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Abstract—Polar codes allow to perform lossless compression of
i.i.d. sources at the lowest rate with low encoding and decoding
complexity. In this paper, it is shown that for binary sources, there
exist “universal polar codes” which can compress any source of
low enough entropy, without requiring knowledge of the source
distribution. While this result does not extend to g-ary sources,
it is shown how it extends to g-ary sources which belong to a
restricted family. An analogy between this family and BECs in
channel polarization is discussed. Finally, an application of the
universal source polarization results to sparse data recovery is
proposed.

I. INTRODUCTION

Arikan shows in [1] that an arbitrary binary input discrete
memoryless channel W can be polarized as follows: n inde-
pendent uses of W can be transformed into n successive uses
of synthesized binary input channels that have (except for a
vanishing fraction) a uniform mutual information' which tends
to 0 or 1 (with n). In [4], this result is extended to g-ary input
alphabets where ¢ is prime.

Theorem 1 ([4]). Let W be a q-ary input discrete mem-
oryless channel (¢-DMC) with q prime, n = 2° and let
Umr = (Uy,...,Up) be iid. uniform random variables on
Fy. Let X" = U"G,,, where G, = [} ﬂw, and let Y™ be
the output of n independent uses of W when the input is X".
Then, for any ¢ € (0,1),

%Hz I(U; YUY > 1 -6 =3 1(W), (1)

where I(W) is the uniform mutual information* of W.

Previous limit implies that for n large enough and except
for a vanishing fraction of indices i, I(U;; Y"U*"!) must be
close to either O or 1. Hence, this suggests a coding scheme,
where the information bits are sent uncoded on the indices 4
for which the channel is good, i.e., I(U;; Y"U*"1) is close to
1, and where frozen bits that are predetermined are sent on the
other channels. In [4], polar codes are proved to achieve® the
uniform mutual information of any ¢-DMC, and the encoding
and decoding complexity is shown to be O(nlogn), which is
remarkably low.

In [3], Arikan uses an equivalent approach to perform
lossless compression of memoryless sources.

'The mutual information of the channel evaluated with the uniform input
distribution.

2Computations are made with the logarithm in base q.

3To show achievability, the speed of convergence to the polarized channels
matters, and it is shown to be roughly 2-Vn,

Theorem 2 ([3]). Let X™ be n i.i.d. random variables with
distribution p on ¥y and let U" = X"Gy,, where G,, is as
defined in Theorem 1. Then, for any 6 € (0,1),

1 i n— 00
—[{i s HUU™") > 1= 6} "= H(p), )

where H(p) is the entropy of the distribution p.

Previous limit implies that for n large enough and except
for a vanishing fraction of indices i, H(U;|U""1) is close
to either 0 or 1. Hence, the transformation (,, extracts the
randomness in X", which is a priori uniformly distributed,
into specific components indexed by i such that H(U;|U*"1)
is close to 1, and puts all the randomness in these components.
Lossless compression at lowest rate, H(p), is then shown to be
achievable with polar codes, and the complexity of encoding
and decoding is again O(nlogn).

In this work, we are interested in source polarization.
In particular, we are interested in how sensitive are source
polar codes to the knowledge of the source distribution. In
applications, the source distribution is never perfectly known,
and it is crucial that any used compression scheme does not
rely too strongly on the knowledge of the source distribution.
We will therefore consider the problem of constructing polar
codes which can compress losslessly sources without requiring
perfect knowledge of their distributions. We will then consider
the problem of sparse data recovery, using polar codes. From
the description of the source polarization theorem above, it
makes sense that the signal acquisition problem is related to
the compression problem: if we sense the signal U™ only in the
components i for which H(U;|U*~1) is close to 1, we obtain a
sampling of the signal which allows perfect recovery of the full
signal, with a significantly reduced number of measurements.
A first difference one can note between a compressed sensing
setting [5], [6] and the polar code setting, is that in the latter
setting, the signal is random. Hence, a natural question is to
ask how sparsity, i.e., the property of having many components
that are 0, is modeled for random signals, and how much the
choice of a specific sparse probability distribution matters.
Using our results on universal source polar codes, we then
investigate how our approach compares to the approach of [5],
[6], in terms of the number of measurements that it requires
to allow perfect reconstruction.

II. DUALITY SOURCE-CHANNEL POLARIZATION

In this section, we clarify the relationship between Theorem
1 and Theorem 2. Let p be a distribution on F, and consider
using Theorem 1 for an additive noise channel,i.e., Y = X®Z



for Z distributed under p and independent of X. We then have
=G, U"® Z™ and
I(U;Y"U" Y =1 - HU;|Y"U"™)
=1-H(G.,Y"© G, Z")|Y" (G, Y" © G,Z™) 1)
=1-H((GoZ")il(GnZ™)' ™). 3)
Equality (3) uses the fact that Y™ is independent of Z"
because U™, and hence G,,U", are uniformly distributed over
F,. We also use the fact that G, I = @,,. Hence, Theorem 1
and (3) imply Theorem 2.
III. MATHEMATICAL PRELIMINARIES ON ORDERING

Definition 1 (Measures). Let a be a prime integer, F, :=

{0,1,...,a—1} and M(a) be the set of probability measures
on [F,. For any k € F,, let

~ ) . . a—1
My(a) == {p € M(a) : p(i) = p(j), Vi,j # k,p(k) = }

and 1\7I(a) = Ukemal\A/Ik(a). We refer to the measure in 1\7[(a)
as the the spike measures.

Definition 2 (Matrices). We denote by Doub(a) the set of
doubly stochastic matrices of size a X a, and by Circ(a) the
set of circulant stochastic matrices of size a X a.

Definition 3 (Orders). We define

p1 <np2 if h(p1) = h(p2), 4)
p1 <ap2 if p1 = Dpy for D € Doub(a), (%)
p1 <cp2 if p1 = Cps for C € Circ(a). (6)

Note that <, is the majorization order and p; <. ps is
equivalent to p; = ¢+ py for ¢ € M(a), where * denotes
the circular convolution on F,.

Lemma 1 (Orders hierarchy).

P1 <cP2 = P1=dP2 = D1 =uD2. @)

One can easily find examples showing that there is no re-
verse implications in Lemma 1. In this paper, we are interested
in the < order, and previous Lemma gives a first idea on how
this order compares to the majorization order. Also note that
the set of measures which are worst than a given p € M(a)
with respect to <. is given by the convex hull of the orbit of
p through cycles, whereas it is given by the convex hull of the
orbit of p through permutations when considering <4. Note
that if p € M(a), these two sets are the same.

Definition 4. For p € M(a), we define the Fourier transform
of p by

727rikw/a’ w E ]Fa (8)

a—1
=> plk)e
k=0
and the inverse Fourier transform of i : F, — C by

1 —

27r7,'kw/a’ keFl,. 9)

Remark 1.
1. F(p*q) = F(p)F(q) for any p,q € M(a).
2. If p € My(a) with p(k) =1 — P, we have that p is given
by p(0) =1 and
. aP
pw)=01-—-+

—2mikw/a
a— 1)e

. w#0. (10)

3. From previous remark, note that (M(a),

Definition 5. For p € M(a), let DOM.(p) be the set of
probability measures which dominate p with respect to <,
i.e., DOM.(p) = {¢g € M(a) : p <. q}.

Remark 2. Note that it is easier to describe the set of
measures that are dominated by a fixed measure p (cf. pre-
vious comment) than the reverse. However, we can write
DOM.(p) = {q € M(a) : F~1(F(p)/F(q)) > 0}, and we
can use the FFT algorithm to compute DOM_,(p) efficiently.

%) is a semi-group.

Lemma 2. For any a > 1,

p1,p2 € M(a), (11)

Proof Assume that p; € My(a) and ps € M;(a) for
k,l € F,, and p; <} pa. Then, denoting 1 — P; = p;(k) and
1 — Py, = pa(l),

P1 <nP2 = D1 =cD2.

1— aP -
P1(w)/p2(w) = 1_7‘;1321 o—2mi(kSal) /o a2)
a—1
Hence, if (1 — 2P5)/(1 — 222 € Tm(f), where f : P €

0,1] — (1 —aP/(a — 1)), we have that (12) is the Fourier

transform of an element in M(a). This is easily verified since

Im(f) = [0, 1] and since by assumption 1 — P, <1—P;. ®
Since M(2) = M(2), we have the following corollary.

Corollary 1.
p1,p2 € M(2), p1 <p p2

IV. UNIVERSAL SOURCE POLARIZATION

Definition 6 (Polar sensing sets). Let ¢ € (0,1), £ > 1 and
p € M(a), define n := 2°,

Ss’n(p) ={i€[n]:

¢
where U™ = G, X", G,, = H?]@)
notation

S(p1) € S(p2) if Scn(p1)

Lemma 3. For any a > 1,

= S(p2) € S(p1)-
Proof: By assumption, there exists ¢ € M(a) such that

= pr=ep2. (13)

HUJU™YY) > 1 —¢}
, X" i p. We use the

- Sg’n(pQ) Ve € (0, 1),n= 2

p1 <c P2 (14)

p1=p2*xc. Let X7 pa, L™ 8 1ndependent of X™ and

X" =X"@ 2" K p. Define U" = G, X", U" = G, X"
and W™ = G,,Z™, hence Ur =un @ W™. We have

H(UUY > H(U,| U, W™) (15)

= H(U|U"™™, W) (16)

= H(U;|U"") (17)



where the last equality follows from the fact that U™ is
independent of W™ since X" is independent of Z". ]

Hence, form Lemma 3, we have that a polar code designed
to compress a source for the distribution p;, can equally well
compress any source py such that p; <. ps. (It will consume
more rate than required for compressing a source under po
only, but it will allow lossless compression for both).

Assume that an i.i.d. source is generated from a distribution
which is unknown, but which is known to belong to the set
{p € m(a) : h(p) < R}. We know (using method of types for
example) that there exists a universal source code of rate R that
can compress every i.i.d. sources in this set. Can we construct
such a code using polar codes? It is ambitious to ask for
such a “broad universality” with polar codes, since these are
structured codes with complexity attributes, in contrast to the
codes derived with the method of types. We may have to give
up some extra rate to achieve this goal, or we may universally
compress only certain subsets of source distributions. We now
investigate these points.

A. Binary sources

For binary source, polar codes are universal in the following
sense.

Proposition 1. Any source which is known to have entropy
at most R can be compressed universally with polar codes
by storing the information bits on S(p*), where p* is one of
the two distributions with entropy R. Moreover, if it is known
on which symbol the source distribution puts more mass, the
source can also be losslessly reconstructed.

Proposition 2.

B. a-ary sources
Definition 7. For D C M(a), let

(D) = i H(p), 18
pe(D) arg _min (p) (18)
pe(D) := arg min H(p). (19)

pEl\7[(a):p<CD

In any of the above minimization, if the minimizer is not
unique, pick one arbitrarily.

If the source distribution is known to belong to a set D C
M(a), one way to construct a universal source code is to design
a polar code for p.(D). Then, from Lemma 3 and Corollary
1, this polar code allows to compress losslessly any source
in D. Of course, this may consume more rate than needed
with an optimal source code, in other words, if we define
Hpax (D) := maxpep H(p), we have in general

H(pe(D)) > Hiax(D). (20)

There are examples where equality holds in the above, in
which case a polar code designed for p.(D) requires the
minimal rate to compress losslessly the sources in D.

Lemma 4. Let D C M(a) be such that arg max,cp H(p)
is unique (denoted pp (D)) and satisfies pp(D) <. D. Then a

Fig. 1. Plots of DOM},([0.2,0.2,0.6]) included in DOM,([0.2, 0.4, 0.4]).

source polar code designed for p,(D) can compress losslessly
any source in D at the lowest achievable rate max,ecp H (p).

(Note that p, (D) <. D implies that p.(D) = py(D).) The
set DOM,(p), plotted in Figure 1, satisfies (by definition) the
hypothesis of Lemma 4 for any p. Comparing Figure 1 with
the plot of DOM,,(p) := {q¢ € m(a) : ¢ <5, p} also shows
that there are sets for which (20) holds with a strict inequality.

An easy to construct such an example is to pick D = p;Upo
where p; <jp p2 but p; 4. p2. Note that with such an
example, we are not concluding that there exist sets D for
which a universal source polar code does not exist, since
with the ordering <., we may not consider the most general
conditions to guarantee that S(pz) C S(p1) (in other words,
this inclusion may still hold if p; 4. p2). However, one can
attempt to show that there exist sets D for which a universal
source polar code does not exist; this is investigated in Section
IV-C. One can also check how much rate is lost by designing
a polar code for a distribution that is dominated in terms of
<. as opposed to <j,, for example the gap between the rate
needed to compress Br := {p € M(a) : H(p) < R} using
pc(Br) and the minimal rate R needed with a random code,
i.e., H(p.(Br))— R. This gap can be computed using Remark
2 (e.g. it is 0.095 for R=0.865 and a = 3, case of Figure 1).

C. Non-universality of a-ary source polar codes and sensing
via duality

In this section, we consider two source distributions p and ¢
on [F,, and we are interested in finding the rates at which one
can compress these two sources with polar codes, allowing
the reconstruction step to have knowledge on the source
distribution. We denote by Cpoi(p,q) the infimum of these
rates, and we provide different bounds on this quantity. This is
a first step towards building polar codes which do not require
knowledge of the source distribution at both compression and
reconstruction steps, and yet achieve certain rates. Clearly

C(pa Q) = H(p) 4 H(Q) S Cpol(pa Q)

From previous section, we have the upper bound Cpqi(p, ) <
H(p:(p,q)), where p.(p,q) is as defined in (18) for the set
D = {p,q}. In our definition, Cpei(p, ¢) is given by the limit
inferior of

~18:() U S-(0).



While this is hard to compute, we can use the duality with
channel coding as follows. Let n = 2¢, U™ = G, X™ where
X™ is i.i.d. under p, and V" = G,Y"™ where Y" is i.i.d.
under ¢. Let us also denote by P (resp. Q) the additive noise
channel whose noise distribution is p (resp. q). We then have
from Section II

HU U™ =1-1(P), HV;|V"™) =1-1(Q;) @)

where P; (resp. Q;) are the channels corresponding to P? for
o € {—,+}*, as defined in [1] with the tree construction.
Moreover, if we define for ¢ € (0,1) G.(P) = {i €
{1,...,n}: I(P;) > e}, we have

Se(p) US:(q) = (G=(P) N G:(Q))° -

This shows that the compound capacity for source or channel
coding are related and we can use the result of Section II and
Theorem 5 in [7] to get the following bounds.

(22)

Lemma 5.
1
Coalp,a) < 57 D, 1ZP)VIZ(Q)  (23)
oce{—,+}*¢
1
Coatlp:a) > 57 > H")V H(") (24)
oe{—+}*

where P (resp. Q) is the additive noise channel with noise
distribution p (resp. q). Moreover each bound is monotonically

approaching Cie(p, q).

Note that the upper bound is straightforward, and the nota-
tion H (p”) refers to H(U;|U*~1) for the index i correspond-
ing to o. It is interesting to note that if BECs can be used to
compute previous bounds, we cannot use the counter-example
of [7] to show that polar codes do not achieve compound
capacity in source coding, since BECs do not correspond to a
valid source distribution via the duality of Section II. However,
we can use the duality and BECs to construct sensing sets
which are included in S.(p) U S.(q), in a different manner
than done in previous section. Let us give an example with
¢ = 1. For two source distributions p and ¢, consider finding
the BECs with parameter Z(P) and Z(Q) (P and @ as defined
above). Then, as in [7], the good indices for P and () satisfy

g(P)NG(Q) > G(BEC(Z(P))) N G(BEC(Z(Q)))
= G(BEC(Z(P) Vv Z(Q)))

and from (22), G(BEC(Z(P) V Z(Q))) gives a sensing set
to compress losslessly p and ¢. This provides an interesting
and different approach to constructing universal polar codes,
although it may not be practical. In a work in progress,
we propose the use of spike measures M(a) to replace the
“worst BECs” directly with “worst source distributions”. The
common feature between the spike measures and BECs is
that they are both families that have a nested structures for
the sensing/good index sets and that span the whole range
of entropy/mutual information between O and 1. Also note
that as opposed to the channel polarization case, degradedness

(25)
(26)

in source polarization is less restrictive, since there are less
degrees of freedom for source distributions than channels.

Now, to show that polar codes do not achieve the compound
capacity in source coding, we can still use the lower bound
of Lemma 5, but we need to pick two source distributions on
ternary source alphabets.

Proposition 3. Polar codes do not achieve the compound
capacity for source coding when the source alphabet has
strictly more than 2 elements.

Counter-example: Let p = [0.08,0.36,0.56], ¢ =
0.11,0.62,0.27], such that H(p) = 0.8143, H(q) = 0.8126
and C = H(p) V H(q) = 0.8143. The LHS of Lemma 5 for
¢ =1 evaluates at 0.8174 which is strictly larger than C.

V. SPARSE SIGNAL RECOVERY

In compressed sensing (CS), a sparse signal of high dimen-
sionality can be recovered from a small number of random
measurements with a convex optimization algorithm [5], [6].
More precisely, if x € R™ is k-sparse (has at most k non-zero
entries), and if

m = O(klogn/k)

measurements are made of x using random projections, i.e.,
y = ¢x where ¢ is an m x n random matrix with i.i.d. standard
Gaussian entries, then x can be reconstructed within small
{5 distance by searching for the sparse vector s minimizing
ly — sz,

In this section, we are interested in sensing a sparse signal
using polar codes. As mentioned in the introduction, although
similar in sprits, the source compression problem of previous
section and the compressed sensing problem have a few
distinctions: first, the source is a random process whereas the
CS signal is deterministic; then the source is valued in F,
as opposed to R for CS. The second point can be addressed
with quantization and is not discussed here. Moreover, many
applications deal with signals which are valued in finite sets
to start with. We hence focus here on the first point.

A possible way of defining k-sparse random sources, is to
ask that the source distribution leads to an expected number of
k non-zero values, or at most k, since it would be undesirable
to have a sensing algorithm that does not work if the source is
more sparse than expected. However, there are many distribu-
tions which would satisfy this assumption. Should a sensing
algorithm succeed for all of them? Specifically, let a be a prime
number and let F, = {0,...,a—1}. Let X" = (X1,..., X,,)
be i.i.d. samples from a distribution p, with u(i) = 1 — p.
Then, the number K (X™) of components of X™ which are
not equal to ¢ is in expectation

EK(X"™) = np. 27
Let
Spa(e) := {u € M(a) : Iiré%x,u(z’) >1-—¢},

and consider samples X" = (X1,...,X,,) that are i.i.d. from
a distribution in Spa(e). From previous remark, the number



of components in X" that are not equal to a ‘special value’
is bounded by ne. We could have considered 7 = 0 in the
definition of Spa(e), in which case we are considering sources
that are sparse by having a bounded expected number of non-
zero components*. However, the result we will derive does
not depend on which component is frequent, and we do not
restrict ourself to ¢ = 0. This property may indeed be useful if
the considered digital signal is constructed from a quantized
signal that has been mapped to F,,. On the other hand, Spa(e)
contains sources which can be supported on any subset of F,
(e.g., a may be large but this set still contains sparse binary
sources), and it may be reasonable to assume that there is no
such variation in the probability mass assigned to the non-
special values. Hence, we also define

Spa(e) == {u € M(a) : maxpu(i) >1—e},  (28)
Spa(e) := {p € M(a) : s;i1—c <e pri €Fa}, (29

where s; 1_. is the distribution of ﬂ\/Ii(a) which has mass 1 —¢
at i and equally distributed elsewhere. Note that Spa(e) =
DOM,(sp,1—¢) and Spa(e) C Spa(e) C Spa(e). The set
Spa(e) contains the corner of the simplex cut “straight”,
whereas Spa(i)/ contains the corner but cut in a diamond
shape; hence Spa(e) does not contain some of the most “flat”
distributions of Spa(e) (such as the distribution assigning 1—¢
at 0 and ¢ at 1).

Remark 3. Note that by symmetry, p.(Spa(e)) = p.(Spa(e))
and hence, we do not lose optimality here by searching for
the worst distribution in M(a).

Proposition 4. Let X™, with n = 2%, be an n-sample drawn
i.i.d. from a distribution in D C Spa(e) and let ¢ be the mxn
deterministic sensing matrix defined for D (cf. Definition 8).
We have

(a—1)n

k

and with overwhelming probability, X" can be exactly recon-
structed from ¢ X", using the polar decoding algorithm.

Remark 4.

1. The complexity of the polar decoding algorithm is
O(nlogn).

2. The multiplication ¢X" is carried out over F, and the
logarithm’s basis is a.

3. Cp is the cost to pay for having universality over D in
the source distribution and it is a function of D, ¢ and a. If
D = Spaf(e) or Spa(e), we have Cp = 1. If D is the entire
set Spa(e), Cp seems to increase very slowly with 1/e, as
plotted in Figure 2.

m = Cpklog, +o0:(1), k=ne,

Definition 8. Given a set D of probability measures on [,
we construct a sensing matrix for D and for the dimension
n = 2¢ as follows:

(i) Find p.(D) as defined in (19)

4These may be the components of a real valued signal in an appropriate
basis
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Fig. 2. Plots of Cp as a function of ¢ when D = Spa(e), a = 3 (star-curve)
and a = 53 (dot-curve).

(ii) Find S = S5.,(p.(D)) as in Definition 6 for 0 < § < 1

(iii) Define ¢ = IsG,,, where G,, = [} ”®Z and where I is
the matrix whose columns indexed by S form the identity
matrix and whose other columns are filled in with zeros.
Note that ¢ is an m x n matrix, where m = |S]|.

Implementation of ¢.

1. Step (i) can be easily computed, cf. Remarks 2 and 3.

2. Step (ii) requires an heavy computation: finding S with
an analytic formula is a hard open problem in polar codes.
However, it is mostly a mathematical challenge, since one can
run simulations to determine S with a very good accuracy.
Hence, step (ii) is also easily computed.

3. The construction of G,, is straightforward because of its
Kronecker structure, and indeed, this structure is important to
allow an efficient decoding algorithm running in O(nlogn).

Polar decoding algorithm.

0. Initialize M = S.

1. For the smallest index ¢ in M€, compute the likelihoods
P{(G,X"); = k|(G,X™)*" 1}, where (G, X™)""! is known
since we have sensed G,, X™ on S to get ¢ X™. Decide for the
most likely value of £ and define M = M U .

2. Iterate 1. until ¢ = n.

3. Multiply G, X™ by G,, = G, ! to get X™.

As shown in [1], step 1. requires only O(nlogn) compu-
tations. Since in each of these decisions, the entropy of the
component to guess (given the past components) is close to
0, the true value is guessed correctly with high probability,
and error propagation can be controlled. In a collaboration
with V. Cevher and E. Telatar, the polar decoding algorithm is
replaced with compressed sensing algorithms and numerical
simulations suggest that the joint approach can succeed (work
in progress).
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