
ESTIMATING TARGET STATE DISTRIBUTIONS IN A DISTRIBUTED SENSOR
NETWORK USING A MONTE-CARLO APPROACH

Milind Borkar, Volkan Cevher and James H. McClellan

Georgia Institute of Technology
Atlanta, GA 30332-0250

ABSTRACT

Distributed processing algorithms are attractive alternatives to cen-
tralized algorithms for target tracking applications in sensor net-
works. In this paper, we address the issue of determining a ini-
tial probability distribution of multiple target states in a distributed
manner to initialize distributed trackers. Our approach is based
on Monte-Carlo methods, where the state distributions are repre-
sented as a discrete set of weighted particles. The target state vec-
tor is the target positions and velocities in the 2D plane. Our ap-
proach can determine the state vector distribution even if the indi-
vidual elements are not capable of observing it. The only condition
is that the network as a whole can observe the state vector. A ro-
bust weighting strategy is formulated to account for mis-detections
and clutter. To demonstate the effectiveness of the algorithm, we
use direction-of-arrival nodes and range-doppler nodes.

1. INTRODUCTION

In sensor networks, distributed processing is becoming more pop-
ular than the centralized approaches [1]. This is because in cen-
tralized networks, since there is only one processing node in the
network, if that particular node is incapacitated, the entire sys-
tem fails. The communication overhead is also significant. More-
over, if all the sensing nodes are trying to transmit raw data to the
central processing node, the required bandwidth increases signifi-
cantly with the number of nodes. To overcome these drawbacks, a
distributed processing approach is attractive.

Distributed processing stipulates processing capabilities at in-
dividual sensors. We denote a sensor that has the ability to process
data in addition to sensing as a smart sensor. Distributed process-
ing eliminates the need for a central processing node. Thus the
system is not fully dependent on a single node for processing thus
eliminating the computational bottleneck. Since a smart sensor can
process its own data, it only transmits sufficient statistics in the
communication channel, minimizing the communication among
sensors. Communication consumes more battery power than com-
putation, hence smart sensor networks with distributed processing
have additional advantages.

In this paper, a novel method for determining initial multiple
target state distributions in a smart sensor network is proposed in a
distributed framework. A Monte-Carlo method is used to generate
a discretized approximation to the target state distribution. This
distribution is represented using hypothesized target states called
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particles and their associated weights. The resulting distribution
can be used to initialize various distributed joint tracking (DJT)
algorithms such as the ones in [2–6]. The algorithm satisfies the
typical constraints of a distributed system. The communication be-
tween individual sensors has fixed bandwidth. Since the informa-
tion propagated between sensors is the cumulative state informa-
tion, the amount of information passed between individual sensors
does not increase. The sensor types focused on are Direction of Ar-
rival (DOA) nodes (e.g., acoustic arrays with known microphone
positions) and range-doppler nodes (e.g., a radar sensor). How-
ever, the results are general and can be extended to networks with
different sensor modalities. Each sensor runs a tracking algorithm
that operates in a different state space determined by the sensor
modality. We shall refer to the tracking algorithms running at the
different sensors as the organic trackers. The DJT operates in a
state space which may be different from the state spaces of the or-
ganic trackers at the individual nodes. We assume that each tracker
is capable of detecting a new target. When an organic tracker de-
tects a new target in its limited subspace, it transmits information
throughout the network to generate the target state distribution. We
also have a robust weighting strategy that can accommodate clutter
as well as missing data.

Communication takes place between neighboring sensors only
and there is a predefined path for the information flow through the
network from the first sensor to the last sensor.

The organization of the paper is as follows. Section 2 briefly
introduces the acoustic and radar trackers. Section 3 proposes a
Monte-Carlo approach for the distributed estimation of the target
state distribution. Section 4 demonstrates the effectiveness of the
proposed algorithms on synthetic data. Conclusions and future
work follow in Section 5.

2. ACOUSTIC AND RADAR TRACKERS

The two types of sensor nodes used to demonstrate the initializa-
tion algorithm are DOA sensors and Range-Doppler sensors. The
DOA tracker operates in the [θ q φ]’ space whereθ is the direc-
tion towards the target, q is the ratio of the targets velocity to the
targets range andφ is the heading direction of the target. The
range-doppler tracker operates in the [r vr]’ space where r is the
range to the target and vr is the targets radial velocity. Detailed
descriptions about these trackers can be found in [7–15].

The focus of this paper is to generate a probability distribu-
tion for the target in the [x y vx vy]’ space where x and y are
the Cartesian coordinates of the targets location and vx and vy are
the velocity components along the x-y directions. Notice that the
true location and velocity of the target is not observable at any of
the individual nodes and that the organic trackers operate in dif-



ferent state spaces that have lower dimensions than the state space
in which the targets distribution is desired. This means there is a
many to one mapping from the states used by the organic trackers
to the state space in which the final target distribution is gener-
ated. It is assumed that the organic trackers are available at the
different nodes and the outputs of the organic trackers are used to
generate the desired probability distribution. The sensor network
is assumed to be calibrated so each sensor is aware of its own lo-
cation.

3. A MONTE-CARLO APPROACH FOR THE
DISTRIBUTED ESTIMATION OF THE TARGETS

PROBABILITY DISTRIBUTION

To have an optimal particle distribution, one must sample from the
true posterior distribution [16]. Using Bayes’ rule, the posterior
distribution can be expressed as

p(xt|zt) =
p(zt|xt)p(xt)

p(zt)
(1)

wherext is the target state at timet andzt is the vector of mea-
surements from allM sensors at timet. We assume that the mea-
surements at the individual nodes are independent conditioned on
the state. Hence, the combined data likelihood for all sensors can
be factored into the product of the data likelihoods at the individual
sensor nodes. Since no prior information is available,p(xt) is uni-
form and is dropped from the equation.p(zt) is simply a propor-
tionality constant since it does not depend on the state. Therefore,
(1) can be simplified as

p(xt|zt) ∝
M∏

m=1

p(zm,t|xt) (2)

wherezm,t is the measurement from themth sensor at timet.
We choose not to communicate raw data between nodes to limit
communication bandwidth. Thus determining the posterior dis-
tribution analytically is impossible. Therefore, we chose as our
proposal function

π(xt|zt) =
1

M

M∑
m=1

p(xt|zm,t) (3)

Our choice of the proposal function is an equally weighted mixture
of the individual posterior distributions from the different nodes.
For the different nodes, particles can be sampled from the individ-
ual posterior distributions as follows:

For DOA nodes:

r(i) ∼ U(0, rmax) (4)

θ(i) ∼ N(θt, Σθt) (5)

q(i) ∼ N(qt, Σqt) (6)

φ(i) ∼ N(φt, Σφt) (7)

x
(i)
t = r(i) cos(θ(i)) (8)

y
(i)
t = r(i) sin(θ(i)) (9)

v(i)
xt

= q(i)r(i) cos(φ(i)) (10)

v(i)
yt

= q(i)r(i) sin(φ(i)) (11)

For Range-Doppler nodes:

r(i) ∼ N(rt, Σrt) (12)

θ(i) ∼ U(0, 2π) (13)

v(i)
r ∼ N(vrt , Σvrt

) (14)

v
(i)
t ∼ U(−(v2

max − (v(i)
r )2)0.5, (v2

max − (v(i)
r )2)0.5) (15)

x
(i)
t = r(i) cos(θ(i)) (16)

y
(i)
t = r(i) sin(θ(i)) (17)

v(i)
xt

= v(i)
r cos(θ(i)) + v

(i)
t sin(θ(i)) (18)

v(i)
yt

= v(i)
r sin(θ(i))− v

(i)
t cos(θ(i)) (19)

Estimates of(θt, Σθt), (qt, Σqt), and(φt, Σφt) are available
from the organic trackers at the DOA nodes. Similarly, estimates
of (rt, Σrt) and(vrt , Σvrt

) are available from the organic trackers
at the range-doppler nodes. There is a range ambiguity in the DOA
node. Similarly there is a DOA ambiguity and a tangential velocity
ambiguity in the range-doppler node. Therefore, these values are
drawn from appropriate uniform distributions. Here,rmax is the
assumed maximum range at which the target is visible to the DOA
node, andvmax is the assumed maximum velocity of the target.
Radial velocity is considered positive if the target is moving away
from the node. Tangential velocity is considered positive if the
tangential component points in the counterclockwise direction.

Using (4) through (19) one can sample particles from the in-
dividual posteriors. If the total number of nodes isM , then to
sampleD particles from the mixture given by (3), one can sample
D/M particles from each individual posterior and combine these
particles to generate the final set ofD particles. However, this
method has an inherent disadvantage. If one of the nodes does not
detect the new target,D/M particles are uniformly sampled over
the entire state space for that node and these particles do not add
any information to the system. Instead of sampling these particles
uniformly, it is more informative to sample only from the posteri-
ors for the nodes that have detections. Hence, more particles cover
the state space of interest. These disadvantages can be eliminated
by following step 1 of the following algorithm, where a weighted
resampling operation ensures that the various individual posteriors
for nodes with detections are equally weighted irrespective of the
total number of nodes. Resampling does not require synchroniza-
tion of the nodes.

Once the particles are sampled, they need to be weighted.
Since the data from various nodes is not being shared, the compo-
nents forming the weights must be computed at each node and the
cumulative information should be transmitted. It is shown in [16]
that the particle weights are given by

w
(i)
t =

p(x
(i)
t |zt)

π(x
(i)
t |zt)

(20)

From (2) and (3), (20) can be simplified as

w
(i)
t ∝

∏M
m=1 p(zm,t|xt)∑M
m=1 p(xt|zm,t)

(21)

From Bayes’ rule, we get

p(x
(i)
t |zm,t) =

p(zm,t|x(i)
t )p(x

(i)
t )

p(zm,t)
(22)



Since no pior information about the target state is available,p(xt)
is uniform over the entire space and can be dropped from the equa-
tion. Thus (21) simplifies to

w
(i)
t ∝

∏M
m=1 p(zm,t|xt)∑M
m=1

p(xt|zm,t)

p(zm,t)

(23)

Thus, the weights for the particles can be calculated, within a pro-
portionality constant, by evaluating a quotient in which the numer-
ator is the product of the data likelihoods from the different nodes
and the denominator is the weighted sum of the same likelihoods.
This way, the weights are also communicated in a cumulative man-
ner.

When the final particles are proposed, there is an ambiguity as
to which sensor proposed a particular particle. If a particular sen-
sor has multiple detections, then this brings in additional complex-
ity, since the particles can not be associated with their detectors.
If a simple Gaussian likelihood function is used and the likelihood
for a particle is zero at one of the sensors, then based on (23) its
overall weight will also be zero. This situation occurs if even one
sensor does not detect a target. In such a situation, one would not
want the overall weight of the particle to be zero since the target
is present with high probability. To avoid this degeneracy, it is
important that a robust likelihood function that accounts for target
misses is used.

The approach used here is similar to the approach used in
[17, 18] Assume that there areM sensors. The focus here will
be on the weighting at sensor m wherem = 1, ..., M . Assume
that sensorm hasK measurements. Then, given a particle or a
hypothesized target statext, measurementszm,k,t , k = 1, ..., K,
could have been generated either by the target or by clutter. The
clutter distribution is assumed to be Poisson with spatial density
λ. The probability of miss is set equal toq. It is assumed that
there is an equal probability for each of theK measurements to be
the true measurement and the true target measurement is Gaussian
distributed about the true target state. Thus, as shown in [18] the
likelihood function can be simplified as:

p(zm,t|x(i)
t ) ∝ 1 +

1√
(2π)n|Σ|qλ ·

K∑

k=1

exp(−0.5(zm,k,t − g(x
(i)
t ))T Σ−1(zm,k,t − g(x

(i)
t )))

(24)

wheren is the dimensionality of the measurement at sensork, Σ is
the covariance of the Gaussian distribution andg(.) is the mapping
from the target state to the measurement state.

Steps 2 and 3 of the following algorithm explain the weighting
step. The set of particles along with their associated weights give a
discrete representation of the probability distribution of the target
in the desired state space.

• ALGORITHM:
D = Number of particles used for initialization.
S(i) = Sensor i, wherei = 1, ..., M
K(i) = Target i, wherei = 1, ..., K
wNum = Numerator of weights.
wDen = Denominator of weights.
w = particle weights.
x

(i)
t = particle i at time t.

• STEP 1: Sequentially Sampling the Proposal Function
wt = 0
If S(1) has a detection,

– Spread D particles uniformly along the detection ge-
ometry in X-Y space

– Each particle will have equal weight

– wt = wt + 1

Else

– set all particles equal to 0

Send particles andwt to S(2)
For i = 2, ..., M

– Current sensor isS(i)

– AcceptD particles andwt from S(i− 1)

– Give each received particle a weight ofwt

– If S(i) has a detection

∗ SpreadD new particles uniformly along the de-
tection geometry

∗ Each new particle will have equal weight

· Give each new particle a weight of 1

∗ From the2D particles, obtainD particles by us-
ing a weighted sampling with replacement.

∗ Each particle will now have equal weight

∗ wt = wt + 1

– Send particles andwt to S(i + 1)

• STEP 2: Weighting the Particles and Back Propagating
Final Particles
For i = 0, ..., M − 1

– Current sensor isS(M − i)

– If i > 0

∗ Accept particles,wNum andwDen fromS(M−
i + 1)

– Else

∗ wNum = 1

∗ wDen = 0

– For i = 1, ..., D

∗ wNum(i) = wNum(i) · p(zt,M−i|x(i)
t )

∗ wden(i) = wden(i) +
p(zt,M−i|x(i)

t )

p(zt,M−i)

– Send particles,wNum andwDen to S(M − i− 1)

• STEP 3: Propagate Final Weights
Current sensor isS(1)
For i = 1, ..., D

– w(i) = wNum(i)

wDen(i)

Sendw to S(2)
For i = 2, ..., M

– Acceptw from S(i− 1)

– Sendw to S(i + 1)
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Fig. 1. Simulations for Single Target Case

4. SIMULATIONS

Assume a target appears at an X-Y location (50m,50m) with veloc-
ity of 4 m/s in the x-direction and 4 m/s in the y-direction. There
are a total of four sensors in the field. 2 acoustic sensor nodes are
located at (100m,40m) and (350m,60m) whereas 2 radar nodes are
located at (200m,150m) and (275m,-50m). Organic trackers at the

four nodes detect this target and produce estimates in their own
state spaces.

For the purpose of this simulation,D = 2000 particles were
used in order to adequately sample the state space of interest. Fig.
1(a) to 1(d) represent the sequential particle proposal stage of the
algorithm. Although all particles are four dimensional, all subfig-
ures in Fig. 1 only show the X-Y locations of the particles. The



velocity information is only shown in Fig. 1(f). In figure 1(a),
sensor 1, which is a DOA sensor, detects the target at a particular
angle and distributes 2000 particles along that angle up to an as-
sumed maximum range. These particles are propagated to sensor
2, a range-doppler sensor. Sensor 2 receives the particles from sen-
sor 1 and gives these particles a weight of 1 since they represent
information from a single sensor. Sensor 2 detects the target at a
particular range. Since angle information is not available, sensor 2
distributes another 2000 particles about a circle with radius equal
to the detected range and center at the sensor position. Out of the
4000 particles at sensor 2, 2000 particles are sampled uniformly
with replacement. These particles are shown in Fig. 1(b) and are
propagated to sensor 3, another DOA sensor. Sensor 3 receives the
particles from sensor 2 and gives these particles a weight of 2 since
these particles represent the combined information from two sen-
sors. Sensor 3 detects the target at a particular angle and distributes
another 2000 particles along that angle. These new particles have a
weight of 1. From the 4000 particles at sensor 3, a weighted sam-
pling with replacement is used to generate 2000 equally weighted
particles. These particles are shown in Fig. 1(c) and are propa-
gated to sensor 4, another range-doppler sensor. Sensor 4 receives
the particles from sensor 3 and gives them a weight of 3 since they
represent the combined information from 3 sensors. Then sensor 4
detects the target at a particular range and distributes another 2000
particles along a circle with radius equal to the detection range
and center at the sensor location. These new particles are given a
weight of 1. From the 4000 particles at sensor 4, 2000 particles
are obtained using a weighted sampling with replacement. These
final particles are plotted in Fig. 1(d) and are propagated back to
all the sensors.

Weights are calculated for the final particles shown in Fig.
1(d). Particles along with their weights are shown in Fig. 1(e)
and this represents the probability distribution of the target in the
X-Y space. As expected, the distribution is highly peaked about
the true target state. Estimates of the true target state can be made
based on this weighted set of particles. These estimates can be
used to initialize any distributed tracking algorithm.

It is observed that the majority of particles have extremely low
weights and do not contribute any useful information. To eliminate
these particles and multiply those with high weights, the particles
are sampled with replacement according to their weights to give
the set of particles in Fig. 1(f). Here the circles represent the
particle positions and the lines extending from the circles represent
the magnitude and direction of the velocities. It can be seen that
the final set of particles is concentrated around the true target state
at [50,50,4,4]’.

The final set of particles were used to initialize a distributed
joint tracker we have been developing. The track estimate can be
seen in Fig. 2. The true track is given by the solid line and the esti-
mated track is given by the dashed line. As observed, the tracking
algorithm is very accurate when initialized using our Monte-Carlo
approach.

Simulations using two targets are shown in Fig. 3. Here, the
sensor locations are unchanged and the true target states are given
by [50,50,4,4]’ and [50,150,4,-4]’. The weighted particle set is
shown in Figure 3a. The distribution of the target state is clearly
seen in Figure 3b which represents the set of particles that survive
a weighted resampling operation. As expected, the particle distri-
bution is concentrated about the true target states.

50 100 150 200 250 300 350 400 450
−50

0

50

100

150

x

y

Fig. 2. Tracking Simulation

5. CONCLUSIONS AND FUTURE WORK

A method for generating the probability distribution that mod-
els missing targets and clutter for multiple targets in a distributed
smart sensor network is proposed. A Monte-Carlo method is used
to sequentially sample the state space of interest to generate parti-
cles and a robust weighting function is used to represent the degree
of belief in each particle. This weighting function can accommo-
date multiple targets, clutter and missing data. The final target state
distribution is represented as a weighted set of particles. This set
of weighted particles can be used to make various inferences about
the target state and also to initialize various distributed tracking al-
gorithms.

Future work will focus on a fully automated distributed track-
ing algorithm which will use the method outlined in this paper as
an initialization strategy.
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