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ABSTRACT 0
Energy-based detection and estimation are crucial in sensor networks ° Sensori
for sensor localization, target tracking, etc. In this paper, we present R
novel Gaussian approximations that are applicable to general energy- y
based source detection and localization problems in sensor networks. » psZ
Using our approximations, we derive receiver operating characteris MU 0,
tics curves and Cramer-Rao bounds, and we provide a factorized \o
variational Bayes approximation to the location and source energy Target
posterior for centralized or decentralized estimation. When the source e

signal and the sensor noise have uncorrelated Gaussian distributions,
we demonstrate that the envelope of the sensor output can be acey
rately modeled with a multiplicative Gaussian noise model, Whichr- uration for a monopole acoustic source moving along &he
results in smaller estimation biases than the other Gaussian mOd?ﬁection with a speed of. The dashed lines are the acoustic wave-
typlcall)_/ used in the I|ter§ture. We also_ prove that add_ltlve Gaus(]ronts, which create the interaction between the target and the sensor.
sian noise models result in negatively biased speed estimates under

the same signal assumptions, which can be circumvented by the pro-

posed approximations.

g. L. This figure illustrates the geometry of the sensor-target con-

approximation to the joint posterior of the target energy and target
Index Terms— Chi distribution, variational Bayes, energy basedlocation [6, 7]. Our approximation decouples the target energy esti-

detection and localization mation and localization, which alleviates the tractability of EBDL.
The organization of the paper is as follows. Section 2 intro-
1. INTRODUCTION duces the signal model and describes our approximations. Sections

3 and 4 derive the CRLB and ROC curves for the EBDL problems.

Energy-based detection and localization (EBDL) are important probSection 5 applies the variational Bayes approach to determine a fac-

lems for sensor networks and pose interesting challenges for statitrized approximation to the energy-based location posterior. Com-

tical signal processing. The objective in these problems is the dduter simulations are provided in Section 6 followed by an appendix

tection, localization, and tracking of an object based on the receivetiat analyzes the energy based speed estimation bias.

energy measurements at spatially distributed sensors. As the energy

of the signal is easy to compute and does not require high band-2. SIGNAL MODEL AND DENSITY APPROXIMATIONS

width or accurate synchronization to transmit, EBDL has become

quite popular in sensor networks [1]. We discuss the power estimation of a narrow-band source using an
In this paper, we provide general Gaussian approximations odmnidirectional sensor in an isotropic medium. We assume that

the Chi distribution, which have applications to the EBDL problems.there are no multipath effects. We denete), z(t), n(t), andy(t)

Specifically, we provide approximations of the received root-meanas the complex envelopes of the source signal, the source signal at

squared of the signal power based on the Laplacian method [2] arttie sensor, the sensor additive noise, and the sensor output signal, re

moment matching, and compare the resulting expressions with othepectively. The target position is denotedbas: [ On, 0, ]’ and

appr_oximgtiorjs typical!y used in _the Iiterature_[3_, 4, 5]. We alsoye position of the sensor gs— [ Chr Co ]/. Assuming a propa-

provide simplified receiver operating characteristics (ROC) eXprefgation loss constant, we write the complex envelope of the sensor

sions for target detection under the Neyman-Pearson lemma and Bitput signal at the target narrow band frequeficgs follows [8, 9]
Cramer-Rao lower bound (CRLB) for location estimation. Since re{see Fig. 1):

ceived signal power jointly depends on the signal energy and the
sensor to target distance, we derive a factorized variational Bayes y(t) = z(t) + n(t) s(t)
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shift factor, andc is the speed of sound. To calculate the signalln general, N >> 1, hence, we can approximate the ratio as follows:

power, N snapshots of the acoustic envelopes, calculated at timeg (N +1/2) 1 1 \05
(11, tn), are used. We note that if the time samples are suffi-— == = VN (1 - 87N) ~ VN (1 - E) =V/N-1/4.
ciently apart, then successive samples of the source and the noise (6)

samples are uncorrelated [10]. We model the source signal samrhen, MM results in the following approximation of gz (z) ~

ples as.i.d., zero mean, complex circularly symmetric Gaussian ran- 1 . L .
dom variable N/ (0, aﬁ) with variances? and the noise samples N ( V2N —1/2, 5)' This approximation has consistently better

CN (0’ Uz) with varianceo?. scores at different p-values than the Laplacian approximation when

Based on our signal and noise assumptions, it is straightforwartfSted against Chi distribution. The resulting approximationsfor
to prove that the sensor output signgt) also has an.i.d. zero  USing MM has the same form as (4) f6f > 1, which is obtained

mean circularly complex Gaussian distribution with varian¢e= from the Laplacian approximation.

2 2 2 o2 : )
o; +0”, whereo; = 5z=. Now, we denote théV-sample root 2.3. Other Approximations of &
mean-squared (RMS) outputas- / ARl In [3], the authors expanef as
N 5 1 N 9 N 1 N
cm T |y (Hralt) | Uma)) 0w gy = G Y GRY e tn() + 5 X Intls @)
V2N \ =\ 03/2 o?/2 VN’ i=1 i=1 iz1

) ) ] and then ignor§:f\;1 2*(t;)n(t;), and invoke the central limit the-
where we define as the second square-root summation term in (2). o4 ) 0 arrive at

N 2

The variablez has a Chi distribution (=) with 2N DOF [11].  Oremony 3.2y [n(t)” = N (02» N

Then ¢ has the following distributions ~ po(g) = \éinpz (‘ﬂif’s) 2 pa(e?) = N (03 ey ‘i) . (027 ‘i) . ®
In general, we can usgy(e) to determine the target position 2N 2N

and a batch of measurements to determine the target speed usingompared to Laplacian and moment matching approximations, we
a constant speed assumption. Howepg(s) is somewhat complex note that (i) the authors ignore the middle term in (7), which con-
for numerical inference. To facilitate the estimation of range andributes to the total variance, (i) the Chi-squared distribution reaches
speed parameters of the target from the received signal power, wrmality slower than the Chi distribution, which is problematic
make normal approximations {® () using the Laplacian approx- When N is small (i.e.,N < 30) and (iii) the Chi-squared distribu-
imation and moment matching (MM). A normal approximation of tion has non zero skewness. Nonetheless, this approximation is use-
po(e) can be determined by approximatipg (z) with a Gaussian  ful when the complex envelope samples of the source sig(al<)
densitygz(z) = N (u=,02). Laplacian approximation achieves (i) do not come from a Gaussian distribution, (i) are uncorrelated
this by using the mode and the Hessian of the log likelihood at thén time, and (i) are uncorrelated with the noise samples, which are
mode. Itis highly accurate even at moderate sample sizes [2]. M@ssumed white and Gaussian.

ment matching is based on matching the first and the second-order In [5], the authors approximate ~ ps(s) = N (04,62) for
moments of the density af. target localization problems, where the constanis assumed inde-
pendent ofr,,. Other authors also have used this approximation in
acoustic speed estimation problems, e.g., [13]. In acoustic speed es-
timation problems, a batch of consecutive signal power estimates are
The mode of the Chi distribution is given By= v/2N — 1, and the  used along with locally linear motion models to estimate the speed of
Hessian of the log likelihood of the Chi distribution by an acoustically loud target. In these problems, the target's closest-

9 1 point-of-approach (CPA) is assumed known and the target’s signal
Lz(2) = 9.2 10g{ } =-(@N-1)—5-1.(3  power is assumed constant. Then, the target speed is determined

2.1. Laplacian Approximation of e

91—N 2N —1,-22/2

L) by fitting an envelope function, which depends on the target speed
Laplacian approximation use§ = —1/Lz(%), resultingingz(z) ~  and the target CPA, to the calculated signal power vs. time from the
N (\/2N -1, %) acoustic data. We specifically mentipg(e) because the speed es-
In turn, e has the following Gaussian distribution: timates obtained using the pgf(¢) have negative biases when the
SN =1 o2 N1 target signal data is generated using (1) (see Appendix A).
E%pl(s):N< SN oy,&> N oye VAN | (4)

3. CRAMER-RAO BOUND FOR POSITION ESTIMATION

where we use@{/zg’]\‘,l ~ 1for N > lande® ~ 1+ forz < 1. . ) ,
In most tracking problems, the signal powset is assumed known,

Hence, the RMS output can be approximated with a mUItlphcatNeand the target positiofl is estimated using the signal power esti-

noise model. mates from multiple sensors [14]. In this section, we analytically de-
i rive the Cramer-Rao lower bound for position estimation using our
2.2. Moment Matching ofe approximate density; (/@) and compare the result to the CRLB

The mean and the variance ofare given by, — ﬂr(zgrz\,l)/z) derived gsingz_;o(a\o). Note that_ w_ith the known signal powg@ _
) N . _ assumptiong is a sufficient statistics for the parameter estimation
ando: = 2N — pz, wherel'(-) is the Gamma function [11]. The ) piem as the knowledge efando? completely characterizes the
particular ratio of the Gamma functlgnsl ph the mean expression hagaisical distribution of(¢). Hence, we emphasize that the result-
the following series expansion [12f: {52 = ing CRLB expression fronpy(c|6) is the same as the CRLB ex-

pression in [14], which is derived using the envelope outp(t$

1 1 5 21
VN (1 -3 - ) NG :
sN T 128N2 T 1024N3  32768n4 T () directly.




The CRLB for@ can be obtained by taking the inverse of the with the following hypothesesiy: oy = on; Hiioy = Vo2 + 02 >

Fisher information matrix (FIM)F'(@) [15]. To determineF'(8), on. Inthis case, the detector is a simple linear threshold detector:

we first derive the FIM for range estimation using a single sensor i

with our approximatiomn (¢): £ = 4, (13)
Hy

> 5 and is also uniformly most powerful (UMP) [16, 15]. It is easy to
R2 (Z—z + R;*) verify that the ROC curve is determined by

9 -
where it is assumed thaf3 = 1. The ignorance of the Doppler Fa=@Q (Q ' (Pr) = VN (log(0® + 07) — log UQ)) o (4
effectis a reasonable assumption up to moderate target speeds. Thgfere Q(-) is one minus the cumulative distribution function of
the FIM for position estimatio using a single sensor is given by A7 (o, 1)-random variable P, and P; are the detection and false
Fi(0) = (VoRi) Fr(Ri) (VgRi)', [16]. Assumingi.i.d. Gaussian alarm probabilities, respectively.
noise on the sensors, the FIM for target position is a summation of

310%?1(6i|Ri))2d6_ G\ (02/02)?
JOEP1EIY) = —

Fr(R;) = /p1(€i|Ri) ( OR;

the individual sensor FIM's: Acoustic Arrays: Using the approximate pdf; (¢), we can derive
M M a similar detector algorithm for acoustic arrays, consisting of mul-
F(0) =Y Fi(0) =Y Fr(R) { o z’: } x [ cos; singy; ],  tiple tethered acoustic microphones. To derive the ROC curves for
i=1 i=1 ‘ 10) bearing sensors, we use the following detector:
where M is the number of sensors in the sensor network and Iil
is their respective bearings (see Fig. 1). It turns out that if we go max Em o K (15)

through the same FIM derivation usipg(¢|@), the final FIM of the ) -
target position estimate is the same as (10). This is intuitive as th&here,, = logen, for the mth microphone. Probability that the
density approximatiom; (/@) matches the curvature of the likeli- Maximum ofM statlst|c2ally mdep_endentGaussmn random variables
hood at its mode, which corresponds to the CRLB for the problem. €m With the meariog o and variance;y; exceeds the threshol
Therefore, the CRLB expression in (10) simplifies the calcula-s given byP; = 1 — [1 -Q (\/‘W(U — log G)) M
tion of the CRLB bound derived in [14] (Eqgn. (5)). Finally, other
Cramer-Rao lower bounds feg 3(2]0) are given in [3, 4] and [5],
respectively. In [3], CRLB is derived for multiple targets.

Similarly, the detection probability can be derived the same way,
resulting in the following ROC curve for acoustic arrays for energy-
based detection?’; =

1-[1-Q (@' ((1 = Py)ar) — VN (log(o? + 02) — log o2 .
4. RECEIVER OPERATING CHARACTERISTICS [ ( (( 9 ) (log(o” +02) ~ log ))(]16)

M

In this section, we describe and quantify decision procedures for
acoustic sensors to declare target detections based on microphone
power observations. To derive the optimal detection algorithm anﬁjn the acoustic target localization problem, the objective of the sen-

its corresponding receiver operating characteristics (ROC) cueve, w, ) ; , T
start with (1) and its assumptions. The binary hypothesis testing®" network is to determine the target locathrwhich is entangled

With the tar [ 2 vi [ i

. FT 2\ . e 2 2 get signal power? via (1). In this section, we address
problem is t-henHO' Y CN (O’U ) s Hiy CN.(O’J * U’”).’ the joint estimation of these latent variables, which is summarized
where the first hypothesif, assumes that the microphone signal

is noise only and the second hypotheFis assumes that the micro- f(‘)s :3;?;”}:;; th)’?te ]l "\]N':ghﬁ Jg:ttiaedsﬁl;f;?g;% ;?;iggg;g:g% enve-
phone signal is noise plus the target signal. It is straightforward to P h ple Zh. Hfl ! yl v d ! he distributi f
show that the optimal detector is a square-law detector: each sensof, which can completely determine the distribution o

si(t) giveno? and@. We assume that only the sensors with high

5. FACTORIZED POSTERIOR APPROXIMATIONS

N H,y SNR are contributing to the estimationy/R? > o?), and that the
Z lyt)> = n, (11) propagation loss constantds = 2. To increase the tractability of
i=1 Ho the solution for the latent variablésand o, we propose using a

. . ) factorized approximation to the joint posterior distribution of these
wheren is the detector threshold to be determined using the Neyman;, i-bles ap(&1,..., Ear,04,0) = [+, (0.) fg(6). The construc-

Pearson criteria. Note that ’_[he detector .(1.1) resglts in a uniformly;q of our approximation follows the factorized variational Bayesian
most powerful (UMP) test since the decision regions for each hyry gy approximations commonly used in the literature [6, 7).
pothesis is independent froat. The ‘hrgsm'd;,,'s related t;’ t_he Under the mean field theory framework, we consider minimizing
false alarm ratePs as followsPy = P (x3n > 72), wherexk is 0 kullback-Leibler (KL) divergence of the full posteripr(€, o, 6)
the Chi-squared distribution witly degrees of freedom. The detec- from our factorized approximatiofy, () fg (6) [6, 7], where€ =
tion probability P; is then given byP; = P (XEN > %’) Then,  [&,...,Em]. Then, the optimal factorg*'s can be determined
the ROC curve can be numerically determined by relafiago P;.  from the following implicit expressions:
When we use our approximate density(c), we can simplify fx (o,) o exp (Eglogp1(£,05,6)), fg(0) x exp (Eo, logp1(€,0s,0)).
the ROC curve expression for the target detection problem. Note that 17
oy - N(0.1) Note that (17) does not represent an explicit solution as the solutions
N (0,1) = gye VAN . . . i
VAN of the optimal factors depend on expectations computed with respect
to other factors. Therefore, (17) denotes a set of consistency-cond
tions, which can be cycled to reach a consensus. It can be shown that
) (12)  convergence is guaranteed [6, 7].

whenN > 1, we can writes =~ o, +
Denoting€ = log ¢, we have

1
Expr(&) ~ N (IOgU% AN



Bias in Mean Predictions
b b o e

Fig. 2. A directed acyclic graph is used to represent the inference

problem, where the box denotes the set\éfacoustic sensor ob-

servations&;, which are assumed independent. The deterministic

(known) components of the problem are shown with solid dots. Thesig 3. (a) Bias in the mean estimates (-standard deviation). (b)

shaded node represents the observed varidhleshereas the re-  standard deviation efaround its mean (boxplot) vs. the estimate by

maining nodes represents the latent variableand6. p1(). (c) Standard deviation ef around its mean (boxplot) vs. the
estimate by, (¢).

(b)

From the graphical model in Fig. 2, the posterior density factors
asp(&,0s,0) = p(as)p(8) [TM, p1(Eilos, ), wherep: (+) is our ap-
proximation in (12), angh(os) andp(@) are prior distributions for
os andf. We use the following conjugate prior distributions:

p(os) ~ Log-N (,uo,vg) ; p(0) ~ N (09,%0) . (18)
Note that the posterior density does not factorize directly in terms
of o, and@. When the target sign&\R is high, the posterior log-
likelihood can be approximated by the following expression:
M
logp(€,05,0) = —QNZ (& —logos + log R;
i=1

CRLB (Theory)
-+ -CRLB wiBias (Theory)
[==RWMS (Monte Carlo)

(©
Fig. 4. (a) Range estimation performance (single sensor). (b) ROC

)2 _ (1Og Os — N0)2 ; N
curve (single sensor). (c) ROC curve (acoustic array).

2
2vg

—logos — %(9 —00)'25(6 - 6y).
(29) 6. SIMULATIONS
Now, we describe the VB cycles starting with. From (17), (18),

and (19), itis easy to obtain thﬁi:,lzjw} ~ Log-N (Mh U%)' where Figure 3 compares the estimation performance of the approximate

pdf's p; (i = 1,2, 3) with a Monte Carlo simulation of (1) having
following parameters:N = 10 ando? = 1. We estimated the
variance estimates in experiments with 100 trials, whose variances
were obtained by repeating each trial 100 times. Figure 3 shows that
To obtain (20), we approximatgg log R; ~ log |60 — ¢;|. among the approximate pdfs; (MM) is the best because (i) it has
The VB cycle ond cannot be rearranged into a Gaussian form:the leastbias in the mean estimatiorr @fith minimum variance and

M
7> (i +1oglB0 — ¢4) -

2 —2\ ! vy
U1:(4NM+U0 ) , M1 R o 2+4NU
Yo i=1 (20)

log f§11 M1 (0) = —2N M (& — 1 +log Ri)* — 1(6—60)' 55!
(6 — 6p). Since it requires too much computation to numerically
obtain the Gaussian approximation directly from the KL divergence

(i) it follows the actual variance of the data correctly. The variance
estimates op, andps are not correct because ando.2 are not
constant and increase with, as shown in Figs. 3(b) and (c). A¢

gets larger, the variance of the mean estimate bias afecreases;

we approximate this VB cycle with a Laplacian approximation:
V1M (8) ~ N (61, 21), where

|

and#, is the maximizer ofiog f5""***"(6). We continue the VB
{k=1,1:M} andfék_l’w} as priors and repeat-

however, it is quite slow.

Figure 4(a) shows the range estimate results of a Monte Carlo
simulation of (1) with the following parameters? = 2m, N
1000, and 10° trials. The estimator is given b =

cos ;

sin ¥;

Os
’
252

1 1 oL AN
DINENSD S +Zﬁ } x [ costp; sing; |, (21)
=1 7
whene is greater than a threshold to ensure a false alarm rate of 1%.
The dotted line is calculated taking the square root of the inverse
of FIM in (9), whereas the dashed line is calculated by incorporat-
ing (20) and (21) fok: = 1, ..., K to obtainf !} andff{)K’l:M} ing the bias terms in the the information inequality (it is possible to
or until they converge, whichever comes first. determine the gradient of bias). Both curves follow the estimated
The processing of the VB cycles can be distributed, where [0RMS error closely. Another Monte Carlo run of (1) is done with
cal message passing is used. As an example, assume that the s&n-= 1 @ndN = 100 to compare the performances of the alter-
sor triplets are ordered and there is a known communication pathative approaches for target detection based on microphone outputs

with a chain structure. The first triplet in the chain starts with the(Figs. 4(b) and (c)). We note that the theoretical ROC curves (Chi-
conjugate priors and does its own VB cycle to obtﬂrj(/’l} and ;quared glet_ec_tor. _dotted line, our G"?‘“SS'aF‘ approximation: dashed

(K1} , ) . _line) are indistinguishable from the simulation results and are very
fg 7, whereK’ = 3K/M. The second triplet in the chain ¢jose. Figure 4(c) shows that the detection performance of sensors
takes the result of first triplet as prior and determirféé”*”} with _mult_iple micr02phone320an be accurately predicted with our ap-
andféQKl’M}. This propagation is continued up to the last triplet ProXimation (16)¢” = 1,0, = 0.1, andN = 100).

, , Figures 5(a)-(c) illustrate the results of a Monte-Carlo run that
that obtainsf ™" *M/% and £ iM% M/%} which is propagated  compares the VB estimation algorithm with the ML. We simulated
back to all the triplets in the chain. When compared to the full VBa network of 5 acoustic sensors to determine the location of a target
cycles that use the data from all sensors, the distributed implementaituated af—3, —3]. For the target location and power prior, we used
tion is more susceptible to local minima problems. p(00) ~ N ([10,10]',50°I) andp(cs) = Log-N (0.5log SNR, 107 ").

cycles by treating’;,



ar(v) + nk, Modelll: & = ai(v)e™*, wheren, and m; are
i.i.d. zero mean Gaussian random variables with varianc¢eand
oZ,. Letv™ be the true speed andbe the ML estimate of Model |,
whené&y, is from Model II:
v=argminJ(v), J(v) = Y (€ — ax(v))?,
k
Given a sufficient number of;, measurements, we expect the ML
solution to be near the true value of. Hence, we can assume
Fig. 5. (a) Performance comparison of VB and ML. (b) and () show,, — * 1 ¢ wheree < v* s0 thatay (v) & a(v*) + cu(v*)e, V.
arealization aB\NR = 70dB, which is a typicaBNR for commercial The ML estimate of is found by taking the derivative of (v)
vehicles. Although thgrf estimation performance is similar, the VB yjith respect ta. By taking the derivative and equating to zero, we
has much better localization performance. solve for the bias and take its expected value:

2 k(v )ak(v™) (eagl - 1)

in (d8]

MSE in [dB]

Deployment

o2in [dB]

10 0 s 1 10 20 30 40 s (2 2)
Deployment

(c) ML @ 70dB

20 30
Deployment

(b) VB @ 70dB

7
SNRin [d8]

(a) MSE vs. SNR

. L . . v (v ) (e™k —1
The sensors were uniformly distributed on a ring centered at the ari= INLCLICRIC )

=e=

)

gin (so that the sensor locations is not symmetric with respect to
the target location) with inner and outer radii of 5 and 50, respec,
tively. During the Monte-Carlo run, we randomly placed the sensor
on the ring, then by fixing th&NR at a constant value, we sim-
ulated (1) 100 times withlV = 100 and¢? = 1, and estimated
the target position using the VB cycles outlined in Sect. 5 and th
ML estimation. The ML estimate maximizes the following likeli-
hoodlog p(€los,0) = —2N M| (& —logos + log R;)? over the
three dimensional space @f?; ). During the simulation, we var- 1
ied the SNR for the same target positions. Subsequently, different
sensor deployments were realized 50 times. For the ML estimates, a
grid search over the targ8NR is used whereas the position is deter- [2]
mined using interior point methods for ea8KR. For the VB cycles,

o, is initialized to a realization from Logv (0.5log SNR,107")

(which perturbss? within =3dB), whereas the target position is set 3]
to [10, 10]’. We used a total of 40 VB cycles.

Figure 5(a) shows that the VB method beats the unbiased CRLB
and continues to improve &lRincreases, whereas the ML method
saturates at the bound. This is not a contradiction as we used th%]
unbiased version of the information inequality while calculating the
CRLB. For other methods that beat the unbiased CRLB for this prob-
lem, see [14] (e.g., Fig. 5). The CRLB is calculated by maximizing 6]
the FIM over the sensor deployment. Hence, the bound is not tight
for the ML curve, which is an average over the sensor deployments.
As some of the ML estimates diverged, the ML performance curve 7]
has a shoulder between 50-65dB in Fig. 5(a).

(8l
7. CONCLUSIONS (o
In this paper, we provided Gaussian approximation to the Chi dis-
tribution, which alleviates the analytical tractability and numerical
calculation of ROC curves and Cramer-Rao lower bound (CRLB)
for energy-based detection and localization problems. We also pr?il]
vided a factorized variational Bayes (VB) approximation to the joint
source energy and location posterior, which effectively decouples thflz]
estimation of the source energy and location. The VB framework i
quite powerful and we plan to extend our formulations to multiple

energy-based target tracking problems. [13]

A. BIAS IN SPEED ESTIMATION (14]
We analyze the speed estimation bias for the estimates; (@f)
when the data is generated by (1). Lef(v) denote monotoni-
cally decreasing functions af for all k, e.g., the envelope obser-
vations as a function of, indexed by timek (e.g., Egn. (11) in [16]
[13]). Define two generative models as followstodel I: £, =

[15]

S [k (0*))?
(23)

S [ (v*)]?

which is always negative sinaex.(v) > 0 is a monotonically de-
%reasing function ob, i.e., &, (v*) < 0. Hence, giverw™, the

expected value of the ML estimate of Model | will always have a
enegative bias when the data is generated by Model II.
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