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ABSTRACT

Energy-based detection and estimation are crucial in sensor networks
for sensor localization, target tracking, etc. In this paper, we present
novel Gaussian approximations that are applicable to general energy-
based source detection and localization problems in sensor networks.
Using our approximations, we derive receiver operating characteris-
tics curves and Cramer-Rao bounds, and we provide a factorized
variational Bayes approximation to the location and source energy
posterior for centralized or decentralized estimation. When the source
signal and the sensor noise have uncorrelated Gaussian distributions,
we demonstrate that the envelope of the sensor output can be accu-
rately modeled with a multiplicative Gaussian noise model, which
results in smaller estimation biases than the other Gaussian models
typically used in the literature. We also prove that additive Gaus-
sian noise models result in negatively biased speed estimates under
the same signal assumptions, which can be circumvented by the pro-
posed approximations.

Index Terms— Chi distribution, variational Bayes, energy based
detection and localization

1. INTRODUCTION

Energy-based detection and localization (EBDL) are important prob-
lems for sensor networks and pose interesting challenges for statis-
tical signal processing. The objective in these problems is the de-
tection, localization, and tracking of an object based on the received
energy measurements at spatially distributed sensors. As the energy
of the signal is easy to compute and does not require high band-
width or accurate synchronization to transmit, EBDL has become
quite popular in sensor networks [1].

In this paper, we provide general Gaussian approximations of
the Chi distribution, which have applications to the EBDL problems.
Specifically, we provide approximations of the received root-mean-
squared of the signal power based on the Laplacian method [2] and
moment matching, and compare the resulting expressions with other
approximations typically used in the literature [3, 4, 5]. We also
provide simplified receiver operating characteristics (ROC) expres-
sions for target detection under the Neyman-Pearson lemma and the
Cramer-Rao lower bound (CRLB) for location estimation. Since re-
ceived signal power jointly depends on the signal energy and the
sensor to target distance, we derive a factorized variational Bayes
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Fig. 1. This figure illustrates the geometry of the sensor-target con-
figuration for a monopole acoustic source moving along theθh-
direction with a speed ofv. The dashed lines are the acoustic wave-
fronts, which create the interaction between the target and the sensor.

approximation to the joint posterior of the target energy and target
location [6, 7]. Our approximation decouples the target energy esti-
mation and localization, which alleviates the tractability of EBDL.

The organization of the paper is as follows. Section 2 intro-
duces the signal model and describes our approximations. Sections
3 and 4 derive the CRLB and ROC curves for the EBDL problems.
Section 5 applies the variational Bayes approach to determine a fac-
torized approximation to the energy-based location posterior. Com-
puter simulations are provided in Section 6 followed by an appendix
that analyzes the energy based speed estimation bias.

2. SIGNAL MODEL AND DENSITY APPROXIMATIONS

We discuss the power estimation of a narrow-band source using an
omnidirectional sensor in an isotropic medium. We assume that
there are no multipath effects. We denotes(t), x(t), n(t), andy(t)
as the complex envelopes of the source signal, the source signal at
the sensor, the sensor additive noise, and the sensor output signal, re-
spectively. The target position is denoted asθ =

�
θh, θv

�′
and

the position of the sensor asζ =
�
ζh, ζv

�′
. Assuming a propa-

gation loss constantα, we write the complex envelope of the sensor
output signal at the target narrow band frequencyf0 as follows [8, 9]
(see Fig. 1):

y(t) = x(t) + n(t) =
s(t)√
βRα/2

e
−j

2πf0R

βc + n(t), (1)

whereR is the range of the source to the sensor,v is the source
speed,ψ is the angle of the speed vector with respect to the line con-
necting the source and the sensor,β = 1 + v

c
cosψ is the Doppler



shift factor, andc is the speed of sound. To calculate the signal
power,N snapshots of the acoustic envelopes, calculated at times
(t1, . . . , tN ), are used. We note that if the time samples are suffi-
ciently apart, then successive samples of the source and the noise
samples are uncorrelated [10]. We model the source signal sam-
ples asi.i.d., zero mean, complex circularly symmetric Gaussian ran-
dom variablesCN

�
0, σ2

s

�
with varianceσ2

s and the noise samples
CN

�
0, σ2

�
with varianceσ2.

Based on our signal and noise assumptions, it is straightforward
to prove that the sensor output signaly(t) also has ani.i.d. zero
mean circularly complex Gaussian distribution with varianceσ2

y =

σ2
x + σ2, whereσ2

x =
σ2

s

βRα . Now, we denote theN -sample root-

mean-squared (RMS) output asε =
q

1
N

PN
i=1 |y(ti)|

2:

ε =
σy√
2N

vuut NX
i=1

 
y2

real(ti)

σ2
y/2

+
y2

imag(ti)

σ2
y/2

!
=

σy√
2N

z, (2)

where we definez as the second square-root summation term in (2).
The variablez has a Chi distributionpZ(z) with 2N DOF [11].

Then,ε has the following distribution:ε ∼ p0(ε) =
√

2N
σy

pZ

�√
2N

σy
ε
�

.

In general, we can usep0(ε) to determine the target position
and a batch ofε measurements to determine the target speed using
a constant speed assumption. However,p0(ε) is somewhat complex
for numerical inference. To facilitate the estimation of range and
speed parameters of the target from the received signal power, we
make normal approximations top0(ε) using the Laplacian approx-
imation and moment matching (MM). A normal approximation of
p0(ε) can be determined by approximatingpZ(z) with a Gaussian
densityqZ(z) = N

�
µz, σ

2
z

�
. Laplacian approximation achieves

this by using the mode and the Hessian of the log likelihood at the
mode. It is highly accurate even at moderate sample sizes [2]. Mo-
ment matching is based on matching the first and the second-order
moments of the density ofz.

2.1. Laplacian Approximation of ε

The mode of the Chi distribution is given bŷz =
√

2N − 1, and the
Hessian of the log likelihood of the Chi distribution by

LZ(z) =
∂

∂z2
log

(
21−Nz2N−1e−z2/2

Γ(N)

)
= −(2N − 1)

1

z2
− 1. (3)

Laplacian approximation usesσ2
z = −1/LZ(ẑ), resulting inqZ(z) ∼

N
�√

2N − 1, 1
2

�
.

In turn,ε has the following Gaussian distribution:

ε ≈ p1(ε) = N
 r

2N − 1

2N
σy ,

σ2
y

4N

!
≈ σye

N(0,1)√
4N , (4)

where we used
q

2N−1
2N

≈ 1 forN ≫ 1 andex ≈ 1+x for x≪ 1.
Hence, the RMS output can be approximated with a multiplicative
noise model.

2.2. Moment Matching ofε

The mean and the variance ofz are given byµz =
√

2Γ(N+1/2)
Γ(N)

andσ2
z = 2N − µ2

z, whereΓ(·) is the Gamma function [11]. The
particular ratio of the Gamma functions in the mean expression has
the following series expansion [12]:Γ(N+1/2)

Γ(N)
=

√
N

�
1 − 1

8N
+

1

128N2
+

5

1024N3
− 21

32768N4
+ . . .

�
. (5)

In general,N ≫ 1, hence, we can approximate the ratio as follows:

Γ (N + 1/2)

Γ (N)
≈

√
N

�
1 − 1

8N

�
≈

√
N

�
1 − 1

4N

�0.5

=
p
N − 1/4.

(6)
Then, MM results in the following approximation ofz: qZ(z) ∼
N
�p

2N − 1/2, 1
2

�
. This approximation has consistently better

scores at different p-values than the Laplacian approximation when
tested against Chi distribution. The resulting approximation forε
using MM has the same form as (4) forN ≫ 1, which is obtained
from the Laplacian approximation.

2.3. Other Approximations of ε

In [3], the authors expandε2 as

ε2 =
1

N

NX
i=1

|x(ti)|2 +
2

N
ℜ

NX
i=1

x∗(ti)n(ti) +
1

N

NX
i=1

|n(ti)|2, (7)

and then ignore
PN

i=1 x
∗(ti)n(ti), and invoke the central limit the-

orem on 1
N

PN
i=1 |n(ti)|2 ≈ N

�
σ2, σ4

2N

�
to arrive at

ε2 ∼ p2(ε
2) = N

�
σ2

x + σ2,
σ4

2N

�
= N

�
σ2

y ,
σ4

2N

�
. (8)

Compared to Laplacian and moment matching approximations, we
note that (i) the authors ignore the middle term in (7), which con-
tributes to the total variance, (ii) the Chi-squared distribution reaches
normality slower than the Chi distribution, which is problematic
whenN is small (i.e.,N < 30) and (iii) the Chi-squared distribu-
tion has non zero skewness. Nonetheless, this approximation is use-
ful when the complex envelope samples of the source signal (s(t)’s)
(i) do not come from a Gaussian distribution, (ii) are uncorrelated
in time, and (ii) are uncorrelated with the noise samples, which are
assumed white and Gaussian.

In [5], the authors approximateε ∼ p3(ε) = N
�
σx, σ̂

2
ε

�
for

target localization problems, where the constantσ̂ε is assumed inde-
pendent ofσx. Other authors also have used this approximation in
acoustic speed estimation problems, e.g., [13]. In acoustic speed es-
timation problems, a batch of consecutive signal power estimates are
used along with locally linear motion models to estimate the speed of
an acoustically loud target. In these problems, the target’s closest-
point-of-approach (CPA) is assumed known and the target’s signal
power is assumed constant. Then, the target speed is determined
by fitting an envelope function, which depends on the target speed
and the target CPA, to the calculated signal power vs. time from the
acoustic data. We specifically mentionp3(ε) because the speed es-
timates obtained using the pdfp3(ε) have negative biases when the
target signal data is generated using (1) (see Appendix A).

3. CRAMER-RAO BOUND FOR POSITION ESTIMATION

In most tracking problems, the signal powerσ2
s is assumed known,

and the target positionθ is estimated using the signal power esti-
mates from multiple sensors [14]. In this section, we analytically de-
rive the Cramer-Rao lower bound for position estimation using our
approximate densityp1(ε|θ) and compare the result to the CRLB
derived usingp0(ε|θ). Note that with the known signal powerσ2

s

assumption,ε is a sufficient statistics for the parameter estimation
problem, as the knowledge ofε andσ2

s completely characterizes the
statistical distribution ofs(t). Hence, we emphasize that the result-
ing CRLB expression fromp0(ε|θ) is the same as the CRLB ex-
pression in [14], which is derived using the envelope outputss(t)
directly.



The CRLB forθ can be obtained by taking the inverse of the
Fisher information matrix (FIM)F (θ) [15]. To determineF (θ),
we first derive the FIM for range estimation using a single sensor
with our approximationp1(ε):

FR(Ri) =

Z
p1(εi|Ri)

�
∂ log p1(εi|Ri)

∂Ri

�2

dεi =
α2N

�
σ2

s/σ
2
�2

R2
i

�
σ2

s

σ2 +Rα
i

�2
.

(9)
where it is assumed that

√
β ≈ 1. The ignorance of the Doppler

effect is a reasonable assumption up to moderate target speeds. Then,
the FIM for position estimationθ using a single sensor is given by
Fi(θ) =

�
∇θRi

�
FR(Ri)

�
∇θRi

�′, [16]. Assumingi.i.d. Gaussian
noise on the sensors, the FIM for target position is a summation of
the individual sensor FIM’s:

F (θ) =
MX

i=1

Fi(θ) =
MX

i=1

FR(Ri)

�
cosψi

sinψi

�
×
�

cosψi sinψi
�
,

(10)
whereM is the number of sensors in the sensor network andψi

is their respective bearings (see Fig. 1). It turns out that if we go
through the same FIM derivation usingp0(ε|θ), the final FIM of the
target position estimate is the same as (10). This is intuitive as the
density approximationp1(ε|θ) matches the curvature of the likeli-
hood at its mode, which corresponds to the CRLB for the problem.

Therefore, the CRLB expression in (10) simplifies the calcula-
tion of the CRLB bound derived in [14] (Eqn. (5)). Finally, other
Cramer-Rao lower bounds forp2,3(ε|θ) are given in [3, 4] and [5],
respectively. In [3], CRLB is derived for multiple targets.

4. RECEIVER OPERATING CHARACTERISTICS

In this section, we describe and quantify decision procedures for
acoustic sensors to declare target detections based on microphone
power observations. To derive the optimal detection algorithm and
its corresponding receiver operating characteristics (ROC) curve, we
start with (1) and its assumptions. The binary hypothesis testing
problem is then:H0: y ∼ CN

�
0, σ2

�
; H1: y ∼ CN

�
0, σ2 + σ2

x

�
,

where the first hypothesisH0 assumes that the microphone signal
is noise only and the second hypothesisH1 assumes that the micro-
phone signal is noise plus the target signal. It is straightforward to
show that the optimal detector is a square-law detector:

NX
i=1

|y(ti)|2
H1

≷
H0

η, (11)

whereη is the detector threshold to be determined using the Neyman-
Pearson criteria. Note that the detector (11) results in a uniformly
most powerful (UMP) test since the decision regions for each hy-
pothesis is independent fromσ2

x. The thresholdη is related to the
false alarm ratePf as followsPf = P

�
χ2

2N > 2η
σ2

�
, whereχ2

N is
the Chi-squared distribution withN degrees of freedom. The detec-

tion probabilityPd is then given byPd = P
�
χ2

2N > 2η
σ2

y

�
. Then,

the ROC curve can be numerically determined by relatingPd toPf .
When we use our approximate densityp1(ε), we can simplify

the ROC curve expression for the target detection problem. Note that

whenN ≫ 1, we can writeε ≈ σy +
σy√
4N

N (0, 1) ≈ σye
N(0,1)√

4N .
DenotingE = log ε, we have

E ≈ p1(E) ∼ N
�

log σy ,
1

4N

�
(12)

with the following hypotheses:H0:σy = σn; H1:σy =
√
σ2 + σ2

x >
σn. In this case, the detector is a simple linear threshold detector:

E
H1

≷
H0

η′, (13)

and is also uniformly most powerful (UMP) [16, 15]. It is easy to
verify that the ROC curve is determined by

Pd = Q
�
Q−1

�
Pf

�
−

√
N
�
log(σ2 + σ2

x) − log σ2
��
, (14)

whereQ(·) is one minus the cumulative distribution function of
N (0, 1)-random variable,Pd andPf are the detection and false
alarm probabilities, respectively.

Acoustic Arrays: Using the approximate pdfp1(ε), we can derive
a similar detector algorithm for acoustic arrays, consisting of mul-
tiple tethered acoustic microphones. To derive the ROC curves for
bearing sensors, we use the following detector:

max
m

Em

H1

≷
H0

η, (15)

whereEm = log εm for themth microphone. Probability that the
maximum ofM statistically independent Gaussian random variables
Em with the meanlog σ2 and variance 1

4N
exceeds the thresholdη

is given byPf = 1 −
h
1 −Q

�√
4N (η − log σ)

�iM

.

Similarly, the detection probability can be derived the same way,
resulting in the following ROC curve for acoustic arrays for energy-
based detection:Pd =

1 −
h
1 −Q

�
Q−1

�
(1 − Pf )

1
M

�
−

√
N
�
log(σ2 + σ2

x) − log σ2
��iM

.

(16)

5. FACTORIZED POSTERIOR APPROXIMATIONS

In the acoustic target localization problem, the objective of the sen-
sor network is to determine the target locationθ, which is entangled
with the target signal powerσ2

s via (1). In this section, we address
the joint estimation of these latent variables, which is summarized
as a graphical model in Fig. 2. Instead of using the complex enve-
lope samples{si(t)}tN

t1
, we only use the sufficient statisticsEi from

each sensori, which can completely determine the distribution of
si(t) givenσ2

s andθ. We assume that only the sensors with high
SNR are contributing to the estimation (σ2

s/R
2 ≫ σ2), and that the

propagation loss constant isα = 2. To increase the tractability of
the solution for the latent variablesθ andσs, we propose using a
factorized approximation to the joint posterior distribution of these
variables asp(E1, . . . , EM , σs, θ) = fσs(σs)fθ(θ). The construc-
tion of our approximation follows the factorized variational Bayesian
(VB) approximations commonly used in the literature [6, 7].

Under the mean field theory framework, we consider minimizing
the Kullback-Leibler (KL) divergence of the full posteriorp1(E , σs, θ)
from our factorized approximationfσs(σs)fθ(θ) [6, 7], whereE =
[E1, . . . , EM ]. Then, the optimal factorsf∗’s can be determined
from the following implicit expressions:

f∗σs
(σs) ∝ exp

�
Eθ log p1(E, σs,θ)

�
, f∗

θ
(θ) ∝ exp (Eσs log p1(E, σs,θ)) .

(17)
Note that (17) does not represent an explicit solution as the solutions
of the optimal factors depend on expectations computed with respect
to other factors. Therefore, (17) denotes a set of consistency condi-
tions, which can be cycled to reach a consensus. It can be shown that
convergence is guaranteed [6, 7].
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ζi

σ2M
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Fig. 2. A directed acyclic graph is used to represent the inference
problem, where the box denotes the set ofM acoustic sensor ob-
servationsEi, which are assumed independent. The deterministic
(known) components of the problem are shown with solid dots. The
shaded node represents the observed variablesEi, whereas the re-
maining nodes represents the latent variablesσs andθ.

From the graphical model in Fig. 2, the posterior density factors
asp(E, σs,θ) = p(σs)p(θ)

QM
i=1 p1(Ei|σs,θ), wherep1(·) is our ap-

proximation in (12), andp(σs) andp(θ) are prior distributions for
σs andθ. We use the following conjugate prior distributions:

p(σs) ∼ Log-N
�
µ0, υ

2
0

�
; p(θ) ∼ N (θ0,Σ0) . (18)

Note that the posterior density does not factorize directly in terms
of σs andθ. When the target signalSNR is high, the posterior log-
likelihood can be approximated by the following expression:

log p(E, σs,θ) = −2N
MX

i=1

(Ei − log σs + logRi)
2 − (log σs − µ0)2

2υ2
0

− log σs − 1

2
(θ − θ0)′Σ−1

0 (θ − θ0).

(19)

Now, we describe the VB cycles starting withσs. From (17), (18),
and (19), it is easy to obtain thatf{1,1:M}

σs ∼ Log-N
�
µ1, υ

2
1

�
, where

υ2
1 =

�
4NM + υ−2

0

�−1
, µ1 ≈ µ0

υ2
1

υ2
0

+4Nυ2
1

MX
i=1

(Ei + log |θ0 − ζi|) .

(20)
To obtain (20), we approximateEθ logRi ≈ log |θ0 − ζi|.

The VB cycle onθ cannot be rearranged into a Gaussian form:
log f

{1,1:M}
θ

(θ) = −2N
PM

i=1 (Ei − µ1 + logRi)
2− 1

2
(θ−θ0)′Σ−1

0

(θ − θ0). Since it requires too much computation to numerically
obtain the Gaussian approximation directly from the KL divergence,
we approximate this VB cycle with a Laplacian approximation:
f
{1,1:M}
θ

(θ) ∼ N (θ1,Σ1), where

Σ
−1
1 ≈ Σ

−1
0 +

MX
i=1

4N

R2
i

�
cosψi

sinψi

�
×
�

cosψi sinψi
�
, (21)

andθ1 is the maximizer oflog f{1,1:M}
θ

(θ). We continue the VB

cycles by treatingf{k−1,1:M}
σs andf{k−1,1:M}

θ
as priors and repeat-

ing (20) and (21) fork = 1, . . . ,K to obtainf{K,1:M}
σs andf{K,1:M}

θ
or until they converge, whichever comes first.

The processing of the VB cycles can be distributed, where lo-
cal message passing is used. As an example, assume that the sen-
sor triplets are ordered and there is a known communication path
with a chain structure. The first triplet in the chain starts with the

conjugate priors and does its own VB cycle to obtainf{K′,1}
σs and

f
{K′,1}
θ

, whereK′ = 3K/M . The second triplet in the chain

takes the result of first triplet as prior and determinesf
{2K′,1:2}
σs

andf{2K′,1:2}
θ

. This propagation is continued up to the last triplet

that obtainsf{MK′,1:M/3}
σs andf{MK′,1:M/3}

θ
, which is propagated

back to all the triplets in the chain. When compared to the full VB
cycles that use the data from all sensors, the distributed implementa-
tion is more susceptible to local minima problems.
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Fig. 3. (a) Bias in the mean estimates (± 1-standard deviation). (b)
Standard deviation ofε around its mean (boxplot) vs. the estimate by
p1(ε). (c) Standard deviation ofε2 around its mean (boxplot) vs. the
estimate byp2(ε).
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Fig. 4. (a) Range estimation performance (single sensor). (b) ROC
curve (single sensor). (c) ROC curve (acoustic array).

6. SIMULATIONS

Figure 3 compares the estimation performance of the approximate
pdf’s pi (i = 1, 2, 3) with a Monte Carlo simulation of (1) having
following parameters:N = 10 andσ2 = 1. We estimated the
variance estimates in experiments with 100 trials, whose variances
were obtained by repeating each trial 100 times. Figure 3 shows that
among the approximate pdf’s,p1 (MM) is the best because (i) it has
the least bias in the mean estimation ofεwith minimum variance and
(ii) it follows the actual variance of the data correctly. The variance
estimates ofp2 andp3 are not correct becauseσε andσε2 are not
constant and increase withσx as shown in Figs. 3(b) and (c). AsN
gets larger, the variance of the mean estimate bias ofp3 decreases;
however, it is quite slow.

Figure 4(a) shows the range estimate results of a Monte Carlo
simulation of (1) with the following parameters:R = 2m, N =

1000, and105 trials. The estimator is given bŷR = σs√
ε2−σ2

,

whenε is greater than a threshold to ensure a false alarm rate of 1%.
The dotted line is calculated taking the square root of the inverse
of FIM in (9), whereas the dashed line is calculated by incorporat-
ing the bias terms in the the information inequality (it is possible to
determine the gradient of bias). Both curves follow the estimated
RMS error closely. Another Monte Carlo run of (1) is done with
σ2 = 1 andN = 100 to compare the performances of the alter-
native approaches for target detection based on microphone outputs
(Figs. 4(b) and (c)). We note that the theoretical ROC curves (Chi-
squared detector: dotted line, our Gaussian approximation: dashed
line) are indistinguishable from the simulation results and are very
close. Figure 4(c) shows that the detection performance of sensors
with multiple microphones can be accurately predicted with our ap-
proximation (16) (σ2 = 1, σ2

x = 0.1, andN = 100).
Figures 5(a)-(c) illustrate the results of a Monte-Carlo run that

compares the VB estimation algorithm with the ML. We simulated
a network of 5 acoustic sensors to determine the location of a target
situated at[−3,−3]. For the target location and power prior, we used
p(θ0) ∼ N

�
[10, 10]′, 502I

�
andp(σs) = Log-N

�
0.5 log SNR, 10−1

�
.
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Fig. 5. (a) Performance comparison of VB and ML. (b) and (c) show
a realization atSNR = 70dB, which is a typicalSNR for commercial
vehicles. Although theσ2

s estimation performance is similar, the VB
has much better localization performance.

The sensors were uniformly distributed on a ring centered at the ori-
gin (so that the sensor locations is not symmetric with respect to
the target location) with inner and outer radii of 5 and 50, respec-
tively. During the Monte-Carlo run, we randomly placed the sensors
on the ring, then by fixing theSNR at a constant value, we sim-
ulated (1) 100 times withN = 100 andσ2 = 1, and estimated
the target position using the VB cycles outlined in Sect. 5 and the
ML estimation. The ML estimate maximizes the following likeli-
hood log p(E|σs,θ) = −2N

PM
i=1 (Ei − log σs + logRi)

2 over the
three dimensional space of[σ2

s ; θ]. During the simulation, we var-
ied the SNR for the same target positions. Subsequently, different
sensor deployments were realized 50 times. For the ML estimates, a
grid search over the targetSNR is used whereas the position is deter-
mined using interior point methods for eachSNR. For the VB cycles,
σs is initialized to a realization from Log-N

�
0.5 log SNR, 10−1

�
(which perturbsσ2

s within ±3dB), whereas the target position is set
to [10, 10]′. We used a total of 40 VB cycles.

Figure 5(a) shows that the VB method beats the unbiased CRLB
and continues to improve asSNR increases, whereas the ML method
saturates at the bound. This is not a contradiction as we used the
unbiased version of the information inequality while calculating the
CRLB. For other methods that beat the unbiased CRLB for this prob-
lem, see [14] (e.g., Fig. 5). The CRLB is calculated by maximizing
the FIM over the sensor deployment. Hence, the bound is not tight
for the ML curve, which is an average over the sensor deployments.
As some of the ML estimates diverged, the ML performance curve
has a shoulder between 50-65dB in Fig. 5(a).

7. CONCLUSIONS

In this paper, we provided Gaussian approximation to the Chi dis-
tribution, which alleviates the analytical tractability and numerical
calculation of ROC curves and Cramer-Rao lower bound (CRLB)
for energy-based detection and localization problems. We also pro-
vided a factorized variational Bayes (VB) approximation to the joint
source energy and location posterior, which effectively decouples the
estimation of the source energy and location. The VB framework is
quite powerful and we plan to extend our formulations to multiple
energy-based target tracking problems.

A. BIAS IN SPEED ESTIMATION

We analyze the speed estimation bias for the estimates ofp3(ε)
when the data is generated by (1). Letαk(v) denote monotoni-
cally decreasing functions ofv for all k, e.g., the envelope obser-
vations as a function ofv, indexed by timek (e.g., Eqn. (11) in
[13]). Define two generative models as follows:Model I: Ek =

αk(v) + nk, Model II: Ek = αk(v)emk , wherenk andmk are
i.i.d. zero mean Gaussian random variables with variancesσ2

n and
σ2

m. Let v∗ be the true speed andv be the ML estimate of Model I,
whenEk is from Model II:

v = arg min
v
J(v), J(v) =

X
k

(Ek − αk(v))2 , (22)

Given a sufficient number ofEk measurements, we expect the ML
solution to be near the true value ofv∗. Hence, we can assume
v = v∗ + ǫ, whereǫ≪ v∗ so thatαk(v) ≈ αk(v∗) + α̇k(v∗)ǫ, ∀k.

The ML estimate ofv is found by taking the derivative ofJ(v)
with respect tov. By taking the derivative and equating to zero, we
solve for the bias and take its expected value:

ǫ =

P
k α̇k(v∗)αk(v∗) (emk − 1)P

k [α̇k(v∗)]2
⇒ ǫ =

P
k α̇k(v∗)αk(v∗)

�
e

σ2
m
2 − 1

�P
k [α̇k(v∗)]2

,

(23)
which is always negative sinceαk(v) > 0 is a monotonically de-
creasing function ofv, i.e., α̇k(v∗) < 0. Hence, givenv∗, the
expected value of the ML estimate of Model I will always have a
negative bias when the data is generated by Model II.
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