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ABSTRACT

In this paper, a novel particle filter tracker is presentedtéoget
tracking using collocated radar and acoustic sensors. -titeel
tracking of the target’s position and velocity in Cartes@ordi-

nates is performed using batches of range and directiarrofal

estimates. For robustness, the filter aligns the radar andstic
data streams to account for acoustic propagation delays filtér

proposal function uses a Gaussian approximation to tharadk-

ing posterior for improved efficiency. To incorporate theyaéd

acoustic data into the tracker, a two-stage weightingessais pro-
posed. Computer simulations are provided to demonstratefth
fectiveness of the algorithm.

1. INTRODUCTION

Radar and acoustic measurements are complementary nexlalit
for target tracking because their combination can detezraitar-
get’s position in the Cartesian coordinates. In this paperpresent
a particle filter for a radar-acoustic sensor that also agklptsyn-
chronizes its multi-modal data streams for robust targetking.

measurements are normally distributed around the trueeraren-
surements, with constant data miss-probability and dldgesity.

To derive the particle filter proposal function, the targeste-
rior density is approximately by Laplaces method: a Gansdis
tribution around the posterior mode [3]. We calculate thst@aor
mode using a robust Newton-Raphson recursion with a bardktra
ing step size selection that imposes smoothness consti@inthe
target motion [4—6]. Moreover, the particle filter incorptes an ad-
ditional weighting stage because of the acoustic propaigdtlays.
A pre-weighting stage re-weights the particle set representing the
posterior from the previous iteration by using the laggeouatic
data received during the current estimation period.

2. TRACKER MECHANICS

In this paper, we focus the propagation delay aspect of théelea
filter. The filter derivations assume that a single targetrésent.
The particle filter state vectey = [xt, Ve, Vxt, vy,rt]T consists of
the target position and velocity in Cartesian coordinafé®e state
vector is estimated af second intervals (typicallyf = 1s for

our focus is on collocated sensors, because the mappingeof tiground targets) by using a batch of range and acoustic neasur

range and bearing estimates into the target position etim&D
space is one-to-one.

The motivation for the joint acoustic-radar particle filterthe
new low power RF sensor, implemented at the University ofiéig
that transmits a microwave signal to determine the rangevetoc-
ity, and the size of detected targets [1]. The sensor is ¢apb
providing range estimates at 32ms intervals with a rangautsn

ments (Fig. 1). It is assumed that the target moves with eonst
velocity during the estimation interval.

The received target multi-modal data is first processed by a
proper beamformer and a radar processor at smaller inseofal
T=T/M (e.g., M = 10) to obtain a batch of target DOA and

range estimateszg; = {6t+<m,1)r(p9)}r’\r’":l (acoustic) ang/rt =
{R{+(m,l)r(pR)}r’\]{|‘:l (radar), wheremis the batch indexpg is the

of approximately 2m on a range-Doppler map. Up to 100m, the,ymper of DOA estimates, amgk is the number of range estimates

current system is capable of producing range estimates fitti-m
ple ground vehicles as well as human targets. The radar bagdw
is envisioned to have a larger detection range with hemisgdie
coverage in the future.

The particle filter is formulated using a state space approac
The state vector consists of the target position in Camesierdi-
nates(x,yt) and its velocity(vxt, W ). We discuss the observability
of this state vector given the particle filter multi-modatebvations.
The filter observations are based on batches of directiearrofal
and range measurements. Hence, the received acoustindatsea
radar pulse returns are first pre-processed to calculatpatiile
filter observations. These observations are adaptivelgtsgnized
by the particle filter to compensate for the acoustic propagale-
lays.

The filter state update function is based on a locally linear m
tion model. The filter observation equations are derived &ipgu
an image template matching idea. The template matchingigdea
very effective when accurate models are available [2]. Inpyab-
lem, a temporal range image is first formed, when a batch gferan
measurements are received. Then, candidate image template
formed by using the state update function and the target stat-
tors. By determining the best matching image template, ahget
state vectors are determined. It is assumed that the DOAaaubr
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per batch index (Fig. 2). It is assumed that the batch of measu
ments are normally distributed around the true target galvi¢h
variancesoZ for acoustic DOAs and3 for radar range measure-
ments. The batch estimates may also include spurious pesks d
to clutter that are Poisson distributed with raggandAr for both
modalities. In addition, a constant data miss probabdifgr each
modality is assumed.

The observation data batches are treated as independey@sima
using a template matching idea [2, 7, 8]. Figure 1 illussatds
idea for both modalities. Candidate image templates araddrby
using the discrete realizations of the target state vectiled the
particles. By determining how well each image template matches
the observation image, a distribution for the particlesiedmnined.
Section 4 describes the equations that govern this process.

The particle filter adaptively synchronizes its multi-mbdata
to reduce estimation biases. Since electromagnetic wands a
acoustic waves travel through the air at different velesitirange
and DOA measurements received simultaneously do not rmres
information about the target's state at the same time. Tiseréime
delay between the range and DOA measurements depending on th
distance between the target and the sensors. This timg-géta
can be calculated from the geometry of the system:

VO =502+ (% - 52 ()

wherec is the speed of sound arfek,sy) is the sensor position in
Cartesian coordinates. Because of the target motion, thateo a

ta(t) :;1;
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Figure 1: The radar range estimates and the acoustic DOA esti

mates are used to form temporal observation images. A catedid
image template is formed by using a state vector realizgtiashed
line). The particle filter generates a distribution of thetae vec-
tor realizations by determining how well each template imescthe
observation images.

doppler effect, similar to a time-warping operation, in teeeived
acoustic data. The particle filter can handle this nonlirtegopler
effect. However, for typical tracking scenarios involviggound
targets, this effect is ignored in this paper and the timeydés
assumed constant during the estimation peffodithout loss of
generality.

Figure 3 illustrates how the particle filter handles the nem
multi-modal data during an estimation period. The traclkefgrms
estimation at the event time-frame for real-time trackifdgnce, the
acoustic data received during the estimation period wiltespond

to actual events that occurréglseconds earlier. The filter uses the

received radar range datdy(...,Ry) and part of the acoustic data

(Bmy+1, - - -, 6m) to propose and weight its particles at the estimation

period starting at timé. The remaining acoustic datéy(..., 6v,)
is used to pre-weight the particles that represent the postat
t—T.
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Figure 2: Observation data is not necessarily ordered. Mexve
an image based observation approach provides a naturairgyde
when targets are being tracked by the particle filter.
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Figure 3: The received data time-frame does not coincide thie
actual event time-frame due to the acoustic propagaticaydeFor
real-time tracking, the received data must be properlynaligto
reduce the estimation biases.

X

Figure 4: The target moves froAf at timet — T to Ain T seconds.
The target speed during the batch starting at tieen be calculated

asv=1,/3(r2+r2)—r3. The DOA® can be determined from

the angle measuremen(t§, 62, 63) by using the constant velocity
assumption between- T andt.

3. OBSERVABILITY OF THE STATE VECTOR

Observability is a classical control theory concept thatstgions
whether the state vector of a state-space system can benifetdr
purely from its observations [9,10]. In the joint radar astiwtrack-
ing problem, it is intuitive that the state vector is obséleavhen
the radar batch data and the corresponding acoustic datkapve
two or more batch observation measurements, resultingaratw
chor space points from which the target velocity is also rieiteed
(i.e.,tg < T —21). In this section, we will give a stronger result
and show that the state vector is observable even if thei dser-
lap, as long aty < 2T — 31. This result also gives a bound on the
maximum target tracking rang&dax = (2T — 37)c) for real-time
tracking.

Figure 4 illustrates that it is possible to determine thgear
speedv and the target heading minus the initial D@A- 6 given
three range measurements [8]. This follows from Stewalneo1t
rem that uses the law of cosines on the triangi€3\B and AOAC.
Note that the target DOA and the target heading can not be de-
termined uniquely given only the range measurements. Hexvev
the DOA 6 in Fig. 4 can be determined if three angle measure-
ments are available from the previous batch. The proof Unekatv
of cosines on the triangleA OA'B’ and AOA'C’ and the constant
velocity assumption [11, 12]. Therefore, if the current eved
acoustic data allows us to observe three batch measurethants
are within the previous estimation period time-frame, we ftaly
observe the current state.



4. DATA MODELS

4.1 StateUpdate Density

The state update function can be derived from the physichef t
target motion, which is modeled as locally linear. The risgl
state update pdf is given by

p(zt|ze—7) = A (ATZt-T,22), 2

where.#" (U, %) is the Gaussian density with megrand covariance
>. The matrixAt comes from the linearization of the target motion:

10T 0
01 0T

AT=10 0 1 0 )
00 0 1

The noise covariance matrk; in (2) assumes a full rank diagonal
form as opposed to the rank deficient form that models theeeorr
lations between position and velocity. In that case, thiestpdate
pdf includes Dirac’s delta function and becomes unsuitédni¢he
batch processing.

4.2 Observation Density

The particle filter observationg; = [ yg;, yrt | consist of the
acoustic and radar observations that are assumed indeyteyiEn
the current state vector. Hence, the filter's multi-modalada
likelihood is a product of the individual likelihoods of damodal-

ity:
P(ytlzt) = p(ye.tlzt) P(YRrt|zt)- (4)

The radar returns and the received acoustic data over atitee-al
T are used to estimate target ranges and DOAs. A batth sich
range estimates are used by the particle filter to estimatéatiget

5. PARTICLE FILTER DETAILS

5.1 Proposal Function

Given the state-space description of a problem, the parilter-
ing solutions are well-understood. The efficiency of theoatgm
depends on the proposal functions that determine the rasdpm
port of the particles to bproperly weighted for estimation. In this
paper, a proposal function, denotedgs:|yt,z;_1), is derived to
approximate the target posterior density directly:

®)

wherep(zt|zi_T) is given by (2) ang(yt|zt ) is given by (6). More-
over, the proportionality in (8) is independent of the cotr&tatez; .
This approximation, in effect, moves the particle streamatals
high probability regions of the posterior, capturing thegé ma-
neuvers more effectively due to the reactive effect of theezu ob-
served data. Moreover, more particles survive the finainptiag
step, producing better future states as the system evdl¥és [

The proposal function uses Laplace’s method to approximate
the data-likelihood ternp(yt|zt). Laplace’s method is an analytical
approximation of probability density functions based oneau§sian
approximation of the density around its mode, where therge/e
Hessian of the logarithm of the density is used as a covaiape
proximation [15]. It can provide approximations to postesithat
are as accurate and sometimes more accurate than the aparoxi
tions based on third-order expansions of the density fanst[3].
This approach is also computationally attractive, becausaly
requires first and second-order derivatives. The condiiorthe
accurate approximation is that the posterior be a unimoeliasity
or be dominated by a single mode.

To calculate the mode gi(yt|zt), denoted agym, and the its
HessiarH at the mode, a Newton search algorithm with backtrack-

9(zt|yt,ze—1) ~ P(2zt|yt, ze—1) O p(yt|zt) p(zt|ze—1)

state everyT = MT seconds. It is assumed that the batch of meaing step size selection [4, 5] is used on the negative loglitikod

surements are normally distributed around the true tasgefas and

of (6). The algorithm is implemented based on the sufficient d

a constant data miss probabiliy The measurement batches may crease condition. In this case, the Newton algorithm haseniga

include spurious estimates due to clutter.

The observation density for each modality is derived usirgg t
arguments found in [13]. The clutter densities are given by

p(6|6 is spurioug = Ag andp(R|Ris spuriou$ = Ar.  (5)

It is assumed that given the batch measurements, a singkuneea
ment from both modalities at each batch indexbelongs to the
target, or the target is missed for that modality. Multipleasure-
ments imply the presence of clutter. Hence, the data likelihis
written as:p(yt|zt) O

|M| 14 -9 E exp( (Rt+<m1)r(pR)—hR,m(Zt))2>
m=1 2MO3gARPR PR=1 204
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wherety is calculated using (1) and quantized at levels séconds,
and the function®ir m(-) andhg m(-) (Fig. 1) are given by

m=Mg+1

hrm(zt) = \/(Xt +(M—=1)TVxt)2 + (Y + (M— 1) Tyt )?,

hm(zt) =tan (M)

X + (m* 1)TVX7I
The approximation off is not necessary if the particle filter tracker
can give feedback to the acoustic beamformer that calcuthte
candidate DOA's. If feedback is possible, given the statgorez:,
the acoustic data can be time-warped using (1), and the Dea#s
be calculated accordingly. In this paper, because of tigetaanges
and the posterior variance, it happens thas the same for most of
the particles after quantization.

@)

sensitivity issues. Hence, as an alternative, we changestfunc-
tion to the following cost function to determine the mag:

fy(zt) = fo(zt) + fr(zt) + fz(2t), 9)
where
2
M B (Bmoyr(Po) ~hom(z))
fo(zt) = m:gﬁlpg:l 202 , (10)
N G L) N
zt) = )
R r’erpRzl 204
and 1
fa(z) = 5(Z—2) T (@ —=). (12)

This cost function (9) is an approximation of the full posterdi-
rectly and consists of three terms: the first two terms hageséme
minima as the negative log-likelihood function of the daistrib-
ution; and the last term functions is a regularization teamtihg
the solutionzy to lie close to some vecta w.r.t. some weighted
distance measurE.. The parametez represents the particle best
explaining the current data set, obtained by propagatingeia the
initial particle set coming from the previous time step bingshe
motion update.

Even with the available analytical relations, the caldatabf
the Hessian still poses problems. If the Hessian of (9) isatly
calculated from the exact formulas, it is possible to shoat the
resulting expression fdH is not guaranteed to be positive definite
and modifications are necessary to make the Newton comeetio
fective at each iteration. Hence, while calculating thelfexpres-
sion of the Hessian, the terms including second-order dvas



are neglected from the analytical formula. In this case Hlssian
is a function of the outer product of the gradient, and it isgiole
to prove that it is positive semi definite.

After the Gaussian approximation to the data-likelihood de

scribed above, the final expression for the proposal fundtiobe
used in the particle filter is given by

Weights
o(zelyrzt) ~ A (HgZg) . (13)
where L’ - <
L N Preweights/z,/"
2= (H+5Y)
(149 @ ()
H=2Zq4 (HZM —Q—Z;lATZt,T) . f«—— Node —. @

We note that at the proposal stage, any covariance appreximéigure 5: (a) When the acoustic and radar time-frames querla

tion can be used because the particle filter's weightingestam
take care of any resulting discrepancies. Our particulsariance
choice of the proposal function stems from the filter's effiy
concerns. Moreover, this proposal strategy also works #hare

the final particle weights have contributions from (i) thelag
likelihood, (ii) the overlapping acoustic-likelihood, @riii) the
pre-weights (the residual acoustic-likelihood). (b) Whhaere is
no overlap between the radar and the acoustic dataTi.€.tq <

is no overlap between the acoustic and radar measurements, i 2T — 31 in Fig. 3), the final particle weights still define a unimodal
whenty > T. This is because the last term in the cost function (9)posterior through the contributions of the second stagghteiand

keeps the cost function unimodal even if there is no acotistic
formation about the current target state. In this case, nberse
Hessian is not a good approximation for the data-likelihcodari-

ance for the proposal and a constant preset covariancexnatri
be used to propose particles.

5.2 Particle Weights
The weighting stage of the particle filter takes care of asgrdipan-

the preweights. Note that the distribution is tighter in lfafause
there is more acoustic information available about theenirstate.

(—150m 150m). The target's speed in thedirection is 15m/s,
whereas the target’'s speed in thelirection varies linearly from

25m/s to—25m/s. In the simulation, the radar-acoustic node is sit-

uated at the origin, and is assumed to have hemisphericair-cov

cies between how the particles are proposed and how therjposte age. Noisy measurements are simulated by adding indepereten

is actually distributed. The patrticle filter algorithm fvetjoint par-
ticle filter has two weighting stages unlike the genericipbefilter
algorithm. The first weighting stage uses the subset of dicaleta

(61,...,6, in Fig. 3) that carries information about the previous

state. This stage is called the pre-weighting stage.

The pre-weights use the information in the current receive

acoustic data to reevaluate the importance of the partatieep-

resenting the posterior at time- T. When there is no acoustic

information about the current state (i.e., target range dsenthan
Tc meters), the pre-weights may still allow the estimationhs t
state-vector (Fig. 5). Note that there is an state obsdityabon-

nection between Figs. 5 and 4. The pre-weights are given éy th

following expression based on the lagged data modality:

A = w1 el ly)

W
(i) (i) (15)
Ow 1 p(yoetlz 1),
where, by the Markovian propertp(y91t|zt(QT) =
) 2
M - P B (m-1y:(Po) — o (7,
rdl l+7lq eexp 7(“ Y 9229 tT))
m=1 2Mo30Ag Py Po=1 O%
(16)

The particle filter weights for the current estimation titnare
given by the ratio of the posterior density to the proposakits:

0 i POyt p(a 127

G (A7)
g(zt |yt7zt7T

6. SIMULATIONS

Figure 6 shows the joint tracker with acoustic propagatietayl
compensation (solid line marked by successfully tracking a ma-
neuvering ground target (solid line). The target track begat

mean white Gaussian noise with standard deviations of ledegrd
2 meters to the DOA estimates and range estimates, resggctiv

The top left plot in Fig. 6 also shows the biased trackingltesu
without the time delay compensation (dashed line). Thedxasrs

({)ecause the filter tracks the delayed DOA observations éddste-

op right plotin Fig. 6). The tracking bias increases with thrget’s
velocity and also with the target’s range from the radamatio

node. In this particular example, the acoustic DOA's areyked

more than one second betwees 5s andt = 15s. However, be-
cause of the weighting strategy, the particle filter was &bleack

the target real-time.
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Figure 6: Tracking results with (solid line marked &yand without
(dashed line) acoustic time-delay compensation are cardpaith
the ground truth (solid line). The biased tracking resuksmsfrom
the delayed acoustic data.



7. CONCLUSIONS

In this paper, we gave a particle filter solution to a joint @t
radar tracking problem from a single node. Observability of
the problem is discussed under real-time tracking comggai A
weighting strategy is proposed to tackle the acoustic mapan
delays. The filter likelihood is formulated so that it is rebagainst
missing data or spurious observations. We demonstrategete
formance of the tracker in a real-time tracking scenarionetiee
acoustic data is delayed about 1 second due to the targed. rivey
showed that without the time-delay compensation, therdiagin

the state estimates due to rapid target motion.

REFERENCES

[1] R. T. Damarla, V. Hao, C. Reiff, and J. Kurtz, “Fusion of
acoustic and radar data for tracking vehicles,” Military
Sensing Symposium, Laurel, MD, 22—-25 August 2005.

[2] M. Isard and A. Blake Active Contours, Springer, 2000.

[3] L. Tierney and J. B. Kadane, “Accurate approximations fo
posterior moments and marginal densitiesJournal of the
American Satistical Association, , no. 81, pp. 82—86, 1986.

[4] J. Nocedal and S.J. Wright, Numercial Optimization,
Springer-Verlag, 1999.

[5] J.E.Dennis Jr. and R.B. SchnabeNumerical Methods for
Unconstrained Optimization and Nonlinear Equations, Soci-

ety for Industrial and Applied Mathematcis, Philadelpliia,
1996.

[6] V. Cevher and J. H. McClellan, “An acoustic multiple tatg
tracker,” inlEEE SSP 2005, Bordeaux, FR, 17—20 July 2005.

[7] V. Cevher and J. H. McClellan, “Acoustic direction-ofrzal
multi target tracking,” under revision 8EEE Trans. on SP.

[8] V. Cevher, R. Velmurugan, and J. H. McClellan, “A rangayo
multiple target particle filter tracker,” submitted to ICAB
2006.

[9] W.L. Brogan, Modern Control Theory, Prentice Hall, 1991.

[10] T. Kailath, A.H. Sayed, and B. Hassibl.inear Estimation,
Prentice Hall, 2000.

[11] Y. Zhou, P.C. Yip, and H. Leung, “Tracking the direction
of-arrival of multiple moving targets by passive arraysgeéd
rithm,” IEEE Trans. on Sgnal Processing, vol. 47, no. 10, pp.
2655-2666, October 1999.

[12] V. Cevher and J. H. McClellan, “General direction-afizal
tracking with acoustic nodeslEEE Trans. on Sgnal Process-
ing, vol. 53, no. 1, pp. 1-12, January 2005.

[13] Y. Bar-Shalom and T. Fortmanfyacking and Data Associa-
tion, Academic-Press, 1988.

[14] J.S. Liu and R. Chen, “Sequential Monte Carlo methods fo
dynamic systems,Journal of the American Satistical Asso-
ciation, vol. 93, pp. 1032-1044, September 1998.

[15] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin,
Bayesian Data Analysis, Chapman Hall/CRC, 2004.



