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Abstract

We provide non-perturbative evidence for the fact that there is no hot electroweak
phase transition at large Higgs masses, mH = 95, 120 and 180 GeV. This means
that the line of first order phase transitions separating the symmetric and broken
phases at small mH has an end point mH,c. In the minimal standard electroweak
theory 70 GeV < mH,c < 95 GeV and most likely mH,c ≈ 80 GeV. If the electroweak
theory is weakly coupled and the Higgs boson is found to be heavier than the critical
value (which depends on the theory in question), cosmological remnants from the
electroweak epoch are improbable.
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The transition between the high temperature symmetric (or confinement) phase and
the low T broken (or Higgs) phase in the standard electroweak theory or its exten-
sions is known to be of first order for small values of the Higgs mass mH . This
follows from perturbative studies of the effective potential [1] and non-perturbative
lattice Monte Carlo simulations [2, 3, 4]. In the region of applicability of the per-
turbative expansion the strength of the electroweak phase transition decreases when
mH increases. However, the nature of the electroweak phase transition at “large”
Higgs masses, mH>∼mW remains unclear, since the perturbative expansion for the
description of the phase transition is useless there. This letter contains the results
of the first non-perturbative MC analysis of the problem for “large” Higgs masses,
mH = 95, 120, 180 GeV. We shall show that the system behaves very regularly there,
much like water above the critical point. As there is no distinction between liquid
water and vapor, there is no distinction between the symmetric and broken phases;
there is no long-range order.

In ref. [5] it has been shown that in a weakly coupled electroweak theory and
in most of its extensions (supersymmetric or not) the hot EW phase transition can
be described by an SU(2)×U(1) gauge-Higgs model in three Euclidean dimensions.
(We stress that our study is not applicable for a strongly coupled Higgs sector, where
the perturbative scheme of dimensional reduction is not valid.) Since the effects of
the U(1) group are perturbative deep in the Higgs phase and high in the symmetric
phase, the presence of the U(1) factor cannot change the qualitative features of the
phase diagram of this theory. Thus we shall neglect the U(1) factor and work in the
limit sin θW = 0. The effective Lagrangian is

L =
1

4
Ga

ijG
a
ij + (Diφ)†(Diφ) + m2

3φ
†φ + λ3(φ

†φ)2, (1)

where Ga
ij is the SU(2) field strength, φ is the scalar doublet and Di is the covariant

derivative. The three parameters of the 3d theory (gauge coupling g2
3, scalar self-

coupling λ3 and the scalar mass m2
3) depend on temperature and on underlying 4d

parameters and can be computed perturbatively; the explicit relations for the MSM
are worked out in [5] and for MSSM in [6]. The phase structure of the theory (1)
depends on one dimensionless ratio, x = λ3/g

2
3, because the dimensionful coupling

g2
3 can be chosen to fix the scale, while the change of the second dimensionless ratio

y = m2
3(g

2
3)/g

4
3 corresponds to temperature variation. For y ≫ 1 (large T ) the

system is in the strongly coupled symmetric phase, while at y ≪ −1 (low T ) the
system is in the weakly coupled Higgs phase. In presenting our results we will use a
more physical set of variables m∗

H and T ∗ instead of x and y. The parameter m∗
H is

the tree-level Higgs mass in the 4d SU(2)+Higgs theory and T ∗ is the temperature
there. The exact relationship between (x, y) and (m∗

H , T ∗) is given in eqs. (2.9–10)
of [3].

An essential point in understanding the phase structure of the theory is the fact
that the 3d gauge-Higgs system (as well as the underlying electroweak theory) does
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Figure 1: The schematical phase diagram for the SU(2) gauge-Higgs theory. Solid
line is the phase transition and dashed lines indicate the metastability region.

not have a true gauge-invariant order parameter which can distinguish the sym-
metric high temperature phase and low temperature Higgs phase [7, 8]. There is
no breaking or restoration of the gauge symmetry across the phase transition, just
because physical observables are always gauge invariant. The physical spectrum of
the corresponding Minkowskian (2 + 1) theory in the Higgs phase consists of three
massive vector bosons and one scalar excitation, perfectly mapping to the spectrum
of low lying resonances (three vector bound states of scalar constituent “quarks”
and one scalar bound state) in the symmetric phase. The corresponding scalar (π)

and vector (V ) gauge-invariant operators are given by π = φ†φ, V 0
j = iφ†

↔

Dj φ,

V +
j = (V −

j )∗ = 2iφ†Djφ̃, where φ̃ = iσ2φ
∗.

In lattice non-abelian gauge-Higgs systems with matter in the fundamental rep-
resentation and fixed length of the scalar field, the Higgs (weakly coupled) and
symmetric (strongly coupled) phases are continuously connected [8]. This suggests
the phase diagram on the (x, y) (Higgs mass-temperature) plane shown in Fig. 1.
The knowledge of the phase diagram and the value of xc is essential for cosmological
applications. If xc = ∞, the electroweak phase transition did occur in the early
Universe at the electroweak scale independent of the parameters of the electroweak
theory. This means that substantial deviations from thermal equilibrium took place
at this scale, which might leave some observable remnants such as the baryon asym-
metry of the universe (for a review see [9] and references therein). In the opposite
situation of finite xc the EW phase transition never took place for a region of pa-
rameters of the underlying theory; in this case it is extremely unlikely that there
are any remnants from the electroweak epoch.

There were up to now no solid results on the phase structure of the continuum 3d
(and, therefore, high temperature) gauge-Higgs theory. Various arguments in favour
and against finite xc are listed below.
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1. xc = ∞? The limit x → ∞ corresponds formally to g2
3 = 0, i.e. to the

pure scalar model with SU(2) global symmetry. The latter is known to have a
second order phase transition, suggesting that xc = ∞ in the SU(2) gauge-Higgs
system. The weakness of this argument is revealed when the particle spectra of the
two theories are compared: the pure scalar theory below the critical point contains
massless scalar particles – Goldstone bosons – but the spectrum of the gauge theory
contains only massive modes.

The ǫ-expansion predicts a first order phase transition for any finite value of x,
suggesting again that xc = ∞ [10]. However, it relies on the hope that ǫ = 1 is small
and, therefore, is not conclusive.

2. xc = finite? The absence of a true order parameter for the gauge-Higgs
system is certainly consistent with finite xc. Moreover, because there is no symmetry
breaking, the existence of a line of second order phase transitions starting at xc is
very unlikely. However, the proof of the fact that the Higgs and symmetric phases
are continuously connected [8] refers to a lattice system with a finite cutoff and is
not applicable to a continuum system we are interested in.

A study of one-loop Schwinger-Dyson equations for this system argues in favour
of a finite value of xc [11]. However, this analysis relies heavily on the applicability
of perturbation theory near the phase transition point. This is known to break down
at mH ∼ mW .

In this letter we present strong non-perturbative evidence for the fact that the
line of first order phase transitions has a critical end-point at a finite value of x,
0.09 < xc < 0.17, and most likely xc ≈ 1

8
. In terms of the physical Higgs mass in

the MSM this means that the phase transition ends between mH = 70 and 95 GeV,
probably near mH = 80 GeV.

The lattice action corresponding to (1) is, in standard notation,

S = βG

∑

x

∑

i<j

(1 −
1

2
Tr Pij) +

− βH

∑

x

∑

i

1

2
Tr Φ†(x)Ui(x)Φ(x + i) + (2)

+
∑

x

1

2
TrΦ†(x)Φ(x) + βR

∑

x

[
1

2
Tr Φ†(x)Φ(x) − 1]2.

Here g2
3a = 4/βG, x = βRβG/β2

H ; y is given in terms of βH , x, βG in [3]. The contin-
uum limit a → 0 corresponds to βG → ∞, βH → 1/3, βR → 0.

Among the many tests of the order of the transition we shall use here (I) the finite
size scaling analysis of the φ†φ susceptibility and (II) the analysis of the correlation
lengths. We define the dimensionless φ†φ susceptibility

χ = g2
3V

〈

(φ†φ − 〈φ†φ〉)2
〉

(3)
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Figure 2: φ†φ susceptibility at m∗
H = 120 GeV plotted as a function of T ∗ for lattices

of various sizes. The lower panel shows in more detail the region near the maximum;
the continuous lines with error bands result from multihistogram reweighting. The
maximum values are plotted in Fig. 3.

and measure it as a function of T ∗. For each volume we find the provisional ‘tran-
sition temperature’ T ∗

t,V where χ attains its maximum value χmax. There are now 3
distinct possibilities: a) In a first order phase transition 〈φ†φ〉 has a discontinuous
jump ∆φ, and χmax ∝ V × ∆2

φ. b) In a second order transition χ displays critical
behaviour, and χmax ∝ V γ, where γ is a critical exponent [12]. c) If there is no
transition, χ is regular and remains finite when V → ∞ (on a system with periodic
boundary conditions).

Fig. 2 shows χ(T ∗) measured from lattices of sizes 123–643 for m∗
H = 120GeV and

βG ≡ 4/(g2
3a) = 8. The data exhibits a strong peak at T ∗ ∼ 213GeV, suggesting
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Figure 3: The maximum values χmax for different m∗
H plotted as a function of V .

The dashed lines are lines ∼ V, V 1/2, V 0.

a possibility of a phase transition. However, on closer inspection (bottom panel of
Fig. 2), one sees that χmax remains finite (within the statistical accuracy), and the
provisional transition is only a sharp – but regular – cross-over. The maximum
values χmax for different m∗

H are shown as a function of V in Fig. 3. Note that the
natural unit g2

3 is used in writing

V (g2
3)

3 = (V/a3)(4/βG)3 = (4N/βG)3. (4)

In Fig. 3 we use 3 different lattice spacings (βG = 8, 12, 20); no significant finite
lattice spacing effect can be observed (the scatter in m∗

H = 60GeV is due to the
large variation in lattice geometries: some volumes are long cylinders, some cubes).
The pattern of Fig. 3 very clearly suggests that the behaviour of the system changes
around m∗

H = 80GeV from a 1st order transition to no transition. The line ∼
V 1/2 corresponds to mean field critical behaviour. The data in Fig. 3 cannot yet
distinguish the true critical exponent, nor whether m∗

H = 80GeV is actually above
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or below the critical m∗
H : near the critical point increasingly large volumes are

needed in order to see the asymptotic behaviour.
Another evidence of the absence of the phase transition comes from the study of

the correlation lengths of the system. If xc = ∞ then the phase transition becomes
weaker when the Higgs mass is increased. The jump of the order parameter φ†φ
gets smaller together with the mass of the scalar excitation. At the same time,
the vector correlation length may remain finite at the transition point, making the
resolution of the nature of the phase transition to be a very difficult problem to solve
numerically because of the increasing hierarchy of the scalar and vector masses. A
typical signature of this situation is a drastic increase of the scalar correlation length
for all x at some value of y(x).

If, on the contrary, xc is finite, then for x > xc all correlation lengths of the
system are finite, and expectation values of different gauge-invariant operators are
continuous functions of y. After some minimum size, finite volume effects become
negligible. In this case a reliable lattice MC analysis, which is hardly possible to
carry out near xc, becomes comparatively quite simple at large Higgs masses.

On Figs. 4 and 5 we present the behaviour of the scalar and vector masses (the
inverse π and V 0

j correlation lengths) for m∗
H = 60, 80, 120 and 180GeV near the

transition/cross-over temperature. Fig. 4a clearly demonstrates the jump of the
correlation lengths typical of 1st order transitions. Fig. 4b shows the power-like
decrease of the mass of the scalar excitation with no change of the vector mass
across the critical region. In contrast, the behaviour of scalar and vector masses
is smooth for m∗

H = 120 and 180GeV (Fig. 5), signalling the absence of the phase
transition. Within the statistical accuracy, the masses and the susceptibility χ are
independent of the lattice spacing, showing that the observed behaviour is not a
lattice artefact and persists in the continuum limit.

To summarize, we demonstrated that the Higgs and confinement phases of 3d
SU(2) gauge-Higgs model can be continuously connected. This means that the
electroweak phase transition in weakly coupled electroweak theories is absent in a
part of their parameter space. For the minimal standard model the critical value of
the Higgs mass is near 80 GeV.
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Figure 4: The scalar and vector mass dependence on the temperature for “small”
Higgs masses, m∗

H = 60 and 80 GeV
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Figure 5: The scalar and vector mass dependence on the temperature for “large”
Higgs masses, m∗

H = 120 and 180 GeV.
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