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ABSTRACT particles and their associated weights. The resulting distribution
can be used to initialize various distributed joint tracking (DJT)
algorithms such as the ones in [2—6]. The algorithm satisfies the
typical constraints of a distributed system. The communication be-
tween individual sensors has fixed bandwidth. Since the informa-
tion propagated between sensors is the cumulative state informa-
tion, the amount of information passed between individual sensors
does notincrease. The sensor types focused on are Direction of Ar-
Sival (DOA) nodes (e.g., acoustic arrays with known microphone
positions) and range-doppler nodes (e.g., a radar sensor). How-
ever, the results are general and can be extended to networks with
different sensor modalities. Each sensor runs a tracking algorithm
that operates in a different state space determined by the sensor
modality. We shall refer to the tracking algorithms running at the
different sensors as the organic trackers. The DJT operates in a
state space which may be different from the state spaces of the or-
ganic trackers at the individual nodes. We assume that each tracker
1. INTRODUCTION is capable of detecting a new target. When an organic tracker de-
tects a new target in its limited subspace, it transmits information
In sensor networks, distributed processing is becoming more pop-throughout the network to generate the target state distribution. We
ular than the centralized approaches [1]. This is because in cen-also have a robust weighting strategy that can accommodate clutter
tralized networks, since there is only one processing node in theas well as missing data.
network, if that particular node is incapacitated, the entire sys- Communication takes place between neighboring sensors only
tem fails. The communication overhead is also significant. More- and there is a predefined path for the information flow through the
over, if all the sensing nodes are trying to transmit raw data to the network from the first sensor to the last sensor.
central processing node, the required bandwidth increases signifi- The organization of the paper is as follows. Section 2 briefly
cantly with the number of nodes. To overcome these drawbacks, aintroduces the acoustic and radar trackers. Section 3 proposes a
distributed processing approach is attractive. Monte-Carlo approach for the distributed estimation of the target
Distributed processing stipulates processing capabilities at in- state distribution. Section 4 demonstrates the effectiveness of the

dividual sensors. We denote a sensor that has the ability to procesgroposed algorithms on synthetic data. Conclusions and future
data in addition to sensing as a smart sensor. Distributed processwork follow in Section 5.

ing eliminates the need for a central processing node. Thus the
system is not fully dependent on a single node for processing thus
eliminating the computational bottleneck. Since a smart sensor can

process its own data, it only transmits sufficient statistics in the The two types of sensor nodes used to demonstrate the initializa-

communication ch.annlel, minimizing the communication among tion algorithm are DOA sensors and Range-Doppler sensors. The
sensors. Communication consumes more battery power than coms

tation. h ¢ works with distributed - "DOA tracker operates in thé [q ¢]' space wheréd is the direc-
putation, hence smart Sensor networks with distributed processing, , yowards the target, q is the ratio of the targets velocity to the
have additional advantages.

In thi | method for determining initial multiol targets range ang is the heading direction of the target. The
n this paper, a novel method for determining initial muitiple range-doppler tracker operates in the fi'\space where r is the

target state distributions in a smart sensor network is proposed in arange o the target and s the targets radial velocity. Detailed
distributed framework. A Monte-Carlo method is used to generate descriptions about these trackers can be found in [7—15]

a discretized approximation to the target state distribution. This The focus of this paper is to generate a probability distribu-
distribution is represented using hypothesized target states calleqion for the target in the [x y ¥ v,]' space where x and y are
Y

Prepared through collaborative participation in the Advanced Sen- the Cartesian coordinates of the targets location anahe v, are
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the Collaborative Technology Alliance Program, Cooperative Agreement true location and velocity of the target is not observable at any of
DAAD19-01-02-0008. the individual nodes and that the organic trackers operate in dif-

Distributed processing algorithms are attractive alternatives to cen-
tralized algorithms for target tracking applications in sensor net-
works. In this paper, we address the issue of determining a ini-
tial probability distribution of multiple target states in a distributed

manner to initialize distributed trackers. Our approach is based
on Monte-Carlo methods, where the state distributions are repre-

tor is the target positions and velocities in the 2D plane. Our ap-
proach can determine the state vector distribution even if the indi-
vidual elements are not capable of observing it. The only condition
is that the network as a whole can observe the state vector. A ro-
bust weighting strategy is formulated to account for mis-detections
and clutter. To demonstate the effectiveness of the algorithm, we
use direction-of-arrival nodes and range-doppler nodes.

2. ACOUSTIC AND RADAR TRACKERS




ferent state spaces that have lower dimensions than the state space For Range-Doppler nodes:
in which the targets distribution is desired. This means there is a

many to one mapping from the states used by the organic trackers )~ N(re, Br,) (12)

to the state space in which the final target distribution is gener- @

ated. It is assumed that the organic trackers are available at the 6" ~U(0,2m) (13)

different nodes and the outputs of the organic trackers are used to OB N(vr,,So.) (14)

generate the desired probability distribution. The sensor network ‘ o e ,

is assumed to be calibrated so each sensor is aware of its own lo-  v\") ~ U(— (v, — (v19)%)°?, (VZ0s — (v1)%)°?)  (15)

cation. :v,@ =@ cos(ew) (16)
yéi) =r® sin(0(i>) a7

3. AMONTE-CARLO APPROACH FOR THE v ‘ ‘ ’ v

DISTRIBUTED ESTIMATION OF THE TARGETS v = 0 cos(0D) + v sin(6?) (18)
PROBABILITY DISTRIBUTION ) ) ) ) )

’Uz(;t) = sin(@m) — ’UE” cos(@m) (19)

To have an optimal particle distribution, one must sample from the Estimates of0:, 3o, ), (¢, 2q. ), and(¢:, X4, ) are available
true posterior distribution [16]. Using Bayes’ rule, the posterior from the organic trackers at the DOA nodes. Similarly, estimates

distribution can be expressed as of (r¢, £y, ) and(vy,, o, ) are available from the organic trackers
at the range-doppler nodes. There is a range ambiguity in the DOA
p(xi|ze) = w (1) node. Similarly there is a DOA ambiguity and a tangential velocity
p(zt) ambiguity in the range-doppler node. Therefore, these values are

drawn from appropriate uniform distributions. Hefrg,.. is the
assumed maximum range at which the target is visible to the DOA

surements at the individual nodes are independent conditioned orﬂo?f’ lan?”mft“” S the gdssurged mtax'”;ltle \t/eloutty of thg target.
the state. Hence, the combined data likelihood for all sensors can’~ac!a VEIOCIty IS considered positive It the target Is moving away

be factored into the product of the data likelihoods at the individual Irom thtt.:" ande' Tang:ient!al v_el?ﬁlty IS c;)ns:delr(ed_ pO;ItIVE;_ if the
sensor nodes. Since no prior information is availap{e. ) is uni- angential component points In the counterclockwise direction.

wherex; is the target state at timeandz. is the vector of mea-
surements from all/ sensors at timé. We assume that the mea-

form and is dropped from the equatiop(z;) is simply a propor- _ _Using 4) through (19) one can sample particles from the in-
tionality constant since it does not depend on the state. Therefore dividual posteriors. If the total number of nodes/, then to
(1) can be simplified as sampleD particles from the mixture given by (3), one can sample
D/M particles from each individual posterior and combine these
M particles to generate the final set bf particles. However, this
p(x¢|ze) H D(Zm,¢|X¢) 2 method has an inherent disadvantage. If one of the nodes does not
m=1 detect the new targefy /M particles are uniformly sampled over

the entire state space for that node and these particles do not add
any information to the system. Instead of sampling these particles
uniformly, it is more informative to sample only from the posteri-
ors for the nodes that have detections. Hence, more particles cover
the state space of interest. These disadvantages can be eliminated
by following step 1 of the following algorithm, where a weighted

M resampling operation ensures that the various individual posteriors
m(x¢|ze) = % Z P(X¢|Zm 1) 3) for nodes with detections are equally weighted irrespective of the

m=1

wherez,, ; is the measurement from the'” sensor at time.

We choose not to communicate raw data between nodes to limit
communication bandwidth. Thus determining the posterior dis-
tribution analytically is impossible. Therefore, we chose as our
proposal function

total number of nodes. Resampling does not require synchroniza-
tion of the nodes.
Our choice of the proposal function is an equally weighted mixture Once the particles are sampled, they need to be weighted.
of the individual posterior distributions from the different nodes. gjnce the data from various nodes is not being shared, the compo-
For the dif_ferer_lt n_ode_s, particles can be sampled from the individ- nants forming the weights must be computed at each node and the
ual posterior distributions as follows: cumulative information should be transmitted. It is shown in [16]

For DOA nodes: that the particle weights are given by
(O 4 i
T U(O, Tmaa:) ( ) G p(x](5 )Izt)
_ Wy = (20)
0% ~ N(6;,%0,) (5) m(x;" |2¢)
¢V ~ N(q, Zq,) (6) From (2) and (3), (20) can be simplified as
@
¢ N(¢t72<f>t) (7) (9 H%:l p(zm,t|xt) 21
@) _ ) (0 8 W S (21)
zy =r" cos(6"") ® 2 ome1 P(Xt|Zm,¢)
yi” =rPsin(9) ©) From Bayes' rule, we get
(@) — o) gos(6®
vy, =¢q " cos(¢”) (10) Dy (D
z‘y i) (i) i (4) _ p(Zme|x " )p(x;")
vét) =q¢Wr® sm(¢( >) (11) p(x; |Zm,e) = P(Zm.z) (22)



Since no pior information about the target state is availalile,) e STEP 1: Sequentially Sampling the Proposal Function

is uniform over the entire space and can be dropped from the equa- we=0
tion. Thus (21) simplifies to If S(1) has a detection,
, M — Spread D particles uniformly along the detection ge-
7 m= Zm, X .
wi? o Lo Plzmclxe) (23) ometry in X-Y space

ZIW P(xtlzvn,t)

m=1 " p(zm,t)

Each patrticle will have equal weight

Thus, the weights for the particles can be calculated, within a pro- —wp=w +1

portionality constant, by evaluating a quotient in which the numer-

ator is the product of the data likelihoods from the different nodes Else

and the denominator is the weighted sum of the same likelihoods.

This way, the weights are also communicated in a cumulative man-

ner. Send particles and, to S(2)
When the final particles are proposed, there is an ambiguity as Fore =2,..,. M

to which sensor proposed a particular particle. If a particular sen-

sor has multiple detections, then this brings in additional complex-

ity, since the particles can not be associated with their detectors.

If a simple Gaussian likelihood function is used and the likelihood

for a particle is zero at one of the sensors, then based on (23) its )

overall weight will also be zero. This situation occurs if even one If 5(2) has a detection

sensor does not detect a target. In such a situation, one would not * SpreadD new particles uniformly along the de-

want the overall weight of the particle to be zero since the target tection geometry

is present with high probability. To avoid this degeneracy, it is

important that a robust likelihood function that accounts for target

misses is used.

— set all particles equal to 0

Current sensor i§'(7)

AcceptD particles andv, from S(i — 1)

Give each received particle a weightwof

x Each new particle will have equal weight
- Give each new particle a weight of 1

The approach used here is similar to the approach used in * _From the_2D partlcles,_obtal_rD particles by us-
[17, 18] Assume that there af®/ sensors. The focus here will ing a weighted sampling with replacement.
be on the weighting at sensor m where= 1,..., M. Assume * Each particle will now have equal weight
that sensoim has K measurements. Then, given a particle or a * wy = ws + 1
hypothesized target statg, measurements,, »: , k =1, ..., K, _ . .
could have been generated either by the target or by clutter. The Send particles and; to S(i + 1)
clutter distribution is assumed to be Poisson with spatial density e STEP 2: Weighting the Particles and Back Propagating
A. The probability of miss is set equal tpo It is assumed that Final Particles
there is an equal probability for each of themeasurements to be Fori=0,..,.M —1
the true measurement and the true target measurement is Gaussian

distributed about the true target state. Thus, as shown in [18] the — Current sensor is (M — 1)

likelihood function can be simplified as: - 1fi>0
( | (i)) ) 1 x Accept particlesw Num andw Den from S (M —
P(Zm,t|X x1l+ ——- ;
o ORI i+1)
K — Else
> eap(=0.5(zm ke — 9(x") ST B — 9(x17))) « wNum = 1
k=1 24) * wDen =0
- Fori=1,..,D
wheren is the dimensionality of the measurement at seksaris 0 ) ()
the covariance of the Gaussian distribution gad is the mapping * wNum™ = wNum™ - p(zfﬂM—?h’t )
from the target state to the measurement state. * wden® = wden® + plae i)

p(ze, M —i)

Send particlesy Num andwDen to S(M — i — 1)

Steps 2 and 3 of the following algorithm explain the weighting
step. The set of particles along with their associated weights give a
discrete representation of the probability distribution of the target
in the desired state space.

e STEP 3: Propagate Final Weights
Current sensor i§'(1)

Fori=1,...,.D
e ALGORITHM:
D = Number of particles used for initialization. ~ w® = wNum®
S(i) = Sensor i, wheré = 1, ..., M wDen(®
K (i) = Targeti, where = 1,..., K Sendw to S(2)
wNwum = Numerator of weights. Fori=2,..,.M

wDen = Denominator of weights.
w = particle weights.
2\ = particle i at time t. — Sendw to S(i + 1)

— Acceptw from S(i — 1)
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Fig. 1. Simulations for Single Target Case
4. SIMULATIONS four nodes detect this target and produce estimates in their own
state spaces.
Assume a target appears at an X-Y location (50m,50m) with veloc- For the purpose of this simulatio® = 2000 particles were

ity of 4 m/s in the x-direction and 4 m/s in the y-direction. There used in order to adequately sample the state space of interest. Fig.
are a total of four sensors in the field. 2 acoustic sensor nodes arel(a) to 1(d) represent the sequential particle proposal stage of the
located at (100m,40m) and (350m,60m) whereas 2 radar nodes aralgorithm. Although all particles are four dimensional, all subfig-
located at (200m,150m) and (275m,-50m). Organic trackers at theures in Fig. 1 only show the X-Y locations of the particles. The



velocity information is only shown in Fig. 1(f). In figure 1(a),
sensor 1, which is a DOA sensor, detects the target at a particular
angle and distributes 2000 particles along that angle up to an as-
sumed maximum range. These particles are propagated to sensor
2, arange-doppler sensor. Sensor 2 receives the particles from sen-
sor 1 and gives these particles a weight of 1 since they represent
information from a single sensor. Sensor 2 detects the target at a
particular range. Since angle information is not available, sensor 2
distributes another 2000 particles about a circle with radius equal
to the detected range and center at the sensor position. Out of the
4000 particles at sensor 2, 2000 particles are sampled uniformly
with replacement. These particles are shown in Fig. 1(b) and are
propagated to sensor 3, another DOA sensor. Sensor 3 receives the

particles from sensor 2 and gives these particles a weight of 2 since ol B
these particles represent the combined information from two sen- x

sors. Sensor 3 detects the target at a particular angle and distributes

another 2000 particles along that angle. These new particles have a Fig. 2. Tracking Simulation

weight of 1. From the 4000 particles at sensor 3, a weighted sam-

pling with replacement is used to generate 2000 equally weighted

particles. These particles are shown in Fig. 1(c) and are propa- 5. CONCLUSIONS AND FUTURE WORK

gated to sensor 4, another range-doppler sensor. Sensor 4 receives

the particles from sensor 3 and gives them a weight of 3 since theyA method for generating the probability distribution that mod-
represent the combined information from 3 sensors. Then sensor 4els missing targets and clutter for multiple targets in a distributed
detects the target at a particular range and distributes another 200@mart sensor network is proposed. A Monte-Carlo method is used
particles along a circle with radius equal to the detection range to sequentially sample the state space of interest to generate parti-
and center at the sensor location. These new particles are given @les and a robust weighting function is used to represent the degree
weight of 1. From the 4000 particles at sensor 4, 2000 particles of belief in each particle. This weighting function can accommo-
are obtained using a weighted sampling with replacement. Thesedate multiple targets, clutter and missing data. The final target state
final particles are plotted in Fig. 1(d) and are propagated back to distribution is represented as a weighted set of particles. This set

all the sensors. of weighted particles can be used to make various inferences about
Weights are calculated for the final particles shown in Fig. ;hoeriiagzt state and also to initialize various distributed tracking al-

1(d). Particles along with their weights are shown in Fig. 1(e) . _—_ :

and this represents the probability distribution of the target in the . Futur_e work W'" fo_c us on a fully automatt_ad d|§tr|bt_1ted track
LY R ing algorithm which will use the method outlined in this paper as

X-Y space. As expected, the distribution is highly peaked about n initialization strate

the true target state. Estimates of the true target state can be mad@ 9y-

based on this weighted set of particles. These estimates can be

used to initialize any distributed tracking algorithm. 6. REFERENCES
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