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Observational manifestations of anomaly inflow

Alexey Boyarsky∗, Oleg Ruchayskiy†, Mikhail Shaposhnikov∗.

Abstract

In theories with chiral couplings, one of the important consistency requirements is
that of the cancellation of a gauge anomaly. In particular, this is one of the conditions
imposed on the hypercharges in the Standard Model. However, anomaly cancellation
condition of the Standard Model looks unnatural from the perspective of a theory with
extra dimensions. Indeed, if our world were embedded into an odd-dimensional space,
then the full theory would be automatically anomaly free. In this paper we discuss
the physical consequences of anomaly non-cancellation for effective 4-dimensional field
theory. We demonstrate that in such a theory parallel electric and magnetic fields get
modified. In particular, this happens for any particle possessing both electric charge
and magnetic moment. This effect, if observed, can serve as a low energy signature of
extra dimensions. On the other hand, if such an effect is absent or is very small, then
from the point of view of any theory with extra dimensions it is just another fine-tuning
and should acquire theoretical explanation.

1 Introduction

In particle physics there is a number of well-established principles (four-dimensional Lorentz
invariance, renormalizability, gauge symmetries, etc.), which are believed to underlie a con-
sistent quantum field theory. All these principles are built into the Standard Model (SM)
and its great experimental success is a major justification for their validity. However, in
continuing search for the consistent description of an emerging physics beyond the Standard
Model, one often tries to ease some of these criteria. It is then important to make sure that
such modifications do not contradict to the observable data, as well as to find observable
signatures of a new model.

Since 1950s [1], one uses the gauge symmetry as a main principle for constructing in-
teractions between elementary particles. It is known, however, that in theories with chiral
couplings (i.e. when left and right-handed fermions have different charges with respect to a
gauge group), one may encounter a situation when the classically conserved gauge current
acquires an anomalous divergence at one loop. It is known that such anomalies destroy
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consistency of the theory, making it non-unitary [2].1 In the Standard Model, where the
couplings of fermions are chiral, charges of all particles can be chosen to ensure the absence
of all gauge anomalies [7]. It may happen, however, that anomaly-free theory looks like an
anomalous one below certain energy scale. An example of such a theory would be an elec-
troweak theory at the energy scale below the mass of top-quark. Then anomaly is canceled
by means of Wess-Zumino like terms [8].

Among many possible extensions of the Standard Model there are theories with extra
dimensions. Their main idea is that our 4-dimensional physics is embedded into a theory in
a higher-dimensional space. The Standard Model fields are then realized as zero modes of
a higher-dimensional ones. (An example is given by an approach, often dubbed brane-world
models, where zero modes of both matter and gauge fields are localized on the 4-dimensional
defect, called brane [9, 10]). Once our 4-dimensional world is just a low-energy sector of
a bigger theory, the anomaly analysis changes drastically. For example, if a full theory is
anomaly free (say, it is formulated in an odd number of space-time dimensions, where all
interactions are vector-like), then one has no reason to expect separate anomaly cancellation
for the brane fields (for an explicit example of a brane-world theory with an anomaly on the
brane, see [11]). If the theory on the brane is anomalous, then there is a specific type of
brane-bulk interaction. It is described by Chern-Simons-like terms in the low-energy effective
action in the bulk. These terms are not gauge invariant in the presence of a brane. Therefore,
they generate currents, flowing to the brane and thus ensuring the gauge invariance of the full
theory. Such mechanism is known for a long time and is often called anomaly inflow [12, 13].2

It is quite general and appears in many (physically very distinct) problems: in quantum Hall
effect [14, 15],3 in various field theories with solitonic objects in them (see e.g. [17, 18, 19]), in
string and M-theory [20, 21, 22, 23]. Thus, in the brane-world models a number of questions
arises:

1. Can one distinguish between a purely 4-dimensional anomaly-free theory, and a the-
ory (also anomaly-free!) in which anomaly is canceled by a small inflow from extra
dimensions? What new observable effects appear in the latter situation?

2. Is it possible to discriminate at low-energies between two different completions of
anomalous 4-dimensional effective theory: the one, where anomaly is canceled by in-
flow from higher dimensions and purely 4-dimensional one, where at higher energies
there exist additional particles, which ensure anomaly cancellation (c.f. [8]).

3. For generic values of hypercharges the minimal Standard Model is anomalous. How-
ever, for any hypercharges, electrodynamics is still vector-like. Can this anomaly nev-

1This represents a striking contrast with anomalies of global symmetries, where global current non-
conservation accounts for a new phenomena, not seen in the tree-level Lagrangian. The examples of this
sort are the fast decay rate of π0 meson into two γ-quanta (famous ABJ-anomaly [3]), the baryon and
lepton number non-conservation in electroweak theory [4], and proton decay in the presence of magnetic
monopole [5, 6].

2It is interesting to note that already the authors of [13] had mentioned in their paper that it would be
interesting to apply their ideas to the brane-world setups like [9].

3A quantum Hall system [16] is a lower-dimensional example of the present problem. Its boundary can
be considered as a 1+1 dimensional “brane”, embedded into 2+1 dimensional bulk. Effective theory in the
bulk is described by the U(1) Chern-Simons theory, while on the boundary chiral excitations are localized.
Conformal field theory describing these excitations was first derived from anomaly consideration [14, 15].
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ertheless be observed if this anomalous theory is embedded into a consistent higher-
dimensional one?

4. What are experimental constraints for the parameters describing anomaly mismatch?
Can the above observations serve as tests in the search for extra dimensions?

In this paper we will attempt to answer the questions 1–3. The question 4 will be addressed in
our next paper [24]. We would like to note also that in this paper (as well as in the subsequent
paper [24]) we study only gauge anomalies. The global chiral anomalies in brane-worlds and
corresponding complicated vacuum structure of gauge fields has been discussed in [25].

We consider a theory on a brane, which is anomalous, while the bulk effective action
possesses a Chern-Simons-like term, responsible for an inflow current. A naive answer to
the question (1) then would seem to be the following: as anomaly means gauge current
non-conservation, one could expect that particles escape from the brane to extra dimen-
sions. This would look like a loss of unitarity from a purely 4-dimensional point of view,
however higher-dimensional unitarity would still be preserved. Anomalous current then is
simply a flow of such zero-mode particles into the bulk. However, this answer is incorrect.
Indeed, phenomenologically acceptable brane-world scenario must have a mass gap between
zero modes and those in the bulk for both fermions and non-Abelian gauge fields [26, 27].
Alternatively, the rate of escape of the matter from a brane must be suppressed in some
way (see e.g. [28]). As a result, the low-energy processes on the brane simply cannot create
an excitation, propagating in the bulk. If no matter can escape the brane (or flow onto
it) – what is then an inflow current, which should be non-zero even for weak fields causing
anomaly in four-dimensional theory? One seems to be presented with a paradox.

We show that in reality the inflow current by its nature is a vacuum or non-dissipative
current.4 What we mean by that is the following. Usually in electrodynamics one needs to
create particles from a vacuum to generate an electric current. Such a process is only possible
if the available energy is larger than the mass of the particles in the bulk. Therefore, weak
electric fields on the brane cannot induce a current, carried by the bulk modes. However,
anomaly inflow current is different. First, it is perpendicular to the field, does not perform a
work and thus is not suppressed by the mass of a particle in the bulk. Second, such a current
is not carried by any real particles excited from the vacuum, being rather a collective effect,
resulting from a rearrangement of the Dirac sea. This simple observation is in fact very
important. Essentially, it means that anomaly inflow is a very special type of brane-bulk
interaction.

Namely, we show that in the presence of parallel magnetic and electric fields the latter
changes as if photon had acquired mass. As a result the spatial distribution of an electric field
changes, in particular it appears outside the plates of the capacitor. Similarly, an electric
field of an point-like electric charge changes from Coulomb to Yukawa, when the charge is
placed in a magnetic field. The dynamics of the screening of electric charge happens to be
quite peculiar and can be shown to lead to the temporary appearance of dipole moment of
elementary particles.

4A well-known example of such current is that of the Quantum Hall effect.
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At first, we conduct our analysis in U(1) gauge theory with the chiral couplings to a
matter. One example of such a theory would be an electrodynamics, where left and right-
handed particles have different electric charges. The masses of such particles can then be
generated only via the Higgs mechanism with a charged Higgs field, which means that a
photon in such a theory becomes massive. A different example is a theory, where axial
current comes from a neutrino with a small electric charge. In such theory photon would
remain massless.

Then we analyze the version of the Standard Model where electric charges of electron
and proton differ.5 We show that although low-energy electrodynamics in this theory is
vector-like, there exist effects, similar to those, described above.

We would like to stress again that in the theories with extra dimensions there is no
immediate reason to expect that four-dimensional anomaly is so small as it follows already
from present experimental constraints on the corresponding parameters. The effects which
would follow from the existence of an anomaly inflow are observable, but quite peculiar.
They do not change drastically physical content of the theory and can be ruled out or
constrained only experimentally. Thus in those brane-world scenarios, in which higher-
dimensional theory is automatically anomaly free, we are facing yet another fine-tuning
puzzle.

For distinctness we will often refer to a simple brane-world: the fermions in the back-
ground of a kink, realizing a 4-dimensional brane, embedded into a 5-dimensional space as
in [9] (although main effects are believed to be model-independent). We localize gauge fields
in a spirit of [30, 28, 31, 32], introducing an exponential warp-factor. Such warp-factor can
arise dynamically because of the fermionic zero modes [33]. Zero modes of both types of
fields are separated by mass gaps from the corresponding bulk modes.

The paper is organized as follows. We begin section 2 with describing a model of chiral
electrodynamics, embedded into a 5-dimensional U(1) theory and analyze the microscopic
structure of the inflow and details of anomaly cancellation. Next, we turn in Section 3 to
the question of possible extensions of the Standard Model, such that it would admit an
anomaly. We consider one-parameter family of such modifications, with the free parameter
being the difference of (absolute values of) electric charges of proton and electron. In such
model particles also acquire an anomalous dipole moment. We discuss it in the Section 3.3.
We conclude with a discussion of future extensions of this work and some speculations.

Finally, we would like to stress that in this paper we conducted analysis on the level of
classical equations of motion. We discuss some aspects of quantum theory and the validity
of our approach in 4.

5The electric neutrality of matter provides restrictions on this charge difference [29]. However, even under
these restrictions the discussed effects can be pronounced enough to be observed [24].
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2 Anomalous electrodynamics and its observational

signatures.

2.1 5-dimensional electrodynamics in the background of a kink

We start our analysis considering in this section the simplest model which nevertheless
catches main effects we are interested in.6 Namely, we will discuss a four-dimensional U(1)
theory with anomalous chiral couplings to the fermions. Such a theory suffers from a gauge
anomaly, meaning that on the quantum level its unitarity is lost [3, 2, 7, 4]. Thus it cannot
describe physics of a 4-dimensional world. However, if one thinks about such an anomalous
theory as living on a brane, embedded in a 5-dimensional theory, situation changes. Five-
dimensional theory is anomaly-free (all couplings there are vector-like) and therefore there
should exist a special type of interaction (anomaly inflow [12, 13]) between the theories on
the brane and in the bulk, which ensures the unitarity and consistency of the total system.
Below we demonstrate this mechanism in details.

For definiteness we will illustrate our steps by using a concrete model of localization of
both fermions and gauge fields. Consider the following theory:7

S = − 1

4 e2

∫

d5x∆(x4)F 2
ab +

∫

d5x

2
∑

f=1

Ψ̄f(x)
(

iD/
f

+mf(x
4)
)

Ψf(x) . (2.1)

Here e is a five-dimensional charge, with the dimensionality of (length)
1

2 . There are two
fermions Ψ1,2, interacting with the gauge fields with the different charges: D/

f
= ∂/+

ef

e
A/, e1 6=

e2. The fermionic mass terms m1(x
4) = −m2(x

4) have a “kink-like” structure in the direc-
tion x4, realizing the brane: m1(x

4 → ±∞) → ±mψ. As it is well-known (see e.g. [9]),
in this model one has chiral fermion zero modes localized on the brane and a continuous
spectrum in the bulk, separated from the zero mode by the mass gap mψ. Localization of
the zero mode of gauge field is achieved by introduction of a warp-factor ∆(x4). Whenever
∫

dx4∆(x4) is convergent the system has a zero mode with the constant profile in the 5th di-
rection. Warp-factor ∆(x4) looks like an x4 dependent coupling constant in the action (2.1),
getting infinite as |x4| → ∞. The lattice study of [32] has confirmed that the perturbative
and non-perturbative analysis of (2.1) give the same result for the zero mode up to the en-
ergies of the order of the mass gap, at least for 2 + 1 → 1 + 1 reduction. We will assume
that this is the case for 4+1→ 3+1. Depending on the warp-factor, the spectrum of gauge
field may be discrete or continuous with or without the mass gap between the zero and bulk

modes [30, 28, 31]. We will often use ∆(x4) = e−2M|x4| in which case the zero mode is
separated from the bulk continuum by the mass gap M [31]. The nature of the warp-factor
∆(x4) is not essential here, it can originate from that of the metric or can arise dynamically,
coming from fermionic zero modes [33].

6In the next section we proceed with the similar consideration for the Standard Model.
7Our conventions are as follows: Latin indices a, . . . , e = 0, . . . , 4, Greek µ, ν = 0, . . . , 3. We are using

mostly negative metric. Our brane is stretched in 0, . . . , 3 directions and is located at x4 = 0. We will often
use notations t, x, z instead of x0, x1, x4 and choose polar coordinates (r, θ) in the plane (x2, x3).
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A low-energy effective action for the gauge fields of the theory (2.1) will contain terms,
describing interaction between the brane and the bulk:

S5d = − 1

4 e2

∫

d5x∆(x4)F 2
ab + Scs + Sz.m . (2.2)

The origin of two last terms is the following. The computation of the fermionic path integral
of our theory is separated into the determinant of the 5-dimensional bulk modes of the
fermions and that of the 4-dimensional chiral fermionic zero modes. In the former case one
can show (essentially repeating the computations of [34]), that after integrating out the non-
zero modes of the fermions, the 5-dimensional effective action of the model (2.1) acquires an
additional contribution of Chern-Simons type

Scs =
1

4

∫

dx5 κ(x4)ǫabcdeAaFbcFde . (2.3)

Compared to the usual case [34, 35], Chern-Simons term in models like (2.1) acquires addi-
tional factor κ(x4). It is proportional to the difference of the charges of the five-dimensional
fermions and depends on the profile of the domain wall. In the limit of an infinitely thin
wall and the large fermionic mass gap κ(x4) = κ0 sign(x4). Below we sketch the derivation
of this function.

Terms like (2.3) generically appear in the theories with anomaly inflow [13, 17, 21, 22,
23, 18, 19]. In situations with more than one extra dimension an effective action will have
similar structure, with the fifth coordinate being suitably chosen radial coordinate. Such
terms can also appear for non-Abelian fields.

Evaluating of the determinant of the 4-dimensional Dirac operator in the background
of the gauge field (and, possibly, Higgs field, see below), we get Sz.m. Let us denote the
4-dimensional charges of the left and right-handed fermionic zero modes as eL/e and eR/e.
They are proportional to their 5-dimensional counterparts e1 and e2 and thus eL 6= eR. As a
result Sz.m is not gauge invariant. The manifestation of this fact is the anomalous divergence
of the gauge current at one-loop level:

∂µ〈jµz.m〉 =
e3R − e3L
16π2e3

ǫµνλρFµνFλρ δ(x
4) , where 〈jµz.m〉 ≡

δSz.m

δAµ
. (2.4)

The action (2.3) is also non-gauge invariant, and the variations of these two terms cancel
each other (as we will demonstrate below). Divergence of the current (2.4) is proportional
to the transversal profile of the fermion zero modes. In this paper we will be interested in
the characteristic energy scales much less than the mass gap of the gauge fields M , which
is in turn much less than the fermionic mass gap: M ≪ mψ. Therefore the profile of the
fermion zero mode can be approximated by the delta-function δ(x4) ≈ 2mψe

−mψ |x4|, which
appears in eq. (2.4).

Equations of motion coming from the action (2.2) are:

1

e2
∂b

(

∆(x4)F µb
)

= Jµ
cs

+ 〈jµz.m〉, a, b = 0, . . . , 4 (2.5)
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and
1

e2
∆(x4)∂µF

4µ = J4
cs
, µ = 0, . . . , 3. (2.6)

In the right hand side of eq. (2.5) there is a current of the zero modes jµz.m (we will omit
brackets 〈. . .〉 from now on). The variation of the effective action Sz.m with respect to the
A4 is equal to zero.8

The current Jcs in the right hand side of eqs. (2.5)–(2.6) is defined via

Ja
cs

(xa) =
δScs

δAa
=

3

4
κ(x4)ǫabcdeFbc(x

a)Fde(x
a) +

1

2
κ′(x4)δaµǫ

µνλρAνFλρ, κ′(x4) =
dκ(x4)

dx4
.

(2.7)
Note that in the right hand side of eq. (2.7) there is a term, proportional to the derivative
of κ(x4). This term is non-zero only in the vicinity of the brane (as κ′(x4) is proportional to
the delta-function of x4). Thus, essentially it corresponds to the modification of definition
of the brane current jµz.m (2.4). This additional term is responsible for making anomaly of
the zero modes gauge invariant [17, 18], as the inflow current (2.4) is always gauge invariant
in the U(1) case. Thus, terms proportional to κ′(x4) correspond to the local counterterms,
shifting between the covariant and consistent anomalies [36]. In what follows we will always
consider covariant anomaly of the brane modes and ignore terms in the bulk, proportional to
the κ′(x4). The Chern-Simons current Ja

cs
is a non-dissipative one as it does not perform a

work due to its antisymmetric structure. In addition to that it does not depend on the mass
of the fermions in the bulk and hence is not suppressed by the mass gap. If a gauge field has
four-dimensional components with ǫµνλρFµνFλρ 6= 0, there exists a current J4

cs
, flowing onto

the brane from the extra dimension [13].

Trivial consequence of eqs. (2.5)–(2.6) is

∂aJ
a
cs

+ ∂µj
µ
z.m =

1

e2
∂a∂bF

ab = 0 . (2.8)

It means that if coefficients in front of the Scs and Sz.m were not correlated, by virtue of (2.4)
the solutions of eq. (2.8) would be field configurations with ǫµνλρFµνFλρ = 0. However, to
preserve the gauge-invariance in the action (2.2) the divergences of currents in the left hand
side of (2.8) should be equal. From the definition (2.7) one can see that

∂aJ
a =

3

4
κ′(x4)ǫµνλρFµνFλρ =

3

2
κ0ǫ

µνλρFµνFλρδ(x
4) . (2.9)

Comparing (2.9) with eq. (2.4) we can choose the coefficient of κ0 of the function κ(x4)
so that the current Jcs cancels the anomalous divergence of the current jµz.m and make the
theory (2.2) consistent and gauge-invariant. Namely

κ(x4) = κ0 sign(x4), where κ0 ≡
e3L − e3R
24π2e3

. (2.10)

Microscopical calculations of κ(x4) confirm that this is indeed the case.

8Indeed, j4
z.m ∼ 〈 e1Ψ̄1γ

5Ψ1+ e2Ψ̄2γ
5Ψ2〉. Zero modes of Ψ1 and Ψ2 have definite 4-dimensional chirality.

Therefore Ψ̄1γ
5Ψ1 = −Ψ̄LΨL = 0 and analogously for Ψ2.
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x4

mΦ
2

Figure 1: Profile of the mass of the Higgs field.

The relation between 5-dimensional fields Fµν , entering eqs. (2.5)–(2.6) and the 4-dimensional
ones is given by:

1

e2
Fµν =

1

e2

∞
∫

−∞

dx4∆(x4)Fµν . (2.11)

Here e is a four-dimensional U(1) coupling constant, related to the 5-dimensional one via

1

e2
=

1

e2

∫

dx4∆(x4) (2.12)

(to see that, one should substitute Fµν , independent on the 5th coordinate, into the kinetic
term in (2.2) and integrate over x4). Field Fµν satisfies the 4-dimensional Maxwell equations
∂νF

µν = e2jµ with the current in the right hand side given by:

jµ =

∞
∫

−∞

dx4
(

jµz.m + Jµ
cs
− ∂4

(

∆(x4)F µ4
))

. (2.13)

This current is conserved: ∂µ jµ = 0 as a consequence of eqs. (2.6) and (2.8).

In the theory (2.1) fermionic zero modes on the brane are massless. To make this model
more realistic, we should add mass to these zero modes as well. The only way to make
the electro-dynamics anomalous is to take left and right moving fermions with different
electric charges. Thus one can only introduce a mass term via the Higgs mechanism with an
electrically charged Higgs field, i.e. to add the following term to the bulk Lagrangian (2.1):

Sφ =

∫

d5x

[

∣

∣Daφ
∣

∣

2 −m2
φ(x

4)|φ|2 − λ

4
|φ|4 + fΨ̄1Ψ2φ+ h.c.

]

, (2.14)

where Dµφ = i∂µφ + ( eL
e
− eR

e
)Aµφ and the Higgs mass m2

φ(x
4) is negative at x4 = 0 and

tends to the positive constant in the bulk, as |x4| → ∞ (Figure 1). Thus Higgs field has a
non-trivial profile φ(x4), with φ(0) 6= 0 and φ(x4) → 0 at x4 → ±∞. So the symmetry is
restored far from the domain wall. The Higgs mass far from the brane is taken to be large,
so that the scalar is localized on a brane. The Higgs field has an expectation value, which on
the brane is 〈φ(0)〉 ∼ v (we take the scalar’s self-coupling λ to be large, so that Higgs mass
mH is much bigger than fv – Yukawa mass of the fermions on the brane). As the Higgs field
is charged, the photon should acquire mass for x4 ≈ 0). To determine it exactly one needs
to find the spectrum of the theory with action given by the sum of (2.1) and (2.14), but for
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us it is only important that m2
γ ∼ κ2

0, where parameter κ0 was defined in (2.10). In Section 3
we will analyze the consequences of anomaly inflow in the Standard Model, where Yukawa
mass of the fermions does not necessarily lead to the massive photon.

Dynamics of the Higgs field φ simplifies in the limit of the large (compared to the energy
scale of the processes on the brane) VEV v. In this limit it is convenient to work in the
unitary gauge, in which the phase of the Higgs field is fixed (e.g. via φ = |φ|). In the regions
of space where the gauge field has non-trivial Fµν , it is impossible to have |φ| = const [37].
However, variations of the |φ(xa)| − v are suppressed by the Higgs’s VEV, we can neglect
them and take φ = v = const on the brane. Now the vector field is massive and longitudinal
component becomes a physical degree of freedom. From equations of motion one can obtain
the following condition on the field Aa(x

a):

∂a
(

m2
γ(x

4)Aa
)

+ ∂µj
µ
z.m + ∂aJ

a
cs

= 0 . (2.15)

Eq. (2.15) is just an expression of the gauge invariance of the total action. Divergences of
jz.m and Jcs precisely cancel each other (2.8). Therefore eq. (2.15) implies that

∂a
(

m2
γ(x

4)Aa
)

= 0 . (2.16)

Once we have added the mass to the zero mode fermions, we can integrate them out and
obtain effective action Sz.m (2.2), written in unitary gauge. The variation of this action with
respect to Aµ gives gauge invariant current [8]:

jµz.m = 3κ0ǫ
µνλρφ

∗←→D νφ

v2
Fλρδ(x

4) . (2.17)

We will often call this current the D’Hoker-Farhi current denote it jµdf. In the unitary gauge
eq. (2.17) becomes

jµ
df

= 3κ0ǫ
µνλρAνFλρδ(x

4) . (2.18)

This current has a divergence, equal to that of the Chern-Simons current (∂µj
µ
df = −∂aJacs

):

∂µj
µ
df

=
3

2
κ0ǫ

µνλρFµν(x
µ, x4)Fλρ(x

µ, x4)δ(x4) . (2.19)

A purpose of this work is to explore in details this anomaly cancellation mechanism.
Namely, what constitutes the inflow? Zero modes of fermions are confined to the brane and
cannot propagate in the bulk, while bulk modes are massive and cannot be excited at low
energies. Another question is whether 4-dimensional observer can distinguish between an
anomaly-free, intrinsically 4-dimensional theory and 5-dimensional (anomaly-free!) brane-
world theory, in which a very small anomaly of the 4-dimensional fermions on the brane is
canceled by an inflow from the bulk.

2.2 Anomalous electric field of a capacitor

As we have seen, on the microscopic level anomaly inflow is a collective effect of reorganization
of the Dirac see of the massive fermions in the bulk in the presence of a field configuration
with non-zero ǫµνλρFµν(x

a)Fλρ(x
a)|x4=0 ∼ ( ~E · ~H).
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The simplest way to obtain non-zero ~E · ~H is to choose both E and H to be parallel to
each other and constant (in xµ) in some region on the brane. We realize such fields by two
parallel infinite plates in the vacuum, separated in the direction x1 by the distance 2d – a
capacitor with initial charge densities ±σ0 on plates, placed in the magnetic field. Magnetic
field is created by an (infinite in the x-direction) solenoid with the radius R.

Before these fields are turned on, the vacuum structure on the classical level is unchanged
and there is no difference with non-anomalous theory. Also, the effects of anomaly are
controlled by the parameter κ0, which is naturally assumed to be very small. That is why
the most natural setup to study the anomaly inflow is qualitatively the following. We assume
that the vacuum current is zero and an electric field is equal to its value for non-anomalous
theory. Then we turn on a parallel magnetic field and expect that small (perturbative in κ0)
inflow currents start to change the charge distribution on the brane trying to compensate
the anomalous field configuration. According to this picture, in Section 2.2.1 we will choose
initial condition describing the absence of anomalous vacuum structure and will consider an
initial stage of inflow (linear in time) perturbatively, in the first order in κ0.

We will see, however, that this naive approach does not work and perturbation the-
ory breaks down. Therefore, we will have to study the full non-linear equations non-
perturbatively in κ0. Then, as we will show in Section 2.2.2, a non-analytic in κ0 static
solution exists. The properties of this solution will define the main observable effect of the
anomaly inflow, studied in the present paper. It is, nevertheless, instructive to study the
dynamical problem to understand qualitatively how this state is formed. As we will see in
Section 2.2.3, from the 4-dimensional point of view the picture of the inflow given by pertur-
bation theory is qualitatively correct and knowing the non-perturbative static solution one
can define it properly.

2.2.1 Linear stage of anomaly inflow: naive perturbative treatment

As in general we expect the parameter κ0 to be extremely small, we will try to solve the
Maxwell equations (2.5)–(2.6) by perturbation theory in κ0. To find linear in time corrections
to the fields at t = 0, we should specify the initial values of all fields. Our initial conditions
should satisfy the Gauss constraint9

1

e2

(

∂z
(

∆(z)Ez
)

+ ∆(z) div ~E
)

= J0
cs

+ j0
df

+ σ0δ(z)
(

δ(x+ d)− δ(x− d)
)

, (2.20)

where J0
cs

and j0
df

are expressed in terms of components Fab and are both proportional to the
κ0 (c.f. (2.7) and (2.18) correspondingly). Because we have added a charged Higgs field (2.14)
and the electrodynamics became massive, specifying initial values of Fab is not enough and
one should also set values of the gauge potential at t = 0. We choose all but Aθ components
Aa initially equal to zero (see Appendix A for details). The time derivatives of Aa can
then be extracted knowing electric fields at t = 0 and using condition (2.16). In this paper
we restrict our analysis only to such initial conditions. In general initial conditions on the

9In this Section we use notations t ≡ x0, x ≡ x1, z ≡ x4 and choose polar coordinates (r, θ) in the plane
of the capacitor (x2, x3) (c.f. footnote 7 on page 5).
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vector field Aa will depend on how one turns on electric and magnetic fields. Corresponding
analysis (similar to that of [38]) will be presented elsewhere.

In addition to these initial condition we will choose as a zeroth approximation such
configuration of electromagnetic fields Fab that J0

cs

∣

∣

t=0
= 0. The reason for that is as follows:

from (2.7) one has J0
cs

= 3
4
κ(z)FxzH

x. In the absence of anomaly Fxz would be equal to
zero for our configuration of charges. Therefore, it is natural to assume that initially Fxz is
equal to zero in the full theory as well. Initial conditions J0

cs
= 0 and j0

df
= 0 mean that we

should prepare an electric field configuration, satisfying 5-dimensional Gauss constraint in the
theory with κ0 = 0 (we will mark these fields by the symbol (0)). Then we find (perturbative)
corrections to these fields due to anomalous current and analyze effects arising on the initial
(linear) stage of inflow. The details of the computations can be found in Appendix A.1, here
we only quote the main results.

With our choices for the fields F
(0)
ab , initially only time component of the D’Hoker-Farhi

current changes with time (see Appendix A.1):

∂tj
0
df

(xµ)

∣

∣

∣

∣

t=0

= −6κ0E
(0)
x (x, z)H(0)

x (r, z)δ(z) , (2.21)

If the theory were purely four-dimensional, eq. (2.21) would have described the rate of
anomalous particle production, essentially the measure of non-unitarity of the theory. In
the 5-dimensional brane-world the interpretation of eq. (2.21) is quite different. Namely,
one should not think about the inflow current, as “bringing particles to the brane”. This is
obvious as all the light (zero mass) particles are confined to the brane and do not propagate
in the bulk, while the fermions, which live in the bulk are too massive to be excited at low
energies. Thus, inflow current (2.7) is essentially a vacuum current – redistribution of the
particle density without actual creation of the charge carriers. This fact can be checked by the
direct microscopic computations of the vacuum average of 〈0| Jz

cs
|0〉 in the full theory (2.1).

The divergence ∂aJ
a
cs

is non-zero only in the position of the brane z = 0 and thus modifies
the charge density only there (which is reflected by the delta-function in eq. (2.21)). One
may think of the effect of the vacuum current as of a dielectric susceptibility of the vacuum
of four-dimensional theory, embedded in the 5-dimensional space-time.

Notice, that since there is no J0
cs

, eq. (2.21) means that the total electric charge density
changes with time. If the charge density changes in the finite volume on the brane, this leads
to the change of both Ex and Ez. (If initial field Ex and Hx uniformly filled all the brane
and were localized in z direction, then the appearance of the anomalous density would not
lead to the change of the x component of the electric field. The change in Ez would be
unobservable, since this field is antisymmetric in z and so

∫

dz∆(z)Ez = 0). For the case

when ~E · ~H is non-zero only in the finite volume on the brane we explicitly find the change
in Ex by solving Maxwell equations (2.5)–(2.6):

E(1)
x (xa) = −6 e2 κ(z)

∆(z)
E(0)
z (x, z)H(0)

x (r, z)t+O(t2) . (2.22)

Now one can see that our perturbation theory approach has a problem. Indeed, although E
(1)
x

is proportional to κ0, it grows in z as 1
∆(z)

while E
(0)
x decays as |z| → ∞. The correction
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term (2.22) becomes larger than E
(0)
x at |z| ∼ − log κ0

M
. Eq. (2.22) gives correction to the 5-

dimensional electric field. The corresponding 4-dimensional field is obtained via (2.11). As
shown in Appendix A.1, the integral in (2.11) is saturated at |z| ∼ Mx2 where characteristic
|x| ≫ 1

M
. Therefore in the physically relevant region

E(1)
x > E(0)

x for |z| & − log κ0

M
. (2.23)

Thus, we see that the naive form of perturbation theory does not work. It means that
something was wrong with our qualitative picture of the inflow and that we have to study
full equations non-perturbatively.

2.2.2 Analysis of a static solution

We have seen in the previous section that effects, caused by anomaly inflow are non-
perturbative. As the full system of non-linear Maxwell equations is too complicated to
solve exactly, we will compute a static solution. This means that we do not study how
anomaly inflow modifies the initial fields, but rather describe a final state of the inflow. We
will consider the simplest case: a capacitor with infinite plates, when these equations are
reduced to the 2 + 1 ones. Below we will only sketch the computations, for details reader
should refer to Appendix B. We will return to the perturbation theory in the Section 2.2.3.

For static solution we can describe the electric field in terms of the electro-static potential
Φ: Ei = −∂iΦ, Ez = −∂zΦ. Then the Gauss constraint can be re-written as (see Appendix B
for details):

∂z

(

∆(z)∂zΦ
)

+ ∆(z)∇2Φ =
36 e4κ2

0

r2∆(z)

(

F 2
rθ + F 2

xθ + F 2
θz

)

Φ + e2q(x)δ(z) + j0
df
, (2.24)

where ∇2 is a 3-dimensional Laplacian in the coordinates x, r, θ. Components Frθ, Fxθ Fzθ
can all be expressed via single function Aθ (because we choose all the gauge connection to
be θ independent). The Maxwell equation (2.5) for µ = θ becomes then an equation for Aθ:

∂z

(

∆(z)∂zAθ

)

+ ∆(z)∇2Aθ =
36 e4κ2

0Φ

r2∆(z)

(

∂xAθ ∂xΦ + ∂zAθ∂zΦ + ∂rAθ∂rΦ
)

. (2.25)

We will analyze this solution as follows. First, we notice that if the right hand side of
eq. (2.25) were identically zero, then there would be a solution Frθ = rHx, Hx = const ≡ H0,
Fxθ = Fθz = 0. Then one can easily find an explicit solution of eq. (2.24) (under these
assumptions Gauss law becomes identical to that of the 2 + 1 dimensional case with the
point-particle as the source). After that we show that corrections to the found solutions of
eqs. (2.24)–(2.25) due to the non-zero right hand side of (2.25) are of the order κ2

0. Note,
that potentially the first terms in the right hand sides of both (2.24) and (2.25) can be
non-perturbative, as they are proportional to the 1

∆(z)
. This is precisely why the naive

perturbation theory of the Section 2.2.1 did not work.
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After the Fourier transform in x, r, θ-directions: (∇ → i~p) and a substitution Φ = ψp(z)√
∆(z)

equation (2.24) becomes10

(Ĥ + p2)ψp(z) = − e2q0δ(z) , (2.26)

where operator Ĥ does not depend on p:

Ĥ = −∂2
z +

(

36 e4κ2
0H

2
0 e

4M |z| +M2 − 2Mδ(z)
)

. (2.27)

Let us denote the eigen-function of (2.27) by ψn(z) and its eigen-values by m2
n: Ĥψn(z) =

m2
nψn(z). One can show (see Appendix B) that

m2
0 = 12κ0 e2H0M +O(κ2

0 log κ0) ≈ 12κ0e
2H0 and m2

n > M2 for n > 0 (2.28)

(recall that e2 is a four-dimensional coupling constant (2.12)). Notice that m0 depends only
on the four-dimensional quantities (electro-magnetic coupling constant e2 and the magnetic
field H 0 measured by a 4-dimensional observer)! The eigen-function for the eigen-value m2

0

is given by

ψ0(z) =
m0√
2πM

Kν

(

m2

0

4M2 e
2M |z|

)

where ν =
1

2

√

1− m2
0

M2
. (2.29)

Here Kν(u) is a modified Bessel function of the second kind11 and c0 is a normalization
constant. The solution of eq. (2.24) can be easily found for any charge distribution q(x).
For the point-particle in the uniform magnetic field an electrostatic potential, created by the
particle will be of the Yukawa form:

Φ(x, r, z) =
q0
4π

e−m0

√
x2+r2

√
x2 + r2

χ0(z) , (2.30)

where the mass m0 depends on the anomaly coefficient and the magnetic field Hx (2.28).
The profile of the solution (2.30) in the z direction χ0(z) is proportional to ψ0(z) (see also
Appendix B):

χ0(z) ≡
ψ0(z)ψ0(0)
√

∆(z)
≈ m0
√

6π∆(z)
Kν(

m2

0

4M2 e
2M |z|) , (2.31)

(where in the last equality we assumed that m0 ≪ M). Function χ0(z) is sharply localized
in the region

|z| . 1

M
log

2M

m0

=
1

2M
log

M2

3 e2κ0H0

. (2.32)

Indeed, asymptotics of the Bessel function Kν(u) is e−u√
2πu

for u ≫ 1, therefore outside the

specified region potential Φ decays as an exponent e−∆(z). Thus, the function Φ(x, z) expo-
nentially decays in z direction on the scale proportional to the M−1 and depending on κ0

(potentially very small) only logarithmically, while the scale m−1
0 of the exponential decay

10We have neglected a D’Hoker-Farhi charge density j0
df

in eq. (2.26) as compared to (2.24). j0
df

is
proportional to κ0δ(z), and therefore it can be treated perturbatively, as any function which is proportional
to κ0 and does not have a growing profile in z direction.

11For definition see e.g. 8.40 in [39]. In Mathematica this function is defined as BesselK[n,x].
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of the potential in the x direction does not depend on M and is proportional to the
√
κ0. As

a result m0 ≪ M for any physically plausible values of magnetic field H 0. Notice, that the
function Kν(u) is non-regular for small u and the same is true for χ0(z) as a function of κ0.

Now it is easy to show that equation (2.25) for Aθ only gives small corrections to the
constant magnetic field H 0. Indeed, the right hand side of eq. (2.25) is proportional to the
κ2

0. In case of eq. (2.24) such term was non-perturbative, because it was divided by ∆(z)
and thus could get arbitrarily large as |z| → ∞. In the case at hand, however, the right

hand side is proportional to the
κ2

0
Φ(x,r,z)

∆(z)
. As Φ decays in z much faster than ∆(z), this

term is always small and therefore all the corrections to the Aθ(r) = 1
2
r2Hx are of the order

κ2
0. Similarly, there are corrections to the Φ(x, r, z), which are of the order O(κ0) due to the

presence of D’Hoker-Farhi term j0
df

.

To summarize, we see from eq. (2.30) that anomaly inflow causes screening of an electric
charge with the screening radius being m−1

0 . This means, that total amount of anomalous
charge, which inflows on the brane is equal to an initial electric charge q0 of a particle.

Similarly to eq. (2.30), in case of capacitor with infinite plates one can see that for
|x±d| ≫ M−1 the expression Φ is given by an electro-static potential created by two infinite
charged plates in 3 spatial dimensions for a massive electric field with the mass m0:

Φ(x, z) = φ0(x)χ0(z) = − e2σ0

2m0

(

e−m0|x−d| − e−m0|x+d|)χ0(z) (2.33)

(i.e. ∂2
xφ0(x) − m2

0φ0(x) = q(x)). Constructing 4-dimensional electric field from (2.33) we
get:

Ex(x) = −E0

2

[

sign(x− d)e−m0|x−d| − sign(x+ d)e−m0|x+d|] . (2.34)

Here E0 is a value of 4-dimensional field, which would be created between the plates of the
capacitor in the theory without anomaly E0 = σ0e

2. In the presence of anomaly distribution
of an electric field changes. Inside a capacitor it diminishes:

Ex
inside = E0e

−m0d coshm0x, |x| < d , (2.35)

but appears outside:

Ex
outside = E0e

−m0(|x|−d)(1− e−2md), |x| > d . (2.36)

As one can see, inside the capacitor the field is smaller, than would be in the absence of
anomaly, however, it appears outside the capacitor. If κ0 is such that m0d ≪ 1, the field
outside the capacitor (for 1

M
≪ (x− d)≪ 1

m0

) is almost constant, given by

Ex
outside ≈ 2E0(m0d) . (2.37)

The expression (2.34) is the main result of this paper. It shows that effect of anomaly
inflow leads to the drastic change of the electromagnetic fields on the brane. Namely, in the
presence of magnetic field, the electric field behave as if photon has become massive, with the
mass m0 dependent on the magnetic field. The same is true for a point-like charge, placed
in magnetic field (2.30). In particular, the electric field, created by an infinite capacitor,
appears outside its plates (eq. (2.37)). As we will argue in our next paper [24], this effect
can be used as a signature of extra dimensions.
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2.2.3 Perturbative computations of the initial stage

Although we have already obtained a non-perturbative final state, we would still like to
see how this solution is formed. Therefore let us come back to the dynamical problem.
Although the naive perturbation theory did not work, the parameter κ0 is very small, and
it is natural to assume that if we will choose a more appropriate zeroth approximation, we
can describe time-dependent effects of initial stage of anomaly inflow perturbatively.12 The
results of the previous section explain why the naive perturbation theory of Section 2.2.1 did
not work. Essentially, this is due to the fact that the solution in the bulk is non-perturbative
in κ0. Therefore, we will try to find a dynamic solution (linear in time), based on the
non-perturbative zeroth approximation, derived from the static solution (2.33).

At first sight solution (2.33) differs drastically from electric fields of Section 2.2.1. For
example, the component Ex and a charge density distribution are symmetric with respect
to an inversion x → −x, while the correction E

(1)
x to an electric field is anti-symmetric.

This is due to the fact that the full (time-dependent) Maxwell equations do not possess
such symmetry (unlike the equations for the static case). Thus, for example, the point
particle can have a (time-dependent) dipole moment at initial stage of anomaly inflow (see
below, Section 2.3), while such a dipole moment will be absent in the static solution (2.30).
Additionally, static solution behaves as e−κ0∆(z) for |z| outside the region (2.32) around

the brane, which is very different from the z dependence of the fields E
(0)
x and E

(0)
z in

Section 2.2.1, which had a power law decay (see [40]). However, we can still develop a
perturbative (in time) expansions for electric fields. As a zeroth approximation we will take

functions E
(0)
x and E

(0)
z , whose profiles in z direction is χ0(z) and ∂zχ0(z) correspondingly

(that is they go to zero exponentially fast for |z| ≫ 1
M

), unlike functions E
(0)
x and E

(0)
z in

the Section 2.2.1). Namely, we express E
(0)
z and E

(0)
x via a function Φ(0)(x, z) such that

E
(0)
z = ∂zΦ

(0)(x, z) and E
(0)
x = ∂xΦ

(0)(x, z). The function Φ(0)(x, z) will be chosen in the
form (2.33):

Φ(0)(x, z) = φ(0)(x)χ0(z) where φ(0)(x) = −E0

2

(

|x+ d| − |x− d|
)

, (2.38)

where E0 is a value of a 4-dimensional electric field between the plates of the capacitor. We
stress that Φ(0)(x, z) is just an auxiliary function, which is not related to the component
Φ(0) of the gauge field. The initial field φ(0)(x) is created by an infinite capacitor in 3 + 1
dimensions.

The reason for such a choice is the following. The relaxation time in the bulk is deter-
mined by the mass of the fermions there (fermionic mass gap). This mass is much larger
than any other scale in our theory, therefore one can think that the bulk fermions form an
incompressible fluid and have a relaxation time τψ much faster than any time scale in the
theory. Therefore the profile in z direction settles over the time of turning on of a magnetic
fields. As the magnetic field Hx is already taken at its stationary value in our problem, we
also take static profile in z-direction for the electric fields. On the contrary, the relaxation in

12This is similar in spirit to the quasi-classical expansion in quantum mechanics, where there is a non-
perturbative in ~ part of the wave-function e

iS

~ plus perturbative series in ~ in a pre-exponential term.
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x-direction is of the order τx ∼ m−1
0 , which is incomparably smaller than the afore-mentioned

scale. The difference of these two scales justifies an ansatz (2.38). We will find corrections
to the electric field (2.38) for the times τψ ≪ t ≪ τx. The resulting expression has z de-

pendence of the form χ0(z)
∆(z)

(see Appendix A.2 for details). Thus, it will decay in the same
region, as a full solution and a problems of the perturbation theory of the Section 2.2.1 are
removed.

In the linear stage the result of the anomaly inflow is the following. The anomalous
electric density appears between the plates of the capacitor:

ρanom(t, x) = −6 κ0E0H0t, |x| < d , (2.39)

where H 0 is the value of magnetic field H
(0)
x in the center of the solenoid. This means that

the capacitor acquires anomalous electric charge, linearly changing with time. This implies
an existence of the stationary 4-dimensional current jx(x), given by

jx(x) = 6κ0tH0Φ
(0)(x, 0) , (2.40)

(where Φ(0) is given by (2.38)). This picture has an apparent contradiction with causality,
as a non-zero current jx instantaneously appears at spatial infinity at t = 0. This is due to
our choice of initial conditions: the magnetic field H

(0)
x was turned on instantaneously in the

whole space. In reality there is a transitional period, depending on the speed with which we
are turning on magnetic field, and the current will appear at infinity only when magnetic
field will reach it.

We see that in accord with our qualitative expectations, electric charge is initially accu-
mulating in the region of space where initial ~E · ~H 6= 0. Such a charge of course creates an
electric field outside the plates of the capacitor. For |x| > d and r ≪ R the electric field
outside of the capacitor behaves as

E(1)
x = −12κ0e

2 dE0H 0 sign(x)t, |x| > d . (2.41)

Comparing correction E(1)
x with E0, we see that the linear stage of anomaly inflow is valid

for the time t≪ τlinear where

τlinear ∼
1

12κ0e2 dH0
=

1

m0(m0d)
. (2.42)

2.3 Anomalous field of elementary particles and dipole moment

We discussed in Section 2.2 the simplest possible way to create configuration of electro-
magnetic field with parallel E and H and therefore observe effects of anomaly inflow. Actu-
ally, the electro-magnetic field created by any charged particles with spin has non-zero ~E · ~H.
As we will presently see, anomaly inflow in this case leads to an appearance of an anoma-
lous dipole moment of the particle. To estimate this effect, we start from the quasi-classical
expressions for electric and magnetic fields, created by a particle with an electric charge e
and magnetic moment µ = e

m

~E = e
~r

r3
; ~H =

3(~µ · ~r)~r − r2~µ

r5
⇒ ~E · ~H =

2(~µ · ~r)e
r6

. (2.43)
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Thus, in the region of the space where expression (2.43) is non-zero, inflow current (analogous
to that of Section 2.2) creates non-zero anomalous charge density ρ. Such density will be
positive in one half of the ball, surrounding a particle, and negative in another one. As
a result, the total charge of the particle does not change. However due to the inflow any
particle acquires an anomalous electric dipole moment :

danom ∼ e(ρ r3
c ) rc (2.44)

(here rc is a Compton radius of the particle, given by rc ∼ 1
m

in our system of units). Charge
density ρ is given by (A.26) with electric and magnetic fields estimated by E ∼ e

r2c
= em2

and H ∼ e
mr3c

= em2. Substituting all these values into eq. (2.44) we get:

danom ∼ e3κ0 t , (2.45)

i.e. as a consequence of anomaly inflow a particle acquires a dipole moment, which has
the absolute value growing with time. Notice, however, that this result was obtained in
perturbation theory as a linear in time approximation (Section 2.2.3). It is valid for t ≪
τparticle ∼ 1

m0
where m0 is given by an analog of formula (2.28) for H ∼ em2:

m0 ∼ m
√

κ0e3 . (2.46)

For times, much bigger that this characteristic time, field configuration around the particle
approaches static solution. As it has already been discussed (see the beginning of the Sec-
tion 2.2.3), static equations are symmetric with respect to inversion ~x→ −~x, therefore, there
cannot be any dipole moment for t≫ τparticle. Electric field configuration will be significantly
modified from the usual Coulomb to Yukawa form (similar to (2.30)) at the distances larger
than m−1

0 , with m0 given by (2.46). This means that the electric charge of the particle gets
completely screened and the total amount of an anomalous charge which appeared on the
brane is equal to the charge of the particle.

3 The Standard Model with anomaly inflow

In this section we apply the logic of Section 2 to the Standard Model. Indeed, if the Standard
Model fields are localized on a brane in a 5-dimensional world, there is no apparent reason to
expect a separate anomaly cancellation for them. Let us try to see what kind of new effects
we should expect for the Standard Model if 4-dimensional anomaly cancellation condition
is not imposed and there is an inflow from extra dimensions. We will see that such effects
do exist and discuss experimental restrictions for corresponding parameters. For simplicity
we consider the electroweak SU(2)× U(1) theory with only one generation of fermions (the
addition of extra generations does not change the analysis). The action for the SU(2) and
U(1) gauge fields is similar to that in eq. (2.1). The warp-factor ∆(x4) is such that there is a
zero mode, localized on the brane. We also add a Higgs φ field, which is an SU(2) doublet.
As in Section 2.1 its mass m2

φ(x
4) is negative at x4 = 0 and tends to the positive constant in

the bulk as |x4| → ∞ (Figure 1). Therefore it has a non-trivial profile φ(x4), with φ(0) 6= 0
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and φ(x4) → 0 at x4 → ±∞. So the SU(2)× U(1) symmetry is broken down to U(1)em on
the brane and restored far from it. Therefore the vector boson acquires mass m(x4) which
becomes zero at large |x4|.13

We also add fermions in the bulk, charged with respect to SU(2) × U(1). Their zero
modes are localized on the brane with mass gap mψ much larger than that of the gauge
fields.

3.1 Charge difference of electron and proton and anomalies

We consider the extension of the Standard Model in which the U(1)Y hyper-current jµy
becomes anomalous

∂µj
µ
y

=
Tr[Y 3]

16π2
ǫµνλρFµνFλρ +

Tr[YL]

16π2
ǫµνλρ TrGµνGλρ . (3.1)

Here Fµν is a U(1)y field strength of the U(1) field Bµ (hyper-photon): Fµν = ∂µBν − ∂νBµ;
Gα
µν is an SU(2) non-Abelian field strength, g′ and g are U(1)y and SU(2) coupling constants

correspondingly. The first term in (3.1) comes from the diagram Fig. 2b and is proportional
to the sum of cubes of hypercharges of all particles. The hypercharges in the Standard Model
are chosen in such a way that Tr[Y 3] = Tr[YL] = Tr[Y ] = 0 [7]. We choose a one-parameter
extensions of this model, in which 1

6
Tr[Y 3] = −1

2
Tr[YL] = κ0. The second term comes from

the diagram Fig. 2a, with one U(1)y and two SU(2) vertices.14 Along with anomaly (3.1)
there is also a non-conservation of SU(2) current in the background U(1) and SU(2) fields
(its coefficient is proportional to the same diagram as the second term in (3.1)):

Dµjαµ =
Tr[YL]

8π2
ǫµνλρGα

µνFλρ . (3.2)

Recall that U(1)y and SU(2) fields, entering (3.1) and (3.2), are the fields above the elec-
troweak symmetry breaking scale. At lower energies it is convenient to re-express these
anomalies in terms of of electro-magnetic field γµ and neutral field Zµ, which can be obtained
from the U(1) and SU(2) fields Bµ and A3

µ via the rotation γµ = Bµ cos2 θw +A3
µ sin2 θw and

Zµ = (A3
µ − Bµ) cos θw sin θw.15 The electro-magnetic current jµγ is given by jµy + jµ3 and

neutral current jµz = − cot θwj
µ
y + tan θwj

µ
3 , where jµ3 is the 3rd component of the SU(2)

triplet jµα, α = 1, 2, 3. Using (3.1) and (3.2) one can easily see that (i) electro-magnetic
current is conserved in the arbitrary background of electro-magnetic fields (as one expected,
because the electrodynamics remains vector-like in our model); (ii) there is an anomalous
γγZ coupling

∂µj
µ
z

= − 2 Nf κ0

π2 cos θw sin θw
~Eγ · ~Hγ , (3.3)

13Notice, that one could not simply have chosen m(x4) = const, as such a constant would have removed
the zero mode from the spectrum. Indeed, in this paper we consider such warp-factors ∆(x4) that there is a
mass-gap M between the zero mode and the modes in the bulk. Therefore no state with the mass m≪M

can exist away from the brane.
14Note, that no anomalies arise for QCD!
15These relations differs from the usual “textbook” ones (γµ = Bµ cos θw +A3

µ sin θw, etc.) because we use
different normalization of the action for the gauge fields – the one with the coupling constant in front of the
kinetic term.
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Figure 2: Anomalous diagrams, describing the non-conservation of the U(1) current in the
presence of non-trivial SU(2) background (a); or in a background of two U(1) fields (b).

which implies the non-conservation of the neutral current in the parallel electric and magnetic
fields (Nf is the number of generations); (iii) another important consequence of the presence
of γγZ coupling is the non-conservation of the electro-magnetic current in the mixed electro-
magnetic and Z-backgrounds:

∂µj
µ
γ = − 4Nf κ0

π2 cos θw sin θw
( ~Eγ · ~Hz + ~Ez · ~Hγ) . (3.4)

As we will see this leads to the effects similar to those, described in Sections 2.2–2.3.

3.2 Static electric field in a capacitor in a magnetic field

Consider again the setup of Section 2.2: place a capacitor in the strong magnetic field
~H , such that electric field ~E, created by the capacitor is in the same direction x1. Our
choice of hypercharges implies the non-conservation of jµz current (3.3). This also means
that there exist Chern-Simons terms in the bulk action, which ensure an anomaly inflow,
canceling anomaly (3.3). Indeed, Chern-Simons term (2.3), originally written in terms of
the hypercharge field Bµ and SU(2) field Aaµ, can also be re-expressed in terms of electro-
magnetic and Z-field and it creates a inflow of Z-current in the parallel electric and magnetic
fields. This creates anomalous density of Z charge on the brane. This distribution of Z

charge creates an anomalous Z field in the 5th direction and as a result inflow of electro-
magnetic current to cancel an anomaly (3.4). Such an inflow creates anomalous distribution
of electric charge on the brane and modifies electric field inside and outside the capacitor.
Similarly to the case of electrodynamics (Section 2) we can find this static configuration of
an electric field. It will be given by the same expression as in Section 2.2.2 (see Appendix C
for details). As a result, distribution of an electric field inside and outside the capacitor
is given by expressions (2.35)–(2.37), with m0 proportional to the magnetic field H 0 and
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anomaly parameter κ0:

m2
0 =

Nfe
2H 0

π2 cos θw sin θw
κ0 . (3.5)

Notice, that this result does not depend on the mass scale of the extra dimension and would
be true even for Planck scale M . It also does not depend on the mass of the Z boson mz.
This feature, as well as the result (3.5) itself, is valid only assuming that mz ≪ M . This
can be understood as follows: anomalous density of Z charge creates electric Z field in the
5th direction. This field is, of course, decaying on the scales larger than 1/mz. However
the inflow comes from the region (2.32) which is much smaller than 1/mz. As a result, in
the leading order in mz/M mass of the Z boson does not modify the effect. For details see
Appendix C.

3.3 Anomalous dipole moment

The consequence of anomaly (2.46) is the appearance of anomalous dipole moment of the

particle (c.f. Section 2.3). Namely, a background with non-zero ~Eγ · ~Hz + ~Ez · ~Hγ can be
created around any particle which has a spin and also electric and Z-charges. Unlike the
electro-magnetic case, Z-field, created by the particle, is short-ranged. In the physically
interesting case of a particle, lighter than Z-boson (e.g. proton or electron), anomaly inflow
is concentrated in the region smaller then Compton wave length of the particle and, therefore,
it can not be treated quasi-classically. Therefore we will only give the order of magnitude
estimate here. Compared to the analysis of Section 2.3 the result is suppressed by ( m

mz
)2 :

danom ∼
Nfe

2κ0

cos θw sin θw

(

m

mz

)2

t . (3.6)

Again, this result does not depend on the parameters of the extra dimension, but in this
case it depends on the mass of the particle and on mz.

4 Discussion

In this paper we analyzed a brane-world scenario, when fields on the brane possess an
anomaly, canceled by inflow from the bulk. We stress that in such setup there is no reason
to require cancellation of anomaly separately on the brane. We show in a simple model of
electrodynamics that inflow results in the concrete observational effects, even in the situation
when the real escaping of the matter from the brane is not possible.

This logic can also be applied to the Standard Model (SM), if one considers it as an
effective theory of some fundamental theory in higher-dimensional space-time. Anomaly
cancellation condition which is usually assumed in SM becomes an unjustified fine-tuning
and one should study the theory without it. Easing this condition leads (in the simplest case)
to the one free parameter – electric charge difference of electron and proton. This is one
more legitimate phenomenological parameter imposed onto the SM from the point of view
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Figure 3: A diagram potentially generating the photon mass in electroweak theory.

of extra-dimensions. We show that with this parameter (called κ in sections 3–3.3) being
non-zero, the phenomenology of the Standard Model is modified in such a way as to admit
an anomaly. It is interesting to note that this modification does not affect electrodynamics
sector of the SM: even for different charges of electron and proton it remains non-anomalous.

The presence of anomaly inflow exhibits itself on a brane via a subtle mechanism, leading
to the dynamical screening of an electric field in the presence of a parallel magnetic field, e.g
the change of an electric field in a capacitor, placed in a magnetic field. Similarly, anomaly
inflow leads to the screening and change with time of the electric charge of any elementary
particle with electric charge and spin. the inflow, before the screened static solution is
formed, such a particle acquires also anomalous dipole moment, which, however, disappears
again in the final state, where the electric field is parity symmetric, but screened.

These effects would not be present if the theory were purely 4-dimensional, with anomaly
canceled by addition of new (chiral) particles at higher energies. Thus the described effects
can in principle serve as a signature of extra dimensions. Of course, there can exist other
low-energy (as well as high-energy) effects, through which anomaly inflow exhibits itself.
For example, one can show that photon, propagating in the magnetic field, would becomes
massive, depending on its polarization. We plan to study other signatures of anomaly inflow
elsewhere.

Radiative corrections. The analysis in this paper was conducted at the level of classical
equations of motion. The natural question arises: to which extent this theory can be consid-
ered weakly coupled and radiative corrections can be neglected? A most sensible quantity
seems to be the mass of the photon, which is constrained strongly by a number of different
experiments. A simple power counting applied to a diagram, shown on Fig. 3, containing two
triangles in the anomalous four-dimensional electroweak theory with a non-standard hyper-
charge choice, gives an order of magnitude of the photon mass mγ ∼ e3Λcκ0. Then, for an
ultraviolet cutoff of the order of 1 TeV one finds a very strong constraint on an anomaly coef-
ficient κ0. If the same consideration were true for our case, when the anomalous electroweak
theory is coming from anomaly-free theory in 5 dimensions, the classical effects described in
this paper would be subleading and non-observable. However, this is not the case because of
the following reason. The same diagram, considered now in full 5-dimensional theory, where
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both massive and zero modes run in loops, does not lead to generation of the photon mass
simply because the theory is free from anomalies and is gauge-invariant. On the language
of the effective field theory, the insertion of triangular diagrams will not produce any irreg-
ularities, as any contribution coming from the Chern-Simons vertex is precisely canceled by
the same process with an insertion of a D’Hoker-Farhi vertex.

Effective theory. Our main result, given by eqs. (2.34), (3.5), does not depend on the
mass scale of the 5th dimension M and on the Higgs VEV. So, the effect stays even when
these parameters are sent to infinity, in other words, when the only low energy particle
residing in the spectrum is the photon.16 This can also be seen from eqs. (2.3) and (2.18),
which do not contain any information about the heavy particles which generated them and
are not suppressed by any cut-off. This may seemingly contradict to the usual logic behind
effective field theories which is based on the conjecture (often known as “decoupling theorem”
and proven for quite a general class of four-dimensional theories in [41]) that effects of
massive fields on the renormalizable low-energy effective action only exhibit themselves in
renormalization of charges and fields, while all additional interaction are suppressed by some

positive power of
(

E
Λc

)

(characteristic energy of processes over cut-off Λc). It is known,

however, that the “decoupling theorem” does not always hold. In particular, it is not true in
theories, leading to Chern-Simons [34] or D’Hoker-Farhi [8] interactions. In the latter case
the low energy theory is non-renormalizable, which is true for our case as well. So, in addition
to the Chern-Simons and the D’Hoker-Farhi term in the effective theory one must introduce
infinitely many other terms and counterterms to remove divergences. To determine them
one needs the knowledge of the fundamental theory. The construction of this type of theory
goes beyond the scope of the present work.

The low energy description of our theory contains 5-dimensional terms (see e.g. ac-
tion (2.2)). It would be interesting to construct a low-energy effective action entirely in
terms of 4-dimensional fields. Naively, one could try to integrate over the massive modes of
the field Aa(x, z) in the action (2.2). However, as this work demonstrates, the Chern-Simons
term in (2.2) cannot be treated perturbatively, therefore it is not clear how one can perform
such an integration.

Fine-tuning of anomaly mismatch. The idea of realization of the Standard Model on
a brane is very popular and wide-spread nowadays. As we showed in this paper, any such
model should either produce a mechanism, which prohibits the anomaly on the brane (due
to symmetry reasons or dynamics) or incorporate it into the model. At the same time, it is
known experimentally that (if non-zero) the charge difference between electron and proton
is extremely small. As a result, one is presented with a novel type of a fine-tuned parameter
and should try to find a reason for its existence. As it is usually the case, this fine-tuning
can tell us something new about the physics beyond the Standard Model.

Certainly, the answers to the questions of anomalous Standard Model and fine-tuning

16Strictly speaking, in this limit there are no particles which can create background magnetic or electric
fields.
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of its anomaly coefficient will depend on various ingredients of the brane-world models:
the higher-dimensional theory, the details of localization of the fields, etc. Therefore it is
important to consider semi-realistic brane-worlds, where at least some sector of the Standard
model (including gauge fields) is localized. A simple example of such sort was proposed
in [11], where the U(1) theory was localized on the vortex in six dimensions. In that model
the fermionic content on the brane could have anomalous chiral couplings (while the theory in
the bulk was always anomaly free). This theory can be considered as a particular realization
of the scenario of section 2 and effects, similar to those, described in section 2.2, should be
present there. One should notice also that its anomaly coefficient can be of the order of
unity, as it should on general grounds. More realistic models should include non-Abelian
fields localized which is rather non-trivial. In all these models it is important to analyze
the question of anomaly (non)cancellation on the brane and the reason of the fine-tuning of
corresponding parameters.

In string theory, being a theory with extra-dimensions, this question also arises. A
popular approach there is to obtain the Standard Model fields on an intersection of various
branes (see e.g. recent paper [42]). On the other hand, there are many examples in string/M
theory with branes when world volume theory is anomalous and there is an inflow (see
e.g. [21]). Again, there should be a special reason to have so exact anomaly cancellation
for the Standard Model realized in this way. Anomaly analysis is usually very instructive in
string theory and a string theoretical solution of this problem would be very interesting.

One should also apply this logic to any extension of the Standard Model (e.g. to the Min-
imal Supersymmetric Standard Model (MSSM)) appearing in a brane-world setup. In this
case there could be more free parameters which may allow for some other phenomenological
effects (e.g. non-zero electric charge of neutralinos).
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A Perturbation theory in κ0

To compute initial, linear in time, change of electromagnetic fields on the brane, one should
specify values of the fields at t = 0. As discussed at the beginning of Section 2.2.1, one should
specify not only values of electromagnetic field (to be discussed below, in Sections A.1–A.2),
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but also initial values of gauge potential. In this paper we consider the following case.

Aθ(r, z)

∣

∣

∣

∣

t=0

=

r
∫

0

dr rHx(r, z); Aa
∣

∣

∣

∣

t=0

= 0 ∀ a 6= θ . (A.1)

Values of the time derivative at t = 0 can then be determined, knowing field strengths and
using eq. (2.16). There are two non-zero derivatives:

∂tAx

∣

∣

∣

∣

t=0

= Ex(x, z); ∂tAz

∣

∣

∣

∣

t=0

= Ez(x, z) . (A.2)

Our initial conditions mean that at the initial moment the longitudinal component of the
field is not excited. Indeed, at t = 0 our field Aa obeys: A0 = 0 and div ~A = 0 (we denote

by div ~A ≡ ∂xA
x + ∂rA

r + 1
r
∂θA

θ + ∂zA
z), which means that it is transversal. Notice, that

the condition (A.2) implies that transversality of Aa will not hold for t > 0. For these initial
conditions the only non-zero component of the D’Hoker-Farhi current is

jr
∣

∣

∣

∣

t=0

= −6κ0Aθ(r, z)Ex(x, z); j0
df

= jx
df

= jθ
df

∣

∣

∣

∣

t=0

= 0 . (A.3)

A.1 Naive perturbation theory

First, we attempt to solve the Maxwell equations (2.5)–(2.6) by perturbation theory in κ0.
In addition to the initial condition (A.3), we take initial electric fields to satisfy Gauss
constraints in the theory with κ0 = 0 (see the discussion in the beginning of Section 2.2.1):

∂z

(

∆(z)Ez
(0)

)

+ ∆(z)∂xE
x
(0) = σ0δ(z)

(

δ(x+ d)− δ(x− d)
)

. (A.4)

We will mark such fields by the symbol (0). Our choice in particular imply that J0
cs
|t=0 = 0.

Although the zero mode of the gauge field has constant profile in fifth direction, the solution
of (A.4) gives Ex

(0)(x, z) and Ez
(0)(x, z), both decaying at |z| → ∞. The rate at which these

fields decay depends on the warp-factor ∆(z). A solenoid creates non-zero field Hx(r, z) as
well as F θz(r, z), again, both decaying at infinity in z (see [40] for details). According to
the definition of the inflow current (2.7) such electric and magnetic fields generate the inflow
current from the fifth direction:

Jz
cs

= 6κ(z)E(0)
x (x, z)H(0)

x (r, z) . (A.5)

This current flows onto the brane from both sides in the z direction. Two other non-zero
components of the Chern-Simons current are

Jx
cs

= −6κ(z)E(0)
z (x, z)H(0)

x (r, z), Jr
cs

= −6κ(z)F
(0)
θz (r, z)E(0)

x (x, z) . (A.6)

For our configuration of electric and magnetic fields the D’Hoker-Farhi current (2.18) satisfies
the following property:

∂tj
0
df

+ ∂xj
x
df

= ∂rj
r
df

+
1

r
∂θj

θ
df

=
1

2
∂µj

µ
df

= −6κ0E
(0)
x (x, z)H(0)

x (r, z)δ(z) . (A.7)
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This property suggests that the dynamics of the theory may be separated into two parts:
dynamics in the directions x, z and in r, θ. We will see below that this is indeed the case at
the initial stage of the process. For the initial conditions of Section 2.2.1, the anomaly of
the D’Hoker-Farhi current is split equally between ∂rj

r
df

and ∂tj
0
df

, both being equal to the
right hand side of eq. (A.7). In particular

∂tj
0
df

(xµ)

∣

∣

∣

∣

t=0

= −6κ0E
(0)
x (x, z)H(0)

x (r, z)δ(z) , (A.8)

i.e. we see that an electric charge is accumulating on the brane between the plates of the
capacitor.

At initial stage of anomaly inflow, only electric fields appears in the left hand side of the
Maxwell equations (2.5)– (2.6). The reason for that is the following. As we have shown,
initially the total charge density grows linearly in time (A.8). Therefore, it creates electric

field, also growing linearly in time. As a consequence of the Bianchi identities (∂tF
(1)
ij =

∂iE
(1)
j −∂jE

(1)
i ) all the magnetic components F

(1)
ij , F

(1)
iz = O(t2). Thus, if we keep only terms

at most linear in time in these equations, we obtain:

1

e2
∂z

(

∆(z)E(1)
z

)

+
1

e2
∆(z)

(

∂xE
(1)
x + ∂rE

(1)
r

)

= −j0
df

(xµ, z)δ(z) , (A.9)

− 1

e2
∆(z)∂tE

(1)
x = 6κ(z)E(0)

z (x, z)H(0)
x (r, z) , (A.10)

− 1

e2
∆(z)∂tE

(1)
r = −jr

df
(xµ, z)δ(z) + 6κ(z)E(0)

x (x, z)F
(0)
θz (r, z) , (A.11)

− 1

e2
∆(z)∂tE

(1)
z = −6κ(z)E(0)

x (x, z)H(0)
x (r, z) (A.12)

All the gauge fields in the left hand side are of the order O(κ0), while those in the right hand
side are of the zeroth order in κ0 and are explicitly multiplied by κ0. Eq. (A.10) gives

E(1)
x (xa) = −6 e2 κ(z)

∆(z)
E(0)
z (x, z)H(0)

x (r, z)t+O(t2) , (A.13)

and similarly from eq. (A.12)

E(1)
z (xa) = 6 e2 κ(z)

∆(z)
E(0)
x (x, z)H(0)

x (r, z)t+O(t2) . (A.14)

We see that for any κ0 the correction E
(1)
x will become bigger than E

(0)
x for large |z|, as

∆(z)→ 0 for |z| → ∞.

Notice, that solution (A.13) is a 5-dimensional electric field. To discuss the observational
consequences, we should switch to the 4-dimensional fields, defined as in (2.11), namely

1

e2
~E(xµ) =

1

e2

∞
∫

−∞

dz∆(z) ~E(xµ, z) . (A.15)
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Four-dimensional electric field E(1)
x is given by

E(1)
x (xµ) = −12e2κ0t

∞
∫

0

dzE(0)
z (x, z)H(0)

x (r, z) . (A.16)

Integration in (A.16) can be done explicitly in the region r ≪ R. As shown in [40]H
(0)
x (r, z) is

a constant as a function of z for M−1 . |z| ≪MR2. Notice, that even in case of H
(0)
x = const

integral (A.16) is convergent. Indeed, for any warp-factor ∆(z), decaying at infinity, Ez-
component of an electric field decays at infinity as |z|1+ǫ (see [40] for details). We will be using
this approximation through this section. The error from approximation of Hx(r, z) by its

value at the originH
(0)
x (r=0, z=0) = H 0 can be estimated as

∫∞
MR2 dz E

(0)
z H

(0)
x ∼ O( 1

MR
)→ 0

(see [40] for details). In case of the warp ∆(z) = e−2M |z| the integral (A.16) is saturated in
the region |z| ∼ Mx2.

The solution of this Section has an apparent problem: for any κ0, e.g. E
(1)
x becomes

bigger than E
(0)
x for |z| large enough. See the discussion in the Section 2.2.1.

A.2 Perturbative solution for the capacitor

To compute perturbatively in κ0 an initial changes of electric field of a capacitor, we should
choose a zeroth approximation different from that of the previous Appendix. Namely, we
express E

(0)
z and E

(0)
x via an auxiliary function Φ(0)(x, z) such that E

(0)
z = ∂zΦ

(0)(x, z) and

E
(0)
x = ∂xΦ

(0)(x, z) with Φ(0)(x, z) given by (2.33):

Φ(0)(x, z) = φ(0)(x)χ0(z) where φ(0)(x) = −E0

2

(

|x+ d| − |x− d|
)

, (A.17)

where E0 is a value of a 4-dimensional electric field between the plates of the capacitor. The

initial field φ(0)(x) satisfies 4-dimensional Poisson equation: −∂2
xφ

(0)(x) = e2σ0

(

δ(x + d) −

δ(x− d)
)

.

Unlike the case of Section 2.2.1, the initial Chern-Simons charge density J0
cs

is not equal

to zero (as one can see by substituting E
(0)
x and E

(0)
z into the Gauss constraint). This

implies that component F
(0)
xz is nonzero (it can be read off the right hand side of the Gauss

constraint (2.20) using the definition (2.7) (see also (B.6)):

F xz
(0) =

(

(

∂2
xφ

(0)(x)−m2
0φ

(0)(x)
)

∆(z) +
e4κ2

0

(

H
(0)
x

)2

∆(z)
φ(0)(x)

)

χ0(z) sign(z)

e2κ0H
(0)
x

, (A.18)

where m2
0 is given by (2.28). However, its explicit form will not be needed for the analysis

below. The first correction to the field Ex is given by

E(1)
x (x, z, t) = −6 e2 κ(z)

∆(z)
E(0)
z (x, z)H(0)

x (r, z)t+
∂z

(

∆(z)F
(0)
xz

)

∆(z)
t , (A.19)
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(recall, that our initial conditions for the D’Hoker-Farhi currents are those of eq. (A.3), and
therefore jx

df
= 0). Similarly

E(1)
z (xa) = 6 e2 κ(z)

∆(z)
E(0)
x (x, z)H(0)

x (r, z)t−
∂x

(

∆(z)F
(0)
xz

)

∆(z)
t . (A.20)

Notice that according to the definition (2.11) the 4-dimensional electric field, E(1)
x is deter-

mined by only the first term in (A.19):

E(1)
x (t, x, z) = −12e2κ0t

∞
∫

0

dz E(0)
z (x, z)H(0)

x (r, z) . (A.21)

The difference of equation (A.21) with that of (A.16) in the Section 2.2.1 is in the fact that
here the integral over z in effectively restricted to the region z . 1

M
log M

e
2κ0H0

. In this region

one can substitute H
(0)
x (r, z) with its value H0 in the center of the solenoid. As a result one

gets:

E(1)
x (t, x) = 12e2κ0tH0

x
∫

0

dxE(0)
x (x, z=0) . (A.22)

One can check that in the linear in κ0 order the energy is conserved. Indeed, in this order
the change of energy (in the full 5-dimensional theory) is given by

∆E5d =
1

2

∫

d3x

∫

dz∆(z)
(

E(0)
x E(1)

x + E(0)
z E(1)

z

)

. (A.23)

Substituting the solutions (A.19)–(A.20) we see that the integrand of (A.23) is equal to zero.
From the point of view of the 4-dimensional observer, the energy is defined as

E4d =
1

2

∫

d3x ~E
2
, (A.24)

and therefore its change in the linear in κ0 order is

∆E4d =

∫

d3xE(0)
x E(1)

x . (A.25)

Because the E(0)(x) is an even function of x, while E(1)(x) is an odd one, this integral is
equal to zero. Thus although there is an inflow of Chern-Simons currents to the brane, the
energy on the brane does not change. It simply gets redistributed in the space, as field
appear outside the capacitor and diminishes inside.

According to the definition (A.17) E
(0)
x (x, z=0) = ∂xφ

(0)(x)χ0(0) = E0Θ(d2− x2), where
the function Θ(d2−x2) equals to 1 for |x| < d and zero otherwise and χ0(0) = 1+O(κ0) (see
Appendix B). As a result we see that the inflow current creates a non-zero charge density
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on the brane in the region where (4-dimensional) ~E · ~H 6= 0 (in our case – between the plates
of the capacitor):17

ρanom(xµ) =
1

e2
div ~E

(1)
= 6κ0t

∞
∫

0

dz ∂xE
(0)
z (x, z)H(0)

x (r, z) ≈ −6 t κ0E0H 0 Θ(d2 − x2) .

(A.26)
Thus the capacitor accumulates over time an additional electric charge Qanom = 2d S ρanom

(where area S = πR2). This means that from a 4-dimensional point of view there is an electric
current flowing from infinity. Indeed, according to the definition (2.13) the 4-dimensional
current in the direction x is given by

jx(x) =

∞
∫

−∞

dzJx
cs

(x, z) . (A.27)

(both jx
df

and F
(1)
xz are equal to zero in the linear in time approximation). As we will now

see, this current jx is non-zero as |x| → ∞. Using definition (A.6) we get:

jx(x) = 6κ0H 0Φ
(0)(x, 0) . (A.28)

where Φ(0)(x, 0) ≡ φ(0)(x)χ0(0). If anomalous electric charge Qanom changes with time, this
means that S

∫

dx ∂xj
x 6= 0 or equivalently that jx(+∞)− jx(−∞) 6= 0 (we have substituted

integral over the (r, θ) plane with the area S of the plates of the capacitor). Using eq. (A.17)
one can see that indeed Φ(0)(±∞, 0) = ±E0d. This gives

dQanom

dt
= −jx(x)

∣

∣

∣

∣

+∞

−∞
S = −12κ0H0E0Sd . (A.29)

The result (A.29) can be obtained from the conservation of the 5-dimensional current.
Namely, one can see that there is a flow of the Chern-Simons current from infinity. In the
approximation Hx(r, z) = H 0 we should also take F θz = 0 (F θz has the same z-dependence

as ∂zH
(0)
x ) and therefore we can neglect radial Chern-Simons current. As a result the analysis

becomes effectively 2 + 1 dimensional in coordinates (t, x, z).

Consider a box |x| ≤ Lx, |z| ≤ Lz , where both Lx, Lz → ∞. The total amount of
Chern-Simons current, inflowing through the boundaries of this box is

dQcs

dt
≡

Lx
∫

−Lx

dx
(

Jz
cs

(x, Lz)− Jzcs
(x,−Lz)

)

+

Lz
∫

−Lz

dz
(

Jx
cs

(Lx, z)− Jxcs
(−Lx, z)

)

. (A.30)

17In computing div ~E
(1)

one should take into account that there is a contribution, coming from the term
∂rE

(1)
r . As mentioned after the eq. (A.7), divergence of the D’Hoker-Farhi current is equally split between

t, x and r, θ components. Therefore, the coefficient in front of the integral in (A.26) is twice as little as that

in eq. (A.22). This can be easily verified by directly computing E
(1)
r from eq. (A.11) and substituting it

together with (A.22) into (A.26).
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From eqs. (A.5)–(A.6) it follows that the first integral equals to zero:

Lx
∫

−Lx

dx
(

Jz
cs

(x, Lz)− Jzcs
(x,−Lz)

)

= 12κ0H0

Lx
∫

−Lx

dx ∂xΦ
(0)(x, Lz) = 0 , (A.31)

as Φ(0)(x, Lz)→ 0 for Lz →∞ (see (A.17)). At the same time the second integral in (A.30)
is finite:

Lz
∫

−Lz

dz
(

Jx
cs

(Lx, z)− Jxcs
(−Lx, z)

)

= 6H0

Lz
∫

−Lz

dz κ(z)∂zΦ
(0)(Lx, z) = 12κ0H0Φ

(0)(Lx, 0) ,

(A.32)
as Φ(0)(x, z = 0)→ ±E0d for x→ ±∞. As a result we again recover (A.29).18

The anomalous charge Qanom creates an additional electric field eq. (A.16). That is we
see that due to the anomaly inflow an electric field appears outside of the capacitor. In the
region close to the plates, (i.e. |x| ∼ d and r ≪ R) this field is constant in space and grows
linearly in time according to the law

E(1)
x ≈ −12κ0e

2 t dE0H0 . (A.33)

Inside the capacitor E(1)
x changes linearly from its value (A.33) on one plate of the capacitor

to the opposite of it on another. We see that the electric field, created due to the anomaly
inflow depends on the anomaly coefficient κ0 and does not depend on the parameters of the
extra dimension. From eq. (A.33) we can determine the characteristic time during which the
linear approximation is valid. It is given by

τ ∼ 1

12κ0e2 dH0
=

1

m0(m0d)
, (A.34)

and our solution (A.13) is valid for t≪ τ .

18This is not surprising of course. Eq. (2.8) together with the initial conditions jx
df = 0 and the fact that

the total charge density is equal to j0
df

implies that Qcs in (A.30) is equal to Qanom.
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B Static solution of Maxwell equations

Consider the system of Maxwell equations, describing a static solution in 4 + 1 dimensions:

∂z

(

∆(z)Ez
)

+ ∆(z)
(

∂xE
x + ∂rE

r
)

= e2
(

q(x)δ(z) + j0
df

+ J0
cs

)

, (B.1)

∂z

(

∆(z)F xz
)

+
∆(z)

r
∂r

(

rF xr
)

= e2
(

jx
df

+ Jx
cs

)

, (B.2)

∂z

(

∆(z)F rz
)

+ ∆(z)∂xF
rx = e2

(

jr
df

+ Jr
cs

)

, (B.3)

∂z

(

∆(z)F θz
)

+ ∆(z)∂xF
θx +

∆(z)

r
∂r

(

rF θr
)

= e2
(

jθ
df

+ Jθ
cs

)

, (B.4)

∆(z)
(

∂xF
xz +

1

r
∂r
(

rF rz
)

)

= − e2Jz
cs
. (B.5)

(We will be mostly interested in the case when q(x) = σ0

(

δ(x+d)−δ(x−d)
)

or q(x) = q0δ(~x)).
We are searching for the axially-symmetric static solution, therefore all the derivatives with
respect to time and angle θ were put to zero in eqs. (B.1)–(B.5).

The components of Chern-Simons current (2.7) in the cylindrical coordinates x, r, θ are
equal to

J0
cs

=
6κ(z)

r

(

FxrFθz − FxθFrz + FxzFrθ

)

, (B.6)

Jx
cs

= −6κ(z)

r

(

ErFθz + EzFrθ

)

, (B.7)

Jr
cs

=
6κ(z)

r

(

ExFθz + EzFxθ

)

, (B.8)

Jθ
cs

= −6κ(z)

r

(

ExFrz −ErFxz + EzFxr

)

, (B.9)

Jz
cs

=
6κ(z)

r

(

ExFrθ − ErFxθ
)

. (B.10)

For static solution we can describe the electric field in terms of the electro-static potential
Φ: Ei = −∂iΦ, Ez = −∂zΦ. In this case one can rewrite expression Jµcs + jµdf in the following
way:

Ja
cs

+ ja
df

=
3

4
∂b

(

κ(z)ΦFcdǫ
abcd0

)

, a 6= 0 . (B.11)

As a result we solve the system (B.1)–(B.5) by the following ansatz. We express Fxz, Frz,
Fxr via Φ and Fθi, using eqs. (B.2), (B.3), (B.5):

F xz =
6 e2κ(z)ΦFrθ

r∆(z)
, F xr =

6 e2κ(z)ΦFθz
r∆(z)

, F rz =
6 e2κ(z)ΦFxθ

r∆(z)
. (B.12)

Then the Gauss constraint (B.1) can be re-written as

∂z

(

∆(z)∂zΦ
)

+ ∆(z)∇2Φ =
36 e4κ2

0

r2∆(z)

(

F 2
rθ + F 2

xθ + F 2
θz

)

Φ + e2q(x)δ(z) + j0
df
, (B.13)
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where ∇2 is a 3-dimensional Laplacian in the coordinates x, r, θ. The equation (B.4) becomes
(we introduce gauge potential Aθ:)

∂z

(

∆(z)∂zAθ

)

+ ∆(z)∇2Aθ =
36 e4κ2

0Φ

r2∆(z)

(

∂xAθ ∂xΦ + ∂zAθ∂zΦ + ∂rAθ∂rΦ
)

. (B.14)

We will find a solution of the eqs. (B.13)–(B.14) as follows. First we will put right hand side
of eq. (B.14) to zero. Then there is a solution Frθ = rHx, Hx = const = H 0, Fxθ = Fθz = 0.
In this case one could easily find an explicit solution of eq. (B.13) – see eqs. (B.15)–(B.24)
below. After that we will show that corrections to the found solutions, which are due to the
non-zero right hand side of are of the order κ2

0 and thus can be neglected.

Under assumptions Frθ = rH0, H 0 = const, Fxθ = Fθz = 0 Gauss law becomes identical
to that of the 2 + 1 dimensional case. After the Fourier transform in x, r, θ-directions:
(∇ → i~p) and a substitution Φ = ψp(z)√

∆(z)
equation (B.13) becomes19

ψ′′
p (z) + ψp(z)

[

W ′(z)−W 2(z)− p2
]

=
36 e4κ2

0H
2
0

∆2(z)
ψp(z) + e2q̃(~p)δ(z) , (B.15)

where W (z) ≡ −∆′(z)
2∆(z)

and q̃(~p) is a Fourier transform of q(x). For our main example – the

warp-factor ∆(z) = e−2M |z|, we have W (z) = M sign z. Let us re-write eq. (B.15) as

(Ĥ + p2)ψp(z) = − e2q0δ(z) , (B.16)

where operator Ĥ does not depend on p:

Ĥ = −∂2
z +

(

36 e4κ2
0H

2
0 e

4M |z| +M2 − 2Mδ(z)
)

. (B.17)

Spectrum of Ĥ: Let us denote eigen-functions of (B.17) and their eigen-values by ψn(z)

and m2
n: Ĥψn(z) = m2

nψn(z). Introduce new dimensionless variable ξ ≡ 3 e
2κ0H0

M
e2M |z| and

denote by ν2
n = M2−m2

n

4M2 . Then the eigen-value problem for operator (B.17) reduces to

ξ2∂2
ξψn(ξ) + ξ∂ξψn(ξ)− (ν2

n + ξ2)ψn(ξ) = 0 . (B.18)

This is the standard form of the equation for the Bessel functions of the second kind. A
solution of this equation, which is regular at ξ →∞ (i.e. z →∞) is given by Kνn(ξ), which

behaves at infinity as Kν(ξ) ∼ e−ξ√
ξ
. As a result we see that the solution of eq. (B.18) is given

by

ψn(z) = Kνn

(

ξ0 e
2M |z|) where νn = 1

2

√

1− m2
n

M2 and ξ0 ≡ 3 e
2κ0H0

M
. (B.19)

Eigen-values m2
n are determined from the gluing condition at the origin, following from the

presence of δ(z) in the operator (B.17)
[

ψ′
n(z)

]

∣

∣

∣

z=0
= −2Mψn(0):

2ξ0K
′
νn(ξ0) +Kνn(ξ0) = 0 , (B.20)

19We have neglected a D’Hoker-Farhi charge density j0
df in eq. (2.8) as compared to (B.13). It accounts

for the perturbative corrections of the order O(κ0).
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where ξ0 was defined in (B.19) and ξ0 ≪ 1. Using the properties of the Bessel function (see
e.g. [39]) one can show that there is a single solution of this equation for real νn (corresponding
to the smallest eigen-value (m0 < M) and infinitely many solutions for imaginary νn’s
(corresponding to all the other eigen-values mn > M).

The easiest way to solve eq. (B.20) is by iteration around ν0 = 1
2
. As a result one finds

that20

m2
0 = 4ξ0M

2(1− ξ0 log ξ0) +O(ξ2
0) . (B.21)

The wave-function of the lowest level is given by

ψ0(z) = c0Kν0

(

ξ0e
2M |z|) where ν0 ≈

1

2
− ξ0 , (B.22)

where Kν(u) is a modified Bessel function of the second kind and c0 is a normalization

constant, given by c0 =
√

2Mξ0
π

+O(ξ
3/2
0 log ξ0).

The Green’s function of the operator (B.16) is given by the standard expression

G(z) =

∞
∑

n=0

ψn(z)ψ̄n(0)

m2
n + p2

. (B.23)

The solution of eq. (B.13) can be easily found for any charge distribution q(x). In case at
hand (capacitor with the infinite plates) one gets:

Φ(x, z) = − e2σ0

∞
∑

n=0

(

e−mn|x−d| − e−mn|x+d|
) ψn(z)ψ̄n(0)

2mn

√

∆(z)
. (B.24)

We will also often use the function χ0(z) ≡ ψ0(z)ψ̄0(0)√
∆(z)

. It is given by:

χ0(z) =
2Mξ0

π
√

∆(z)
Kν0(ξ0 e

2M |z|)Kν0(ξ0) =

√

2ξ0
π

M

∆(z)
K 1

2
−ξ0

(

ξ0
∆(z)

)

+O(ξ0 log ξ0) , (B.25)

and has the following important properties:

χ0(z=0) = M , (B.26)

and ∞
∫

−∞

dz∆(z)χ0(z) = 1 +O(ξ0 log ξ0) . (B.27)

20One can show for an arbitrary function ∆(z), for which a zero mode exists, that operator Ĥ has the
lowest eigen-value m2

0 ∼ κ0 e
2M .
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C Static solution in electroweak theory

Consider the system of two couple U(1) fields: a massless (electro-magnetic) one, whose
gauge potential and field strength we will denote by Aa and F ab and massive (Z field), with
gauge potential Aa and field strength Fab. These fields interact via Chern-Simons terms:

Sint =

∫

κγγz(z)AFF + κγzzAFF + κzzzAFF . (C.1)

where (compare (3.3))

κγγz = − Nfκ0

4π2 cos θw sin θw
, κγzz = −Nfκ0(cos

3 θw − 3 sin3 θw)

π2 cos3 θw sin3 θw
, κzzz =

3Nfκ0 cos 2θw
16π2 cos3 θw sin θw

(C.2)

Fermions interact with both electro-magnetic and Z fields. According to eqs. (3.1), (3.2)
both electro-magnetic current jµγ and Z-current jµz are not conserved:

∂µj
µ
z

= κ′γγz(z)ǫ
µνλρFµνFλρ + 2κ′γzz(z)ǫ

µνλρFµνFλρ + κ′
zzz

(z)ǫµνλρFµνFλρ , (C.3)

and
∂µj

µ
γ = 2κ′γγz(z)ǫ

µνλρFµνFλρ + κ′γzz(z)ǫ
µνλρFµνFλρ . (C.4)

This means that there are two types of inflow currents: Z-current

δSeff

δAa ≡ J
a
cs,z = κγγz(z)ǫ

abcdeFbcFde + κγzz(z)ǫ
abcdeFbcFde + κzzz(z)ǫ

abcdeFbcFde , (C.5)

and electro-magnetic Chern-Simons currents:

δSeff

δAa
≡ Ja

cs,γ = κγγz(z)ǫ
abcdeFbcFde + κγzz(z)ǫ

abcdeFbcFde . (C.6)

The expression for the D’Hoker-Farhi currents jµdf,z and jµdf,γ are similar to that of eq. (2.18)
with an obvious modifications following from eqs. (C.3)–(C.4).

Consider the system of Maxwell equations, describing a static solution in 4+1 dimension.
For static solution we can describe the electric field in terms of the electro-static potential
Φ: Ei = −∂iΦ, Ez = −∂zΦ. We will denote electro-static potential for the electro-magnetic
and Z-field as Φγ and Φz correspondingly. Then we obtain:

∂z

(

∆(z)∂zΦγ

)

+ ∆(z)∇2Φγ = − e2
(

q(x)δ(z) + j0
df

+ J0
cs,γ

)

, (C.7)

∂z

(

∆(z)F xz
)

+
∆(z)

r
∂r

(

rF xr
)

= e2
(

jx
df

+ Jx
cs,γ

)

, (C.8)

∂z

(

∆(z)F rz
)

+ ∆(z)∂xF
rx = e2

(

jr
df

+ Jr
cs,γ

)

, (C.9)

∂z

(

∆(z)F θz
)

+ ∆(z)∂xF
θx +

∆(z)

r
∂r

(

rF θr
)

= e2
(

jθ
df

+ Jθ
cs,γ

)

, (C.10)

∆(z)
(

∂xF
xz +

1

r
∂r
(

rF rz
)

)

= − e2Jz
cs,γ , (C.11)
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where ∇2 is a 3-dimensional Laplacian in the coordinates x, r, θ. We will be mostly interested
in the case when q(x) = σ0

(

δ(x + d)− δ(x − d)
)

or q(x) = q0δ(~x). For the Z-field we have
similar system of equations:

∂z

(

∆(z)Φz

)

+ ∆(z)∇2Φz − e2m2(z)Φz = − e2
(

qz(x)δ(z) + j0
df,z + J 0

cs,z

)

,

(C.12)

∂z

(

∆(z)Fxz
)

+
∆(z)

r
∂r

(

rFxr
)

− e2m2(z)Ax = e2
(

jx
df,z + J x

cs,z

)

, (C.13)

∂z

(

∆(z)F rz
)

+ ∆(z)∂xF rx − e2m2(z)Ar = e2
(

jr
df,z + J r

cs,z

)

, (C.14)

∂z

(

∆(z)F θz
)

+ ∆(z)∂xF θx +
∆(z)

r
∂r

(

rF θr
)

− e2m2(z)Aθ = e2
(

jθ
df,z + J θ

cs,z

)

, (C.15)

∆(z)
(

∂xFxz +
1

r
∂r
(

rF rz
)

)

+ e2m2(z)Az = − e2J z
cs,z . (C.16)

We are searching for the axially-symmetric static solution, therefore all the derivatives with
respect to time and angle θ were put to zero in eqs. (C.7)–(C.16).

To find a solution of this non-linear system of equations, let us recall the electro-magnetic
case first (Appendix B). We saw there that of all the magnetic components Fij and Fiz
only Frθ was not suppressed by a power of anomaly parameter κ0.

21 We will try to find a
solution of the system (C.7)–(C.16) under a similar assumption: only terms, containing Frθ,
give dominating (non-perturbative in κ0) contribution to these equations, while all other
terms account for small (suppressed by powers of κ0) corrections. In addition we take all
components of the magnetic Z-field to be much smaller than those of electro-magnetic field.
Then the system of equations (C.7)–(C.16) reduces to the Gauss constraints for potentials
Φz and Φγ , in which we have left only terms, proportional to Frθ:

∂z

(

∆(z)∂zΦγ

)

+ ∆(z)∇2Φγ =
e2κγγz(z)

r
FrθFxz + e2q(x)δ(z) , (C.17)

and

∂z

(

∆(z)∂zΦz

)

+ ∆(z)∇2Φz −m2(z)Φz =
e2κγzz(z)

r
FrθFxz +

e2κγγz(z)

r
FrθFxz + e2qz(x)δ(z) .

(C.18)

Other relevant parts of the system (C.7)–(C.16) are equations for the component Fxz:

∂z(∆(z)Fxz) =
e2

r
∂z

(

κγγz(z)ΦzFrθ

)

, (C.19)

∂x(∆(z)Fxz) =
e2

r
∂x

(

κγγz(z)ΦzFrθ

)

, (C.20)

21As all parameters κγγz, κγzz and κzzz are of the same order, we will use notation κ0 when speaking about
the order of magnitude value of various expressions.

34



and Fxz:

∂z

(

∆(z)Fxz
)

−m2(z)Ax =
e2

r
∂z

(

κγγz(z)ΦγFrθ + κγzz(z)ΦzFrθ

)

, (C.21)

∂x

(

∆(z)Fxz
)

+ m2(z)Az =
e2

r
∂x

(

κγγz(z)ΦγFrθ + κγzz(z)ΦzFrθ

)

. (C.22)

From eqs. (C.19) we immediately see that

Fxz =
e2κγγz(z)ΦzFrθ

r∆(z)
, (C.23)

similarly to the electro-magnetic case (compare eq. (B.12)). Solution of eq. (C.21) depends on
the z-dependence of the mass-term m(z). As an example we will consider m2(z) = mzδ(z)
(localization scale of the Higgs field is of the same order as that of the fermions on). In
this case, one can easily see that the solution of eqs. (C.21)–(C.22) does not differ from the
massless case:22,23

Fxz =
e2(κγγz(z)Φγ + κγzz(z)Φz)Frθ

r∆(z)
, (C.24)

and as a result we obtain the following system of equations:

∂z

(

∆(z)∂zΦγ

)

+ ∆(z)∇2Φγ =
e4κ2

γγzΦγH
2
0

∆(z)
+ e2q(x)δ(z) +

e2κγγzκγzzΦzH
2
0

∆(z)
,

(C.25)

∂z

(

∆(z)∂zΦz

)

+ ∆(z)∇2Φz −mzδ(z)Φz =
e4(κ2

γγz + κ2
γzz)ΦzH

2
0

∆(z)
+ e2qz(x)δ(z) (C.26)

+
e4κγγzκγzzΦγH

2
0

∆(z)
.

We will solve this system by assuming that the last terms of both equations (C.25) and (C.26)
can be treated perturbatively. The results of our computations then will confirm this as-
sumption. Let us start with eq. (C.25). With exception of the last term we have already
encountered similar system in Section 2.2.2 (see also Appendix B). For |x ± d| ≫ 1

mz
the

solution is given by analogs of eqs. (2.33)–(2.31):24

Φγ(x, z) = φγ(x)χ0(z) + κγγzκγzzχ0(z)

∫

dp

2π

eipx e2H 2
0

p2 +m2
0

∫

dζ
Φ̃z(p, ζ)χ0(ζ)

∆(ζ)χ2
0(0)

(C.27)

22Function Az is an odd function of z and therefore δ(z)Az = 0 and mass term disappears from (C.22).

One could in principle add to the solution (C.23) the term mzAx(x,0) sign z

∆(z) , however, this term grows as
1

∆(z) as |z| → ∞ and therefore the energy of such a solution would be infinite. Thus, we conclude that

Ax(x, z=0) = 0, mass terms in eqs. (C.21)–(C.22) drop out and the solution for Fxz is given by (C.23).
23The profile m2(z) = m0δ(z) is a limiting case, in which mass dependence drops out of equation (C.24)

and subsequent does not enter at all into Gauss constraint for an electric field. One can show that for
arbitrary profiles m(z), spreading into the 5th direction, eq. (C.24) receives corrections due to mass. In
particular the effect, described in this section disappears as mz →∞.

24The result (C.27) is easy to obtain, knowing the spectrum of the operator (B.17) and writing its Green’s
function (compare (B.23)).
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(where by Φ̃z(p, ζ) we have denoted Fourier transform of the function Φz(x, ζ) with respect to
x). Function φγ(x) satisfies the Poisson equation with the mass term ∇2φγ(x)−m2

0φγ(x) =
q(x) with the mass

m2
0 = 12κγγze

2H0 . (C.28)

The profile of Φγ in the z direction χ0(z) is given by

χ0(z) =
m2

0

2πM
√

∆(z)
Kν(

m2

0

4M2 e
2M |z|)Kν(

m2

0

4M2 ), where ν =
1

2

√

1− m2
0

M2
(C.29)

(here Kν(u) is a modified Bessel function of the second kind). This profile is sharply localized
in the region

|z| . 1

M
log

2M

m0

. (C.30)

The last term in (C.27) can be treated perturbatively in κ if a z-profile of the field Φz is
decaying faster than ∆(z). To demonstrate that this is indeed the case, let us insert the
solution (C.27) into the Gauss constraint (C.18). We will find that expression for Φz is given
by expression, similar to the (C.27)–(C.29):

Φz(x, z) = φz(x)χz(z) + κγγzκγzzχz(z)

∫

dp

2π

eipx e2H2
0

p2 +m2
0,z

∫

dζ
Φ̃γ(p, ζ)χz(ζ)

∆(ζ)χ2
z
(0)

(C.31)

(by Φ̃γ(p, ζ) we have denoted Fourier transform of the solution (C.27) with respect to x).
Here χz is a solution of a differential equation similar to (B.15) but with the modification of
the factor in front of the δ(z): 2M → 2M−mz. This modifies gluing condition (B.20), which
determined the eigen-values of the equation in z direction: 2ξ0K

′
ν(ξ0)+

(

1− mz

2M

)

Kν(ξ0) = 0.
As a result expression for m0,z is given by:

m2
0,z = mzM + 12κze

2H 0 (C.32)

(the corrections to this result are of the orderO(mz

M
) andO(κz log κz), where κz ≡

√

κ2
γzz + κ2

γγz).
As the first term in eq. (C.32) is much bigger than the second one25 we neglect the latter and
find the mass m0,z ≫mz in contrast with (C.28). Notice, however, that the profile of the Φz

in z direction is very similar to that of eq. (C.29), still decaying as e−∆(z) at the distances
of the order (C.30). Finally, function φz, entering (C.31) satisfies Poisson equation with the
mass term of the Z-boson:

∇2φz(x)− (mzM)φz(x) = qz(x) . (C.33)

Now we can analyze corrections due to the last term in eq. (C.31). From solution (C.27)
we see that both terms (and thus the whole Φγ(x, z)) have z-profile proportional to χ0(z).
Similarly, z-profile of the field Φz is proportional to χz(z) and again decays as e−∆(z) for
|z| outside the region (C.30). One can easily find that integrals over ζ in both expres-
sions (C.27) and (C.31) behave as O(log κ0)

26 and therefore these terms give small (of the
25One can easily see this even for the smallest M ∼ 104 GeV and arbitrary κ0 . 1, recalling that

1 Gauss= 2 · 10−20 GeV2 and the strongest magnetic fields, achievable in a laboratory are ∼ 105 Gauss.
26To estimate such integrals, it is enough to consider ν = 1

2 as an index of a Bessel function in expressions
for χ0 and χz.

36



order O(κ2
0 log κ0) corrections to the functions φγ(x) and φz(x). Substituting expressions for

Φγ and Φz into (C.23) and (C.24), one can easily see that these terms are indeed proportional
to κ0, have the profiles, decaying as e−∆(z) i.e. can be treated perturbatively.

Thus, we have shown that the last terms in eqs. (C.17) and (C.18) can be treated pertur-
batively in κ0 and therefore can be neglected. After that equation for Φγ becomes identical
to that of the Section 2.2.2 and thus the static configuration of an electric field in a capacitor
will be the same!

References

[1] C. N. Yang and R. L. Mills, “Conservation Of Isotopic Spin And Isotopic Gauge Invari-
ance,” Phys. Rev. 96, 191 (1954).

[2] D. J. Gross and R. Jackiw, “Effect Of Anomalies On Quasirenormalizable Theories,”
Phys. Rev. D 6, 477 (1972);

[3] S. L. Adler, “Axial Vector Vertex In Spinor Electrodynamics,” Phys. Rev. 177, 2426
(1969); J. S. Bell and R. Jackiw, “A Pcac Puzzle: Pi0→ Gamma Gamma In The Sigma
Model,” Nuovo Cim. A 60, 47 (1969).

[4] G. ’t Hooft, “Symmetry Breaking Through Bell-Jackiw Anomalies,” Phys. Rev. Lett.
37, 8 (1976).

[5] V. A. Rubakov, “Monopole Induced Baryon Number Nonconservation,” IYAI preprint
IYAI-P-0211, April 1981; “Adler-Bell-Jackiw Anomaly And Fermion Number Breaking
In The Presence Of A Magnetic Monopole,” Nucl. Phys. B 203, 311 (1982).

[6] C. G. Callan, “Disappearing Dyons,” Phys. Rev. D 25, 2141 (1982); “Dyon - Fermion
Dynamics,” ibid. 26, 2058 (1982).

[7] C. Bouchiat, J. Iliopoulos and P. Meyer, “An Anomaly Free Version Of Weinberg’s
Model,” Phys. Lett. B 38, 519 (1972).

H. Georgi and S. L. Glashow, “Gauge Theories Without Anomalies,” Phys. Rev. D 6,
429 (1972).

[8] E. D’Hoker and E. Farhi, “Decoupling A Fermion In The Standard Electroweak Theory,”
Nucl. Phys. B 248, 77 (1984);

E. D’Hoker and E. Farhi, “Decoupling A Fermion Whose Mass Is Generated By A
Yukawa Coupling: The General Case,” Nucl. Phys. B 248, 59 (1984).

[9] V. A. Rubakov and M. E. Shaposhnikov, “Do We Live Inside A Domain Wall?,” Phys.
Lett. B 125, 136 (1983).

[10] K. Akama, “An Early Proposal Of ’Brane World’,” Lect. Notes Phys. 176, 267 (1982)
[arXiv:hep-th/0001113].

37



[11] S. Randjbar-Daemi and M. Shaposhnikov, “QED from six-dimensional vortex and gauge
anomalies,” JHEP 0304 (2003) 016 [arXiv:hep-th/0303247].

[12] L. D. Faddeev and S. L. Shatashvili, “Algebraic And Hamiltonian Methods In The
Theory Of Nonabelian Anomalies,” Theor. Math. Phys. 60, 770 (1984) [Teor. Mat. Fiz.
60, 206 (1984)].

[13] C. G. Callan and J. A. Harvey, “Anomalies And Fermion Zero Modes On Strings And
Domain Walls,” Nucl. Phys. B 250, 427 (1985).

[14] X. G. Wen, “Chiral Luttinger Liquid And The Edge Excitations In The Fractional
Quantum Hall States,” Phys. Rev. B 41, 12838 (1990).

[15] J. Frohlich and A. Zee, “Large scale physics of the quantum Hall fluid,” Nucl. Phys. B
364, 517 (1991).

[16] R. E. Prange, S. M. Girvin, eds., The Quantum Hall Effect, (Springer, New York, 1990)

[17] S. Naculich, “Axionic Strings: Covariant Anomalies And Bosonization Of Chiral Zero
Modes,” Nucl. Phys. B 296, 837 (1988);

[18] J. A. Harvey and O. Ruchayskiy, “The local structure of anomaly inflow,” JHEP 0106,
044 (2001) [arXiv:hep-th/0007037].

[19] A. Boyarsky, J. A. Harvey and O. Ruchayskiy, “A toy model of the M5-brane: Anoma-
lies of monopole strings in five dimensions,” Annals Phys. 301, 1 (2002) [arXiv:hep-
th/0203154].

[20] E. Witten,“Five-brane effective action in M-theory,” J. Geom. Phys. 22, 103 (1997)
[hep-th/9610234].

[21] M. B. Green, J. A. Harvey and G. W. Moore, “I-brane inflow and anomalous couplings
on D-branes,” Class. Quant. Grav. 14, 47 (1997) [arXiv:hep-th/9605033].

[22] D. Freed, J. A. Harvey, R. Minasian and G. Moore, “Gravitational anomaly cancellation
for M-theory fivebranes,” Adv. Theor. Math. Phys. 2, 601 (1998) [hep-th/9803205].

[23] A. Boyarsky and B. Kulik, “A note on the M5 brane anomaly,” Phys. Lett. B 516, 171
(2001) [arXiv:hep-th/0107041].

[24] A. Boyarsky, O. Ruchayskiy and M. Shaposhnikov, “Anomalies as a signature of extra
dimensions,” Phys. Lett. B 626, 184 (2005) [arXiv:hep-ph/0507195].

[25] S. Khlebnikov and M. Shaposhnikov, “Brane-worlds and theta-vacua,” Phys. Rev. D
71, 104024 (2005) [arXiv:hep-th/0412306].

[26] V. A. Rubakov, “Large and infinite extra dimensions: An introduction,” Phys. Usp. 44,
871 (2001) [Usp. Fiz. Nauk 171, 913 (2001)] [arXiv:hep-ph/0104152].

38



[27] S. Randjbar-Daemi and M. Shaposhnikov, “A formalism to analyze the spectrum of
brane world scenarios,” Nucl. Phys. B 645, 188 (2002) [arXiv:hep-th/0206016].

[28] S. L. Dubovsky, V. A. Rubakov and P. G. Tinyakov, “Is the electric charge conserved
in brane world?,” JHEP 0008, 041 (2000) [arXiv:hep-ph/0007179].

[29] M. Marinelli and G. Morpurgo, “The Electric Neutrality Of Matter: A Summary,” Phys.
Lett. B 137, 439 (1984).

[30] I. Oda, “Localization of matters on a string-like defect,” Phys. Lett. B 496, 113 (2000)
[arXiv:hep-th/0006203].

[31] M. E. Shaposhnikov and P. Tinyakov, “Extra dimensions as an alternative to Higgs
mechanism?,” Phys. Lett. B 515, 442 (2001) [arXiv:hep-th/0102161].

[32] M. Laine, H. B. Meyer, K. Rummukainen and M. Shaposhnikov, “Localisation and
mass generation for non-Abelian gauge fields,” JHEP 0301, 068 (2003) [arXiv:hep-
ph/0211149].

[33] G. R. Dvali, G. Gabadadze and M. A. Shifman, “(Quasi)localized gauge field on a
brane: Dissipating cosmic radiation to extra dimensions?,” Phys. Lett. B 497, 271
(2001) [arXiv:hep-th/0010071].

[34] A. N. Redlich, “Gauge Noninvariance And Parity Nonconservation Of Three-
Dimensional Fermions,” Phys. Rev. Lett. 52, 18 (1984);

A. N. Redlich, “Parity Violation And Gauge Noninvariance Of The Effective Gauge
Field Action In Three-Dimensions,” Phys. Rev. D 29 (1984) 2366.

[35] L. Alvarez-Gaume, S. Della Pietra and G. W. Moore, “Anomalies And Odd Dimen-
sions,” Annals Phys. 163, 288 (1985).

[36] W. A. Bardeen and B. Zumino, “Consistent And Covariant Anomalies In Gauge And
Gravitational Theories,” Nucl. Phys. B 244, 421 (1984).

[37] J. Ambjorn and P. Olesen, “Electroweak Magnetism: Theory And Application,” Int. J.
Mod. Phys. A 5, 4525 (1990).

[38] J. Ambjorn, J. Greensite and C. Peterson, “The Axial Anomaly And The Lattice Dirac
Sea,” Nucl. Phys. B 221, 381 (1983).

[39] I. S. Gradshteyn, I. M. Ryzhik, A. Jeffrey, D. Zwillinger, Table of Integrals, Series, and
Products, any edition.

[40] A. Boyarsky, O. Ruchayskiy, M. Shaposhnikov, “Gauge fields in brane-worlds”, to ap-
pear

[41] T. Appelquist and J. Carazzone, “Infrared Singularities And Massive Fields,” Phys.
Rev. D 11, 2856 (1975).

39



[42] I. Antoniadis and S. Dimopoulos, “Splitting supersymmetry in string theory,”
arXiv:hep-th/0411032.

40


	Introduction
	Anomalous electrodynamics and its observational signatures.
	5-dimensional electrodynamics in the background of a kink
	Anomalous electric field of a capacitor
	Linear stage of anomaly inflow: naive perturbative treatment
	Analysis of a static solution
	Perturbative computations of the initial stage

	Anomalous field of elementary particles and dipole moment

	The Standard Model with anomaly inflow
	Charge difference of electron and proton and anomalies
	Static electric field in a capacitor in a magnetic field
	Anomalous dipole moment

	Discussion
	Perturbation theory in 0
	Naive perturbation theory
	Perturbative solution for the capacitor

	Static solution of Maxwell equations
	Static solution in electroweak theory

