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ABSTRACT

In this paper, a novel particle filter tracker is presented for target
tracking using collocated radar and acoustic sensors. Real-time
tracking of the target’s position and velocity in Cartesiancoordi-
nates is performed using batches of range and direction-of-arrival
estimates. For robustness, the filter aligns the radar and acoustic
data streams to account for acoustic propagation delays. The filter
proposal function uses a Gaussian approximation to the fulltrack-
ing posterior for improved efficiency. To incorporate the aligned
acoustic data into the tracker, a two-stage weighting strategy is pro-
posed. Computer simulations are provided to demonstrate the ef-
fectiveness of the algorithm.

1. INTRODUCTION

Radar and acoustic measurements are complementary modalities
for target tracking because their combination can determine a tar-
get’s position in the Cartesian coordinates. In this paper,we present
a particle filter for a radar-acoustic sensor that also adaptively syn-
chronizes its multi-modal data streams for robust target tracking.
Our focus is on collocated sensors, because the mapping of the
range and bearing estimates into the target position estimate in 2D
space is one-to-one.

The motivation for the joint acoustic-radar particle filteris the
new low power RF sensor, implemented at the University of Florida,
that transmits a microwave signal to determine the range, the veloc-
ity, and the size of detected targets [1]. The sensor is capable of
providing range estimates at 32ms intervals with a range resolution
of approximately 2m on a range-Doppler map. Up to 100m, the
current system is capable of producing range estimates for multi-
ple ground vehicles as well as human targets. The radar hardware
is envisioned to have a larger detection range with hemispherical
coverage in the future.

The particle filter is formulated using a state space approach.
The state vector consists of the target position in Cartesian coordi-
nates(xt ,yt) and its velocity(vx,t ,vy,t). We discuss the observability
of this state vector given the particle filter multi-modal observations.
The filter observations are based on batches of direction-of-arrival
and range measurements. Hence, the received acoustic data and the
radar pulse returns are first pre-processed to calculate theparticle
filter observations. These observations are adaptively synchronized
by the particle filter to compensate for the acoustic propagation de-
lays.

The filter state update function is based on a locally linear mo-
tion model. The filter observation equations are derived by using
an image template matching idea. The template matching ideais
very effective when accurate models are available [2]. In our prob-
lem, a temporal range image is first formed, when a batch of range
measurements are received. Then, candidate image templates are
formed by using the state update function and the target state vec-
tors. By determining the best matching image template, the target
state vectors are determined. It is assumed that the DOA and range
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measurements are normally distributed around the true range mea-
surements, with constant data miss-probability and clutter density.

To derive the particle filter proposal function, the target poste-
rior density is approximately by Laplaces method: a Gaussian dis-
tribution around the posterior mode [3]. We calculate the posterior
mode using a robust Newton-Raphson recursion with a backtrack-
ing step size selection that imposes smoothness constraints on the
target motion [4–6]. Moreover, the particle filter incorporates an ad-
ditional weighting stage because of the acoustic propagation delays.
A pre-weighting stage re-weights the particle set representing the
posterior from the previous iteration by using the lagged acoustic
data received during the current estimation period.

2. TRACKER MECHANICS

In this paper, we focus the propagation delay aspect of the particle
filter. The filter derivations assume that a single target is present.
The particle filter state vectorzt =

[
xt , yt , vx,t , vy,t

]T consists of
the target position and velocity in Cartesian coordinates.The state
vector is estimated atT second intervals (typicallyT = 1s for
ground targets) by using a batch of range and acoustic measure-
ments (Fig. 1). It is assumed that the target moves with constant
velocity during the estimation interval.

The received target multi-modal data is first processed by a
proper beamformer and a radar processor at smaller intervals of
τ = T/M (e.g., M = 10) to obtain a batch of target DOA and
range estimates:yθ ,t = {θt+(m−1)τ(pθ )}M

m=1 (acoustic) andyR,t =

{Rt+(m−1)τ(pR)}M
m=1 (radar), wherem is the batch index,pθ is the

number of DOA estimates, andpR is the number of range estimates
per batch index (Fig. 2). It is assumed that the batch of measure-
ments are normally distributed around the true target values with
variancesσ2

θ for acoustic DOA’s andσ2
R for radar range measure-

ments. The batch estimates may also include spurious peaks due
to clutter that are Poisson distributed with rateλθ andλR for both
modalities. In addition, a constant data miss probabilityq for each
modality is assumed.

The observation data batches are treated as independent images
using a template matching idea [2, 7, 8]. Figure 1 illustrates this
idea for both modalities. Candidate image templates are formed by
using the discrete realizations of the target state vector,called the
particles. By determining how well each image template matches
the observation image, a distribution for the particles is determined.
Section 4 describes the equations that govern this process.

The particle filter adaptively synchronizes its multi-modal data
to reduce estimation biases. Since electromagnetic waves and
acoustic waves travel through the air at different velocities, range
and DOA measurements received simultaneously do not represent
information about the target’s state at the same time. Thereis a time
delay between the range and DOA measurements depending on the
distance between the target and the sensors. This time-delay td(t)
can be calculated from the geometry of the system:

td(t) =
1
c

√
(xt − sx)2 +(yt − sy)2, (1)

wherec is the speed of sound and(sx,sy) is the sensor position in
Cartesian coordinates. Because of the target motion, thereis also a
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Figure 1: The radar range estimates and the acoustic DOA esti-
mates are used to form temporal observation images. A candidate
image template is formed by using a state vector realization(dashed
line). The particle filter generates a distribution of thesestate vec-
tor realizations by determining how well each template matches the
observation images.

doppler effect, similar to a time-warping operation, in thereceived
acoustic data. The particle filter can handle this nonlineardoppler
effect. However, for typical tracking scenarios involvingground
targets, this effect is ignored in this paper and the time-delay is
assumed constant during the estimation periodT without loss of
generality.

Figure 3 illustrates how the particle filter handles the received
multi-modal data during an estimation period. The tracker performs
estimation at the event time-frame for real-time tracking.Hence, the
acoustic data received during the estimation period will correspond
to actual events that occurredtd seconds earlier. The filter uses the
received radar range data (R1, . . . ,RM) and part of the acoustic data
(θMd+1, . . . ,θM) to propose and weight its particles at the estimation
period starting at timet. The remaining acoustic data (θ1, . . . ,θMd )
is used to pre-weight the particles that represent the posterior at
t −T .

Mτ
0 T 2T 3T

time

Range/DOA Missing data

Clutteryt = {yt+(m−1)τ(p)}M
m=1

Figure 2: Observation data is not necessarily ordered. However,
an image based observation approach provides a natural ordering,
when targets are being tracked by the particle filter.
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Figure 3: The received data time-frame does not coincide with the
actual event time-frame due to the acoustic propagation delays. For
real-time tracking, the received data must be properly aligned to
reduce the estimation biases.
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Figure 4: The target moves fromA′ at timet −T to A in T seconds.
The target speed during the batch starting at timet can be calculated

as v = 1
τ

√
1
2(r2

1 + r2
3)− r2

2. The DOA θ can be determined from

the angle measurements(θ1,θ2,θ3) by using the constant velocity
assumption betweent −T andt.

3. OBSERVABILITY OF THE STATE VECTOR

Observability is a classical control theory concept that questions
whether the state vector of a state-space system can be determined
purely from its observations [9,10]. In the joint radar acoustic track-
ing problem, it is intuitive that the state vector is observable when
the radar batch data and the corresponding acoustic data overlap
two or more batch observation measurements, resulting in two an-
chor space points from which the target velocity is also determined
(i.e., td ≤ T − 2τ). In this section, we will give a stronger result
and show that the state vector is observable even if there is no over-
lap, as long astd ≤ 2T −3τ. This result also gives a bound on the
maximum target tracking range (Rmax = (2T −3τ)c) for real-time
tracking.

Figure 4 illustrates that it is possible to determine the target
speedv and the target heading minus the initial DOAφ − θ given
three range measurements [8]. This follows from Stewart’s theo-
rem that uses the law of cosines on the triangles△OAB and△OAC.
Note that the target DOAθ and the target headingφ can not be de-
termined uniquely given only the range measurements. However,
the DOA θ in Fig. 4 can be determined if three angle measure-
ments are available from the previous batch. The proof uses the law
of cosines on the triangles△OA′B′ and△OA′C′ and the constant
velocity assumption [11, 12]. Therefore, if the current observed
acoustic data allows us to observe three batch measurementsthat
are within the previous estimation period time-frame, we can fully
observe the current state.



4. DATA MODELS

4.1 State Update Density

The state update function can be derived from the physics of the
target motion, which is modeled as locally linear. The resulting
state update pdf is given by

p(zt |zt−T ) = N (AT zt−T ,Σz) , (2)

whereN (µ,Σ) is the Gaussian density with meanµ and covariance
Σ. The matrixAT comes from the linearization of the target motion:

AT =





1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1



 . (3)

The noise covariance matrixΣz in (2) assumes a full rank diagonal
form as opposed to the rank deficient form that models the corre-
lations between position and velocity. In that case, the state update
pdf includes Dirac’s delta function and becomes unsuitablefor the
batch processing.

4.2 Observation Density

The particle filter observationsyt =
[
yθ ,t , yR,t

]
consist of the

acoustic and radar observations that are assumed independent given
the current state vector. Hence, the filter’s multi-modal data-
likelihood is a product of the individual likelihoods of each modal-
ity:

p(yt |zt) = p(yθ ,t |zt)p(yR,t |zt). (4)

The radar returns and the received acoustic data over a time-interval
τ are used to estimate target ranges and DOAs. A batch ofM such
range estimates are used by the particle filter to estimate the target
state everyT = Mτ seconds. It is assumed that the batch of mea-
surements are normally distributed around the true target ranges and
a constant data miss probabilityq. The measurement batches may
include spurious estimates due to clutter.

The observation density for each modality is derived using the
arguments found in [13]. The clutter densities are given by

p(θ |θ is spurious) = λθ andp(R|R is spurious) = λR. (5)

It is assumed that given the batch measurements, a single measure-
ment from both modalities at each batch indexm belongs to the
target, or the target is missed for that modality. Multiple measure-
ments imply the presence of clutter. Hence, the data likelihood is
written as:p(yt |zt) ∝

M

∏
m=1




1+
1−q√

2πσ2
RqλRPR

PR

∑
pR=1

exp

(

−

(
Rt+(m−1)τ(pR)−hR,m(zt)

)2

2σ2
R

)



×
M

∏
m=Md+1




1+
1−q√

2πσ2
θ qλθ Pθ

Pθ

∑
pθ =1

exp

(

−

(
θt+(m−1)τ(pθ )−hθ ,m(zt)

)2

2σ2
θ

)

 ,

(6)

wheretd is calculated using (1) and quantized at levels ofτ seconds,
and the functionshR,m(·) andhθ ,m(·) (Fig. 1) are given by

hR,m(zt) =
√

(xt +(m−1)τvx,t )2 +(yt +(m−1)τvy,t )2,

hθ ,m(zt) = tan−1
(

yt +(m−1)τvy,t

xt +(m−1)τvx,t

)
.

(7)

The approximation oftd is not necessary if the particle filter tracker
can give feedback to the acoustic beamformer that calculates the
candidate DOA’s. If feedback is possible, given the state vector zt ,
the acoustic data can be time-warped using (1), and the DOA’scan
be calculated accordingly. In this paper, because of the target ranges
and the posterior variance, it happens thattd is the same for most of
the particles after quantization.

5. PARTICLE FILTER DETAILS

5.1 Proposal Function

Given the state-space description of a problem, the particle filter-
ing solutions are well-understood. The efficiency of the algorithm
depends on the proposal functions that determine the randomsup-
port of the particles to beproperly weighted for estimation. In this
paper, a proposal function, denoted asg(zt |yt ,zt−1), is derived to
approximate the target posterior density directly:

g(zt |yt ,zt−T ) ≈ p(zt |yt ,zt−T ) ∝ p(yt |zt)p(zt |zt−T ) (8)

wherep(zt |zt−T ) is given by (2) andp(yt |zt) is given by (6). More-
over, the proportionality in (8) is independent of the current statezt .
This approximation, in effect, moves the particle stream towards
high probability regions of the posterior, capturing the target ma-
neuvers more effectively due to the reactive effect of the current ob-
served data. Moreover, more particles survive the final resampling
step, producing better future states as the system evolves [14].

The proposal function uses Laplace’s method to approximate
the data-likelihood termp(yt |zt). Laplace’s method is an analytical
approximation of probability density functions based on a Gaussian
approximation of the density around its mode, where the inverse
Hessian of the logarithm of the density is used as a covariance ap-
proximation [15]. It can provide approximations to posteriors that
are as accurate and sometimes more accurate than the approxima-
tions based on third-order expansions of the density functions [3].
This approach is also computationally attractive, becauseit only
requires first and second-order derivatives. The conditionfor the
accurate approximation is that the posterior be a unimodal density
or be dominated by a single mode.

To calculate the mode ofp(yt |zt), denoted aszM , and the its
HessianH at the mode, a Newton search algorithm with backtrack-
ing step size selection [4, 5] is used on the negative log-likelihood
of (6). The algorithm is implemented based on the sufficient de-
crease condition. In this case, the Newton algorithm has numerical
sensitivity issues. Hence, as an alternative, we change itscost func-
tion to the following cost function to determine the modezM :

fy(zt) = fθ (zt)+ fR(zt)+ f
ẑ
(zt), (9)

where

fθ (zt) =
M

∑
m=Md+1

Pθ

∑
pθ =1

(
θt+(m−1)τ(pθ )−hθ ,m(zt)

)2

2σ2
θ

, (10)

fR(zt) =
M

∑
m=1

PR

∑
pR=1

(
Rt+(m−1)τ(pR)−hR,m(zt)

)2

2σ2
R

, (11)

and

f
ẑ
(zt) =

1
2
(ẑ−zt)

′Σ−1
e (ẑ−zt). (12)

This cost function (9) is an approximation of the full posterior di-
rectly and consists of three terms: the first two terms have the same
minima as the negative log-likelihood function of the data distrib-
ution; and the last term functions is a regularization term forcing
the solutionzM to lie close to some vector̂z w.r.t. some weighted
distance measureΣe. The parameter̂z represents the particle best
explaining the current data set, obtained by propagating forward the
initial particle set coming from the previous time step by using the
motion update.

Even with the available analytical relations, the calculation of
the Hessian still poses problems. If the Hessian of (9) is directly
calculated from the exact formulas, it is possible to show that the
resulting expression forH is not guaranteed to be positive definite
and modifications are necessary to make the Newton correction ef-
fective at each iteration. Hence, while calculating the final expres-
sion of the Hessian, the terms including second-order derivatives



are neglected from the analytical formula. In this case, theHessian
is a function of the outer product of the gradient, and it is possible
to prove that it is positive semi definite.

After the Gaussian approximation to the data-likelihood de-
scribed above, the final expression for the proposal function to be
used in the particle filter is given by

g(zt |yt ,zt−T ) ∼ N

(
µg,Σg

)
, (13)

where

Σg =
(
H+Σ−1

z

)−1
,

µ = Σg

(
HzM +Σ−1

z ATzt−T

)
.

(14)

We note that at the proposal stage, any covariance approxima-
tion can be used because the particle filter’s weighting stage can
take care of any resulting discrepancies. Our particular covariance
choice of the proposal function stems from the filter’s efficiency
concerns. Moreover, this proposal strategy also works evenif there
is no overlap between the acoustic and radar measurements, i.e.,
whentd ≥ T . This is because the last term in the cost function (9)
keeps the cost function unimodal even if there is no acousticin-
formation about the current target state. In this case, the inverse
Hessian is not a good approximation for the data-likelihoodcovari-
ance for the proposal and a constant preset covariance matrix can
be used to propose particles.

5.2 Particle Weights

The weighting stage of the particle filter takes care of any discrepan-
cies between how the particles are proposed and how the posterior
is actually distributed. The particle filter algorithm for the joint par-
ticle filter has two weighting stages unlike the generic particle filter
algorithm. The first weighting stage uses the subset of acoustic data
(θ1, . . . ,θtd in Fig. 3) that carries information about the previous
state. This stage is called the pre-weighting stage.

The pre-weights use the information in the current received
acoustic data to reevaluate the importance of the particle set rep-
resenting the posterior at timet − T . When there is no acoustic
information about the current state (i.e., target range is more than
T c meters), the pre-weights may still allow the estimation of the
state-vector (Fig. 5). Note that there is an state observability con-
nection between Figs. 5 and 4. The pre-weights are given by the
following expression based on the lagged data modality:

ŵ(i)
t = w(i)

t−T p(z
(i)
t−T |yt)

∝ w(i)
t−T p(yθ ,t |z

(i)
t−T ),

(15)

where, by the Markovian property,p(yθ ,t |z
(i)
t−T ) =

Md

∏
m=1





1+

1−q√
2πσ2

θ qλθ Pθ

Pθ

∑
pθ =1

exp



−

(
θt+(m−1)τ (pθ )−hθ ,m(z

(i)
t−T )

)2

2σ2
θ









.

(16)
The particle filter weights for the current estimation timet are

given by the ratio of the posterior density to the proposal density:

w(i)
t = ŵ(i)

t
p(yt |z

(i)
t )p(z

(i)
t |z

(i)
t−T )

g(z
(i)
t |yt ,z

(i)
t−T )

. (17)

6. SIMULATIONS

Figure 6 shows the joint tracker with acoustic propagation delay
compensation (solid line marked by⋄) successfully tracking a ma-
neuvering ground target (solid line). The target track begins at

Node

Radar data
Acoustic data

Preweights

Weights

(a) (b)

Figure 5: (a) When the acoustic and radar time-frames overlap,
the final particle weights have contributions from (i) the radar-
likelihood, (ii) the overlapping acoustic-likelihood, and (iii) the
pre-weights (the residual acoustic-likelihood). (b) Whenthere is
no overlap between the radar and the acoustic data (i.e.,T ≤ td ≤
2T −3τ in Fig. 3), the final particle weights still define a unimodal
posterior through the contributions of the second stage weights and
the preweights. Note that the distribution is tighter in (a)because
there is more acoustic information available about the current state.

(−150m,150m). The target’s speed in thex-direction is 15m/s,
whereas the target’s speed in they-direction varies linearly from
25m/s to−25m/s. In the simulation, the radar-acoustic node is sit-
uated at the origin, and is assumed to have hemispherical cover-
age. Noisy measurements are simulated by adding independent zero
mean white Gaussian noise with standard deviations of 1 degree and
2 meters to the DOA estimates and range estimates, respectively.

The top left plot in Fig. 6 also shows the biased tracking results
without the time delay compensation (dashed line). The biasoccurs
because the filter tracks the delayed DOA observations (dashed line-
top right plot in Fig. 6). The tracking bias increases with the target’s
velocity and also with the target’s range from the radar-acoustic
node. In this particular example, the acoustic DOA’s are delayed
more than one second betweent = 5s andt = 15s. However, be-
cause of the weighting strategy, the particle filter was ableto track
the target real-time.
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Figure 6: Tracking results with (solid line marked by⋄) and without
(dashed line) acoustic time-delay compensation are compared with
the ground truth (solid line). The biased tracking results stem from
the delayed acoustic data.



7. CONCLUSIONS

In this paper, we gave a particle filter solution to a joint acoustic
radar tracking problem from a single node. Observability of
the problem is discussed under real-time tracking constraints. A
weighting strategy is proposed to tackle the acoustic propagation
delays. The filter likelihood is formulated so that it is robust against
missing data or spurious observations. We demonstrated theper-
formance of the tracker in a real-time tracking scenario where the
acoustic data is delayed about 1 second due to the target range. We
showed that without the time-delay compensation, there is abias in
the state estimates due to rapid target motion.
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