The presence of a 174 kb plasmid called pMUM001 in Mycobacterium ulcerans, the first example of a mycobacterial plasmid encoding a virulence determinant, was recently reported. Over half of pMUM001 is devoted to six genes, three of which encode giant polyketide synthases (PKS) that produce mycolactone, an unusual cytotoxic lipid produced by M. ulcerans. In this present study the remaining 75 non-PKS-associated protein-coding sequences (CDS) are analysed and it is shown that pMUM001 is a low-copy-number element with a functional ori that supports replication in Mycobacterium marinum but not in the fast-growing mycobacteria Mycobacterium smegmatis and Mycobacterium fortuitum. Sequence analyses revealed a highly mosaic plasmid gene structure that is reminiscent of other large plasmids. Insertion sequences (IS) and fragments of IS, some previously unreported, are interspersed among functional gene clusters, such as those genes involved in plasmid replication, the synthesis of mycolactone, and a potential phosphorelay signal transduction system. Among the IS present on pMUM001 were multiple copies of the high-copy-number M. ulcerans elements IS2404 and IS2606. No plasmid transfer systems were identified, suggesting that trans-acting factors are required for mobilization. The results presented here provide important insights into this unusual virulence plasmid from an emerging but neglected human pathogen.