To maintain appropriate body iron levels, iron absorption by the proximal duodenum is thought to be controlled by hepcidin, a polypeptide secreted by hepatocytes in response to high serum iron. Hepcidin limits basolateral iron efflux from the duodenal epithelium by binding and downregulating the intestinal iron exporter ferroportin. Here, we found that mice with an intestinal ferritin H gene deletion show increased body iron stores and transferrin saturation. As expected for iron-loaded animals, the ferritin H-deleted mice showed induced liver hepcidin mRNA levels and reduced duodenal expression of DMT1 and DcytB mRNA. In spite of these feedback controls, intestinal ferroportin protein and Fe-59 absorption were increased more than 2-fold in the deleted mice. Our results demonstrate that hepcidin-mediated regulation alone is insufficient to restrict iron absorption and that intestinal ferritin H is also required to limit iron efflux from intestinal cells.