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ABSTRACT 2. VIDEO MENSURATION

In this second paper, we first show how to estimate the wheelbase Ieng{JP] dinate t ¢ tion f t . invideo i
of a vehicle using line metrology in video. We then address the vehi: € coordinate transtormation from a Scene o an image In video IS a pro-

cle fingerprinting problem using vehicle silhouettes and color invariantdctive transform_atlon, W.h'Ch distorts geometrical propgrtles of theescen
ch as parallelism, ratio of lengths, etc. Observed images, as a result

We combine the acoustic metrology and classification results discussé R - . !

in Part | with the video results to improve estimation performance and prOJectlve. tran.sform'atlons, preserve th.e foII.owmg properties feom
robustness. The acoustic video fusion is achieved in a Bayesian frami al scene (mv_arlants). concurrency, colllnearltyz order of cmn_ta_w
work by assuming conditional independence of the observations bf ead € ratio of ratio-of-lengths (a.k.a., the cross-ratio) [13]. Hend# d

modality. For the metrology density functions, Laplacian approximation .uItles arise in a mensuration (or mgtrology) problem, Where we .WOUId
are used for computational efficiency. Experimental results are gise ke to make measurements of an object within a scene using only images
S taken by a camera. The problem becomes even more challenging when
ing field data. y P ging

the internal calibration of the camera is also unknown.

In the vehicle fingerprinting problem, as complementary the features
to the acoustic vehicle profile vector, we determine the following vehicle
dimensions using a video sequence, collected by a stationary camera ori-
1. INTRODUCTION ented perpendicular to the motion of the vehicles: vehicle wheelbase
and aspect ratio (AR). By using multiple video frames, we obtain a distri-
bution of each vehicle dimension to reflect our estimation confidence in
bring in an array of rich information encoding the object identity. Un-& Bayesian framework. We use a camera calibration scheme specifically

designed for vehicle mensuration problem [14]. As a result, we assume

fortunately, the video information is not easily amenable for automati N . o
inference due to the nature of the video observations, which may preséfat the vanishing line of the reference plane and the vertical vanishing

the object in varying and unknown illumination and pose, backgroun(ﬂ)omt !s_available in our_deriyations. This calibration scheme is know as
clutter, and occlusion. To achieve recognition, the methods in the liter4N® Minimal camera calibration [15].
ture concentrate on the object appearance [1], shape [2], or aratiob
of the two [3], by using intrinsic properties of the object that are invariant
with respect to the nature of the video observations. 2.1. Line Segment Metrology
The recognition of vehicles using video first requires robust vehicle

segmentation. Statistical and systematical models alleviate this problem this section. we describe a robust and com . -

. ) " - , putationally efficient proce
by ('). Igarn!ng the background [4,5], (ii) handling shadows [6]'. a")j. ( dure of estimating the length of a line segment given a known length on
discriminating non-vehicles such as humans [7]. Once the object is se[§1

. o e reference frame, i.e., in the scene. Unfortunately, this problem ca
mented, deformable models [2, 8], silhouettes [9, 10], and realistic 3 Y P

biect model terized b 311 d ot b ot be solved using a single reference length and it can be proved that a
object models parameterized by appearance [3,11] are use @ |east three reference lengths are necessary unless the line segreents a
defining vehicle characteristics.

. . . perfectly parallel. Hence, we demonstrate how to measure distanoes fro
In this paper, we focus on vehicle video features that are complemely,y, desired point using three reference lengths. Solution using rrere re

tary to the acoustic vehicle profile vector in Part | [12] to improve and, agrence lengths has an efficient subspace solution and is describéaiin de
the same time, to validate the acoustics-only results. We first show how iR [14].

estimate vehicle wheelbase length and vehicle aspect ratio using video se- _ h he basic id fh btain the | h of a li
quences, using minimal camera calibration. We then discuss extraction of F'9ure 1 shows the basic idea of how to obtain the length of a line

, e .

vehicle shape and appearance features to emphasize the intra-dass v4’C Using three known equal lengthg; B;| = r, i = 1,2,3. Evenin

tions that cannot be achieved based on vehicle size or vehicle engine tyﬁlé's simple 2D_case, we still need threg refe_rence It/angths. By the geomet-
fal construction based on the vanishing licg,B; B;O's are all paral-

We focus on vehicle silhouettes since they are easy to determine in o A - .
field data. elograms. Hence, the poinf3; are all equidistant from the target point

O and define a circle arourd@ in the real scene, which then becomes an
Prepared through collaborative participation in the AdethSensors Consor-  €llipse in the image plane due to the projective transformation. Hence, the
tium sponsored by the U. S. Army Research Laboratory unde€tilaborative  length of the lineOC' is simply given by the ratioOC| : |OC’|, where
Technology Alliance Program, Cooperative Agreement DAAD1992-0008. |OC’| =r.

Index Terms— Object recognition, pattern recognition, acoustic ap-
plications, acoustic signal processing, intelligent sensors

In object recognition problems, video cameras are preferred bethay
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Fig. 3. (&) Wheel detection results of the calibration vehicle Nissan Max-
ima (+ corresponds to the run in Fig. 3(d,e,f) in Part I). (b) The esti-
Fig. 1. Lines that start from the same vanishing point are parallel by thenated pdf for the wheelbase length. The mode of the distribution is set to
projective geometry. Then;O||¢: A; andp;O||p; B; by construction. 270cm, corresponding to the manufacturer’s specification. The mean and
the variance of the distribution 76.3cm and(27.3cm)?.

Table 1. Vehicle Shape and Appearance

[vehice T wy [ wp [ w3 [ wg [ ws [ U [ lp [ 3]
V1 86177 | 7.4597 77005 | 52211 | 7.1051 0 [ 05000 | 05000
Vo 87402 | 56839 65009 | 59914 | 65673 | 00055 | 05495 | 0.4451
V3 6.9970 | 27016 24357 | 69836 | 35238 | 06429 | 02857 | 00714
(b) () V4 7.8884 | 3.7738 40195 | 61920 | 46284 | 03810 | 05952 | 00238
Vs 6.7251 | 25737 29351 | 55913 | 29551 | 02368 | 06579 | 0.1053
Vg 42321 | 59754 23604 | 7.8313 | 11111 | 0.1667 | 0.6667 | 0.1667
vy 7.3992 | 2.4707 3.2560 | 5.2688 | 3.6770 | 02302 | 06594 | 0.1104
i idi i i i i i i Vs 7.9148 | 25141 35488 | 7.1726 | 43853 | 03228 | 06271 | 0.0501
Flg' 2 (a) Orlglnal Image (lesan Maxima in Flg' 3(d’e’f_) in Part I)' (b) Vg 11.6709 9.4643 10.6410 6.5768 9.8081 0.1162 0.6609 0.2228
Thresholded image. (c) Estimated wheel covers and their centers (+). [ Vio 8.7663 | 35790 | 46002 | 61067 | 49960 | 02162 | 0216 | 0.6622

2.2. Wheel Detection and Tracking ) )
parameters of the background [4,5]. Then, the objects are detesiteg u

For wheel detection, we assume that the tire of a vehicle is always bladkackground subtraction. The resulting image is median filtered and aver-
and the wheel covers are silver or gray. Therefore, a simple intensityged over multiple frames while compensating for the target motion. We
filter can separate the wheel cover from the tires as shown in Fig. 2. Afteshoose the largest blob in the resulting image and then remove the vehicle
the extraction of the blobs that represent the wheel cover, we determir@adows [6] to obtain the silhouette (Fig. 4).

their center position and mark as the wheel centers. When this estimation

is done jointly with the tracking of the vehicle [14, 16, 17], it results in
multiple wheelbase length estimates that defines afbf for L.

We now describe the video wheelbase pdf estimation procedure by
an example. Figure 3 shows the wheelbase detection and pdf estimat
results for the control vehicle Nissan Maxima on a two-way street (Fig. 2)
The video resolution i820 x 240. In the figure, the lower left corner is
taken as the origin. Figure 3(a) shows the wheelbase estimation result ==5 pU—
corresponding to the different runs of the same vehicle. We acQuire (a) (b) (©
frames from a total of four runs. We use the line segment metrology to

project the estimates on the same wheel center and calculate the mean 4 Nissan R Backaroun traction Denoisin
the variance of the wheelbase distribution. This variance is then used?g& - (@) Nissan Rodeo. (b) Background subtraction. (c) Denoising

A . and shape extraction: (i) select the largest blob in (b), (ii) apply a median
construct the pdfin Fig. 3(b) using Parzen methods [18] filter, (iii) average over multiple frames, and (iv) extract the silhouette.

3. SHAPE AND APPEARANCE
We use five different classes to represent vehicle silhouette shapes
In this paper, we use extracted vehicle silhouettes to determine the velfier bus, sedan, mini van, truck, and SUV, as shown in Fig. 5. To ahéxer
cle shapes, because the video camera used in our experiments istorierttee similarity of each of the calculated silhouettes to each of the classes
perpendicular to the motion of the vehicles and is parallel to the ground;, we use the Hausdorff distance [21], which is relatively insensitive to
plane. At other camera configurations, it is possible to build 3D model¢he perturbations of the image and is computationally efficient. Table 1
using planar motion constraints via tracking [11] or use pre-built modelsummarizes the Hausdorff distance for the ten test vehicles in Fig. 5. In
for discrimination under varying illumination conditions [3]. To encode the calculations, we discard the bottom %30 of the calculated silhouette
the vehicle appearance, we propose to use illumination invariant (for botio decrease the detrimental effect of the shadows. Using the Halusdorf
matte and shiny surfaceg)»ls color measure [19, 20] under white illu- distance, only’s is misclassified as iws, whereas it judiciously belongs
mination, which is satisfied for vehicles during the day. Equations (27)to w,. However, as can be seen in the Table 1 and Fig. 5, the vehicle
(29) in [19] definel, l2, I3 in terms of RGB values (Table 1). silhouette is close to both classes. Hence, the misclassification is mainly
To determine the vehicle silhouettes, we first determine the statisticalue to our choice of the generic class shapes.
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Fig. 6. (a) Estimated vehicle lengths are compared. There is a clear
separation between small and large vehicles (Rodeo is misclassifigd). (b
Estimated vehicle sizes are compared. (c) Logarithm of the vehicle signal
amplitudes are plotted with respect to their speed. There is a linear trend
in the plot as also indicated by [22]. The solid line represents a least
squares fit to the data without Nissan Maxima. The dotted lines are one
standard deviation away from the mean. Nissan Maxima is louder than
the other cars because the vehicle has mechanical problems.

5.2. Video Vehicle Fingerprinting

The shape, appearance, and mensuration features in video reigder th
Fig. 5. Vehicle silhouette results. The notatidh[j] refers silhouette modality more capable in distinguishing vehicles. The video can sepa-
results for theth vehicle in Table 2 obtained by usiridrames. Note that rate the vehicles into finer classes such as sedans, trucks, and $9V's (
asj increases, the estimated silhouettes improve. opposed to rougher classes such as small or large); and can maeh ac
rately calculate vehicle wheelbase length, when compared to acoustics
alone. Although the estimated vehicle aspect ratios (AR) are biased, it is
4. JOINT ACOUSTIC-VIDEO VEHICLE PROFILE VECTOR easy to see that when de-meaned, AR is an effective discriminativedea
(Table 2). Unfortunately, the authors could not automatically determine

In Part |, we defined an acoustic vehicle profile vector using the pHysicaIthe wheelbase lengths for some of the test vehicles using the video data,

parameters and the envelope shape (ES) component paramet We 25 marked by - in Table 2. A possible reason for this is the faster vehi-

extend the the acoustic vehicle profile vector to also include (i) the vide(%Ie movements, which result in fewer frames that are also significantly

mensuration results, (ii) the shape information in terms of the Hausdorfpouon k:‘!ulr(;edf, f(_)r parameter estimation due to a constant (and narrow)
distances to each classes and (iii) the appearance informatidpn to camera fielc-ol-view.

form a fingerprint of the vehicle. As opposed to choosing one class for

each vehicle, we deliberately choose to keep the Hausdorff distance $03. Joint Acoustic Video Fingerprinting

each vehicle class since it allows the propagation of the identity in a prob- . . . - .
abilistic framework. If other shape, appearance, and mensuratattse In our ex_perlmen_t, the acoustic and video modalities provided comple-
are available, they should also be included in the profile vector. mentary information to each other and overcame each other’s wessgees

As can be seen in Table 2, acoustics provided mensuration results when
the video failed. Moreover, Fig. 7 illustrates a case where the video helps
5. EXPERIMENTS acoustics to resolve a bi-modal mensuration result. The acoustics-only
mode estimate fofL, W) is (5.20,1.35) m, over the second mode in
the likelihood function aroundL, W) = (2.93,1.5)m, which is only
fractionally lower in the dynamic scale of the log likelihood function.
Tables 1 and 2 summarize the results, using the vehicle profiling metf-he video mensuration result for the wheelbase length is 2.71m.
ods outlined both in Part | and Part II. In Table 2, it is apparent fromWhen combined with acoustics, the final wheelbase and width estimates
the variance and bias estimates that acoustic estimation of the vehidcome(L, W)iint = (2.76,1.50)m (01 joint = 7.27cm), which conse-
speeds improves, compared to the classical methods such is by Gouvréuently corrects the acoustic classification result in Fig. 6(a) and (d); an
and Bresler ([7] in Part I), when they are jointly estimated with the clasfurther improves the width estimate. This combination is achieved by
sification features. Another possible reason for the improvement is th@ultiplying two Laplacian approximations of the modality pdf's. Hence,
multiplicative noise model used in our acoustic observations. the resulting fusion result is a Gaussian approximation. Other combined
The vehicle profile vector also provides a natural basis for classifylength estimates are., o1 )joint = (2.96,.20)m (Vs), (2.88,.22)m (V4),
ing vehicles. Figures 6(a) and (b) show that the vehicles can be segpara (2:62,.16)m (V5), and(2.86, .31)m (V1o). In addition, notably, as the
into two classes based on their length and size. Note that the even thougH€0 estimates deteriorate when the vehicles increase their speed, the
estimated vehicle lengths are not exact vehicle lengths, they can separ@&oUustic results tend to improve because the vehicles become louder,
small vehicles from large vehicles . Figure 6(c) also illustrates that it i§hereby improving the acoustic signal-to-noise ratio.
possible to identify loud vehicles such as vehicles with mechanical prob-
lems or heavily loaded SUV’s_ or pick-up t(ucks, vx_/hich are expected to_ be 6. CONCLUSIONS
louder than usual. Hence, given two similar vehicles, it may be possible
to identify if one of them is heavily loaded or has mechanical problemsn this paper, we discussed video fingerprinting features that areleomp
even if they move at different speeds. mentary to the acoustic profile vector, introduced in Part I. We showed

5.1. Acoustic Vehicle Fingerprinting



Table 2. Field Test Results

Ground Truth

Estimation using X [ [

Estimation using video-only ” Estimation using )\i

[

l
|

Vehicle Ym vcamera L W AR ] v [ ¢ T oLuwto) | Wiuto) | x [ p7 || Luto) [ ARY T sihouette |] v c |
V7 : Ford F150 6.3 17.54m/s 3.20m 1.70m 2.87 17.86m/s 12.60 5.38 4-.55m 1.30+.09m 3038 8 - 2.41 [~ 21.39m/s 21.27
Vo : Chevy Impala 58 18.68m/s 2.80m 1.58m 3.49 18.60m/s 9.23 2.58+.31m 1.75+.17m 3300 6 B 3.06 <2 15.05m/s 10.90
V3 :Honda Accord 4.3 16.74m/s 2.71m 1.55m 3.29 14.44m/s 6.86 3.284.29m 1.404.17m 3074 6 2.684.27m 2.95 e 14.49m/s 9.67
V4 : Nissan Maxima™ 4.6 13.32m/s 2.70m 1.53m 34 13.20m/s 12.45 3.28+.38m 1.50+.18m 3825 6’ 2.70+.27m 2.84 [} 14.27m/s 14.49
V5 : Nissan Maxima* 4.1 4.14m/s 2.70m 1.53m 3.4 4.49m/s 6.34 2.58+.19m 1.50+.09m 3150 4 2.704.27m 271 s} 3.46m/s 9.20
Vg :Isuzu Rodeo 8.1 13.44m/s 2.70m 1.51m 2.64 13.89m/s 7.87 5.204.53m 1.35+.25m 3450 6 2.71+£.29m 2.45 [vaw) 11.79m/s 7.95
V7 : Mercedes E 8.1 13.94m/s 2.83m 1.54m 3.34 13.80m/s 7.68 2.934.96m 1.504.41m 3075 6 - 3.20 <2 11.78m/s 9.93
Vg : Volvo 850 8.1 14.11m/s 2.66m 1.51m 3.29 14.69m/s 9.60 3.10+.27m 1.404.27m 2250 10’ 3.00 (s} 11.22m/s 8.63
Vg : Nissan Frontier 4.3 17.56m/s 3.20m 1.56m 2.94 17.84m/s 9.31 4.85+.63m 1.404.25m 2625 6 - 2.67 s 17.56m/s 9.74
V10 : VW Passat 5.1 11.66m/s 2.70m 1.50m 3.19 11.58m/s 6.06 2.75+.66m 1.80+.26m 1950 6 2.90+.35m 2.72 <3 8.66m/s 6.11
Error STD 0.8246m/s 0.9821m 0.1917m 0.0929m 0.1702 2.2627m/s

Error STD T 0.2777mls 0.3292m 0.1613m 1.5126m/s

Bias -0.0735m/s -0.7730m 0.0610m -0.0360m 0.3840 -1.1458m/s

Bias T 0.1737m/s -0.2000m 0.0063m -1.7013m/s

[1] Using the method of reference [7] in Part I. [] Same vehicle. [4] Calculated by removing the outliers in each method. [{] A fixed bandwidth of VW = 600Hz is used to determine the car widths

. Hence, the width estimates of the F150 and Nissan Frontier

are biased because they have a significantly different tire profile than the sedan vehicles. When WW = 800Hz is used, the width estimates of F150 and Nissan Frontier become 1.60m and 1.80m, respectively. In turn, their wheelbase length estimates also

change to 4.20m and 3.98m. [4] Estimated by finding the frequency Fiy with the maximum power spectral density between frequencies 85-210Hz and then dividing Fy by the CFR f(y estimate.

and 5 (Volvo). [§] The silhouette is misclassified by a slight margin. The second best silhouette is 2. [(©] Aspect ratio estimates are negatively biased because of the imperfect shadow removal.

b ] (10]
Snn En

2o P [11]
w

(12]

(a) Isuzu Rodeo (b) Isuzu Rodeo (c) Isuzu Rodeo

Fig. 7. (a) Observed acoustic envelope and the estimated envelope yss)
ing the ES components are shown. (b) Estimated ES components are
displayed. (c) The log-likelihood surface for Isuzu Rodeo for the-veh [14]
cle dimensions is bi-modal. Acoustics-alone chooses dimensions farther
away from the actual vehicle dimensions.

[15]

examples where each modality helped the other overcome its shortcom-
ings. The video-only wheelbase estimates are shown to be comparal|g
to acoustic-only wheelbase estimates, when only a few video frames are
used for estimation. The joint acoustic video profile vector provides nat-
ural vehicle statistics that can be used in sensor networks to propagate
vehicle identity in a communication constrained manner.

[17]
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