even a
single core lags behind, which can easily be caused in a manycore system by an
unpredicted load or consecutive cache misses. Upon a cache miss, loading the
data from the memory takes around 100 ns 1, i.e., ∼10 times longer than load-
ing data from cache. If the data is swapped out to the hard disk by the virtual
memory manager, the core has to wait till the corresponding memory page is
swapped into the memory, which takes around 8 ms, i.e., ∼800,000 slower than
a cache access. The process context switch latency is between 10 and 20 µs in

1The memory access time is highly dependent on the memory architecture and can range
from 50 ns to 150 ns.

81

Chapter 5. PaxosInside

Figure 5.1: Non-uniform latency in inter-core communication; Cores C0 and C1

share the same L2 cache and communicate much faster than Cores C0 and C3

that have to go through the interconnect network.

average and can take much longer because of page faults. Moreover, the inter-
core latency is sometimes non-uniform. For example, as depicted in Figure 5.1,
the cores located on the same CPU share the same L2 cache and hence can
communicate much faster than the cores located on different CPUs. In short, a
protocol that waits only for the first response is more desirable than one that
waits for all.

Non-blocking agreement protocols, also called consensus algorithms, on
the other hand, can progress with responses from only a majority of repli-
cas [Lyn96, GR06]. The model underlying message passing consensus usually
considers the crash failure of a minority of nodes, as well as arbitrary long
delays in the communication between the nodes. Such asynchrony makes it
impossible to distinguish crashed nodes from delayed responses, and force con-
sensus algorithms to progress as long as a majority of nodes are responsive.
The combination of the very notions of crashes and asynchrony models pretty
well the communication scheme underlying manycore systems with non-uniform
communication latency and unpredictable slow cores.

A family of practical consensus protocols has been recently developed. These
include Paxos [Lam98], Multi-Paxos [Lam01a, CGR07], Cheap-Paxos [ML04],
Fast-Paxos [Lam06] and Mencius [MJM08]. Multi-Paxos [Lam98] is considered
one of the most efficient such protocols; it has been implemented in a wide
variety of IP network settings [CGR07, LLPZ07, Bur06, JKBK+08]. Although
initially designed to be effective in distributed systems, none of these algorithms
meet the new requirements of a manycore setting. This is basically because, al-
though it looks alike, a manycore is not a genuine distributed system in the
classical sense. The major challenges are the bandwidth of the interconnect
network being a scarce resource on the one hand, and the large number of mes-
sages typically exchanged in consensus algorithms on the other hand. Besides,
many such algorithms, e.g., Multi-Paxos, require that a request goes through
a specific node that leads the consensus execution: this leader is reportedly
a bottleneck [Bur06] that can significantly hamper scalability in a manycore

82

setting. Similarly, since the messages transmitted in a manycore setting are
eventually placed in each core’s cache, a high load on a core will make it run
out of space in cache, inducing frequent cache misses, which in turn negatively
impact performance. This is crucial in manycore systems where the lower la-
tency of inter-core communication, compared to genuine distributed systems,
promises a higher rate of requests to be received by the cores.

In this chapter, we explore, for the first time, the feasibility of implementing
a consensus algorithm in a manycore system. We present PaxosInside, a con-
sensus algorithm that takes up the challenges of the manycore environments.
Very intuitively, PaxosInside was designed with the specific aim to reduce the
consensus-related traffic in general, and more specifically that of a leader. A
key insight underlying PaxosInside is the observation that the role of acceptor
in consensus, i.e., to resolve conflicts among possibly multiple leaders, can be
played by a single node. 2 Making use of a single acceptor introduces some tech-
nical challenges that we address in the thesis. This leads to much less traffic,
yet with jeopardizing neither the consistency nor the general availability of the
system. By using three cores, the system can progress even with one slow core,
just like in the Paxos-family of protocols. The trade-off with a higher replication
degree is that, to progress, PaxosInside requires at least one of the leader or the
active acceptor to be responding.

We report on the implementation and evaluation of PaxosInside on four 2.4
GHz Dual-Core AMD Opteron(tm) processors (8 cores in total). This part was
itself technically challenging because of the lack of any experience on implement-
ing a message passing consensus algorithm in a manycore setting. For instance,
the latency of context switching after receiving a message, which is negligible
in classical distributed systems, becomes a serious overhead in manycore sys-
tems. In our implementation of PaxosInside, we eliminate the cost of system
calls by avoiding lock-based synchronizations as well as delivering the messages
via user-level threads.

We convey the efficiency of PaxosInside by measuring (1) the scalability of
PaxosInside with the number of cores; and (2) the performance of PaxosInside
compared to 2PC when a core becomes slow. PaxosInside is scalable to a max-
imum number of clients in our setting, five 3, whereas Multi-Paxos and 2PC
are scalable to only two and one clients, respectively. PaxosInside can progress
with slow cores and in worst case scenario where the leader is slow, PaxosInside
replaces the leader and continues with the same rate, whereas 2PC blocks as
long as even one node is not responding.

Section 5.2.3 has already recalled the design of Paxos and dissects the role

2The presence of multiple leaders can be caused by asynchrony: a new leader might be elected
if the former leader is non-responsive, even only temporarily.

3Our experiments make use of a machine with eight cores, from which three cores are allocated
to the replicas and the other five are free for clients.

83

Chapter 5. PaxosInside

of each Paxos participant. The rest of this chapter is organized as follows.
Section 5.1 gives the key insight underlying PaxosInside and illustrates the dif-
ferences between PaxosInside and the Paxos family of protocols. The detailed
design of PaxosInside is presented in Section 5.3, and its implementation in a
manycore system in Section 5.4. We present our experimental results in Sec-
tion 5.5. Section 5.7 summarizes the chapter with some final remarks. Ap-
pendix B presents the pseudo code of PaxosInside which is followed by the
correctness proofs of PaxosInside in Appendix C.

5.1 PaxosInside: The Main Insight

Blocking agreement algorithms that have been used so far to ensure the consis-
tency of replicated data among multiple cores [BBD+09] suffer from the variant
response latency of cores, which is unpredictable in manycore systems. Consen-
sus algorithms, which are originally designed to tolerate crash failures, can also
be employed to efficiently tolerate cores that do not respond in time. In the
manycore fault model, a faulty core is one from which we have not received a
response in time.

We present a consensus algorithm that meets the requirements of a manycore
system, namely limited bandwidth in the interconnect network and limited cache
size of the consensus leader. A major specificity of our algorithm, PaxosInside,
is the use of only one active acceptor at a time. In the following, by comparing
PaxosInside with Multi-Paxos, which is the most efficient variation of Paxos
used in practical settings [CGR07], we show how this design decision reveals
appropriate in a manycore system.

Figure 5.2 depicts message transmission in a collapsed Multi-Paxos setup that
consists of three nodes. The messages that cross the node boundary must be
included in the total number of messages. The following equation captures
Msgmulti−paxos, the total number of exchanged messages between nodes in a
normal Multi-Paxos instance:

Msgmulti−paxos = (A − 1).(A + 1) (5.1)

Here, A is the number of acceptors. Then, for the usual setup of three nodes, this
value would be equal to eight in Multi-Paxos as opposed to four in PaxosInside.

The total number of messages affects the overall consumed bandwidth between
nodes. A crucial parameter is the number of sent/received messages by the
leader node, Msgleader

multi−paxos. The leader exchanges more messages compared to
the other nodes and hence, when it gets saturated, the system cannot process
more client commands. This is reportedly a problem for the scalability of Multi-
Paxos [Bur06]. Typically, each node plays all the Multi-Paxos roles and hence

84

5.1. PaxosInside: The Main Insight

Figure 5.2: The reduced number of messages in PaxosInside compared to col-
lapsed Multi-Paxos deployed on three nodes. The dotted box represents the
node boundary. The dashed messages, which do not cross the node boundary,
do not consume the node bandwidth. P, A, and L represent the proposer, ac-
ceptor, and learner roles, respectively. The grayed acceptors and consequently
the communications to/from them are eliminated in PaxosInside.

the leader node is also a learner as well as an acceptor. Thus, the total number
of messages exchanged between the leader node and the other nodes is:

Msgleader
multi−paxos = 3.(A − 1) (5.2)

Again, for a setup that includes three nodes, this number is equal to six. Pax-
osInside reduces this number to three by using only one acceptor.

One interesting variation of collapsed Multi-Paxos that we could have consid-
ered uses fewer acceptors. In such a case, fewer messages would be exchanged
since some of the acceptors would not be active. For example, in the common
setup with three nodes, if Multi-Paxos uses only two of them as acceptors, the
number of exchanged messages by the leader would be four per command, as
opposed to six, which is less than the improvement by our algorithm. Using
fewer proposers and learners will reduce the availability and reliability/scalabil-
ity of the system, respectively. Therefore, we do not compare PaxosInside with
such variations.

As we explained in Section 5.2.3, the availability of the acceptor role can be
provided in different ways. One approach, which is taken by Multi-Paxos, is the
replication of the acceptor. A side-effect of this approach is the increase in the
number of exchanged messages between acceptors and other roles. An alterna-
tive approach is to rely on backup acceptors, and replace the failed (or suspected
to be failed) acceptor with a new fresh one from them. The backup acceptors
do not participate in the normal execution of the algorithm and do not, hence,
increase the message complexity of the algorithm. This idea is the main insight
underlying PaxosInside, which reduces the number of exchanged messages be-
tween nodes by a factor of two. Although the use of backup acceptors addresses

85

Chapter 5. PaxosInside

the problem of the acceptor availability and yet provides better performance,
poses the non-trivial problem of reliability of acceptor’s data, which we discuss
now.

Recall that the acceptors also keep a few data, which is necessary during the
short-term period of a single Paxos instance to address the possible contention
between multiple proposers. Missing this data, by switching from the active
acceptor to a fresh backup acceptor in the middle of a Paxos instance, can violate
system consistency. For instance, if the active acceptor promises not to take any
proposal number less than pn, then a fresh new acceptor would not be aware
of this promise and might accept proposal numbers less than pn. Nevertheless,
if the proposers get properly notified of this data loss, they can safely restart
the Paxos instance without risking the algorithm integrity. For example, upon
receipt of the failure notification of the active acceptor, the proposers know that
the promised sequence number by the previous acceptor is no longer held.

We will explain in Section 5.3 that, if we assume that the leader and the active
acceptor nodes do not fail at the same time, then there exists a process in which
the leader can safely notify the other proposers of the active acceptor switch.
This is the same assumption that is already made by Paxos in the common
setup that consists of three nodes implementing three proposer, three learner,
and one acceptor roles. By carefully placing the proposer and acceptor roles
among the nodes, in a way that the leader and the active acceptor are placed in
two separate nodes, we can make the assumption that the leader and the active
acceptor do not fail at the same time. The violation of this assumption cannot
occur unless two of the three physical nodes fail. In this case, we would be left
with one node which is less than the minimum required nodes for Multi-Paxos
to progress (min > total/2).

5.2 Preliminaries

We discuss in this section the role of message passing agreement in manycore
systems. We also give a brief overview of 2PC [LS79], as an example of a blocking
agreement protocol, and Paxos, as an example of a non-blocking one.

5.2.1 Manycore Systems

A major scalability bottleneck in manycore systems is induced by the need to
keep the cached data consistent among multiple cores. The developers expect
to have the same view of data, independently of which core the processes are
running on. However, two cores might have loaded the same data into their
caches or local memory, and changes into one of them, hence, is not by default
observable by the others. This gap, between the centralized view of the pro-

86

5.2. Preliminaries

cessor and the distributed implementation inside manycore systems, is typically
filled with hardware techniques, known as cache coherence protocols. There are
different kinds of such protocols but the bottom line is that, after a change into
a memory address by a core, all cores that have loaded the same address are
notified about the change, before doing any computation on that data. For a
large number of cores, this implies long delays for change propagation and/or a
large number of synchronous inter-core message transmissions. This is because
the hardware has to consider the possibility that any core might have already
loaded the data, while it cannot make any assumption about the actual time
each of the cores might actually need the updated version of the data. In other
words, the hardware does not know precisely where and when the updates must
be sent and must be, therefore, general enough to cover all the possible cases.

An alternative software-based approach has been recently pro-
posed [BBD+09]. According to this approach, the software handles the
consistency of its own data by viewing the entire machine as a large dis-
tributed system of which nodes represent the actual cores. If the software
assigns two separate cores to process the same data, each core assumes its own
copy of the data, i.e., replica. It is then the software’s responsibility to maintain
the consistency of the data by exchanging messages to run an agreement algo-
rithm among the cores running the replicas. The advantage of this approach
is that messages are transmitted between the cores only when it is necessary
for software consistency, and the software, in contrary to the hardware, has full
knowledge about when and to where these messages are necessary to be sent.
This approach can be applied to both the operating system and the application
layers. Recent work [BBD+09] has applied the approach to the kernel layer and
showed good scalability.

To ensure the consistency of the state replicated among the cores, an agree-
ment algorithm needs to be executed among the cores. In Barrelfish [BBD+09],
the capability system is replicated on the cores and a 2PC (two phase com-
mit) algorithm keeps the replicated state consistent among the kernels. The
algorithm does not make any synchrony assumption about message transmis-
sion (they can take arbitrarily long) and it guarantees safety even if cores are
arbitrarily slow.

5.2.2 Blocking Agreement

Similar to common practices in distributed systems, the user can replicate its
data over multiple cores to increase its availability and scalability. The repli-
cated data can be available through other replicas if some of the cores are slow.
Moreover, the computation load and access bandwidth can be split among the
replicas, making the system more scalable. To ensure the consistency of the
state replicated among the cores, these need to execute an agreement protocol.

87

Chapter 5. PaxosInside

In Barrelfish [BBD+09], the capability system is replicated on the cores and a
2PC (two phase commit) algorithm [LS79] keeps the replicated state consistent
among the kernels.

The 2PC algorithm, as its name suggests, has two phases. In the first phase,
the coordinator (the leader) sends a prepare message to the replicas. Each
replica locks its local copy of data and responds with an ack message if it is
not already locked by another coordinator. The coordinator starts the second
phase by broadcasting a commit message to the replicas, only if it receives an ack
from all of them. In this case, each replica executes the command of the commit
message and releases its lock, which is followed by a commit ack message back
to the coordinator. Otherwise, the coordinator broadcasts a rollback message
to the replicas. Upon receiving a rollback message, each replica releases its lock
if it is already acquired by the corresponding ack message.

The 2PC algorithm, however, is blocking: it requires responses from all the
nodes to progress. As a result, the whole system slows down if even a single node
lags behind, which is a likely scenario in manycore systems since a core could
be slowed down by an unpredicted load or consecutive cache misses. The com-
puting power of a core is shared by the operating system among the processes.
This is necessary to make effective use of the computing unit, especially when
the running process does not use the computing unit after a blocking I/O. An
unpredicted load of processes on a core causes any other replica process running
on that core to receive less shares of the core and consequently to respond later
to the messages. Furthermore, the data of a process could be cached by the
core, be located in the memory, or paged out to the hard disk by the virtual
memory manager. The access time to these locations varies from 10 ns up to 8
ms, i.e. ∼800,000 times difference. This time difference can affect both replica
processing time as well as the operating system context switch time.

All the above factors contribute to the unpredictability of a replica processing
time. Besides, because of the non-uniform latency of communication between
the cores, it is more desirable to progress after receiving the response from the
closer cores. Figure 5.1 depicts one scenario where a core can communicate
faster with the core with which it is sharing the L2 cache.

5.2.3 Consensus

Unlike blocking agreement algorithms, (asynchronous crash-resilient) consensus
algorithms require responses from only a majority of the nodes to progress.
Whereas crashes are considered common in classical distributed systems, in a
manycore environment, these model slow cores. Asynchrony, on the other hand,
models the tolerance to delayed messages. We recall below the celebrated Paxos
protocol [Lam98] and its Multi-Paxos optimization [CGR07].

88

5.2. Preliminaries

Figure 5.3: The interaction between nodes in Basic-Paxos. This example con-
sists of one proposer, three acceptors, and two learners. In Multi-Paxos, the
leader skips the first phase, i.e., prepare request and prepare response.

The challenge addressed by these consensus algorithms is that of ensuring
the consistency of the replicas, while assuming that nodes hosting the replicas
can crash (can be arbitrarily slow) and without making strong assumptions
about the synchrony of the network. For instance, two issued commands by
the clients could reach two nodes in the inverse order and that would cause
inconsistency between the system states in those two nodes. Paxos was proposed
by Lamport [Lam98] to address such challenges. It assumes a shared service
(data and its associated operations) to be implemented as a state machine,
replicated on multiple nodes. It gives an order to the issued commands by
the clients and guarantees that all nodes execute the commands in the same
order. Note that the agreed order is not necessarily according to the time the
commands have been issued by the clients. In other words, if a client issues
a command C1 before another client a command C2, the algorithm guarantees
that they will be applied in the same order on all nodes: either as C1-C2 or as
C2-C1.

Each node in Paxos writes some data into a persistent storage such as hard
disk. After a crash, a node cannot participate in consensus until it recovers the
data that has been written into its persistent storage. The delay of writing into
persistent storage could become a bottleneck in some settings.

Basic-Paxos

We now give a brief description of the original Paxos algorithm [Lam98], which
we call Basic-Paxos hereafter in this thesis. Basic-Paxos was first presented
in [Lam98] and was further explained in [Lam01b]. The participant nodes in
Basic-Paxos implement three different roles: proposer, acceptor, and learner.
The proposers advocate the client commands, the acceptors resolve the con-

89

Chapter 5. PaxosInside

tention between multiple proposers, and the learners learn the chosen values.
The leader orchestrating the consensus is chosen among the proposers.

The ultimate goal of Basic-Paxos is to assign orders to client commands.
The order of a client command, which is called a value in the Paxos terminol-
ogy, is specified by an instance number. To assign values to instance numbers,
Basic-Paxos requires two phases. In the first phase, a proposer attempts to be-
come leader for a particular instance number by broadcasting a prepare request
message to the acceptors. Upon receipt of a prepare response message from a
majority of acceptors, the proposer becomes the leader of that instance number.
In the second phase, the leader proposes a value to the acceptors and the accep-
tors broadcast the corresponding message to all the learners. A learner learns
the proposal after receiving the message from a majority of acceptors. All mes-
sage transmissions related to a particular order constitute a separate instance
of Basic-Paxos. The interaction between nodes is depicted in Figure 5.3.

We now explain one instance of Basic-Paxos, step by step:

1. client command: The client command message, which comes from a client
to proposers, contains a command from the client. The proposer then
advocates the client command.

2. prepare request: The proposer first picks an order for the client command,
which is called Paxos instance number. Then, it tries to take the leadership
position and asks the acceptors to recognize it as such by broadcasting
a prepare request message, which contains a proposal number pn. The
proposal number distinguishes different attempts of the proposer for the
same instance number.

3. prepare response: Upon receipt of a prepare request message, each accep-
tor checks the proposal number. If the proposal number, pn, is greater
than the proposal number of the previous accepted proposals, the accep-
tor sends a prepare response message back to the proposer. By that it
promises not to accept any proposal number smaller than pn. The highest
proposal number must be stored in a persistent storage. If the acceptor has
already accepted a value, the value will be included in the prepare response
message.

4. accept request: After receiving the prepare response messages from a ma-
jority of the acceptors, the proposer assumes itself as the leader. It first
decides on a value; one selected from values received from a majority of
the acceptors if they have already accepted a value, or any value other-
wise. It then sends to all the acceptors an accept request message with
the proposal number pn and the proposed value.

5. learn: When an acceptor receives the accept request message correspond-
ing to the promise it has made, it accepts the proposal and broadcasts a

90

5.2. Preliminaries

learn message to all the learners as well as the proposer. The accepted
value must be stored in a persistent storage.

6. client ack: When a learner receives the learn message from a majority of
the acceptors, it recognizes the proposed value as chosen and can inform
the clients with a client ack message. Alternatively, this can be done by
the proposer that advocates the client command.

Although each role can be implemented by a separate node, usually a single
node implements all the three roles, which is then called collapsed Paxos. The
advantage is that the transferred messages between two roles that are located
on the same node do not cross the node boundary and thus consumes less
bandwidth. According to the liveness property of Basic-Paxos [Lam06] a value
will be eventually chosen, given that enough nodes are running. For example, in
collapsed Paxos deployed on three nodes, the liveness property holds as long as
two of the three nodes are running. Basic-Paxos guarantees the following two
safety properties [Lam98]: (i) non-triviality: only the proposed values can be
learned; and (ii) consistency: two different learners cannot learn two different
values.

Multi-Paxos

After a proposer takes the leadership position for one instance in, it could
be more efficient if it assumes this position for the next Paxos instances in′

(in′ > in) as well. The other proposers can still try to become leader, when
they suspect that the last leader has failed. Multi-Paxos [Lam01b] is the version
of Paxos which implements the mentioned optimization.

The first round is similar to Basic-Paxos. When a proposer P becomes leader,
it uses the same proposal number pn for the next Paxos instances. Hence it can
skip the first phase of Basic-Paxos, i.e. prepare request, and start directly with
the accept request message. If in the meanwhile, another proposer P ′ tries to be-
come the leader with a higher proposal number pn′, then the proposal number of
P will not be the maximum proposal number any longer, and its accept request
messages will be rejected. Proposer P can then either relinquishes the leader-
ship position to proposer P ′ or try to become the leader again by sending a
prepare request message with a new proposal number.

The Roles in Paxos

To understand the idea underlying our PaxosInside algorithm, it is important to
take a closer look at the different roles in Paxos. This is essential to understand
the rationale behind the design of the proposed protocol, PaxosInside. As men-

91

Chapter 5. PaxosInside

tioned before, there are three major roles in Paxos: (i) proposer, (ii) acceptor,
and (iii) learner.

The proposer role is to advocate the client command. This is essential for
the scalability of the system. If the clients have to be involved in the consensus
execution, e.g., by advocating their own request, the system could not scale with
the number of clients. By relinquishing this task to the proposers, the consensus
is required among only a few nodes and thus it is more scalable with the number
of clients.

The learner is the actual long-term memory of the system. When a Paxos
instance is finished successfully and its value is learned, this value is kept in the
multiple available learners. The clients then can read this value from each of
the learners.

The acceptor is the main role in Paxos that the safety property of consensus.
If multiple proposers want to propose values for the same Paxos instance, the
acceptor is key role to resolve the contention between the competing proposers.
Suppose some acceptors accept value v0 from proposer P0 and, for some reasons,
the Paxos instance does not complete successfully. Now, to finish the instance,
proposer P1 must first read the accepted value by the acceptors (i.e. v0) and
propose the same value. It implies that the acceptors play the role of the short-
term memory for the system; they must remember a few values during the short
period of one Paxos instance.

Replication in Paxos

At the heart of the efficiency of PaxosInside algorithm, lies the observation
that replication is used for different purposes. In general, we have two types of
replication: (i) replication of service and (ii) replication of data. Replication of
service increases the availability of the system. In other words, when a client re-
quests for the service, we want to make sure that there is at least one responding
node, ready to receive the client commands. The replication of data, however,
is for increasing the reliability of the system. In other words, it decreases the
chance of data loss by missing some nodes (after permanent failures).

The roles in Paxos are replicated, but each one for a different purpose. The
replication of the proposers is to increase availability, as the proposers provide
a service to the clients, i.e., advocating their request. In contrast, the learners
store the data of the system, and the purpose of their replication is to enhance
reliability. 4

4From performance perspective, one can take advantage of replication to increase scalability
as well. For example, Mencius [MJM08] uses proposer replication to enhance the scalability.
Moreover, if the application does not demand the very last state of the system, its read
traffic can be directly serviced from either of the replicated learners.

92

5.3. PaxosInside: The Algorithm

The acceptor replication is partly for service availability and partly for data
reliability. The proposers start the consensus process by contacting the accep-
tors. Thus, they require the provided service by the acceptor role to be available.
In addition, as mentioned before, there are a few data kept by the acceptors such
as the accepted value and the promised proposal number, which should be kept
during the Paxos instance. However this data is required only for the active
Paxos instance, and in the case of failure, we can think of some workaround
solutions.

The main insight in design of PaxosInside, which will be explained later in
Section 5.1, comes from the following observation: the replication of the accep-
tor role is mainly for availability, and if its availability is provided via other
mechanisms, then the replication of acceptor is no longer necessary.

5.2.4 Failure Model

Our failure model assumes that the nodes, i.e., cores, could be non-responsive for
a period of time. This models cores that are running slow because of contention
in using shared resources, e.g., the CPU cycles, the cache, and the hard disk
(after a page fault). The consensus protocol makes progress as long as a majority
of cores are not slow. We also assume that the process running on the core
could crash. However, to be able to benefit from consensus in tolerating the
process crash, the process crashes should be made independent, e.g., via using
n-versioning. This chapter, therefore, focuses only on slow cores as the target
failures.

5.3 PaxosInside: The Algorithm

We explain in this section the PaxosInside algorithm in detail. As mentioned in
Section 5.1, the idea is to use only one active acceptor and ensure availability
via some backup acceptors. Care must be taken to also provide reliability for
acceptor’s data when the active acceptor is replaced. We first start this section
by describing the communication scheme underlying PaxosInside in the failure-
free case where messages are received in a timely fashion. Then we discuss the
backup cases executed when the cores are faulty. In manycore systems, a faulty
core is slow and does not respond in time. For example, a failed leader does not
responding to client requests in a timely manner.

5.3.1 The Failure-free Case

The roles in PaxosInside and the interaction between them is depicted in Fig-
ure 5.2.

93

Chapter 5. PaxosInside

1. Proposer P decides to take the position of the leader. It first obtains the
Id of the active acceptor, A (we will explain the process of obtaining this
Id in the next subsection), and sends a prepare request message including
a proposal number, pn, to acceptor A. By doing so, the proposer asks the
acceptor to recognize it as the leader.

2. If the proposal number, pn, is greater than all the previous proposal num-
bers received by the acceptor, it sends a prepare response message back to
proposer P . By doing so, the acceptor promises not to accept any proposal
number smaller than pn.

Notice that these two steps are necessary only the first time a proposer
contacts the acceptor. After that, the proposer becomes leader and skips
these two steps.

3. Proposer P then sends an accept request message including the proposal
number pn as well as a proposed value, to acceptor A.

4. When acceptor A receives the accept request message corresponding to
the proposal number, to which it has given its promise, it accepts the
proposal and broadcasts a learn message to all the learners.

5.3.2 Switching Acceptor

Here we consider the scenario in which active acceptor A fails (does not respond
in a timely manner) and the leader replaces it with another backup acceptor A′.
It is worth noting that although PaxosInside is correct with crash faults, in the
fault model of our manycore setting, a faulty core, although still working, does
not respond in time.

When the active acceptor fails, the leader is the only node that is allowed
to replace it with another backup acceptor. This change, however, must be
confirmed by a majority of nodes. This is necessary to avoid having multiple
instances of active acceptors running in the system, and consequently compro-
mising consistency. The scenario is illustrated in Figure 5.4.

Obtaining the confirmation of a majority of the proposers is a separate con-
sensus problem which can be solved by any Paxos-like algorithm. Although it is
possible to merge this consensus into the main operation of PaxosInside, for the
sake of simplicity of presentation, we assume that the consensus over the new
active acceptor is achieved by a separate basic implementation of Paxos, which
hereafter is called PaxosUtility. Notice that PaxosUtility instance which han-
dles consensus over the new active acceptor is totally separate and independent
from PaxosInside algorithm that we are explaining here. Moreover, running
PaxosUtility does not require any extra nodes; it runs on the same nodes as
PaxosInside.

94

5.3. PaxosInside: The Algorithm

Figure 5.4: The interaction between nodes in PaxosInside to replace failed
acceptor A with another backup acceptor A′. In Step 1, the leader makes sure
that it is still known as the leader by a majority of the nodes. Then in Step
2, it announces the change of the active acceptor. Finally in Step 3, it sends a
prepare request message to the new active acceptor A′.

Beside the Id of acceptor A′, the leader also includes the uncommitted pro-
posed values into the message sent to the PaxosUtility. This is to cover the cases
where acceptor A has received an accept request message with value vin for in-
stance number in, but the corresponding issued learn message is not received
by the other nodes yet. In this way, it guarantees that the next leader will try
to propose the same value as vin for instance number in.

The leader after finishing the consensus over the active acceptor, switches from
acceptor A to acceptor A′, i.e., the new active acceptor. Because the acceptor
node has changed, the leader must start over with a prepare request message to
take the leadership of the new acceptor.

5.3.3 Switching Leader

In principle, every proposer could spontaneously try to take the leadership po-
sition by sending a prepare request message to the acceptors. In practice, this
usually happens when the current leader is non-responsive (i.e., fails). In Pax-
osInside also, when the leader fails, any proposer can try to take its position by
sending a prepare request message to the active acceptor. Assume that proposer
P ′ suspects the failure of leader P and decides to become the leader. The active
acceptor Id, A, can be obtained by inquiring a majority of the nodes. This is
due to the fact that the last leader does not use the new active acceptor unless
it obtains agreement from a majority of nodes. The sequence of messages is
demonstrated in Figure 5.5.

Care must be taken to ensure that, in the meanwhile, the active acceptor A

95

Chapter 5. PaxosInside

Figure 5.5: The interaction between nodes in PaxosInside when proposer P ′

takes the leadership position from leader P . In Step 1, proposer P ′ inquires for
the active acceptor Id. It then announces itself as leader in Step 2. Finally in
Step 3, it sends a prepare request message to the active acceptor.

is not replaced by the last leader. Otherwise, we end up with two leaders which
use two different active acceptors. To this aim, proposer P ′ uses PaxosUtility
to start a consensus instance in which proposer P ′ announces that it is going to
take the leadership position by assuming A as the active acceptor. Accordingly,
every leader must always check for this announcement before switching the
active acceptor. If the leader observes this announcement, it must consider its
position as relinquished. This step is marked as Step 1 in Figure 5.4.

5.3.4 Switching both Leader and Acceptor

If the active acceptor fails, the leader is in charge of replacing it with a fresh
backup acceptor. On the other hand, if the leader fails, then any proposer can
safely take its position, given that the active acceptor is still running. The only
remaining case to handle is when both the leader and the active acceptor fail
together.

As mentioned in Section 5.1, to handle this scenario we carefully assign the
PaxosInside roles to the nodes in a way that the leader and the active acceptor
are located in two separate nodes. Assume that we have N nodes available and
each node implements all the roles: proposer, acceptor, and learner. In PaxosIn-
side that there is only one active acceptor, we have the option to pick the node
that will also play the active acceptor role. This deployment is demonstrated
in Figure 5.2. The idea is to assign the active acceptor and leader roles to two
separate nodes. In this way, the failure of the leader and the active acceptor
cannot occur together, unless two of N nodes fail at the same time.

Notice that, in the usual setup of consensus, which consists of three nodes,

96

5.4. PaxosInside: A Multicore Implementation

this failure scenario implies that two of the three nodes are failed. On the other
hand, consensus algorithms, including Paxos family, cannot progress with just
one running node out of three. Consequently, we can assume that if the failures
of the leader and the active acceptor occur at the same time, there is only one
node left. In this situation, neither Paxos family of protocols nor PaxosInside
can progress.

It is worth noting that, for N > 3, the failure of the leader and the active
acceptor at the same time does not jeopardize the consistency of the system.
It only slows down the progress of consensus, as these two cores are slow and
hence respond slowly to the recovery messages. Nevertheless, failure probability
of two particular nodes, i.e. the leader and the acceptor, is much less than failure
probability of two arbitrary nodes, which makes this failure scenario very rare.
For example, if the failure probability of a core is s, then the failure probability
of two particular nodes is s2, and the failure probability of two arbitrary cores
is

(

N
2

)

.s2. Then for N = 7, this failure scenario is 21 times less probable than
the failure of two arbitrary nodes.

The detailed pseudo code of PaxosInside is presented in Appendix B. Fur-
thermore, Appendix C provides the correctness proofs of PaxosInside.

5.4 PaxosInside: A Multicore Implementation

We present in this section our implementation of PaxosInside among multiple
cores. This is based on a message passing framework, which we implemented
on top of an inter-process shared memory communication. Our framework is
implemented efficiently at the user level using standard C++ libraries, and hence
is portable to all the operating systems, including Barrelfish. We expect to have
some standard inter-core channels in upcoming computer architectures. For the
purpose of performance evaluation in this chapter, similar to the approach taken
by the previous work [BBD+09], we make use of shared memory for message
passing. Changes made by a process into the shared memory address are first
applied to the cache of the core that is running the process. Thanks to the cache
coherence mechanism implemented in hardware, the changes in the cache of the
source core will be propagated into only the cache of the destination core.

Notice that although our implementation transmits the unicast messages via
a cache coherence mechanism, it is still faithful to the distributed vision of a
manycore system, as there are separate channels per each pair of cores. In a
centralized implementation on top of a cache coherence mechanism, a message
would be written into the memory and read by all the cores in the system, re-
sembling a broadcast message. It is demonstrated in the related work [BBD+09]
that this approach is not scalable with number of cores, since it induces a burst
of messages, whereas in the distributed implementation, the software makes use

97

Chapter 5. PaxosInside

Figure 5.6: Two separate queues are used between each pair of cores.

of its knowledge about the application internal to efficiently decide to where and
when each message must be sent.

In the following, we describe our messaging system and its integration into a
user-level thread library for the efficient delivery of messages.

5.4.1 Message Queuing

As mentioned above, we make use of the cache coherence mechanism by writ-
ing/reading to a shared memory address, created by shm open system call. To
implement asynchronous message passing, we use more than one slot for sending
messages. The size of each slot is 128 bytes, which is twice the cache line size.
Matching the cache line size, allows for the least number of cache misses for
transferring the message.

The multiple slots are wrapped into a queue. As illustrated in Figure 5.6,
there are two queues between each two processes pi and pj: one for writing by
pi and reading by pj and the other for reading by pi and writing by pj. Because
of separate queues, there is no need for operating system locks to access the
queues, which makes the design simple as well as efficient. Each queue has a
head and tail pointer. The head pointer is moved by the reader and the tail by
the writer. The reader process verifies the equality of head and tail pointers to
check for new messages.

5.4.2 Message Delivery

As explained above, a process that communicates with n other processes must
check for new messages from n separate read queues. After reading a message,
the corresponding thread must be notified to process it. To implement this
efficiently, we make use of libtask [lib], a user-level thread library. By doing so,
we reduce the cost of delivering the message to that of a lightweight user-level
context switch.

The architecture of our implementation is depicted in Figure 5.7. Upon read-
ing a request from each queue, the requested thread blocks and its reading

98

5.4. PaxosInside: A Multicore Implementation

Figure 5.7: The architecture of the implemented framework for message passing
in manycore systems.

destination will be added to the scheduler waiting list. The scheduler checks
for all waiting reads and, upon receiving a message, loads the context of the
corresponding reading thread. In other words, the developer will take advan-
tage of the simple blocking read interface, while the back-end benefits from the
asynchronous message passing implementation to gain high performance.

5.4.3 Agreement

We have implemented PaxosInside, Multi-Paxos, and 2PC in our manycore
framework. As we explained, PaxosInside also relies on a PaxosUtility module,
which can be any implementation of a Paxos-like system. We use Multi-Paxos
as PaxosUtility. In this case, PaxosInside and Multi-Paxos implementations are
collapsed, i.e., each node implements all three roles of Paxos: proposer, acceptor,
and learner.

Following the messaging standard in libtask, a replica waits for the clients to
connect (by netlisten function). Afterwards, the replica creates the send and
the receive queues for future communications with the node and also creates
a thread for reading the messages from the open connection. The thread will
block by calling fdread on the connection and process the received message after
scheduler wakes it. Note that while a user-level thread is blocked, the replica
could still progress by processing other message in other threads.

The clients also call netdial on first call to a replica and after the queues are
created, use the fdwrite function for sending the message. Besides, the client
creates a thread for receiving messages from the opened connection, just as
replica does. Since we have implemented standard interfaces provided by the
library, the implemented protocols in our framework can be easily ported to a

99

Chapter 5. PaxosInside

network system with no change. (The library already supports TCP and UDP
implementation of the messaging interfaces.)

5.4.4 Description of C++ Code

As one can notice from the PaxosInside pseudo code presented in Figure B.1 of
Appendix B, the handlers implementing the acceptor role are simpler, compared
to Multi-Paxos. This is because there is only one acceptor in PaxosInside,
and thus the complexity due to dealing with a quorum of nodes is eliminated.
The handlers of the proposer role, however, implement more logic for the safe
recovery from failures. Overall, the C++ implementation of PaxosInside in our
framework is 490 LoC as opposed to 581 LoC for implementation of Multi-
Paxos, which is also used as PaxosUtility module. Note that the client code and
message passing library are common in both of the implementations, and thus
are not included in the reported LoC.

5.4.5 Persistent Storage in Multi-Paxos

Multi-Paxos requires storing the accepted value persistently, before responding
to an accept message. The persistent stored data will be used by the restarted
process, in the case of a crash. Typically, a hard disk is used for persistent
storage of data. Inside a computing unit, however, we can think of cheaper
and faster storages such as shared memory. The data in the shared memory
is retrievable by the restarted process. The challenge here is that to make
sure that the requested data is stored into the main memory before the learn
message is sent by the acceptor. Otherwise, if the data was located in the
cache, a sudden crash failure of the core will lose the data. We are not aware
of a standard interface for explicitly asking this from the processor. Also, the
probable workaround solutions for flushing the whole cache will not be efficient.

However, in manycore systems a core is considered faulty if it is slow and does
not respond in time. The goal, therefore, is the continuous progress even with
some slow cores. In this fault model, a simple write into the main memory is
enough for a correct implementation of Multi-Paxos, and we do not have to pay
for the expensive operation of writing into the hard disk.

5.5 Evaluation

In this section, we report on the evaluation of PaxosInside, Multi-Paxos, and
2PC.

We basically explore the following aspects: (1) The improved commit latency

100

5.5. Evaluation

and throughput by using PaxosInside; (2) The scalability of PaxosInside with
the number of cores; and (3) The performance of PaxosInside and 2PC when a
core becomes slow.

5.5.1 Experimental Setup

Our experiments make use of a machine with four 2.4 GHz Dual-Core AMD
Opteron(tm) processors (8 cores in total) and 8 GB of RAM. The L1 cache size
is 64 KB and L2 cache size is 1 MB. These machines run GNU/Linux 2.6.16.37.
It is shown by the many years research in state machine replication that to
make the consensus scalable, it must only be achieved between a few servers
and the other nodes, i.e., clients, make use of that as a service. We have applied
the same lesson by using three replicas in all the protocols, which are assigned
to separate cores of 0 to 2, via taskset command. The clients are assigned to
cores 3 to 7. The clients start sending requests to the replicas, after receiving
a message from the load manager which is run on Core 7. There is no payload
added to the requests and responses. In all the experiments, a client sends a
request to Core 0, waits for the commit ACK, and then sends another request,
till it finishes 100 requests. We run each experiment for three times and report
the average values.

5.5.2 Workload

In the Paxos family of protocols, the messages are issued as a result of each client
command, which is the type of traffic targeted by PaxosInside. In general, the
read requests do also cause issuing Paxos protocol messages. This is because
the read requests often require the last updated data, which is not necessarily
updated in every learner, including the leader node. Thus, the read traffic can
be treated as normal client command traffic.

There are particular usecases that can change the load on servers. For ex-
ample, if the read requests do not necessarily ask for the last updated data,
then they can be handled directly by each learner. Hence, the read traffic will
be balanced on all nodes. In this case, if the proportion of the read traffics is
much more than client command traffic, then PaxosInside’s impact on reducing
the overall load will be less profound. For the sake of generality, we do not as-
sume the above particular cases for handling the read traffic in the experimental
results, and all the requests in our experiments are, hence, write requests.

5.5.3 Micro-benchmarks

In this experiment, only one client is used, which is assigned to Core 3. Fig-
ures 5.8 and 5.9 depicts the average throughput and the average commit latency

101

Chapter 5. PaxosInside

 0

 5000

 10000

 15000

 20000

 25000

P
ro

po
sa

ls
/s

ec

2PC
Multi-Paxos
PaxosInside

Figure 5.8: Throughput achieved by one client.

 0

 1e-08

 2e-08

 3e-08

 4e-08

 5e-08

 6e-08

 7e-08

se
c

2PC
Multi-Paxos
PaxosInside

Figure 5.9: Commit latency observed by using one client.

experienced by the client, respectively. The commit latency is the delay between
the time the request is sent by the client and the time that the reply is received
by it. The throughput is the number of received replies per unit of time.

PaxosInside has the lowest latency whereas 2PC has the highest. The latency
of Multi-Paxos is only slightly worse than PaxosInside because of the more mes-
sage copy operations induced by sending more messages. 2PC, in particular,
has a higher latency since it requires two phases to commit, versus one phase
in failure-free scenario of PaxosInside and Multi-Paxos. The same pattern ap-
plies to the throughput, since the higher the latency of each commit, the fewer
requests will be sent by the client per unit of time. This also shows that one
client does not saturate the system bandwidth, and the only major bottleneck
in throughput of this micro-benchmark, thus, is the commit latency.

102

5.5. Evaluation

 0

 5e-08

 1e-07

 1.5e-07

 2e-07

 2.5e-07

 3e-07

 3.5e-07

 10000 20000 30000 40000 50000 60000

La
te

nc
y

in
 s

ec

Throughput in op/s

2PC
Multi-Paxos
OnePaxos

Figure 5.10: The latency vs. throughput by increasing the number of clients.

5.5.4 Scalability

Here we evaluate the scalability of the protocols by increasing the number of
clients from one to five (we have eight cores in total.).5 Figure 5.10 depicts
the average commit latency vs. the total achieved throughput by the clients.
PaxosInside is the most scalable protocol, as the throughput improves by a factor
of three, by using four more clients. Multi-Paxos scales up to only two clients.
Afterwards, by adding more clients, the throughput improves slightly, while the
latency increases with a high steep. This makes its throughput with five clients
stops at 42,031 op/s, 27% less than throughput of PaxosInside, which is still
not saturated. 2PC is the least scalable protocol among them; the throughput
increases by 50% after adding the first client, however, it even drops by adding
more clients to slightly less than the original value. The reason is the numerous
messages transmitted by 2PC. These results show that PaxosInside achieves the
best performance and scalability among all considered alternatives.

5.5.5 Throughput in Failure Scenarios

We report on measuring the changes in system throughput when the leader core
becomes slow. In these experiments, all five clients are sending requests to the
replicas. We slow down Core 0 by running eight CPU-intensive processes on it;
each process is a bash script that continuously multiplies a number by itself.
Figure 5.11 plots the throughput of PaxosInside when the leader becomes slow,
as well as the normal non-faulty case. After the clients detect the slow leader,
they send their requests to other nodes. The non-leader node after receiving the

5We avoided using the cores allocated to the replicas for the client processes. That would
make the analysis of the results more complicated both because of the added load on the
replica cores and the lower latency between the clients and the replicas.

103

Chapter 5. PaxosInside

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000

P
ro

po
sa

ls
/s

ec

Time in 10 ms

Slow Leader
No Failure

Figure 5.11: The changes in throughput achieved by PaxosInside when the
leader is slow.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 200 400 600 800 1000

P
ro

po
sa

ls
/s

ec

Time in 10 ms

Slow Leader
No Failure

Figure 5.12: The changes in throughput achieved by 2PC when the leader is
slow.

clients request, try to become the leader in PaxosUtility. After that, it sends
the proposals to the active acceptor. During the leader change process, the
throughput drops to zero.

Figure 5.12 plots the throughput of 2PC for the same experiments. Since 2PC
is a blocking protocol, a few requests can commit after Core 0 becomes slow
and the throughput drops to zero. It is worth noting that the 2PC throughput
would suffer from slow Core 2 in the same way, but PaxosInside would continue
progressing since Core 2 is neither the leader nor the acceptor.

The experiment results show that by using PaxosInside, not only the per-
formance of consensus between multiple cores improves, but also it has the
advantage of continuous progress even with some slow, non-responding cores.

104

5.6. Related Work

5.6 Related Work

Barrelfish [BBD+09], an implementation of a multikernel model, pioneered the
idea that a manycore can be viewed as a distributed system. Key information
of the kernel is replicated on several cores and a 2PC (a blocking agreement)
algorithm ensures the consistency of the replicas. Unlike PaxosInside, 2PC does
not ensure progress with slow, non-responding cores.

Barrelfish exploits the cache hierarchy inside the processors to efficiently
broadcast messages via multicast trees. A slow node in the multicast tree can
delay the propagation of the message to the rest of the nodes. This approach
contrasts with that of PaxosInside, which is precisely designed to address the
problem of slow cores, and hence does not use any multicast tree to broadcast
messages to the replicas. Otherwise, a faulty, slow core would make all its child
nodes under the multicast tree to be unresponsive as well. This would reduce
the probability of having a majority of responsive cores, which is the essential
assumption for progress of consensus protocols.

A multicast tree in Barrelfish is created based on the measured latency of
the core-core communications. The actual delay between two cores depends
on the current load of the cores as well as on the traffic inside the processing
unit. It is actually not clear that a particular created multicast tree remains the
most efficient when the load on the cores changes, which occurs quite often in
a fairly loaded processor. In other words, the performance of a multicast tree
highly depends on the temporary workload. Thus, not to lose the generality,
we avoid multicast trees in benchmarking the performance of the implemented
algorithms.

Mencius [MJM08] was derived from Multi-Paxos to distribute the load of
client commands among multiple leaders [LHA02]. Assuming a balanced load
of client commands received by the leaders, it partitions the space of Paxos
instance numbers among the leaders: each leader proposes the received client
commands only for its range of instance numbers. By doing so, the leaders can,
in total, process more aggregate commands from clients. Note that each leader
still has to communicate with all the acceptors to make a proposal. If the load
is not balanced on the leaders, the loaded leader could forward its traffic to
the other under-loaded leaders, which causes higher delays. The under-loaded
leaders also have to skip their share of the instance space, which would not
help the load balancing objective. In contrast, PaxosInside targets the load on
each leader individually, and is not limited by assuming a balanced load on the
leaders.

By reducing the number of messages exchanged between servers (non-client
nodes), each leader in PaxosInside can process more client commands. The
main insight of PaxosInside can be applied to any protocol of the Paxos family.

105

Chapter 5. PaxosInside

Mencius could also benefit from the main insight of PaxosInside and increase the
system throughput further. This would enable a Mencius leader to be assigned
to a single separate acceptor, and indeed increase the overall throughput.

Some protocols of the Paxos family target the commit latency of client com-
mands [Lam06,DMS,Lam05]. In Basic-Paxos, each client command takes four
message delays between the servers. Multi-Paxos, which has been successfully
integrated into a number of practical deployed [CGR07,LLPZ07,Bur06] systems,
behaves similarly to Basic-Paxos for the first command, but requires only two
message delays between servers for the next commands. This does not include
the RTT delay between the client and the leader. Fast-Paxos [Lam06], using
more replicas (3f + 1), saves the delay between the leader and the acceptors by
allowing the client to optimistically send the accept request messages directly
to the acceptors. Collisions between commands from different clients can be
resolved by spending more steps. The average latency can be lower if the rate
of collisions is low. If collisions are frequent, classic Paxos actually outperforms
Fast-Paxos [Lam06].

In scenarios where the throughput of the system is a bottleneck, the number
of client commands is very high, and the probability of collisions increases ac-
cordingly. PaxosInside is designed for high-throughput systems and reducing the
number of consensus phases is not targeted by the algorithm. Fast-Paxos cannot
outperform the throughput of Multi-Paxos, as the number of sent/received mes-
sages to/from each acceptor does not change; although the leader-to-acceptor
messages of Multi-Paxos are eliminated in Fast-Paxos, the messages must be
sent to more acceptors, 3f + 1. For f = 1, the message/node is equal to six
per command, which is the same number as Multi-Paxos. So called BFT proto-
cols [KAD+07,CL02] tolerate not only crashes but also Byzantine faults: these
include arbitrary faults and malicious behavior. BFT protocols, because of aim-
ing stronger guarantees, are more expensive than the widely-deployed consensus
algorithms [CGR07,LLPZ07,Bur06] (to which PaxosInside belongs).

Chun et al. [CMS08] suggests to put the replicas of a BFT protocol inside
a multicore machine, saving some computing units. The remote clients send
requests to the replicas inside the multicore machine via the network. PaxosIn-
side, in contrary, is based on a solution to scalability of applications inside the
multicore. The clients of PaxosInside are, hence, inside the multicore machine
and agreement between the distributed state among them is a must, and not
an option. PaxosInside solves the agreement problem in very efficient way while
tolerating the slow cores.

Since Paxos requires only a majority (f + 1) of the replicas to progress, in
failure-free scenarios, f of the nodes can be excluded from an execution. This
observation is leveraged by Cheap-Paxos [ML04] to improve the throughput.
Yet, this optimization comes with liveness penalties. For example, with three
Replicas r1, r2, and r3, if r1 fails and afterward r2 fails, then the system cannot

106

5.7. Summary

progress until r2 recovers. In other words, the recovery of r1 does not help
since r2 has the crucial last state of the system. In comparison, PaxosInside can
progress as long as any two of the three replicas are responding. For example,
in the above scenario, PaxosInside progress as soon as either r1 or r2 starts
responding. In this sense, PaxosInside does not jeopardize the liveness of Paxos
and yet offers higher performance.

5.7 Summary

This chapter initiates the study of message passing consensus algorithms in
a manycore system. In short, we show that such a non-blocking agreement
protocol can be efficiently implemented among multiple cores to ensure the
consistency of replicated data.

We proposed PaxosInside, a Paxos-like consensus protocol that attains good
performance by using only a single acceptor, which is replaced only in case
of non-responsiveness. PaxosInside was specifically designed with a manycore
system in mind: roughly, it transmits fewer messages than alternative consensus
protocols, which reduces the load both on the core interconnect and the leader
core’s cache.

We showed how to efficiently implement PaxosInside in a manycore system
by using two separate queues between each pair of cores and cheaply delivering
the received messages via libtask, a user-level thread library. Our experimental
results conveyed the very fact that, on a manycore system, PaxosInside outper-
forms Multi-Paxos, the most efficient message passing consensus to date, and
even a classical (blocking) 2PC algorithm. PaxosInside might block if both the
leader and the acceptor are not responsive at the same time. In this scenario,
which is arguably very rare, PaxosInside progresses after at least one of them
starts responding. For the setup that uses three cores, PaxosInside and the
Paxos family of algorithms can tolerate the same number of faults, i.e., one.

107

I am sorry to write such a long letter, but I

did not have time to write a short one.

Blaise Pascal

6
Conclusion

In this thesis, we presented a new approach for improving the reliability of
distributed systems, where nodes predict and avoid inconsistencies before they
occur, even if they have not manifested in any previous run. We believe that
our approach is the first to give running distributed system nodes access to such
information about their future.

The proposed approach, Dervish, makes use of a model checker running in
parallel with each distributed node to explore the possible future states. To
make our approach feasible, the performance of the model checker should be
improved. We introduce the notion of event chain: a sequence of events triggered
by a non-network event and continued by some network messages. For the
algorithms that produce relatively short event chains, e.g., DHT, we designed
and implemented consequence prediction, an algorithm for selectively exploring
future event chains of the system.

For complex algorithms with long event chains, we introduced LMC, a novel
approach in model checking distributed algorithms. LMC separates the network
state from the global state and focuses on the remaining system states, which is
the required part for invariant checking. Besides, instead of keeping track of the
system states, LMC keeps the traversed local states by each node separately;
the system states are created temporarily only to check the invariants against
them. We then used LMC to find bugs in some complex consensus algorithms,
including PaxosInside, the first consensus algorithm proposed and implemented
for manycore environments.

109

Chapter 6. Conclusion

6.1 Summary of Results

The summary of the results of this thesis centers around four axes:

Deep Online Model Checking of Distributed Systems We introduced the
approach of running a model checker in parallel with each distributed node.
The model checker is restarted before slows down by the exponential explosion
problem. At each run, the model checker instead of the initial state, starts from
the current live state of the system. This approach enables the model checker
to check for the more relevant states: states that are likely to be reached from
the current live system state. This technique enabled us to find some new
bugs in mature implementations of RandTree, Chord, and Bullet′, presented in
Chapter 3.

Execution Steering We introduced the notion of execution steering in dis-
tributed systems. After an inconsistency is predicted by the model checker,
Dervish steers the execution away from it before it actually can occur. This
is possible because the model checker can simulate packet transmission in time
shorter than propagation latency, and because it can simulate timer events in
time shorter than the actual time delays. The presented results in Chapter 3,
demonstrates the possibility of this approach by steering the execution away
from the predicted bugs in Chord and Paxos.

Model Checking Distributed Algorithms Chapter 4 introduced LMC, a novel
approach in model checking distributed algorithms. Because of removing the
network element from the memorized states, much less system states are cre-
ated at the start, which results in 300∼8,000 times speedup in LMC. Using
Dervish augmented with LMC, we rediscovered a previously reported bug in
Paxos implementation as well as a bug in a new consensus protocol, PaxosIn-
side.

PaxosInside We explored, for the first time, the feasibility of implementing a
(non-blocking) consensus algorithm in a manycore system. Chapter 5 presented
PaxosInside, a new consensus algorithm that takes up the challenges of many-
core environments, such as limited bandwidth of interconnect network as well
as the consensus leader. A unique characteristic of PaxosInside is the use of a
single acceptor role in steady state, which in our context, significantly reduces
the number of exchanged messages between replicas. Furthermore, we presented
an efficient implementation of PaxosInside on a manycore system.

110

6.2. Future Work

6.2 Future Work

This thesis opens new opportunities for future works, which are categorized in
the following.

6.2.1 On Symbolic Execution

Symbolic execution (SE) sounds like a promising alternative for model checking
in Dervish. It has the advantage of considering unexpected receipt of messages
from arbitrary nodes, including new joining nodes. Nevertheless, the current
performance of SE tools is not good enough for this purpose. Perhaps SE
techniques that work on standard higher level data structures, e.g., map, list,
and set, will have a higher chance on combating the exponential state space
explosion problem in distributed algorithms.

6.2.2 On Incremental Model Checking

Dervish restarts the model checker to be able to incorporate the current live
state into the model checking process. This approach has the drawback that
the restarted model checker will redundantly explores some of the states that
it has already visited. It is more favorable then to develop techniques to incor-
porate the current live state into the running model checker without, however,
discarding the previous visited states.

6.2.3 On Collaborative State Exploration

Each node in Dervish runs a separate copy of the model checker, which explores
the global system states independently. Alternatively, the state space could be
partitioned among the collaborating model checkers to make the model checking
more efficient by avoiding redundant explorations.

6.2.4 On Collaborative Filter Installation

Currently, Dervish applies a conservative approach in filter installation: all
nodes install filters for all the predicted bugs. Although effective for avoiding
inconsistent states, some early filtered events could negatively affect the system
performance since the predicted inconsistency would not necessarily manifest at
all runs. Alternatively, the model checkers running on distributed nodes could
collaboratively decide on the optimal point of intervention in the predicted er-
roneous paths.

111

Chapter 6. Conclusion

6.2.5 On Model Checking Heuristics

In Dervish, the model checker is restarted after some thresholds. Therefore,
no matter the search algorithm is complete or not, the exploration performed
by the model checker in its lifetime is incomplete. The search heuristics that
sacrifice the completeness of the exploration in favor of some more interesting
states are then very welcome. Consequence prediction presented in Chapter 3
was just one of such heuristics, and there are lots of space for developing new
ones. It is especially more interesting if the heuristics come with some proved
bounds on the covered states.

6.2.6 On Invariants

The model checking as well as other similar techniques reduces the problem of
software testing to that of specifying the right, effective invariants of the system.
This task turns out to be non-trivial in practice since reasoning about the global
properties on distributed nodes is very difficult. Either eliminating this step in
the ideal case or at least helping in detecting the right invariants could save lots
of testing time and help find more bugs.

6.2.7 On Model Checking Distributed Algorithms

The performance of LMC could hugely be improved by skipping some system
states if we know that they are not relevant to the particular user-specified
invariant. In Chapter 4, we applied this scheme for the Paxos main safety
property. For future works, one can think of methods to automatically prune
the system states according to a given invariant.

6.2.8 On PaxosInside

PaxosInside was a first step towards exploring the implementability and benefits
of consensus algorithms in manycore systems: we believe that the road ahead
is full of interesting discoveries. The consensus algorithm could be further op-
timized, taking advantage of the assumption that the processes will not crash.
Alternatively, one can include crash and Byzantine faults in the core fault model
and devise protocols that can efficiently tolerate them. Developing application
on top of the presented message passing framework and benchmarking their
scalability compared with the centralized version are another interesting future
works.

333

112

A
Example Run of Consequence

Prediction on a Small Service

Figure A.4 shows a small service where each node has a local counter and two
states. In the initial state, the node issues a Query message to another node.
Upon receiving a Response message, the node stops its operation. We use this
example to illustrate the differences between consequence prediction and dy-
namic partial order reduction.

Figures A.1, A.2, and A.3 show, respectively, the entire space of reachable
states, the transitions explored by a dynamic partial order reduction algorithm,
and transitions explored by Consequence Prediction. There are 16 reachable
states in the system, 20 paths, and 24 edges. A dynamic partial order reduction
algorithm explores 11 of these edges, and consequence search explores 14 edges.
Note that dynamic partial order reduction explores first one complete path,
then inserts branches to consider certain interleavings. In contrast, consequence
search explores event chains initiated by internal actions, as well as sequences
of these chains where the last action of one sequence changes the state in which
next local action occurs.

113

Appendix A. Example Run of Consequence Prediction on a Small Service

Figure A.1: Reachable states of the system in Figure A.4

Figure A.2: A Dynamic Par-
tial Order Reduction

Figure A.3: Consequence Prediction

114

1 downcall (state == init) maceInit(MaceKey ip) {
2 localCounter=0;
3 state=started;
4 peerId = ip;
5 }
6

7 downcall (state == started) doQuery() {
8 localCounter++;
9 state=querySent;

10 downcall route(peerId, Query());
11 }
12

13 upcall (state != init) deliver(const MaceKey& src, const MaceKey& dest,
14 const Query& msg) {
15 localCounter++;
16 downcall route(src, Response());
17 }
18

19 upcall (state != init) deliver(const MaceKey& src, const MaceKey& dest,
20 const Response& msg) {
21 localCounter++;
22 state=finished;
23 downcall route(src, Response());
24 }

Figure A.4: Example Service in Mace language

115

B
PaxosInside: Pseudo Code

The pseudo code for our PaxosInside algorithm, explained in Section 3, is pre-
sented in Figure B.1. If the proposer recognizes itself as the leader of the active
acceptor, Variable IamLeader is set. The leader does not need to send a pre-
pare request message to the acceptor and starts directly with the accept request
message using the last promised proposal number. Variable Aa refers to the
active acceptor Id; ap is the map structure keeping the accepted proposals;
IamFresh indicates that the acceptor has adopted no leader yet. The highest
proposal number is stored in Variable hpn. Initially the highest proposal number
is equal to -∞. Procedure init, presented in Figure B.2, initializes the mentioned
variables. As for the rest of the variables, pn is the proposal number, in is the
Paxos instance number, v is the value (proposed or accepted), P is the list of
the proposers, L is the list of learners, me is the node Id, and YouMustBeFresh
indicates that the proposer expects to be the first proposer that contacts the
acceptor.

Upon a failure of the active acceptor, the leader first checks whether the oth-
ers still believe him as the leader or not. If not, one other proposer has taken
its position (probably because of a false leader failure alarm). In this case, it
relinquishes the leadership position and return. Otherwise, it calls selectAc-
ceptor function to select a new acceptor that located on a separate node than
the leader node. The leader then announces the change of the active acceptor,
AcceptorChange, through PaxosUtility. It also attaches the uncommitted pro-
posed values to the AcceptorChange entry. The failure of this step indicates that
another item is chosen for the current instance of PaxosUtility. In this case, the
leader returns from this procedure to try again later. In case of success, how-

117

Appendix B. PaxosInside: Pseudo Code

1 Upon AcceptorFailure
2 if (!IamLeader) return;
3 (Pi,instance) = PaxosUtility.lastLeader();
4 if (Pi 6= me) //somebody thought I am dead
5 Aa = null; IamLeader = false;
6 return;
7 A′

a = selectAcceptor();
8 proposals = uncommitedProposals();
9 success = PaxosUtility.propose(instance,

10 AcceptorChange(A′

a,proposals));
11 if (!success) return;
12 Aa = A′

a;
13 IamLeader = false;
14

15 Upon LeaderFailure
16 propose();
17

18 proc propose()
19 if (IamLeader)
20 in = next uncommited instance number();
21 v = getAny(in);
22 sendto Aa accept request(in, pn, v);
23 else
24 YouMustBeFresh = true;
25 pn = new pn();
26 if (Aa == null)
27 (Aa,instance,proposals) =
28 PaxosUtility.lastActiveAcceptor();
29 if (Aa == me) return;
30 success = PaxosUtility.propose(instance,
31 LeaderChange(me, Aa));
32 if (!success)
33 Aa = null; return;
34 registerProposals(proposals);
35 YouMustBeFresh = true;
36 sendto Aa prepare request(in, pn, YouMustBeFresh);
37

38 Upon Receive prepare response(Ai, pn, ap)
39 if (IamLeader || Ai 6= Aa) return;
40 IamLeader = true;
41 registerProposals(ap);
42 in = next uncommited instance number();
43 v = getAny(in);
44 sendto Aa accept request(pn, v);
45

46 Upon Receive prepare request(Pi, pn, YouMustBeFresh)
47 if (pn > hpn)
48 if (IamFresh != YouMustBeFresh)
49 return;
50 IamFresh = false;
51 hpn = pn;
52 sendto Pi prepare response(pn, ap);
53 else sendto Pi abandon(hpn);
54

55 Upon Receive accept request(Pi, in, pn, v)
56 if (pn 6= hpn)
57 sendto Pi abandon();
58 else if (ap[in] 6= null)
59 multicast L learn(in, ap[in]);
60 else
61 ap[in] = (pn, v);
62 multicast L Learn(pn, accepted);

Figure B.1: PaxosInside Algorithm

118

ever, the leader resets Variable IamLeader because it has to start from the first
phase of Paxos with the new active acceptor.

Upon failure of the current leader, a proposer tries to take its position by
calling Procedure propose. The procedure then obtains the active acceptor Id
and sends a prepare request message to it.

Procedure propose proposes a value for the next uncommitted instance num-
ber. If the node is already the leader, it directly sends an accept request message
to the active acceptor. Otherwise, it sends a prepare request message to the ac-
tive acceptor, in accordance with the first phase of the Paxos algorithm. If the
active acceptor Id is unknown to the proposer, it must be obtained via PaxosU-
tility. The lastActiveAcceptor method checks the sequence of committed entries
looking for the last AcceptorChange entry; this entry contains the active accep-
tor Id. Next, the proposer adds a LeaderChange entry via PaxosUtility. The
failure of this step indicates that another item is chosen for the current instance
of PaxosUtility. In this case, the procedure resets the value of Aa and returns.
We assume that the implementation retries the failed attempt via timers or some
other mechanisms. In the case of success, before sending the prepare request
message, it first registers the proposed values which have been recorded with
the last AcceptorChange entry. If the acceptor is supposed to be a fresh backup
acceptor, it also sets Variable YouMustBeFresh which is sent by the message.

Upon receipt of the prepare request message from proposer Pi, the acceptor
verifies the highest proposal number hpn to be less than the requested proposal
number, pn. Otherwise, it sends an abandon message back to proposer Pi. If
Variable IamFresh is set but Variable YouMustBeFresh is not, it indicates that
the proposer expected the acceptor to be already adopted by the last leader.
However, due to the acceptor reset, the acceptor has lost its data, including hpn
and ap. This check avoids the cases where the active acceptor silently reboots
before the leader switch. In this case, the last leader should switch the rebooted
acceptor.

Upon receipt of the prepare response message from the active acceptor, the
proposer claims the leadership position by setting Variable IamLeader. The
getAny method, presented in Figure B.2, picks a value to be accepted for the
instance in. The picked value can be any given value, unless there is already
a proposed but uncommitted value for the instance in. This case can occur in
change of the active acceptor, when some proposed values are not committed yet
by the previous active acceptor. If any proposal matches the instance number in,
to avoid inconsistency, the proposer picks the same previously proposed value.
It then sends an accept request message to the active acceptor.

Upon receipt of the accept request message from the leader, the acceptor
first checks for the proposal number. Also, it checks that there is no proposal
accepted corresponding to the instance number, i.e., ap[in]. Otherwise, it broad-

119

Appendix B. PaxosInside: Pseudo Code

1 proc init()
2 IamLeader = false; Aa = null;
3 ap = emptyMap(); hpn = −∞
4 IamFresh = true;
5

6 proc getAny(in, ap)
7 v = proposed[in];
8 if (v 6= null) return v;
9 v = nextClientRequest();

10 proposed[in] = v;
11 return v;
12

13 proc registerProposals(proposals)
14 foreach p in ap
15 proposed[p.in] = p.v;

Figure B.2: The implementation of Procedures init, getAny, and registerPro-
posals, in PaxosInside Algorithm

casts the learn message of the accepted proposal again to cover the cases that the
lost learn message has motivated the proposer to retry. It then stores the pro-
posal in the accepted proposal map, ap[in]. Afterwards, the accepted proposal
is broadcasted to all the learners accordingly.

120

C
PaxosInside: Proof of Correctness

Here, we prove the correctness of the algorithm presented in Appendix B. We
first prove some properties for the entries in PaxosUtility, which we then use
to prove that no two different values would be accepted for the same instance
number. The proof for the simple case where there is no change in the active
acceptor nor the leader node, is trivial and similar to the proofs of Paxos. Here,
we focus on the complex cases where the algorithm switches the leader and the
active acceptor.

PaxosUtility contains entries for changing the active acceptor, i.e. Acceptor-
Change, and entries for changing the leader, i.e. LeaderChange. We define the
Global leader and Global acceptor as follows:

definition: In the sequence of PaxosUtility entries, the node which has inserted
the last LeaderChange entry is the Global leader. Similarly, the active acceptor
announced by the last AcceptorChange message, represents the Global acceptor.
We use GLi to represent the ith Global leader and GAi to represent the ith
Global acceptor.

Lemma 1 : An AcceptorChange entry is inserted only by the Global leader.

Lemma 1 is guaranteed by lines 3..13 of Figure B.1. In Line 4 the leader verifies
that it is still the Global leader. It also keeps the index of the last empty instance
number, instance. Later at Line 10, it proposes the AcceptorChange message
for that instance number. The failure of this phase implies that another node
has inserted something in the meanwhile. In this case, the handler returns to
retry the procedure later from scratch. Therefore, the AcceptorChange message
is inserted only by the Global leader.

121

Appendix C. PaxosInside: Proof of Correctness

According to Lemma 1, the Global acceptor represents the active acceptor
with which the Global leader is working.

Now we prove by induction that the same value will always be accepted for a
particular instance number. The first step is to show that a Global leader does
not propose two different values for the same instance number when it switches
between the acceptors. Hereafter, we use Pair (v,i) to represent Value v and
Instance Number i of a given accept request messages.

Lemma 2a: Suppose that GLl has issued two accept request messages, (va,ia)
and (va+1,ia+1), to two consecutive Global acceptors GAa and GAa+1, respec-
tively. If ia = ia+1, then va = va+1.

Lemma 2a is directly followed by the implementation of the Procedure getAny
in Figure B.2. There, the leader first checks the history of the proposed values.
If any value has already been proposed for the requested instance number, then
the procedure returns the same value. Hence, as long as the Global leader is
not changed, the proposed value for a particular instance number will be always
the same.

The next step is to show that an acceptor accepts the same proposals from
two consecutive Global leaders.

Lemma 2b: Suppose that the active acceptor GAa accepts two accept request
messages, (vl,il) and (vl+1,il+1), from two consecutive Global leaders, GLl and
GLl+1, respectively. If il = il+1, then vl = vl+1.

Node GLl+1 becomes the Global leader only after successfully inserting a
LeaderChange entry via PaxosUtility. In the algorithm presented in Figure B.1,
this happens only at Line 30 inside the Procedure propose. It also implies that
the value of Variable Iamleader is false (Line 25). GLl+1 will not start proposing
values unless the value of Variable Iamleader changes to true (Line 21). Line 41
is the only location where the value of this variable is changed to true upon
receipt of a prepare response message. It indicates that the active acceptor
has received the prepare request message, approved the proposal number, and
responded by the prepare response message which is also piggybacked by all the
previous accepted proposals, ap. The received accepted proposals are registered
by the leader (Line 42). The registered values will be later used for all the next
proposals in Procedure getAny. In other words, the GLl+1 will propose the same
values that has already been accepted by acceptor GAa.

Similar to Basic-Paxos, GAa will reject all the other potential issued ac-
cept request messages by GLl after sending the prepare response message to
GLl+1. On the other hand, as we showed above, if GAa has accepted any value
from GLl for a particular instance number, it will not receive any different value
from GLl+1 for that sequence number. Consequently, GAa always accept the
same values from two consecutive Global leaders.

122

Having Lemma 2a and Lemma 2b, now we present the correctness proof of
the algorithm.

(*) Suppose that two acceptors GAa and GAa′ accept two accept request
messages, (va,ia) and (va′ ,ia′), received from the Global leaders GLl and GLl′ ,
respectively, where l′ ≥ l and a′ ≥ a. If ia = ia′ , then va = va′ .

The proof is by induction on the size of sequence of entries in PaxosUtility.
Assume that property (*) holds when PaxosUtility has k entries. We prove that
it still holds when PaxosUtility has k + 1 entries.

Recall that the entries in the PaxosUtility utility are either AcceptorChange
or LeaderChange. If the k + 1th entry is AcceptorChange, based on Lemma 1
it is inserted by the last Global leader. Thus, the GL is the same and the
GA changes. This is the case in Lemma 2a for which we proved that no two
values will be proposed for the same instance number. If the k + 1th entry is
LeaderChange, we can assume that GA is the same during this change. This
is provided by the Lines 29..30 in Figure B.1, where the new leader takes the
same active acceptor as was taken by the last leader. This case is covered by
Lemma 2b for which we proved that no two values will be accepted for the same
instance number. Consequently, if we assume that no two values are accepted
for the same instance number in the first k entries of PaxosUtility utility, this
also holds for the first k + 1 entries.

Now, to complete the proof, we need to show that the theory holds for k = 2.
We can make it hold by an initialization process. At the start up, the node with
the smallest Id can insert two entries for LeaderChange and AcceptorChange
to announce itself as the Global leader and its active acceptor as the Global
acceptor. Because, no change in the roles happens in the initial case, neither
for the leader nor for the active acceptor, then the theory directly holds for this
case.

123

D
LMC: Soundness Verification Proofs

We argue here that the soundness verification module of Dervish, implemented
by Procedure isSequenceValid of Figure 4.7, reports a given system state as
valid if and only if the corresponding set of sequenced events is valid.

Theorem 1 : If Procedure isSequenceValid returns true then the input sys-
tem state is valid.

This is trivial since the procedure executes the sequence of events of each
local node in order and only if these events are enabled. Therefore, the resultant
global state could also occur in a real run, i.e., it is valid.

Theorem 2 : If the input set of sequenced events is valid, then Procedure
isSequenceValid returns true.

We use here partial and total orders. Basically, the input sequences of events
(one for each node state) define a partial order on the events. Considering all
local nodes, there might be more than one way to combine their event sequences,
i.e., obtaining a total order between the events of all the nodes. A total order
must also respect event causality. For example, an event in node n1 that receives
a message from node n2 cannot be executed until the message is generated by
an event in node n2.

The partial order between the events is defined by the happens-before rela-
tion [Lam78] as follows.

Definition: Let en
i be the ith event of node n. Relation happens-before, →,

between two events is defined by the following rules: (i) en
i → en

i′ ⇔ i ≤ i′, (ii)
en
i generates the network message used by en′

i′ ⇒ en
i → en′

i′ .

125

Appendix D. LMC: Soundness Verification Proofs

Notice that happens-before is antisymmetric, i.e., e → e′, e′ → e ⇒ e = e′.
The total order of events executed by Procedure isSequenceValid could be
obtained by sequencing the events in the time order that they are executed
by the procedure. The following lemma expresses Theorem 2 using the notion
of total order. The set of all total orders is denoted TO. Each Total Order
TOi ∈ TO is a sequence of a subset of events that respects the partial orders.
The projection of node n on Total Order TOi is denoted TOn

i .

Lemma 1 : ∃TOi ∈ TO. ∀e. TOi.e /∈ TO ⇒ ¬∃TOj. | TOj |>| TOi |.

Lemma 1 indicates that, if the size of a total order, obtained by any given
algorithm, cannot be increased, then no algorithm could obtain a bigger total
order. In other words, since Procedure isSequenceValid is finished by checking
the possibility of increasing the size of the created total order, if the result is
not a total order that includes all the input events, then there is no such total
order. We prove Lemma 1 by contradiction. Assume there exists such TOj.
Then we have

∃k ≥ 1, nm ∈ nodes(0 < m ≤ k). | TOnm

j |>| TOnm

i | (D.1)

Let enm

f = TOnm

j [| TOnm

i | +1], where Operator [i] gives the ith element of the
sequence. In other words, enm

f denotes the first new event of node nm in Total
Order TOj that is not included in Total Order TOi. Observe that enm

f could
not be a local event since it would then have been enabled in TOi as well.

Let s(e) be the event that has generated the message handled by Network
Event e. Let n(e) be the node of Event e. We use sm to denote s(enm

f).

We have sm /∈ TO
n(sm)
i , otherwise sm would have made enm

f enabled in TOi.

Therefore we have e
n(sm)
f → sm, and consequently e

n(sm)
f → enm

f . This leads us
to the following equation:

∀nm(0 < m ≤ k). ∃nm′(0 < m′ ≤ k).

e
n′

m

f → enm

f , enm

f 6→ e
n′

m

f

This is obviously a contradiction since it implies a first element while at the
same time demands a smaller element than that.

126

Bibliography

[AVY08] Matthew Arnold, Martin Vechev, and Eran Yahav. Qvm: an effi-
cient runtime for detecting defects in deployed systems. In OOP-
SLA ’08: Proceedings of the 23rd ACM SIGPLAN conference on
Object-oriented programming systems languages and applications,
pages 143–162, New York, NY, USA, 2008. ACM.

[BBD+09] A. Baumann, P. Barham, P.E. Dagand, T. Harris, R. Isaacs, S. Pe-
ter, T. Roscoe, A. Schupbach, and A. Singhania. The Multikernel:
A new OS architecture for scalable multicore systems. In SOSP.
ACM, 2009.

[BDIM04] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard
Mortier. Using Magpie for Request Extraction and Workload Mod-
elling. In OSDI, 2004.

[BM05] A. A. Bayazit and S. Malik. Complementary use of runtime valida-
tion and model checking. In ICCAD ’05: Proceedings of the 2005
IEEE/ACM International conference on Computer-aided design,
pages 1052–1059, Washington, DC, USA, 2005. IEEE Computer
Society.

[BPR01] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean
and Cartesian Abstraction for Model Checking C Programs. In
TACAS, 2001.

[BR02] Thomas Ball and Sriram K. Rajamani. The SLAM project: debug-
ging system software via static analysis. In POPL, 2002.

[Bur06] M Burrows. The Chubby lock service for loosely-coupled dis-
tributed systems. In OSDI, volume 11, 2006.

[CCC+05] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rowstron,
Lidong Zhou, Lintao Zhang, and Paul Barham. Vigilante: End-to-
End Containment of Internet Worms. In SOSP, October 2005.

[CCG+03] Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, and Hel-
mut Veith. Modular verification of software components in C. TSE,
30(6), 2003.

[CCZ+07] Manuel Costa, Miguel Castro, Lidong Zhou, Lintao Zhang, and

127

Bibliography

Marcus Peinado. Bouncer: Securing Software by Blocking Bad
Input. In SOSP, 2007.

[CDK+03] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh
Nandi, Antony Rowstron, and Atul Singh. Splitstream: High-
bandwidth Content Distribution in Cooperative Environments. In
SOSP, October 2003.

[CGJ+02] Hyunseok Chang, Ramesh Govindan, Sugih Jamin, Scott Shenker,
and Walter Willinger. Towards Capturing Representative AS-Level
Internet Topologies. In SIGMETRICS, June 2002.

[CGR07] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone.
Paxos Made Live: an Engineering Perspective. In PODC, 2007.

[CL85] K. Mani Chandy and Leslie Lamport. Distributed Snapshots: De-
termining Global States of Distributed Systems. ACM Trans. Com-
put. Syst., 3(1):63–75, 1985.

[CL02] M. Castro and B. Liskov. Practical Byzantine fault tolerance
and proactive recovery. ACM Transactions on Computer Systems
(TOCS), 20(4):398–461, 2002.

[CMS08] B.G. Chun, P. Maniatis, and S. Shenker. Diverse replication for
single-machine byzantine-fault tolerance. In USENIX 2008 Annual
Technical Conference on Annual Technical Conference, pages 287–
292. USENIX Association, 2008.

[CRSZ02] Yang Chu, S. G. Rao, S. Seshan, and Hui Zhang. A Case for
End System Multicast. Selected Areas in Communications, IEEE
Journal on, 20(8):1456–1471, Oct 2002.

[DAKV09] Darren Dao, Jeannie R. Albrecht, Charles Edwin Killian, and Amin
Vahdat. Live Debugging of Distributed Systems. In Compiler Con-
struction, 2009.

[DKK09] Pierre-Évariste Dagand, Dejan Kostić, and Viktor Kuncak. Opis:
Reliable distributed systems in OCaml. In ACM SIGPLAN TLDI,
2009.

[DMS] D. Dobre, M. Majuntke, and N. Suri. CoReFP: Contention-
Resistant Fast Paxos for WANs. Technical report, Technical report,
TU Darmstadt, Germany, 2006.

[DR03] Brian Demsky and Martin Rinard. Automatic Detection and Re-
pair of Errors in Data Structures. In OOPSLA, 2003.

[DY83] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Trans. on information theory, 29(2), 1983.

[FG05] Cormac Flanagan and Patrice Godefroid. Dynamic Partial-Order
Reduction for Model Checking Software. In POPL, 2005.

128

Bibliography

[FLP85] M.J. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of
Distributed Consensus with One Faulty Process. Journal of the
ACM (JACM), 32(2):374–382, 1985.

[FPK+07] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker,
and Ion Stoica. X-Trace: A Pervasive Network Tracing Framework.
In NSDI, 2007.

[FQ03] C. Flanagan and S. Qadeer. Thread-modular model checking. In
Model Checking Software. Springer, 2003.

[GAM+07] Dennis Geels, Gautam Altekar, Petros Maniatis, Timothy Roscoe,
and Ion Stoica. Friday: Global Comprehension for Distributed
Replay. In NSDI, 2007.

[God96] P. Godefroid. Partial-order methods for the verification of concur-
rent systems–An approach to the state-explosion problem, volume
1032 of. Lecture Notes in Computer Science, pages 1–143, 1996.

[God97] P. Godefroid. Model checking for programming languages using
VeriSoft. In Proceedings of the 24th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 174–186.
ACM New York, NY, USA, 1997.

[GR06] R. Guerraoui and L. Rodrigues. Introduction to reliable distributed
programming. Springer-Verlag New York Inc, 2006.

[GW94] Patrice Godefroid and Pierre Wolper. A Partial Approach to Model
Checking. Inf. Comput., 110(2):305–326, 1994.

[GY10] R. Guerraoui and M. Yabandeh. Independent Faults in the Cloud.
In LADIS, 2010.

[HJMQ03] T.A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer. Thread-
modular abstraction refinement. In CAV, 2003.

[HJMS02] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and
Grégoire Sutre. Lazy abstraction. In POPL, 2002.

[Hol97] Gerard J. Holzmann. The Model Checker SPIN. IEEE Trans.
Software Eng., 23(5):279–295, 1997.

[JEK+90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J.
Hwang. Symbolic Model Checking: 1020 States and Beyond. In
LICS, 1990.

[JGB05] Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem.
Program repair as a game. In CAV, pages 226–238, 2005.

[JKBK+08] John P. John, Ethan Katz-Bassett, Arvind Krishnamurthy,
Thomas Anderson, and Arun Venkataramani. Consensus Routing:
The Internet as a Distributed System. In NSDI, San Francisco,
April 2008.

129

Bibliography

[JM06] Muhammad Umar Janjua and Alan Mycroft. Automatic Correction
to Safety Violations. In Thread Verification (TV06), 2006.

[JMK+08] Navendu Jain, Prince Mahajan, Dmitry Kit, Praveen Yalagandula,
Mike Dahlin, and Yin Zhang. Network Imprecision: A New Con-
sistency Metric for Scalable Monitoring. In OSDI, December 2008.

[KAB+07] Charles E. Killian, James W. Anderson, Ryan Braud, Ranjit Jhala,
and Amin M. Vahdat. Mace: Language Support for Building Dis-
tributed Systems. In PLDI, 2007.

[KAD+07] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva:
speculative byzantine fault tolerance. ACM SIGOPS Operating
Systems Review, 41(6):45–58, 2007.

[KAJV07] Charles E. Killian, James W. Anderson, Ranjit Jhala, and Amin
Vahdat. Life, Death, and the Critical Transition: Finding Liveness
Bugs in Systems Code. In NSDI, 2007.

[KBK+05] Dejan Kostić, Ryan Braud, Charles Killian, Erik Vandekieft,
James W. Anderson, Alex C. Snoeren, and Amin Vahdat. Main-
taining High Bandwidth under Dynamic Network Conditions. In
USENIX ATC, 2005.

[KRA+03] Dejan Kostić, Adolfo Rodriguez, Jeannie Albrecht, Abhijeet
Bhirud, and Amin Vahdat. Using Random Subsets to Build Scal-
able Network Services. In USITS, 2003.

[Lam78] Leslie Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System. Com. of the ACM, 21(7):558–565, 1978.

[Lam98] Leslie Lamport. The part-time parliament. ACM Trans. Comput.
Syst., 16(2):133–169, 1998.

[Lam01a] L. Lamport. Paxos made simple. ACM SIGACT News, 32(4):18–
25, 2001.

[Lam01b] L. Lamport. Paxos made simple. ACM SIGACT News, 32(4):18–
25, 2001.

[Lam05] L. Lamport. Generalized consensus and Paxos. Technical report,
Technical Report MSR-TR-2005-33, Microsoft Research, 2005.

[Lam06] L. Lamport. Fast paxos. Distributed Computing, 19(2):79–103,
2006.

[LGW+08] Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen Lian,
Jian Tang, Ming Wu, M. Frans Kaashoek, and Zheng Zhang. D3S:
Debugging Deployed Distributed Systems. In NSDI, 2008.

[LHA02] L. Lamport, A. Hydrie, and D. Achlioptas. Multi-leader distributed
system, November 21 2002. US Patent App. 10/302,572.

[lib] libtask. http://swtch.com/libtask/.

130

Bibliography

[LLPZ07] Xuezheng Liu, Wei Lin, Aimin Pan, and Zheng Zhang. WiDS
Checker: Combating Bugs in Distributed Systems. In NSDI, 2007.

[LS79] B. Lampson and H. Sturgis. Crash recovery in a distributed data
storage system. 1979.

[Lyn96] N.A. Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

[ME04] Madanlal Musuvathi and Dawson R. Engler. Model Checking Large
Network Protocol Implementations. In NSDI, 2004.

[Mit02] J. Mitchell. Multiset rewriting and security protocol analysis. In
Rewriting Techniques and Applications. Springer, 2002.

[MJM08] Yanhua Mao, Flavio Junqueira, and Keith Marzullo. Mencius:
Building Efficient Replicated State Machines for WANs. In OSDI,
2008.

[ML04] M. Massa and L. Lamport. Cheap paxos. In DSN, 2004.

[MPC+02] Madanlal Musuvathi, David Y. W. Park, Andy Chou, Dawson R.
Engler, and David L. Dill. CMC: A Pragmatic Approach to Model
Checking Real Code. SIGOPS Oper. Syst. Rev., 36(SI):75–88, 2002.

[MPR06] A. Malkis, A. Podelski, and A. Rybalchenko. Thread-modular ver-
ification is cartesian abstract interpretation. In ICTAC. Springer,
2006.

[MPR10] A. Malkis, A. Podelski, and A. Rybalchenko. Thread-Modular
Counterexample-Guided Abstraction Refinement. In SAS, 2010.

[MQ07] Madanlal Musuvathi and Shaz Qadeer. Iterative Context Bounding
for Systematic Testing of Multithreaded Programs. In PLDI, pages
446–455, 2007.

[MQB+08] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler,
Piramanayagam Arumuga Nainar, and Iulian Neamtiu. Finding
and Reproducing Heisenbugs in Concurrent Programs. In OSDI,
2008.

[MS02] D. Manivannan and Mukesh Singhal. Asynchronous Recovery
Without Using Vector Timestamps. J. Parallel Distrib. Comput.,
62(12):1695–1728, 2002.

[NCF05] Edmund B. Nightingale, Peter M. Chen, and Jason Flinn. Specu-
lative Execution in a Distributed File System. In SOSP, 2005.

[PHR+09] Donald E. Porter, Owen S. Hofmann, Christopher J. Rossbach,
Alexander Benn, and Emmett Witchel. Operating systems trans-
actions. In SOSP ’09: Proceedings of the ACM SIGOPS 22nd sym-
posium on Operating systems principles, pages 161–176, New York,
NY, USA, 2009. ACM.

131

Bibliography

[QTZS07] Feng Qin, Joseph Tucek, Yuanyuan Zhou, and Jagadeesan Sundare-
san. Rx: Treating Bugs as Allergies—A Safe Method to Survive
Software Failures. ACM Trans. Comput. Syst., 25(3), 2007.

[RCD+04] Martin C. Rinard, Cristian Cadar, Daniel Dumitran, Daniel M.
Roy, Tudor Leu, and William S. Beebee. Enhancing Server Avail-
ability and Security Through Failure-Oblivious Computing. In
OSDI, 2004.

[RD01] Antony Rowstron and Peter Druschel. Storage Management and
Caching in PAST, a Large-Scale, Persistent Peer-to-Peer Storage
Utility. In SOSP, 2001.

[RGK+05] Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz,
Sylvia Ratnasamy, Scott Shenker, Ion Stoica, and Harlan Yu.
OpenDHT: A Public DHT Service and Its Uses. In SIGCOMM,
August 2005.

[RKB+04] Adolfo Rodriguez, Charles Killian, Sooraj Bhat, Dejan Kostić, and
Amin Vahdat. MACEDON: Methodology for Automatically Creat-
ing, Evaluating, and Designing Overlay Networks. In NSDI, 2004.

[RKW+06] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey C.
Mogul, Mehul A. Shah, and Amin Vahdat. Pip: Detecting the
Unexpected in Distributed Systems. In NSDI, 2006.

[SA06a] K. Sen and G. Agha. Automated systematic testing of open dis-
tributed programs. Fundamental Approaches to Software Engineer-
ing, pages 339–356, 2006.

[SA06b] Koushik Sen and Gul Agha. Automated systematic testing of open
distributed programs. In FASE, pages 339–356, 2006.

[Sch90] Fred B. Schneider. Implementing Fault-Tolerant Services Using
the State Machine Approach: a Tutorial. ACM Comput. Surv.,
22(4):299–319, 1990.

[SKAZ04] Sudarshan M. Srinivasan, Srikanth K, Christopher R. Andrews, and
Yuanyuan Zhou. Flashback: A Lightweight Extension for Rollback
and Deterministic Replay for Software Debugging. In USENIX
ATC, 2004.

[SMLN+03] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger,
M. Frans Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord:
a Scalable Peer-to-Peer Lookup Protocol for Internet Applications.
IEEE/ACM Trans. Netw., 11(1):17–32, 2003.

[SMRD06] Atul Singh, Petros Maniatis, Timothy Roscoe, and Peter Druschel.
Using Queries for Distributed Monitoring and Forensics. SIGOPS
Oper. Syst. Rev., 40(4):389–402, 2006.

132

Bibliography

[VYW+02] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan
Kostić, Jeff Chase, and David Becker. Scalability and Accuracy in
a Large-Scale Network Emulator. In OSDI, December 2002.

[WKK+08] Yin Wang, Terence Kelly, Manjunath Kudlur, Stéphane Lafortune,
and Scott A. Mahlke. Gadara: Dynamic Deadlock Avoidance for
Multithreaded Programs. In OSDI, 2008.

[WLK+09] Yin Wang, Stéphane Lafortune, Terence Kelly, Manjunath Kudlur,
and Scott Mahlke. The Theory of Deadlock Avoidance via Discrete
Control. In POPL, 2009.

[Yab10] Maysam Yabandeh. Model Checking Tools for Software System
Implementations. Technical report, 2010.

[YACK09] M. Yabandeh, A. Anand, M. Canini, and D. Kostic. Almost-
invariants: From bugs in distributed systems to invariants. Tech-
nical Report NSL-REPORT-2009-007, EPFL, 2009.

[YCW+09] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu,
Haoxiang Lin, Mao Yang, Fan Long, Lintao Zhang, and Lidong
Zhou. MODIST: Transparent Model Checking of Unmodified Dis-
tributed Systems. In NSDI, April 2009.

[YFG10] Maysam Yabandeh, Leandro Franco, and Rachid Guerraoui. One
Acceptor is Enough. Technical Report LPD-REPORT-2010-01,
EPFL, January 2010.

[YK09] Maysam Yabandeh and Dejan Kostic. DPOR-DS: Dynamic Partial
Order Reduction in Distributed Systems. Technical Report TR-
2009-05, EPFL, 2009.

[YKKK09] Maysam Yabandeh, Nikola Knežević, Dejan Kostić, and Viktor
Kuncak. CrystalBall: Predicting and Preventing Inconsistencies
in Deployed Distributed Systems. In NSDI, 2009.

[YKKK10] M. Yabandeh, N. Knežević, D. Kostić, and V. Kuncak. Pre-
dicting and preventing inconsistencies in deployed distributed sys-
tems. ACM Transactions on Computer Systems (TOCS), 28(1):1–
49, 2010.

[YSE06] Junfeng Yang, Can Sar, and Dawson Engler. EXPLODE: a
Lightweight, General System for Finding Serious Storage System
Errors. In OSDI, 2006.

[YTEM06] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musu-
vathi. Using Model Checking to Find Serious File System Errors.
ACM Trans. Comput. Syst., 24(4):393–423, 2006.

[YVKK09] Maysam Yabandeh, Nedeljko Vasić, Dejan Kostić, and Viktor Kun-
cak. Simplifying distributed system development. In HotOS, May
2009.

133

List of Figures, Algorithms, and Tables

Figure 1.1 Execution path coverage by a) classic model checking,
b) replay-based or live predicate checking, c) Dervish
in deep online testing mode, and d) Dervish in exe-
cution steering mode. A triangle represents the state
space searched by the model checker; a full line de-
notes an execution path of the system; a dashed line
denotes an avoided execution path that would lead to
an inconsistency. 2

Figure 1.2 An inconsistency in a run of RandTree; Safety prop-
erty: children and siblings are disjoint lists 5

Figure 1.3 An example execution sequence that, thanks to execu-
tion steering, avoids the inconsistency from Figure 1.2. 8

Figure 2.1 A simple model of a distributed system 13
Figure 2.2 The classic DFS-based (Depth First Search) algorithm

to model checking distributed systems. 14
Figure 2.3 Example illustrating the consistent snapshot collection

algorithm. Black ovals represent regular checkpoints.
Messages m1 and m2 force checkpoints (white ovals)
to be taken before messages are processed at nodes 2
and 1, respectively, and so does the checkpoint request
from node 3 when it arrives at node 0. 15

Figure 3.1 High-level overview of Dervish. This figure depicts the
high-level architecture of Dervish and its main compo-
nents. 22

Figure 3.2 Consequence Prediction Algorithm 25
Figure 3.3 Full state space, consequence search, and partial order

reduction in an example with internal actions of three
distinct nodes . 27

135

List of Figures, Algorithms, and Tables

Table 3.1 Summary of inconsistencies found for each system us-
ing Dervish. LOC stands for lines of code and reflects
both the MACE code size and the generated C++
code size. The low LOC counts for Mace service im-
plementations are a result of Mace’s ability to express
these services succinctly. The C++ numbers do not
include the line counts for libraries and low-level ser-
vices that services use from the Mace framework. . . . 38

Figure 3.4 An inconsistency in a run of RandTree. Root (n9)
appears as a child. 40

Figure 3.5 An inconsistency in a run of Chord. Node nc has its
predecessor pointing to itself while its successor list
includes other nodes. 42

Figure 3.6 An inconsistency in a run of Chord. For node na,
its successor and predecessor do not obey in ordering
constraint. 44

Figure 3.7 MaceMC performance: the elapsed time for exhaus-
tively searching in RandTree state space. 47

Figure 3.8 Scenario that exposes a previously reported violation
of a Paxos safety property (two different values are
chosen in the same instance.). 48

Figure 3.9 Scenario that includes bug2, where node nb resets but
after reset forgets its previously promised and ac-
cepted values. This leads to violation of the main
Paxos safety property (two different values are cho-
sen in the same instance.). 49

Figure 3.10 In 200 runs that expose Paxos safety violations due to
two injected errors, Dervish successfully avoided the
inconsistencies in all but 1 and 4 cases, respectively. . 51

Figure 3.11 In this experiment we run Paxos across an emulated
wide area network using ModelNet. The experiment
contains 200 runs in which the same two errors as
in Figure 3.10 were injected. Dervish successfully
avoided the inconsistencies in all but 6 and 3 cases,
respectively. 52

Figure 3.12 In 100 runs that expose a Chord safety violation we
identified, Dervish successfully avoided the inconsis-
tencies in all cases. 53

Figure 3.13 The memory consumed by consequence prediction
(RandTree, depths seven to eight) fits in an L2 CPU
cache. 54

Figure 3.14 The average amount of memory consumed by each ex-
plored state. 55

136

List of Figures, Algorithms, and Tables

Figure 3.15 Dervish slows down Bullet′ by less than 5% for a 20
MB file download. 56

Figure 4.1 State transition in model checking distributed sys-
tems. In (a) the classic global approach, the model
checker creates the entire state space of the global
states, whereas in (b) our proposed local approach, the
network element is eliminated from the stored states
and the model checker keeps track of only local states. 58

Figure 4.2 A simple distributed tree algorithm. Node 0 sends a
message to all its children. Each node forwards the
message to its children. 60

Figure 4.3 The global state space of the example tree in Figure 4.2
as explored by a global model checking approach. The
initial local state of each node is denoted ”-”. The
state of node 0 and 4 is changed to ”s” and ”r” after
the send and receive of the message, respectively. The
network element of the global state is represented by
the set of in-flight messages. Each arrow depicts a
transition in the model checker from one global state
to another. The label besides each arrow indicates the
event that triggers the transition. Although the global
states inside the rectangles are duplicates, they are not
joined into one state, for simplicity of presentation. . 61

Figure 4.4 Local model checking approach of the example tree
in Figure 4.2. The first column indicates the changes
into the shared network element. The middle column
shows the set of local states of node 0 to 4. The initial
local state of each node is denoted ”-”. The state
of node 0 and 4 is changed to ”s” and ”r” after the
send and receive of the message, respectively. The
first event is the local event of node 0 that generates
the message. The generated message is then added to
the shared network element. At each step, an event
is selected and is executed on all local states of the
destination node. The resultant states are added to
the list of visited local states if they have not been
visited before. The last column shows the new system
states created after each step. 62

137

List of Figures, Algorithms, and Tables

Figure 4.5 In our local approach, the handler execution works
only on local states and produces new local states.
Local and system states are denoted ”LS” and ”SS”,
respectively. The messages are not removed from the
shared network component after execution. The new
system states are created after a new local state is pro-
duced. The soundness verification checks the validity
of a system state, only after an invariant violation is
reported. 63

Figure 4.6 The altered handlers in local model checking. 64
Figure 4.7 Local model checker algorithm. 65
Figure 4.8 The elapsed time in model checking Paxos where only

one out of three nodes proposes a value. 72
Figure 4.9 The number of explored states. 73
Figure 4.10 The consumed memory. 75
Figure 4.11 The overheads of LMC in model checking Paxos in

which a bug is injected. 76

Figure 5.1 Non-uniform latency in inter-core communication;
Cores C0 and C1 share the same L2 cache and com-
municate much faster than Cores C0 and C3 that have
to go through the interconnect network. 82

Figure 5.2 The reduced number of messages in PaxosInside com-
pared to collapsed Multi-Paxos deployed on three
nodes. The dotted box represents the node boundary.
The dashed messages, which do not cross the node
boundary, do not consume the node bandwidth. P, A,
and L represent the proposer, acceptor, and learner
roles, respectively. The grayed acceptors and conse-
quently the communications to/from them are elimi-
nated in PaxosInside. 85

Figure 5.3 The interaction between nodes in Basic-Paxos. This
example consists of one proposer, three acceptors, and
two learners. In Multi-Paxos, the leader skips the first
phase, i.e., prepare request and prepare response. . . . 89

Figure 5.4 The interaction between nodes in PaxosInside to re-
place failed acceptor A with another backup acceptor
A′. In Step 1, the leader makes sure that it is still
known as the leader by a majority of the nodes. Then
in Step 2, it announces the change of the active ac-
ceptor. Finally in Step 3, it sends a prepare request
message to the new active acceptor A′. 95

138

List of Figures, Algorithms, and Tables

Figure 5.5 The interaction between nodes in PaxosInside when
proposer P ′ takes the leadership position from leader
P . In Step 1, proposer P ′ inquires for the active ac-
ceptor Id. It then announces itself as leader in Step 2.
Finally in Step 3, it sends a prepare request message
to the active acceptor. 96

Figure 5.6 Two separate queues are used between each pair of
cores. 98

Figure 5.7 The architecture of the implemented framework for
message passing in manycore systems. 99

Figure 5.8 Throughput achieved by one client. 102
Figure 5.9 Commit latency observed by using one client. 102
Figure 5.10 The latency vs. throughput by increasing the number

of clients. 103
Figure 5.11 The changes in throughput achieved by PaxosInside

when the leader is slow. 104
Figure 5.12 The changes in throughput achieved by 2PC when the

leader is slow. 104

Figure A.1 Reachable states of the system in Figure A.4 114
Figure A.2 A Dynamic Partial Order Reduction 114
Figure A.3 Consequence Prediction 114
Figure A.4 Example Service in Mace language 115

Figure B.1 PaxosInside Algorithm 118
Figure B.2 The implementation of Procedures init, getAny, and

registerProposals, in PaxosInside Algorithm 120

139

About the Author

Maysam Yabandeh was born in Qom, Iran, in 1982. He received a diploma in
physics and mathematics from National Exceptional Talents School, Qom, in
2000. He then started his undergraduate studies at Electrical and Computer
Engineering department, University of Tehran (Fanni). He finished his bach-
elor in Software Engineering in 2005, after receiving the honorable award for
achieving the first rank among the graduating students.

He achieved the forth place in the national entrance exam for graduate studies,
in computer engineering field, in 2004. Following that he received the third place
in National Student Olympiad, Computer Science field. He then started his
graduate studies at ECE department, University of Tehran, where he finished
his master thesis, ”Concurrent Multipath Transferring in IP Networks”, in 2007.

After two six-month internships at EPFL, Switzerland, he started his PhD at
IC department. During his PhD he worked on various interesting topics, includ-
ing software testing, model checking, and [Byzantine] fault-tolerant consensus
protocols.

141

