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Abstract— In this paper, we develop new mixed-mode implementations
for particle filters and compare them to a digital implementation. The
motivation for the mixed-mode implementation is to achievelow-power
implementation of particle filters. The specific application considered
is a bearings-only, single-target tracking algorithm. Specifically, we
develop mixed-mode implementations that use analog components to
realize nonlinear functions in the particle filter algorith m. The analog
implementation of nonlinear functions uses low-power multiple-input
translinear element (MITE) networks. Simulation results for one mixed-
mode implementation of the bearings-only tracker are presented showing
that analog errors are low enough to support accurate tracking. Redesign
of the mixed-mode implementation in a second form with more analog
components will result in nearly twenty times less power dissipation.

I. I NTRODUCTION

Particle filters or sequential Monte Carlo methods are recursive
Bayesian estimation filters. Because they can handle nonlinear models
and non-Gaussian noise they can be used to design more accu-
rate estimation algorithms when compared to Kalman filter based
approaches. They use discrete samples called particles andtheir
corresponding weights to represent a distribution and provide an
efficient mechanism to recursively update the distributionover time.
The updated distributions can be used to obtain states. Target tracking
is one such application that uses particle filters to estimate a moving
target’s state.

The use of large number of particles and nonlinear functionsin
particle filter algorithms increase their computational complexity and
execution time. While most stages in the particle filter algorithm can
be parallelized, the resampling stage cannot be easily parallelized.
Parallelizing the various stages in the particle filter algorithm leads
to faster execution time and efficient hardware architectures. This
has been addressed in earlier works [1] by developing distributed
resampling schemes. The work in [2] developed a fully parallel
particle filter implementation that usesN processors to processN
particles in the particle filter algorithm.

For certain applications, the particle filter algorithms will have
to be deployed in environments where power dissipation is a con-
straint. Hence, we address power dissipation in particle filters. We
use analog multiple-input translinear element (MITE) circuits for
implementing nonlinear functions in a particle filter algorithm to
reduce power dissipation. We use these analog circuits in mixed-
mode implementations that use both analog and digital circuits to
implement the various stages in the algorithm. A bearings-only target
tracking algorithm is used as an example application to analyze the
mixed-mode implementations. The results and analysis provided here
are based on simulations. The contributions in this paper are an
extension to our earlier work in [3].

This paper is organized as follows. Section II briefly introduces
the bearings only tracking problem that uses particle filters to
estimate target states. The proposed mixed-mode implementations
are presented in Section III. Simulation results for the analog and
mixed-mode implementations are presented in Section IV. Section V

presents an analysis of the power dissipation in the mixed-mode
implementation and compares it to a digital implementationand Sec-
tion VI summarizes the applicability of mixed-mode implementation
to particle filters.

II. PARTICLE FILTER-BASED TRACKING

Bearings-only tracking involves estimating the target trajectory
using angle measurements at a stationary sensor node. The target is
assumed to move in thex-y plane and to follow a constant velocity
motion model, with a state update period of1 s. The state transition
is described using the relation

Xt = FXt−1 + Γut, (1)

whereXt = [x vx y vy ]Tt , ut = [ux uy ]Tt ,
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Here,x andy are the Cartesian coordinates of the target,vx andvy

are the corresponding velocities. The parameterut represents the
system noise and is Gaussian distributed with covarianceΣu = σ2

uI2,
where I2 is a 2 × 2 identity matrix. The angle measurements at a
stationary sensor at the origin are given by

zt = arctan {yt/xt} + rt, (3)

wherert represents a Gaussian measurement noiseN (0, σ2
r ).

We use particle filters [4], [5] for solving the bearings-only tracking
problem. Using (1) and (3), a particle filter algorithm for target
tracking similar to the one in [5] can be formulated. The state update
is used to propose new particles. This proposal function provides a
sub-optimal recursive estimate of the target position in the x-y plane.
The pseudo-code for the particle filter algorithm is shown inTable I.

III. PARTICLE FILTER IMPLEMENTATION

The complexity of particle filter algorithms depends on the number
of particlesN , the proposal function used, and the nonlinear functions
in the model. Most applications that use particle filters perform a
Gaussian evaluation at the weighting stage. Some applications might
use additional nonlinear functions in the particle proposal and weight
evaluation stage. In this paper, we are interested in reducing the power
dissipated while performing computations. We concentrateon the
nonlinear operations such asGaussianand arctan evaluation for a
single particle in the weight evaluation stage of the bearings-only
tracker.



TABLE I: Bearings-only tracker particle filter pseudo-code.

Given the observed data zt at t,
1) For i = 1, 2, . . . , N sample or propose particles using the state

update (1), X(i)
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Fig. 1: Block diagram showing computational flow in the particle
filter algorithm in the mixed-mode implementation (Method-1). High-
lighted stage is performed in the analog domain.

A. Mixed-mode implementations

In the mixed-mode implementation of the particle filter algorithm,
certain stages use analog components to perform the computations
while the remaining stages use digital components. This leads to two
possible methods that differ in their analog-digital partition.

In Method-1, shown in Fig. 1, the weight evaluation stage is
implemented in the analog domain and the remaining stages inthe
digital domain. Data converter blocks, digital-to-analog(DAC) and
analog-to-digital converters (ADC), are used to transfer data across
the domains. The minimum number of bits to be used in the DAC
and ADC is dictated by state-space requirements. The lowestvalue
to be represented must be above the noise level in the analog circuit.
Increasing the number of bits in these blocks will increase latency and
power consumption. Hence a compromise among accuracy, speed,
and power consumption has to be made such that the power savings
from the analog computations is not offset.

In Method-2, shown in Fig. 2, the resampling stage alone is
implemented in the digital domain and the remaining stages in
the analog domain. The measurements, which are angles in the
bearings-only tracker, may be from a source localization algorithm
implemented in the analog domain [6]. The proposal stage uses six
additions to implement (1). In the analog domain, the addition of two
signals is based on Kirchoff’s current law (KCL) and is performed
by connecting the wires carrying the corresponding currents. In the
digital domain, addition is performed using adder circuits. The state
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Fig. 2: Block diagram showing computational flow in the mixed-
mode implementation (Method-2). Highlighted stages are performed
in the analog domain.

estimation, Step 4 in Table I, can be achieved by using a vector-matrix
multiplier in the analog domain [7]. The resampling stage assumes
the availability of an analog memory whose access is controlled using
a digital controller [8].

B. Nonlinear function realization using MITEs

The multiple-input translinear element (MITE) was introduced
in [9] as a generalization of the bipolar transistor. A2-input MITE
is defined as a circuit element satisfying the following properties:

1) The current through the input gates is zero.
2) The drain currentI and the input-gate voltagesV1 and V2

are related asI = Is exp(κ(V1 + V2)/UT), where Is is a
pre-exponential scaling constant,κ is a positive dimensionless
weight, andUT is the thermal voltage,kT/q.

MITEs operate in the subthreshold region and hence dissipate low-
power. The two-input MITE is used to realize the the inverse tangent
arctan and theGaussian(exp(−x2/2)) functions in the weighting
stage (5). The approximations and the corresponding implementations
of these functions are considered in [3].

IV. SIMULATIONS

A. Weight evaluation using MITEs

Initially, the arctanandGaussiancircuits are simulated for various
values of the input currents and the reference currents to determine
the accuracy of the implementation. In our simulations, analog
implementation of functions refers to the analog circuit model of the
synthesized MITE networks [3]. Models for the AMI0.5 µm CMOS
process were used in the simulations. The results for the individual
functions are shown in Table II. The error (as a percentage ofthe
maximum) and power values correspond to the ranges of the input
and reference currents shown in Table II.

TABLE II: MITE implementation -arctan andGaussianfunctions.
Circuit arctan Gaussian

Minimum Maximum Minimum Maximum
Ref. Ia (nA) 0.5 20 0.1 10
Input current −10Ia 10Ia −10Ia 10Ia

Power (µW) 0.361 14.45 1.097 109.7
Error (%) 0.31 0.71 2.04 2.8

Next, the analog circuit model for the weighting stage of the
bearings-only tracker is simulated and the results compared to a
Matlab simulation. Figure 3 compares the weights obtained from the
Analog modelto the True valueobtained using (4) and theAnalog
approximationfrom [3], for two cases. The error introduced by the



TABLE III: Simulation parameters - Bearings-only tracker.
Tracker parameters Circuit parameters (variables in (5))

N σr σu Iin(y
(i)
k

/x
(i)
k

) Iaarctan IaGaussian(σr)

1000 0.29 ◦ 0.001 6.36nA to 10nA 0.1nA
7.18nA
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Fig. 3: Comparison of the evaluated weights (5) using the ana-
log (MITE) implementation for two values of measurement noise
variance. The vertical line at33.8◦ represents the true mean. (a) The
standard deviationσr = 0.29◦ is of the same order as the MITE
implementation error in thearctan function, leading to a shift in the
Gaussianmean. (b) The standard deviationσr = 2.8◦ is much larger
than the MITE implementation error in thearctan function.

arctan block shifts the mean of theGaussiandistribution in the
weight evaluation. Depending on the measurement noise varianceσ2

r ,
the shift in the Gaussian may affect the state estimate. If the
varianceσ2

r is comparable to the error in the MITE implementation
of the arctan circuit, the error in the computation will lead to biased
estimates. The influence ofσr on the output of the weighting stage
is shown in Figure 3 for two values that differ by a factor of ten.

B. Bearings-only Tracking

In this section, the weighting stage, implemented as a MITE
circuit is used in a Matlab simulation of the bearings-only tracker.
The tracking scenario considered here and the parameters used
are similar to those in [5] and are shown in Table III. A single
target trajectory and measurements that follow (1) and (3) are
simulated for two different values of measurement noise. The sensor
is located at the origin in the plane. The target’s actual initial
state isX = [0.250 0.001 0.240 − 0.005]T , the system noise
is N (0, 0.0012), and the measurement noise is eitherN (0, 0.292)
or N (0, 2.82).

The Matlab simulation of the tracker is performed using scripts
that execute a call to an analog (Spectre) circuit simulatortool.
During each iteration of the simulation, inputs to the analog circuit
were presented as a data file of

yt

xt

quotient values and bearing

measurementszt. Here,xt andyt represent thex andy components
of the particle state vectorX, respectively. A Spectre simulation script
uses these values to compute the particle weightsŵ

(i)
t using the

analog MITE circuit implementation of the weighting stage.These
weights are used to continue the Matlab simulation.

Tracking estimates from theAnalog modelare shown in Fig. 4.
The error introduced whenσr is small can lead to divergence of the
estimates with time. Although, particle filters can mitigate this error
because they use particles spread over a certain region, theerror in
computation might dominate and cause the particle distribution to be
biased. However, if the noise variance is high compared to the error
in the arctan computation, the estimates will be close to the ones
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Fig. 4: Comparison ofx-y track estimates from the analog (MITE)
implementation to the Matlab simulation. (a) for a measurement
noise standard deviation ofσr = 0.29◦. (b) for a measurement noise
standard deviation ofσr = 2.8◦.

obtained from a Matlab simulation.
The error in thearctancomputation can vary from0.18◦ to 0.41◦.

In Fig. 4 (a) the results correspond to a standard deviation of 0.29◦.
This value of the standard deviation is comparable to the MITE
implementation error in thearctan computation. This results in a
small bias in thex-y estimates, because of the shift in the mean
of the Gaussianoutput, or weights, which was shown in Fig. 3 (a).
Hence, the resulting state estimates (Analog model) do not closely
match the Matlab estimate. However, in spite of the bias they
closely follow the Ground truth values. This is an effect of the
bias pulling the estimate towards the ground truth. The results in
Fig. 4 (b) correspond to a standard deviation of2.80◦. This noise
value is high compared to the error values in thearctan computation
and the estimated weights are not biased as shown in Fig. 3 (b).
Hence, the corresponding estimates (Analog model) closely follow the
Matlab estimate. The MITE implementation error in the magnitude
of the Gaussianfunction output does not affect the estimates. This
is because the computed weightsŵ

(i)
t are normalized to obtainw(i)

t ,
which are used in state estimation.

V. POWER DISSIPATION

This section compares the power dissipated in the mixed-mode
implementations to a digital ASIC implementation. From (4)and (5),
note that the significant computations in the particle weighting stage
of the particle filter algorithm involve the evaluation ofarctan and
Gaussianfunctions. Hence, the power consumed in these computa-
tions is considered here.

1) Analog MITE model:The analog models of thearctan and
Gaussianfunctions use MITEs. The instantaneous power consumed
by these circuits depends on the instantaneous value of the input
current,Ix. As shown in Table II, forIa = 10 nA with a 3 V supply,
the maximum power consumed in thearctan circuit is 7.23 µW and
the power consumed in theGaussiancircuit is 109.7 µW.

2) Digital implementation: The power consumption in digital
CMOS circuits, ignoring the negligible static power, can beap-
proximated [10] as,P = α0→1CLV 2

ddfclk. Here α0→1 is the node
transition activity factor,CL the load capacitance,Vdd the supply
voltage, andfclk the clock frequency.

Digital implementations of thearctan and Gaussian functions
use the CORDIC algorithm [11], which is an iterative algorithm
that can be used to implement trigonometric and hyperbolic func-
tions. TheGaussianfunction can be implemented using the rela-
tion ex = sinh(x) + cosh(x). A VHDL implementation of a
pipelined CORDIC algorithm [12] was simulated, and the estimated
power consumption using the AMI0.35 µm CMOS process is shown



in Table IV. Low-power implementation of CORDIC algorithmsis
an on going research area. Hence, for reference, results from a low-
power CORDIC implementation using MOS Current Mode logic
(MCML) demonstrated in [13] is also shown. The implementation
specifications in [13], however, were a bit different.

TABLE IV: Digital implementation - CORDIC algorithm.
Implementation Digital MCML [13]
VDD(V) 3.3 1.0

Clock Frequency (MHz) 1 125

Output precision (bits) 12 8

Power (µW) †a 550 × 2 4330 × 2
†a Factor of2 is for thearctanandGaussianfunctions.

3) Comparison:Since the mixed-mode Method-1 uses DACs and
ADCs, the power dissipation in these devices has to be considered
as part of the total power dissipation in this mode. It is difficult to
quantify the exact speed of operation of the MITE circuits when used
in implementing Method-1. Based on the delay in the circuit their
sampling frequency is in the10 to 100 kHz range. The accuracy
that can be obtained using these circuits is nearly8 bits. Hence,
we assume low speed and small wordlength for ADCs and DACs
in our analysis. A TI 10-bit DAC [14] with an update rate of
75 kHz dissipates0.75 mW, while an8-bit ADC [15] with 70 kHz
throughput has a minimum power dissipation of0.18 mW. Using
this approximate analysis, the DAC and ADC conversion dissipates
nearly1 mW power.

The MITE implementation of thearctan and Gaussianfunctions
together dissipates nearly120 µW (Table II). The combined digital
implementation, operating at a lower frequency (Table IV) dissipates
1100 µW. This shows that the MITE implementation dissipates ten
times less power than a digital implementation of the nonlinear
functions considered. However, if the ADCs and DACs are included,
the total power dissipated in the mixed-mode is nearly1120 µW
which is of the same order as the digital implementation.

On the other hand, if Method-2 in Figure 2 is used the power
dissipated in the data converters can be removed. Implementing
the proposal and state estimation stages in the analog domain can
provide additional savings. While it is difficult to give exact power
savings without an implementation, we can provide an estimate.
The particle proposal stage involves six additions. For a digital
implementation of a16-bit ripple-carry adder operating at2 MHz,
the power dissipation is0.21 mW (See [16], Paper4.7). Assuming
a frequency of operation in the kHz range, the power consumedwill
be in theµW range. In an analog implementation, addition can be
achieved by connecting the wires that carry the corresponding values,
and hence no additional power is dissipated. The state estimation,
which is a multiply-accumulate (MAC) operation, can be performed
using a vector-matrix multiplier. At frequencies of operation less
than 10 MHz, when compared to a digital implementation of a
MAC an analog implementation can provide a factor of1000 in
power savings [7]. For frequencies of operation in the kHz range,
the analog circuit can lead to approximately a factor of ten in power
savings. Hence, using the implementation in Method-2, in addition
to the arctan and Gaussianfunctions that provide a factor of ten
power savings, the proposal and state estimation stage provide a
factor of nearly ten in power savings. Overall, the implementation
in Method-2 will dissipate approximately20 times less power when
compared to a digital implementation. Table V summarizes the results
of comparing the power dissipation in the mixed-mode methods to a
digital implementation.

TABLE V: Power dissipation in bearings-only tracker.

Operation Mixed-mode Digital
Method-1 Method-2 (ASIC)

Nonlinear functions 120 µW 120 µW 1100 µW
ADC/DAC 1000 µW − −
Addition 20 µW − 20 µW

Multiply accumulate 10 × PMAC PMAC
†a 10 × PMAC

Overall 1140 µW+ 120 µW+ 1120 µW+
10 × PMAC PMAC 10 × PMAC

†a PMAC - power dissipation in analog multiply accumulate.

VI. CONCLUSIONS

In this paper, we presented mixed-mode implementations forparti-
cle filters to reduce power dissipation. We used analog multiple-input
translinear element (MITE) networks to implement the nonlinear
functions in the weight evaluation stage of a bearings-onlytracker.
We showed that if the MITE implementation error in thearctan
function is smaller than the measurement noise standard deviation,
its impact on the target tracking estimates will be minimal.The
MITE implementation of the functions will dissipate approximately
ten times less power when compared to a digital implementation of
the nonlinear functions using the CORDIC algorithm. However, when
the MITE implementation is used in the mixed-mode Method-1,the
use of data converters can offset the power savings obtainedfrom the
analog implementation. An improved mixed-mode method thatuses
more analog components will lead to more power savings.
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