
ar
X

iv
:h

ep
-l

at
/9

80
50

13
v1

  1
3 

M
ay

 1
99

8

CERN-TH/98-08
NORDITA-98/30HE

hep-lat/9805013

THE UNIVERSALITY CLASS OF THE ELECTROWEAK THEORY

K. Rummukainena1, M. Tsypinb2, K. Kajantiec,d3, M. Lainec,d4,
and M. Shaposhnikovc5

aNordita, Blegdamsvej 17, DK-2100 Copenhagen, Denmark

bDepartment of Theoretical Physics, Lebedev Physical Institute,

117924 Moscow, Russia

cTheory Division, CERN, CH-1211 Geneva 23, Switzerland

dDepartment of Physics, P.O.Box 9, 00014 University of Helsinki, Finland

Abstract

We study the universality class and critical properties of the electroweak theory at
finite temperature. Such critical behaviour is found near the endpoint mH = mH,c

of the line of first order electroweak phase transitions in a wide class of theories, in-
cluding the Standard Model (SM) and a part of the parameter space of the Minimal
Sypersymmetric Standard Model (MSSM). We find that the location of the endpoint
corresponds to the Higgs mass mH,c = 72(2) GeV in the SM with sin2 θW = 0, and
mH,c < 80 GeV with sin2 θW = 0.23. As experimentally mH > 88 GeV, there is no
electroweak phase transition in the SM. We compute the corresponding critical indices
and provide strong evidence that the phase transitions near the endpoint fall into the
three dimensional Ising universality class.
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1 Introduction

The finite temperature phase transition in the Standard Model (SM) is known to be a
first order transition for small and a crossover for large Higgs masses [1]. In between
there is a critical region at about mH = 75 GeV [2, 3] (see also [4]). The purpose of
this paper is to study this critical region in a detailed manner. We shall show that the
universality class of the endpoint is that of the three-dimensional (3d) Ising model. We
also obtain the value mH,c < 80 GeV for the endpoint Higgs mass in the SM. Given
that the experimental 95% C.L. lower limit is mH > 87.9 GeV [5], there would be no
phase transition, only a crossover, if the physics were that of the SM.

Universality implies a tremendous simplification in the degrees of freedom of the sys-
tem. Here the first step is the removal of all fermionic and all non-static (not constant
in imaginary time) bosonic fields [6]. Equivalently, one integrates out all fields with
masses >∼πT . This works for equilibrium phenomena in the high T small coupling limit.
Furthermore, all masses ∼ gT can also be integrated out. Hereby one obtains a 3d
effective theory S[Bi, A

a
i , φk], i, a = 1, 2, 3, k = 1, . . . , 4, with SU(2)×U(1) symmetry

and a fundamental doublet φ [7]. The superrenormalizable 3d theory provides a very
good approximation to high T 4d physics. The accuracy of the effective description
has been discussed in detail in [7]; further corrections to the effective action can also
be computed.

The previous steps can be performed perturbatively, but further progress is only
possible with numerical lattice Monte Carlo techniques (for reviews, see [8, 9]). In
terms of SM physics, these show the existence of a line of first order phase transitions
Tc = Tc(mH), mH < mH,c, which ends at Tc(mH,c) and turns into a crossover at
mH > mH,c. When approaching the endpoint along the first order line, the mass of one
of the scalar excitations seems to go to zero suggesting [10] that ultimately all other
masses could be integrated out, leaving near (mH,c, Tc(mH,c)) a final effective theory
Scrit[φ

′] containing only one scalar degree of freedom φ′.
To be more precise, the electroweak theory with a Higgs doublet contains a massless

vector excitation, corresponding to the hypercharge field high in the symmetric phase
and to the photon deep in the Higgs phase. The fact that this state is massless at
any temperature ensures the “topological” similarity of the phase diagrams of the
SU(2)+Higgs and SU(2)×U(1)+Higgs theories [11]. Moreover, the lowest order gauge-
invariant coupling of a real scalar to a vector field φ′FijFij has a dimensionality greater
than 3, and thus the scalar is decoupled from the massless vector in the infrared. Hence,
for discussing the universal properties of the theory near the endpoint, we can work
with the SU(2)+Higgs theory S[Aa

i , φk], disregarding the U(1) interactions. We shall in
the following show that the endpoint of this theory belongs to the 3d Ising universality
class [12, 13]. The universality class of the 3d O(4) invariant spin model [14, 15], which
has also been proposed as a possible candidate [16], can be ruled out.

The matching of the continuum theories S[Aa
i , φk] → Scrit[φ

′] is a delicate issue and
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at this stage we do not determine the couplings of Scrit, only its universality class. We
first discretize the continuum theory at fixed lattice spacing a and determine the critical
properties of the discretized theory near the endpoint (mH,c, Tc(mH,c)). This is done
by studying the properties of probability distributions of various observables (hopping
term, (φ2 − 1)2, etc) averaged over a finite-volume system (we consider the theory
in a cubic box with periodic boundary conditions). We obtain the joint probability
distribution of up to 6 observables and analyze it in two ways:

1. We compute the fluctuation matrix, study the dependence of its eigenvalues on
the volume and obtain critical indices, which turn out to be consistent with those of
the 3d Ising model,

2. We show that for a certain pair of observables, which may be denoted as M-like
and E-like, the joint probability distribution has a very nontrivial form which matches
closely the joint distribution of magnetization M and energy E of the 3d Ising model
in a box of the same geometry. This guarantees that not only the critical indices, but
also higher moments agree with those of the 3d Ising model. As a byproduct we obtain
the mapping of the 6-dimensional operator space to the Ising model. This is a fixed
lattice spacing version of the critical mapping: S6[A

a
i , φk, a] → SIsing.

Our method has much in common with, and can be considered as the generalization
of, the method used by Alonso et al [17] to locate and study the endpoint of the first
order transition line separating the Higgs and confinement phases in the 4d U(1)+Higgs
model, and the method developed by Bruce and Wilding [18] for the study of the
liquid-gas critical point, both of which rely on considering two-dimensional probability
distributions and finding the M-like and E-like directions. However, our method as
well as some aspects of the critical behaviour of our system, differ in many important
respects from those in [17, 18].

Finally, an extrapolation to a → 0 will have to be made. There is no change in the
universal properties. However, this extrapolation is needed to get the continuum value
of the (non-universal) quantity mH,c. As mentioned above, this in conjunction with the
experimental lower limit implies that the critical region of the 3d effective theory can
only be physically relevant in a beyond-the-SM electroweak theory, such as the MSSM.

The plan of the paper is the following. We formulate the problem in Sec. 2 in some
more detail, and outline its solution in Sec. 3. In Sec. 4 we review the basic properties of
O(N) spin models. Sec. 5 contains a detailed presentation of the method of determining
the universality class of the 3d SU(2)+Higgs theory. Asymmetry effects are studied in
Sec. 6. In Sec. 7 we summarize the results for the critical properties and for mH,c, and
we conclude in Sec. 8.

2



2 Formulation of the problem

At finite temperatures, the static bosonic correlators in the Standard Model and many
of its extensions can be derived from the 3d effective action (as discussed above, we
omit the U(1) interactions)

S =
∫

d3x
[

1

2
Tr FijFij + (Diφ)†(Diφ) + m2

3φ
†φ + λ3(φ

†φ)2
]

, (1)

in standard notation. This is a continuum field theory characterized by the dimension-
ful gauge coupling g2

3 and by the dimensionless ratios

x = λ3/g
2
3, y = m2

3(g
2
3)/g

4
3, (2)

where m2
3(µ) is the renormalized mass parameter in the MS scheme. The relations

of g2
3, x, y to the full theory are computable in perturbation theory, and the relative

accuracy thus obtained for non-vanishing one-particle irreducible Green’s functions G
that conserve parity, C and CP is [7]

δG

G
<∼O(g3), (3)

where δG is the error in G. The fact that there is a suppression of error arises from the
ratio of the scales left and integrated out, O(gT/T ), O(g2T/gT ), and the third power
from the types of higher order operators that have been neglected [7]. Hence, for small
coupling, the physics of the 4d theory can be described accurately with a much simpler
3d theory. Explicit derivations have been given in [7, 19].

Instead of using the MS scheme, the 3d continuum theory of Eq. (1) can as well be
regulated by using a lattice with the lattice constant a. The action then is

S = βG

∑

x

∑

i<j

(1 − 1

2
Tr Pij)

− βH

∑

x

∑

i

1

2
Tr Φ†(x)Ui(x)Φ(x + i)

+
∑

x

1

2
Tr Φ†(x)Φ(x) + βR

∑

x

[
1

2
Tr Φ†(x)Φ(x) − 1]2 (4)

≡ SG + Shopping + Sφ2 + S(φ2−1)2 ,

in standard notation [Φ is the matrix Φ = (iσ2φ
∗, φ)]. The two actions in Eqs. (1),

(4) give the same physics in the continuum limit a → 0 if the three dimensionless
parameters βG, βH , βR in Eq. (4) are related to the three dimensionless parameters
g2
3a, x, y in Eq. (1) by the following equations [20]:

βG =
4

g2
3a

, (5)
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βR =
β2

H

βG

x, (6)

y =
β2

G

8

(

1

βH
− 3 − 2xβH

βG

)

+
3ΣβG

32π
(1 + 4x)

+
1

16π2

[(

51

16
+ 9x − 12x2

)(

ln
3βG

2
+ ζ

)

+ 4.9941 + 5.2153x
]

, (7)

where Σ = 3.1759115 and ζ = 0.08849(1). The two numbers 4.9941 and 5.2153 are
specific for the SU(2)+Higgs theory.

The approach to the continuum limit can be accelerated by removing the O(a) errors
analytically [21]. For g2

3, x, this can be achieved by reinterpreting the simulation results
employing Eqs. (5), (6) as corresponding to

4

(g2
3)improveda

=
4

g2
3a

− 0.6674, (8)

ximproved = x − 1

βG

(0.018246 + 0.195709x + 0.583880x2). (9)

For y the issue is more involved, see [21].
The phase structure of the theory in Eq. (1) is shown in Fig. 1. There is a first order

line y = yc(x) for x < xc; for x > xc there is only a crossover. The first order line
is localised by using the lattice action in Eq. (4) at some finite lattice spacing a and
system volume V , finding a two-peak distribution in the measurements of any gauge
invariant observables and performing the limits V → ∞ and a → 0. At small x ≪ xc

the two peaks are very asymmetric and well separated, signalling a strong transition.
When x approaches xc, the two peaks become more symmetric and approach each
other. One of the masses, m0++ measured by the correlator of Φ†Φ, becomes smaller
than the other masses. One expects that m0++ → 0 at xc so that the transition is of
the second order there.

In practice, one takes the lattice theory in Eq. (4) at some fixed βG and finds the
location of the first order line in the plane of the remaining two parameters (βH , βR).
To approach the continuum limit, one has to repeat the study at higher values of βG

(we have used βG = 5, 8 and 12).
Since the mass m0++ is expected to vanish at the endpoint xc, a natural question

arising is whether the effective theory in Eq. (1) could be further reduced leaving only
the lightest excitations in the final action [22, 23, 10]. Knowing the effective theory
would also imply knowledge of the universality class of the second order transition
at xc. Unfortunately, no systematic perturbative derivation of such an effective action
has been found. One problem is that in perturbation theory the vector excitations are
massless in the symmetric phase, leading to IR-problems, whereas non-perturbatively
they are massive and are to be integrated out. Thus the construction of the effective
theory has to be non-perturbative.
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Figure 1: Left: The phase diagram of the 3d SU(2)+Higgs theory. The datapoints are
from [10] and from this paper. The value of x · yc at x → 0 is given by the 1-loop
effective potential and is hence known analytically. Right: The phase diagram of the
3d scalar φ4 theory in Eq. (10). The value of xI at the endpoint has to our knowledge
not been determined. The number 0.002 on the vertical axis is symbolic, as the figure
is scale invariant in this direction.

As to the functional form of the effective theory, the fact that there is only one light
physical scalar degree of freedom, the Higgs particle, naturally leads to the suggestion
[1, 10] that the corresponding MS continuum effective field theory is

S =
∫

d3x
[

1

2
∂iφ∂iφ + hIφ +

1

2
m2

Iφ
2 +

1

4
λIφ

4
]

. (10)

We discuss the renormalisation and discretization of this theory in the Appendix. The
theory in Eq. (10) is characterized by the scale λI and by the dimensionless ratios yI =

hI/λ
5/2
I , xI = m2

I(λI)/λ
2
I , where m2

I(µ) = −6λ2
I/(16π2) log(Λm/µ) is the running mass

parameter in the MS scheme, and Λm is scale invariant. An otherwise possible cubic
term can always be shifted away and this makes hI scale independent. Higher order
operators could also exist, but they give contributions suppressed by O(m0++/mW )
where mW stands for all masses, like the inverse vector correlation length, which remain
finite at xc.

In the critical region the theory in Eq. (10) is in the same universality class as the
3d Ising model in an external magnetic field h,

Z =
∑

{si}

exp[β
∑

〈ij〉

sisj + h
∑

i

si], si = ±1. (11)
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Here β is the inverse temperature, the spins si are located at the sites of a simple cubic
lattice, and 〈ij〉 denotes the pairs of nearest neighbours.

To be more specific about constructing an effective theory such as the one in Eq. (10)
(or, for a finite lattice spacing, the one in Eq. (11)), there are two questions to be
considered:

1. Which is the functional form (the degrees of freedom; the symmetries; the uni-
versality class) of the effective theory?

2. Which is the mapping between the parameters g2
3, x, y of the original theory, and

those of the effective theory (such as λI , xI , yI of the scalar theory)?
The latter of the two questions is much more difficult than the former one and its

solution will not be attempted here. The reason for the difficulty is that the mapping
is non-universal and depends on the detailed UV-properties of the original theory. In
particular, since the mapping has to be done non-perturbatively on the lattice,

(a) there are finite lattice spacing effects in the lattice formulation in Eq. (4) of the
original theory in Eq. (1). These should be identified and removed by an extrapolation
to the continuum limit.

(b) there are finite lattice spacing effects in the lattice formulation in Eq. (35) of the
effective theory in Eq. (10). These should be controlled in a similar way.

(c) apart from the lattice spacing effects, there are also higher order operators in
the effective theory in Eq. (10) applying in the continuum limit, due to the degrees
of freedom which have been integrated out. The effects of these are suppressed by
O(m0++/mW ), but they induce errors immediately when one goes away from the critical
point (or is at a finite volume).

For the determination of the universality class, in contrast, none of these problems
arises. By definition, the universal properties are insensitive to the UV. Hence no
extrapolation is needed to overcome (a), and a single finite lattice spacing may be
used. However, there is a price to be paid for a finite lattice spacing, which is that
there are infinitely many gauge-invariant operators available, and to find the optimal
projections on the critical directions, one should take as large an operator basis as
possible. No extrapolation to a → 0 is needed for (b), either, and one can directly
compare with the known properties of the spin models in the same universality class
as the continuum theory considered. Finally, the non-universal errors responsible for
(c) vanish at the critical point (but may induce corrections to scaling, etc). In the
following we shall mostly concentrate on the universal properties.

3 Outline of the solution of the problem

To study whether the universality properties of the theory in Eq. (1) match those of
the scalar theory in Eq. (10), it is sufficient to compare the critical properties of the
lattice SU(2)+Higgs theory in Eq. (4) directly with those of the Ising model, Eq. (11).
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To gain insight into what is happening at the critical point, it is very helpful to
consider two-dimensional probability distributions (joint distributions of two observ-
ables) [17, 18]. The motivation is as follows. In the theory in Eq. (4) we have a two-
dimensional parameter plane where we find a first order phase transition line which
ends in a critical point. In this respect, our system is very similar to such well known
systems as the liquid-gas phase transition (where the parameters are the temperature
and the pressure) and the Ising model in an external magnetic field (the parameters
being the temperature 1/β and the field h).

It has already been checked to considerable precision, both experimentally and by
Monte Carlo simulations [18], that in the case of the liquid-gas transition, not only the
topology of the critical point is similar to that of the Ising model in an external field,
but also the universality class is the same: one can find a linear mapping of a small area
around the liquid-gas critical point to the corresponding area around the Ising critical
point, such that both systems behave in exactly the same way (up to corrections to
scaling at a finite volume).

Our aim is to provide the evidence that the same is also true for our system. Thus
we expect to find at the endpoint a temperature-like (t-like) direction in the parameter
space (βH , βR), going tangentially to the phase transition line, and a magnetic field-like
(h-like) direction, corresponding to the t and h directions of the Ising model.

Our system, as well as the liquid-gas system, lacks the exact symmetry h → −h,
which is characteristic of the Ising model. As has been shown for the case of the liquid-
gas system, in this case the h-like and t-like directions are not necessarily orthogonal in
the (βH , βR) space [24, 18]. Thus, in the vicinity of the critical point of our system, the
orthogonal (in the sense 〈∆E∆M〉 = 0) energy-like and magnetization-like observables
E and M , being derivatives of the free energy over the t-like and h-like directions in
the (βH , βR) space, are going to be certain linear combinations of the corresponding
terms in the action, that is, of Shopping and S(φ2−1)2 , with a possibly non-orthogonal
proportionality matrix. In the Ising model the observables E and M just correspond
to the first and second terms in Eq. (11).

Before attempting to study the probability distributions of E and M , one has to
determine the coefficients of these linear combinations. Thus one arrives at the idea of
looking at two-dimensional probability distributions: for every configuration generated
by Monte Carlo one computes and stores two numbers, Shopping and S(φ2−1)2 , thus
obtaining their joint probability distribution.

Such distributions are very useful, as they contain a lot of information. Having col-
lected this distribution at some point in the parameter space close to the critical point,
one can later find the E-like and M-like directions; compute the 1-dimensional prob-
ability distribution for any linear combination (or even arbitrary function) of Shopping

and S(φ2−1)2 ; refine the estimate for the position of the critical point; and reweight the
data to the more precisely determined critical point.

To give a concrete view of what is happening, Fig. 2(a) shows the distribution of

7



1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

-260000 -240000 -220000 -200000 -180000 -160000 -140000
-100

-80

-60

-40

-20

0

0 20000 40000 60000 80000 100000 120000 140000

(a) (b)

384000

386000

388000

390000

392000

394000

396000

398000

-40000 -20000 0 20000 40000

(c)

Figure 2: (a) 1000 configurations from the Monte Carlo simulation of the theory in
Eq. (4), represented by points in the S(φ2−1)2 vs. Shopping plane, for x = 0.105253, βG =
8, βH = 0.349853, V = 483. (b) 13822 configurations of the same system, for the same
parameter values, after a shift and rotation in the coordinate plane. The angle of
rotation is chosen to make the elongated distribution in (a) go approximately horizon-
tally. (c) 20000 configurations of the 3d Ising model on a 583 lattice at the critical
point βc = 0.221654, h = 0, on “minus the energy” (0 <

∑

〈ij〉 δsisj
< 3 · 583) vs.

magnetization (−583 <
∑

i si < 583) plane.

1000 configurations obtained near the endpoint, plotted on the S(φ2−1)2 (vertical axis)
vs. Shopping (horizontal axis) plane. One can see that the distribution appears to be
extremely elongated, and the points tend to concentrate on its sides. The density in
the middle is somewhat smaller, thus a two-peak distribution is produced by projecting
on either of the axes. Rotating the coordinate system in such a way that the new x-
axis goes along our distribution, while the new y-axis is orthogonal to it, and changing
scales, we obtain the distribution plotted in Fig. 2(b). This should be compared with
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Fig. 2(c) which shows 20000 configurations of the 3d Ising model at the critical point
on “minus the energy” (vertical axis:

∑

〈ij〉 δsisj
) vs. magnetization (horizontal axis:

∑

i si) plane. The qualitative similarity with Fig. 2(b) is striking. At the same time,
there are small discrepancies: the distribution in Fig. 2(b) is slightly asymmetric, and
considerably thicker than the one in Fig. 2(c). Comparing with Fig. 2(c), one observes
that the new x- and y-axes correspond, with reasonable precision, to M-like and E-
like directions. Note that a projection onto the M-like direction produces a two-peak
probability distribution, while the E-like projection is single-peaked.

The task now is to put the similarity between SU(2)+Higgs and Ising models on a
quantitative basis, and to demonstrate that the discrepancies disappear when V → ∞.
Note, however, that already the distribution in Fig. 2(b) suggests that O(4) universality
is excluded; O(4) would not produce 2-peak distributions like those in Fig. 2(c) and
thus cannot match the data in Fig. 2(b) [see Fig. 3(c)].

At this point it is interesting to compare our two-dimensional distributions, depicted
in Fig. 2, with those obtained in [17] near the endpoint of the first order phase transition
line separating the Higgs and confinement phases in the 4d U(1)+Higgs theory. First,
the distributions in [17] demonstrate almost independent fluctuations of M and E,
while in our case the “boomerang” shape implies that their fluctuations are obviously
not independent. Secondly, the distributions in [17] do not show any visible asymmetry,
while we see a clear residual asymmetry that can be attributed to corrections to scaling.
These differences are probably due to the fact that while the critical point of the 4d
model corresponds to a trivial effective theory (this is corroborated by the critical
indices obtained in [17], which are compatible with the mean field values), in our case
the effective theory, being 3-dimensional, is governed by a nontrivial fixed point.

4 Spin models

Let us start by reviewing some basic properties of simple spin models. The Ising
model is defined by Eq. (11). For O(N) models, on the other hand, the spins si of the
Ising model are replaced by N -dimensional unit vectors si, and the partition function
becomes

Z =
∫

{dsi} exp[β
∑

〈ij〉

si · sj + h ·
∑

i

si]. (12)

Let us call the first term in the exponent the energy variable E, and the next term the
magnetic variable M :

E = −
∑

〈ij〉

si · sj , M =
h

|h| ·
∑

i

si. (13)

The characteristics of the model at the critical couplings β = βc, |h| = |hc| = 0 are
contained in probability distributions in the (M, E)-plane, as a function of the volume
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of the system. When the variances of the distributions are normalized to unity, the
distributions have a universal form in the large volume limit; the results for the Ising,
O(2) and O(4) models are shown in Fig. 3. To reduce statistical noise, these contour
plots, as well as the contour plots in the following pictures, have been smoothed by
3×3 matrix averaging. That is, before plotting, the occupation number in every bin is
replaced by the average over 9 bins forming a square around it. The bin size has been
chosen sufficiently small so that smoothing does not induce any significant broadening
of the peaks.

To quantify the characteristics of the probability distributions, one can compute
different moments. Let ∆E ≡ E − 〈E〉, ∆M ≡ M − 〈M〉. Then the moments of
interest are:

1. Second moments (specific heat, magnetic susceptibility):

χE = 〈(∆E)2〉/L3, (14)

χM = 〈(∆M)2〉/L3, (15)

where L3 is the volume of the system. The behaviour of these moments as a function
of L is characterized by critical exponents:

χE ∝ Lα/ν , χM ∝ Lγ/ν . (16)

The known results for the exponents appearing here are [25, 14, 26, 27, 28]:

model γ α ν γ/ν α/ν
Ising 1.24 0.11 0.63 1.96 0.17
O(2) 1.32 -0.01 0.67 1.96 -0.015
O(4) 1.47 -0.25 0.75 1.96 -0.33

The exponent ν is the correlation length critical exponent.
2. Higher moments. These characterize for instance the symmetry features of the

probability distributions. In particular, all spin models have, for n = 1, 2, . . .,

〈(∆M)2n+1〉 = 0. (17)

As examples of non-zero values, let us mention that for the 3d Ising model in a large
cubic box with periodic boundary conditions, the value of the following ratio is known
with high precision [29]:

〈(∆M)4〉
〈(∆M)2〉2 = 1.604(1). (18)

The asymmetry of the energy distribution of the same system is characterized by

〈(∆E)3〉
〈(∆E)2〉3/2

≈ −0.36 (19)

10



(a) (b)

(c)

Figure 3: The smoothed and normalized probability distributions, at the critical
point, for (a) the Ising model at the volume 583, (b) the O(2) spin model at 643, (c)
the O(4) spin model at 643. The x-axis is the magnetic direction and the y-axis the
energy direction.
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lattice measurements
163 200000
243 200000
323 300000
403 350000
483 400000
643 400000

Table 1: The set of simulations for βG = 5. All simulations have been performed at
x = 0.112706, βH = 0.362835, and later reweighted to the estimated position of the
infinite volume critical point: x = 0.11331593, βH = 0.36288657.

(this value corresponds to the simple cubic Ising model on a 583 lattice, where devi-
ations from scaling due, in particular, to the presence of a large regular part in the
energy, are still non-negligible).

These ratios, as well as the critical exponents, are universal quantities which can
be used to quantify the similarity or dissimilarity of the endpoint of the SU(2)+Higgs
theory with different spin models.

5 Detailed study of the critical region

As discussed above, our computational strategy is based on collecting joint probability
distributions of several observables (initially two, as in Fig. 2, and then up to six,
as discussed below) for the system in Eq. (4) in a cubic box with periodic boundary
conditions. These are used to

1. find the position of the critical point,
2. determine the M-like and E-like directions in the space of observables,
3. perform finite size scaling (FSS) to compute critical indices, by studying how the

fluctuations of M-like and E-like observables at the critical point depend on the system
size,

4. determine higher moments, such as the skewness of E.

Our analysis is based on simulations at βG = 5 with the lattice sizes and statistics
shown in Table 1. In each case the measurements are separated by 4 overrelaxation
sweeps and one heat bath/Metropolis sweep. The update algorithms used are described
in Ref. [10]. The relatively coarse lattice spacing was chosen in order to allow for larger
physical volumes, and thus reduce the corrections to scaling at any given lattice size.
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5.1 Locating the critical point

Let us first recall how one locates the critical point in the case of a one-dimensional,
rather than a two-dimensional, parameter space, such as in the case of the spin models
in Eq. (12). Here the critical point is known to occur at h = 0, and the only parameter
which remains to be found is βc.

In this case the procedure commonly used is the “intersection of Binder cumulants”
[30]. It is based on the following general idea. Consider the system in a finite box of
given geometry (say, cubic) with given boundary conditions (say, periodic). Consider
any observable (for example, magnetization), averaged over the system. Make a Boltz-
mann ensemble of configurations, for each configuration measure this observable and
thus construct its probability distribution. Then, if the system is exactly at the critical
point and scaling is valid, the form of this probability distribution should be indepen-
dent of the system size; only its scale will be changing. Thus any characteristics such as
those in Eqs. (18), (19), designed to be sensitive to the form of probability distribution
but not to the rescaling of the observable, will behave in the following typical way:
when plotted as a function of a parameter (for spin systems, as a function of β) for
several lattice sizes, all plots intersect at the value of the parameter that corresponds
to the critical point. This provides a convenient way to locate it.

This approach can easily be generalized to the case of a two-dimensional parameter
space. The main idea remains the same: the critical point is a point where the form of
two-dimensional distributions, such as those in Fig. 2, does not depend on the system
size, up to a possibly nonorthogonal linear transformation. To locate the critical point,
one now needs two characteristics. For example, if one has somehow found the M-like
direction, one can consider 〈(∆M)4〉/〈(∆M)2〉2 and 〈(∆M)3〉/〈(∆M)2〉3/2. The former
is sensitive to a deviation from the critical point along the (continuation of) the first
order transition line, while the latter is sensitive to a deviation across the line. Finding
the intersection of these cumulants for two lattice sizes now implies solving a system
of two equations for two variables.

The procedure just described is completely general (however, it remains to be un-
derstood how to find the M-like direction; see Sec. 5.2) and does not depend on any
conjecture about the universality class of the critical point. However, it appeared not
to be very practical, the main stumbling block being its sensitivity to corrections to
scaling, which are in our case non-negligible, as demonstrated by Fig. 2.

A modification of this approach which is more stable against deviations from scaling,
relies on a conjecture about the universality class of the critical point. Indeed, if we
expect the critical point to belong to the 3d Ising universality class, we know that in
the scaling limit 〈(∆M)4〉/〈(∆M)2〉2 = 1.604(1) [29], 〈(∆M)3〉/〈(∆M)2〉3/2 = 0. By
solving these equations, one can find the apparent location of the critical point for each
lattice size separately. The consistency of the conjecture about the universality class
can be checked later: the lattice size dependence of the position of the apparent critical
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Figure 4: The reweighted xc from simulations at βG = 5, x = 0.112706, as a function
of the volume.

point should follow the known correction to scaling behaviour.
As a variant, one can use the whole probability distribution P (M), which is known

quite precisely for the 3d Ising model, rather than its moments, and require that the
apparent critical point for the given lattice size be a point where P (M) matches most
favourably the Ising P (M), say, by the χ2 criterion. This method has been used in [18]
for locating the liquid-gas critical point.

The method we chose to use in practice is as follows. Assume that we have deter-
mined an M-like direction, as explained in the next Section. To compute the position
of the apparent critical point for a given lattice size we have reweighted the data for the
corresponding lattice (Table 1) to a trial value of (x, βH) which translates to (βH , βR)
according to Eq. (6), computed the probability distribution of the M-like observable
P (M) and tuned (x, βH) so that

1. the two peaks of P (M) are of equal weight,
2. the ratio of the peak value of P (M) (the average height of the two peaks) to

P (M) at the minimum between the peaks equals the corresponding ratio for the 3d
Ising model at the critical point [31]:

Pmax/Pmin = 2.173(4). (20)

The criterion based on the ratio Pmax/Pmin appeared to be less sensitive to asymmetric
corrections, which are most pronounced at the tails of P (M), than the usual one based
on the fourth order cumulant in Eq. (18).
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The resulting dependence of the apparent position of the critical point on the lattice
size is shown in Fig. 4. It follows nicely the law based on Ising-type corrections to
scaling, the deviation of xc from the limiting value behaving as

xc(L) − xc(∞) ∝ L−(∆+1)/ν ≈ L−2.4, (21)

where ∆ = 0.52(4) is the universal correction to scaling exponent for the 3d Ising
universality class. Thus the determination of the critical point based on the expected
Ising-like properties is completely consistent. However, the statistical errors of the
datapoints are large enough so that a regular L−3 -behaviour cannot be ruled out,
either. Nevertheless, the variation of the infinite volume critical point is quite small, and
it has a negligible effect on the analysis below. The infinite volume result, determined
by the L−2.4-fit, is xc(∞) = 0.1133(25). In the following analysis we always reweight
the data to the critical point xc = 0.11331593, βH = 0.36288657. Due to the strong
correlations in coupling constants both have to be fixed to a high numerical precision.

5.2 Determining M-like and E-like observables

We observed that even the problem of locating the critical point, to say nothing of
further quantitative analysis, depends on finding the M-like direction in the space of
observables. In Fig. 2, this is done by letting the M-like direction go along the prob-
ability distribution, and taking the E-like to be orthogonal to it. The result appears
to be very encouraging, by the eye, when compared with the 3d Ising distribution in
Fig. 2(c). This approach relies on the fact that the distribution is extremely elongated,
and becomes even more so with growing lattice size, fluctuations of M growing much
faster than those of E: 〈(∆M)2〉/〈(∆E)2〉 ∝ L(γ−α)/ν ≈ L1.8.

The determination of the M-like and E-like directions can now be put on a quan-
titative basis as follows. Take the probability distribution P (Shopping, S(φ2−1)2). Com-
pute the fluctuation matrix and find its eigenvectors. The larger eigenvalue will give
〈(∆M)2〉, the smaller one 〈(∆E)2〉, while the corresponding eigenvectors will give the
M-like and E-like directions.

The procedure just described is identical to the one used in [17] and completely
ignores the possibility that the M-like and E-like directions can be nonorthogonal in
the original basis chosen [24, 18]. However we have found that both this simplistic
procedure and its generalization to a larger space of observables, which is discussed
below, work extremely well for our system, while the more sophisticated approach of
[18] runs into serious difficulties. This seems to be an interesting point that deserves
some discussion, as it probably means that asymmetric corrections to scaling play a
more prominent role in our system than in the liquid-gas models (see also Sec. 6).

The method of [18] employs the matching of the probability distribution of a linear
combination of the two basic observables to P (M) known from the 3d Ising model at
criticality, to find the M-like direction simultaneously with the apparent critical point
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(performing a search in 3-dimensional space: two parameters for a trial critical point,
plus one parameter for a trial M-like direction). After that, the E-like direction is
found by matching the distribution of a trial linear combination of observables to the
3d Ising P (E).

One of the key statements of [18] is that the pronounced asymmetry of two-peak
probability distributions of various observables at the critical point can be attributed
to the fact that they are actually mixtures of M and E, while the distribution of M
itself comes out completely symmetric, within the accuracy of the simulation. One
can, however, raise the following question: is it not possible that the perfect symmetry
of P (M) emerges as an artefact of the procedure (optimization of its matching to the
exactly symmetric P (M)Ising)?

This problem can be also put as follows. We have the two-dimensional probability
distribution for our system, as in Fig. 2(b), now as a function of four parameters: the
trial critical point and two trial directions for M and E (not necessarily orthogonal).
On the other hand, we have the corresponding P (M, E)Ising for the Ising model at
criticality, Fig. 2(c), with its projections P (M)Ising and P (E)Ising. The question is, is
it a good idea to look for the M-like and E-like directions by requiring that just the
one-dimensional projections of Figs. 2(b) and 2(c) onto the horizontal and vertical axes
match each other? Should not one rather match the whole distributions?

Obviously, in the absence of deviations from scaling it would make little difference
whether to match the whole distributions or their one-dimensional projections: both
methods would converge to the same result, corresponding to a perfect matching. The
problem, however, becomes nontrivial when there are deviations from scaling, especially
the asymmetric ones. Concretely, we have found that for our system, an application of
the procedure in [18] appeared to be completely misleading.

The observation is that for practically achievable lattices, there is a significant asym-
metry in two-dimensional distributions, as seen in Fig. 2(b). This asymmetry appears
to be unremovable (more precisely, only a relatively small part of it can be removed)
by any choice of (nonorthogonal) directions for M and E. This can be understood
when one notices that one of the characteristic features of this asymmetry is the dif-
ference of areas under the two peaks of the probability distribution (see also Figs. 5),
which cannot be cured by any linear transformation, even nonorthogonal, as such a
transformation keeps the ratio of areas invariant.

Thus if we try to symmetrize the two-dimensional distribution (or match it to the
Ising form Fig. 2(c)), a considerable asymmetry remains and, notably, P (M) comes
out considerably asymmetric (Fig. 5, right). At the same time, matching P (M) to
P (M)Ising easily finds the “M-like” direction that ensures a perfect matching and
thus symmetric P (M) (Fig. 6). But this optimization of the symmetry of the one-
dimensional projection is achieved at the price of greatly reducing, rather than improv-
ing, the symmetry of the two-dimensional histogram as a whole and thus should be
considered completely misleading!
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Figure 5: The probability distributions P (M, E) (left) and P (M) (right) at the
infinite volume critical point, for the volumes (a) 163, (b) 323, (c) 643. It is seen
how the distribution becomes more symmetric for increasing volumes. The M and
E directions have been found with a 6-dimensional fluctuation matrix analysis, see
Sec. 5.2.1.

17



0

0.1

0.2

0.3

0.4

0.5

0.6

-2 -1 0 1 2

16**3: M with admixture of E
Ising at T_c

Figure 6: This figure shows that it is possible to find a direction for M that provides a
perfectly symmetric P (M), but only at the price of reducing the symmetry of P (M, E).
The data are the same as in Fig. 5(a).

Thus we have found the following important differences between our system and the
liquid-vapour models [18]:

1. Our system demonstrates non-negligible asymmetric corrections to scaling. These
show up in two-dimensional distributions and cannot be removed by any choice of M
and E. As a consequence, asymmetries of various one-dimensional distributions are
mostly caused by them, and not so much by the admixture of E, as in [18].

2. In our system, we do not find much evidence of the possible nonorthogonality of
the M-like and E-like directions. Deviations from orthogonality, if any, can be safely
neglected, in clear distinction from [18] where they played quite a prominent role.

In conclusion, after having tried four methods for determining the M-like and E-like
directions,

(a) finding the eigenvectors of the fluctuation matrix [17],
(b) matching P (M) to P (M)Ising, P (E) to P (E)Ising [18],
(c) matching P (M, E) to P (M, E)Ising,
(d) maximizing the symmetry of P (M, E),

we arrived at the conclusion that the method (a) works best for our system, method
(b) appears to be misleading, and methods (c) and (d) produce results consistent with
(a), while being much more difficult to implement and use. One of the tricky points
is the multidimensional minimization of the difference of two Monte Carlo generated
two-dimensional probability distributions, which is typically a very noisy function (the
problem is alleviated by first smoothing the histograms, then minimizing their dif-
ference). Another stumbling block of the method (c) is that a seemingly harmless
manifestation of deviations from scaling — the excessive thickness of P (M, E) com-
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Figure 7: The dependence of the probability distribution P (M, E) on the number of
observables, for a βG = 5, 643 lattice. Left: The diagonalized fluctuation matrix for
two observables Shopping, S(φ2−1)2 , see Eq. (4). Right: The same for four observables,
SG, Shopping, Sφ2, S(φ2−1)2 . It is seen that the distribution becomes sharper, or thinner,
as the basis is expanded. Using six observables leads to a still sharper distribution, see
Fig. 5(c).

pared with P (M, E)Ising — has a very strong effect on their difference, in terms of χ2,
making it impossible to achieve a good matching.

5.2.1 Extending the space of observables

The main observation so far was that while the form of the probability distribution
at the critical point comes out strikingly similar to that of the 3d Ising model, as
demonstrated by Figs. 2(b,c), there are still differences (asymmetry and thickness) that
are decreasing with growing lattice size, but relatively slowly, so that, for example, the
elimination of the thickness would require prohibitively large lattice sizes.

The situation can be considerably improved by further generalizing the procedure
of determining the M-like and E-like observables. The reasoning behind this is as
follows. If we consider any arbitrary observable (say, Shopping), it behaves at the critical
point more or less like magnetization, and its probability distribution also looks very
similar to the distribution of magnetization, the main feature being the double-peak
structure. However, it shows a certain asymmetry, which eventually goes down to zero
with growing lattice size. This can be understood as a consequence of the fact that we
expect any observable to behave at the critical point as a sum of M-like, E-like and
regular contributions. Their dependence on the lattice size is different and is governed,
correspondingly, by Lγ/ν , Lα/ν and L0. On large lattices the magnetic contribution is
always dominating, so any given observable starts behaving as the M-like.
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Figure 8: The joint probability distribution of observables corresponding to the largest
(horizontal axis) and second largest (vertical axis) eigenvalues of the 4 × 4 fluctuation
matrix of the terms in Eq. (4).

From this point of view, when we study the joint distribution of two observables and
find the M-like and E-like directions as the primary axes of the corresponding very
elongated fluctuation ellipse, we are actually finding the E-like direction as a linear
combination of observables in which the dominating M-like terms cancel each other.
Thus the consideration of two-dimensional distributions provides a way to disentangle
the dominant (M-like) and subdominant terms. However, it becomes clear that within
this approach the E-like observable will collect all subdominant terms, both actually
E-like and regular.

Thus one arrives at the idea that a further separation of E-like and regular con-
tributions could be achieved by generalizing the procedure to more observables than
two. The hope is to “purify” the E (for M there is little difference, as it outweighs
everything else by orders of magnitude anyway).

To begin with, we have considered the 4-dimensional space of observables, these ob-
servables being the four terms in the action in Eq. (4). Diagonalizing the 4× 4 matrix
〈(Si − 〈Si〉)(Sj − 〈Sj〉)〉 for the 643 lattice (βG = 5) resulted in the eigenvalues and
-vectors shown in Table 2. We observe a pronounced hierarchy of eigenvalues, similar
to the previously considered case of two observables, Fig. 2(a). The largest eigenvalue
corresponds, as expected, to M . However, E turns out to correspond, somewhat sur-
prisingly, to the smallest eigenvalue, rather than to the second largest one, while the two
eigenvalues in the middle correspond to regular directions. This is substantiated both
by analysing the dependence of the eigenvalues on the lattice size and by looking at the
joint probability distributions of various pairs of the 4 observables corresponding to the
4 eigenvectors. The joint distribution of projections onto eigenvectors corresponding

20



to the largest and to the smallest eigenvalue is depicted in Fig. 7(right); projections
onto eigenvectors corresponding to the largest and to the second largest eigenvalue pro-
duce a strikingly different pattern, Fig. 8, signalling that the second largest eigenvalue
does indeed correspond to a regular observable: its fluctuations are Gaussian-like and
independent from those of M .

It is evident in Fig. 7 that the extension of the space of observables from two- to
four-dimensional does indeed considerably reduce the deviation of P (M, E) from the 3d
Ising scaling form. The most notable effect is the reduction of the excessive thickness
of P (M, E). Now the question is, what happens if we further extend the space of
observables, having in mind that if one wants to sort out E as well as possible, one
would like it to correspond to an eigenvalue which is not the smallest one (as the
smallest one is just collecting all unresolved contributions). Thus we have added two
additional observables: the sum of the absolute values of the Higgs field, and the analog
of the hopping term, where the Higgs matrices have been replaced by SU(2) matrices,
dividing out the length of the Higgs field:

S̃R ≡
∑

x

R(x), S̃L ≡
∑

x,i

1

2
Tr V †(x)Ui(x)V (x + i), (22)

where Φ(x) = R(x)V (x), R ≥ 0, V ∈ SU(2).
Now the energy eigenvalue appears to be the fourth of six, in descending order, and we

observe further significant reduction of difference between P (M, E) and P (M, E)Ising,
as seen in Fig. 5(c).

One could continue extending the space of observables (in principle, there are in-
finitely many gauge invariant operators to be considered), but these six operators seem
to be enough for our purposes.

The coefficients of the different eigenvectors in terms of the original operators in
Eqs. (4),(22), together with the eigenvalues, are shown in Table 2. We observe the
following:

1. While the eigenvectors corresponding to the three largest eigenvalues are relatively
stable with respect to an increase in the number of basis vectors, the E direction
changes considerably. However, the final critical distributions, critical indices, etc, are
quite stable.

2. The largest eigenvalue, the magnetic one, is about 4 orders of magnitude larger
than the next largest, for the volumes used.

3. The second largest eigenvalue consists almost solely of the plaquette term of the
action, and conversely, the plaquette term contributes significantly only to the second
eigenvalue. Thus, the plaquette term is practically decoupled from the other modes.

4. At very large volumes the energy eigenvalue will overtake the two regular eigen-
values above it and become the second largest one (Sec. 5.3). However, for the range
of volumes studied here, the hierarchy shown in Table 2 was preserved.
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direction λ c1 c2 c3 c4 c5 c6

4 operators
M 1.28×1010 0.05142 0.72590 -0.68564 -0.01808 – –
regular 8.51×105 0.9965 0.008 0.083 0.0049 – –
regular 2.59×105 -0.066 0.6877 0.7227 0.0185 – –
E 1.75×103 -0.0027 0.0004 -0.0262 0.99965 – –

6 operators
M 1.33×1010 0.0505 0.7133 -0.67375 -0.01777 -0.1646 -0.0853
regular 8.52×105 0.9954 0.010 0.087 0.0055 0.0082 -0.037
regular 2.81×105 -0.078 0.655 0.6876 0.0262 0.136 -0.271
E 1.32×105 0.024 0.233 0.033 -0.1052 0.450 0.855
regular 4.05×103 1×10−5 -0.0914 -0.241 -0.217 0.836 -0.433
regular 73 -2×10−5 9×10−5 -0.0816 0.9700 0.229 0.0019

Table 2: The eigenvalues λ and the coefficients ci for the diagonalized directions, in
terms of the operators in Eqs. (4),(22). Here the volume is 643, βG = 5, and the data
have been reweighted to the infinite volume critical point.

5.3 Critical indices

Now that the M- and E-like directions have been determined, one can find the crit-
ical indices, using the finite size scaling formulas in Eq. (16). The scaling has to be
studied at the infinite volume critical point xc(∞), whose determination was discussed
in Sec. 5.1. There is a small dependence of eigenvectors on the lattice size, due to
corrections to scaling; we take a fixed set of eigenvectors (corresponding to the largest
lattice, 643) and compute the second moments of the corresponding projections, for a
set of lattice sizes. The dispersion of M grows approximately as L4.92, the dispersion
of E grows as L3.27, and those of the remaining projections grow as L3, as shown in
Figs. 9, 10. (An additional volume factor enters due to observables being sums over the
lattice, without dividing by the volume). The apparent value of α/ν ≈ 0.27 deviates
notably from the Ising asymptotic value 0.17, but just the same effect is observed for
the Ising model itself, for similar lattice sizes. This is explained by the presence of a
negative regular background in χE [13], as shown in Fig. 9.

In addition to the critical exponents γ/ν and α/ν, which are related to the second
moments of the distributions P (M) and P (E), we have also determined the correlation
length critical exponent ν. In models with an exact symmetry M ↔ −M (like the Ising
model), finite observables like the Binder cumulant

UL ≡ 1 − 1

3

〈M4〉
〈M2〉2 (23)

can be assumed, near the critical point, to be regular functions of ξ/L, the ratio of the

22



10 20 40 70 100
L

0.95

1.00

1.05

1.10

1.15

χ M
/χ

Is
in

g
βG = 5  magnetic exponent

L
1.92−1.96

 

 
  

 

10 20 40 70 100
L

0.3

0.4

0.5

0.6

χE

βG = 5  energy exponent

0.16 L
0.27

−0.23 + 0.36 L
0.17

 

 

 
 

L
0.17    Is

ing (a
symptotic)

 

 

 

 

Isi
ng

 (a
ctu

al)
 

 

Figure 9: Left: the magnetic susceptibility χM divided by the Ising scaling law const×
L1.96. The corresponding critical exponent is γ/ν = 1.92(3), whereas Ising model has
γ/ν = 2 − η ≈ 1.96. It is seen that at larger volumes the results for χM are consistent
with the Ising model. The absolute value of χM is ∼ 5 × 104 at L = 64. Right:

the energy susceptibility χE. Note that the absolute value is much smaller than for
χM . Two different fits to the datapoints are shown. It is seen that the behaviour is
consistent with that of the Ising model (which is described by χE = −11.1 + 14.6L0.17

[13] and is shown here up to an arbitrary overall factor, so only its slope is relevant).
O(N) models with N ≥ 2 have a negative exponent for χE and are thus excluded.

correlation length to the system size. As ξ ∼ t−ν , the exponent ν can be obtained from
the slope of UL at the critical point [30]:

∂UL

∂t
∝ L1/ν . (24)

The SU(2)+Higgs theory lacks the explicit M ↔ −M -symmetry, and we use the M-
and E-like eigenvectors in the analysis. Furthermore, we substitute M → ∆M =
M − 〈M〉 in the Binder cumulant. Let us now denote by βE the coupling constant of
the E-like eigenvector: that is, we formally extend the lattice action in Eq. (4) to the
form S + βEE, where βE = 0 at the critical point. We then obtain from Eqs. (23) and
(24) that

∂UL

∂βE
= (1 − UL)

[

〈E〉 +
〈(∆M)4E〉
〈(∆M)4〉 − 2

〈(∆M)2E〉
〈(∆M)2〉

]

. (25)

This expression is readily evaluated using the M- and E-like eigenvectors at the critical
point. The results are shown in Fig. 11. With these volumes the corrections to scaling
are still substantial, and the points do not fall on a straight line on a log-log plot.
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Figure 10: The regular eigenvalues, divided by the volume, as a function of the lattice
size. The normalization is arbitrarily chosen such that the average of the values shown is
1.0; the absolute values are as indicated by the numbers. It is seen that the eigenvalues
are constant with a very good accuracy (note the scale of the y-axis). The smallest
eigenvalue has the largest volume dependence as it is contaminated by higher states.

Taking into account the corrections to scaling, we fit the data with the 4-parameter
ansatz

∂UL

∂βE

= c1 L1/ν
(

1 − c2 L−ω
)

. (26)

However, with only 6 points and relatively large statistical errors (when compared with,
say, the Ising model simulations [28]) the error range in the correlation length critical
exponent becomes rather large: the result is ν = 0.63(17). If we lock the correction to
scaling exponent ω to the central value ω = 1.7 and perform a three-parameter fit, the
result becomes ν = 0.63(3).

The value of ν is completely compatible with the Ising model (but also with O(2)).
However, in the Ising model the correction to scaling exponent is ω = 0.8, which
does not fit the data well. This is very likely due to the asymmetry in the P (M, E)-
distributions of the smallest volumes (Fig. 5). In order to observe the Ising-type correc-
tions to scaling one should use volumes which are large enough so that the asymmetric
corrections to scaling have become subdominant. This is discussed in more detail in
the next section.

Apart from the second moments χE , χM , we have also measured the third moment of
E and the corresponding skewness ratio in Eq. (19). The results are shown in Fig. 12.
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Figure 11: The slope of the Binder cumulant UL at the critical point in the E-like
direction versus the lattice size. The dashed line is a 4-parameter fit to the data.

They are consistent with those of the Ising model, but differ from O(2) and especially
from O(4), in which case the skewness of P (E) is very small.

6 Dependence of asymmetry on the volume

Significant asymmetry effects were observed in the previous analysis of the SU(2)+
Higgs theory. Here we study them in some more detail. We consider the distribu-
tions P (M) at the critical point, as shown in Fig. 5(right), and attempt to obtain a
quantitative description of how they approach the Ising shape with growing lattice size.

It is well-known [32] that the leading corrections to scaling in an exactly symmetric
system, such as the Ising model itself, show the universal behaviour governed by L−ω,
ω ≡ ∆/ν ≈ 0.8 (see also Sec. 5.1). However, the asymmetric corrections, which are
also present in our system, have their own critical exponent ω5, which is different from
ω and has attracted much less attention in the literature (to our knowledge, it has
never been studied before in the framework of Monte Carlo simulations). Including the
operators φ5, φ6 in Eq. (10), the exponent ω5 has been computed within the ε-expansion
up to order ε3 [33]–[35], and within the renormalization group framework [36]. Quoting
from [35],

ω5 = 1 +
11

6
ε − 685

324
ε2 +

107855 + 103680ζ(3)

34992
ε3 + O(ε4). (27)
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Figure 12: The skewness of P (E) for 3d SU(2)+Higgs and different spin models,
versus the inverse lattice size.

This series behaves poorly at ε = 1, resulting in 1 + 1.83− 2.11 + 6.64 . . .. An attempt
to improve the situation using Padé approximants produces the sequence 2.83, 1.85,
2.32, in orders O(ε), O(ε2), O(ε3) respectively, leading to the estimate that ω5 >∼ 1.5
[35]. This estimate has been confirmed by the computation within the renormalization
group [36], which resulted in ω5 = 2.4(5). Thus it is generally believed (see, e.g.,
[37]), that ω5 ≈ 2.1 (the average of the last two Padé values). This implies that the
asymmetric corrections, going as L−ω5, should die out very rapidly when a critical
point is approached, not only faster than the leading symmetric corrections (L−ω), but
also faster than the subleading ones (L−2ω), and thus be of no practical importance
anywhere near the critical point. This is probably the reason why ω5 is rarely discussed
in the literature.

However, we do observe significant asymmetric contributions, and it is interesting to
see what kind of implications there are for ω5. For this purpose we need to quantify the
deviation of P (M) from the Ising scaling form (Fig. 5, right). As has been found in [31],
the scaling form of P (M) for the 3d Ising model in a cubic box with periodic boundary
conditions is described extremely well by the following simple approximation:

P (M) ∝ exp
{

−
(

M2

M2
0

− 1
)2(

a
M2

M2
0

+ c
)}

, (28)

where M0 is the position of the magnetization peak, and the universal constants a and
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c are

a = 0.158(2), (29)

c = 0.776(2).

The generalization of Eq. (28) for our case must also include odd powers of M , and can
be written down as follows:

P (M) ∝ e−Veff , Veff = (x2 − 1)2(ax2 + bx + c) − hx, x =
M − M1

M0
. (30)

This Veff can be considered as a special parametrization of a general double-well polyno-
mial of up to sixth order in M . The parameters M0 and M1 are responsible for rescaling
and shifting the distribution as a whole. Two of the remaining four parameters, b and
h, characterize the asymmetry of P (M).

One of them, h, is sensitive to what may be called the superficial asymmetry: an
asymmetry caused by a small deviation of parameters of our system from the true
critical point across the first order line, which is, in the case of the Ising model, equiv-
alent to an application of a small external field. This parameter is also sensitive to the
asymmetry caused by statistical errors in the relative heights of the two peaks, which
emerge on larger lattices as a consequence of the growth of the tunnelling time with
the lattice size.

On the other hand, the parameter b characterizes what may be called the genuine

asymmetry, and is responsible for the difference in the peak widths that remains after
we make them equally high by slightly shifting the system across the phase transition
line (that is, in the h-like direction).

Thus we will be interested in three parameters: a, b and c. Making a 6-parameter
fit to our data, we observe (Fig. 5, right) that the ansatz in Eq. (30) is indeed able to
provide a sufficiently good approximation. The quality of the approximation turns out
not to be exactly as excellent as in the case of the 3d Ising model (one observes, for
example, that the fit tends to go a little bit above the top of the higher peak), but
quite sufficient for our purposes.

The results for a, b and c are shown in Fig. 13. One observes that all three parameters
go in the directions of the corresponding Ising limits, with growing lattice size.

The parameter c falls reasonably well on a straight line which corresponds to the
standard correction to the scaling exponent ω ≈ 0.8. It is interesting to note that
it approaches the scaling limit from below, while in the simple cubic Ising model it
approaches the same limit from above [31].

The parameter a behaves less nicely but is also consistent with ω ≈ 0.8 for larger
lattice sizes. As for the parameter b, which is expected to behave as L−ω5 , it does
indeed decrease with growing lattice size, but much more slowly than implied by the
generally accepted high value of ω5. In fact, b seems to go down more slowly than
L−0.8, rather than going as L−2.1 (the data in Fig. 13 are best fitted by L−0.4 . . . L−0.5)!
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Figure 13: The parameters a, b, c that determine the shape of P (M) according to
Eq. (30), as a function of the lattice size (L = 16 . . . 64). The values in Eq. (29) for the
Ising model in the scaling limit are marked on the left edge of the plot.

The origin of this contradiction remains unclear. It might be that our lattices are
still too small, and we have not yet reached the asymptotic regime where asymmetric
corrections behave as L−ω5 . On the other hand, something might be missing in the
theoretical treatment of asymmetric corrections to scaling. This question certainly
deserves further study.

7 Summary of the results

The aim of this paper was to study the universality properties of the endpoint of the
line of first order phase transitions in the 3d SU(2)+Higgs gauge theory. Qualitatively,
the result was obvious when comparing the two-dimensional near-endpoint distribution
of this theory in E- and M-like variables, shown in Fig. 2(b), with the corresponding
distribution for the 3d Ising model shown in Fig. 2(c): the distributions look extremely
similar. The bulk of this paper was devoted to putting this similarity on a strict
quantitative basis.

Indeed, the two main discrepancies between Figs. 2(b) and 2(c) – the asymmetry
and the thickness of Fig. 2(b) – can be removed by going to the infinite volume limit
and by using a larger basis of observables. The effect of the volume variations is shown
in Fig. 5. It is seen that as the volume is increased, the distribution looks more and
more like that of the Ising model, Fig. 3(a). The effect of the choice of basis is shown in
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Fig. 7. It is seen that the thickness is removed as one goes from two to four observables,
and even more as one goes to six observables (Fig. 5(c)). The fact the Fig. 5(c) agrees
with Fig. 3(a) and not with Figs. 3(b),(c), is our main result.

Furthermore, the basis of six observables allows to construct a 6 × 6 correlation
matrix, which is then diagonalized. It turns out that two of the eigenvalues show
critical behaviour, whereas four are regular. The largest eigenvalue corresponds to
χM . The susceptibilities χM , χE are shown in Fig. 9 as a function of the volume. The
behaviour is clearly consistent with that of the Ising model. For the energy exponent
χE even the fact that scaling violations are large at moderate volumes is reproduced.
An O(4) model with a negative exponent for χE is excluded.

The remaining four regular exponents are shown in Fig. 10. They show no critical
behaviour as a function of the volume.

Apart from the second moments χE , χM , we have measured the correlation length
critical exponent ν (Fig. 11) and the skewness of P (E) (Fig. 12). The results are
completely consistent with those of the Ising model.

Based on the values of the critical exponents and properties of P (M, E), P (M)
and P (E), we thus conclude that the endpoint of the SU(2)+Higgs theory is in the
universality class of the 3d Ising model.

We have also studied corrections to scaling. While “symmetric” corrections to scaling
display precisely the exponent inherent for the 3d Ising model (Sec. 5.1), asymmetric
corrections to scaling, which arise from higher order operators not appearing in the ac-
tions in Eqs. (10), (11), behave in an unexpected way: they are quite large at reasonable
lattice sizes.

7.1 The continuum limit of xc

Finally, let us discuss the continuum limit of xc, the location of the endpoint, which
is a non-universal quantity. This requires measurements performed at different lattice
spacings; for βG = 8 we used a set of simulations originally described in [1], and for
βG = 12 we used the critical coupling measured in [3]. The results are shown in Fig. 14.
The improved values for xc have been obtained from Eq. (9). As the corrections linear
in 1/βG are thus removed, a quadratic extrapolation can be made. The continuum
result is

xc = 0.0983(15). (31)

We estimate that the effect of the U(1) group on xc is <∼ 10%. According to the
formulas in [7], the value of xc in Eq. (31) corresponds to mH = 72(2) GeV in the
SM, and xc = 0.11 would correspond to mH = 77(2) GeV. In the MSSM, the same
effective theory as in Eq. (1) can be derived, just the relations to 4d parameters are
different [19]. Then the value x = xc can correspond to many different Higgs masses,
depending on the other parameters of the theory: some examples are shown in Fig. 15.
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Figure 14: The infinite volume extrapolations of xc as a function of βG. Gürtler et
al refers to [3]. The location of the endpoint has been determined in [2], as well, but
the volumes there were somewhat smaller so that the inclusion of that datapoint is not
meaningful. The improved values have been obtained from Eq. (9).

8 Conclusions

In this paper, we have shown that the endpoint of the line of first order transitions
in the 3d SU(2)+Higgs theory is a second order transition in the universality class of
the 3d Ising model. In particular, the measured critical exponents, cumulant ratios,
and probability distributions of these two theories approach each other with growing
lattice size.

To arrive at this conclusion, we have developed a general method to determine the
universality class of a phase transition in a completely non-perturbative system, utiliz-
ing lattice Monte Carlo simulations. The method can be applied to any system exhibit-
ing critical behaviour, provided that it is possible to perform Monte Carlo simulations
on the critical point itself. This includes, e.g., the endpoints of the 1st order lines in the
3d SU(2)+adjoint Higgs theory (where the line ends [39, 40]), the 3d SU(3)+adjoint
Higgs theory (where the line turns into a second order line after a tricritical point) or
in the U(1)+Higgs theory. On the other hand, the two flavour 4d finite temperature
chiral transition in QCD occurs at the limit mq → 0, which is not directly accessible
with standard Monte Carlo methods.

We have also determined the continuum extrapolation of an important non-universal
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Figure 15: Examples of parameter values corresponding to x = xc in the MSSM [38].
Here mt̃R is the right-handed stop mass, mH is the lightest CP-even Higgs mass and
mA is the CP-odd Higgs mass. The squark mixing parameters have been put to zero.

quantity, the location of the endpoint xc. In the Standard Model with sin2 θW = 0,
the resulting value xc = 0.0983(15) corresponds to a physical Higgs mass mH = 72(2)
GeV. While taking sin2 θW = 0.23 does not change the universal properties, the value
of xc may grow slightly. However, we do not expect values larger than xc = 0.11,
corresponding to mH = 77(2) GeV. Even this Higgs mass is already excluded experi-
mentally, and thus there is no phase transition in the Standard Model. If low energy
supersymmetry is realized, in contrast, the cosmological electroweak phase transition
can be of the first order for the Higgs masses allowed at present. This could lead to
important cosmological consequences.
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Appendix

In this appendix we discuss two points concerning the scalar effective theory in Eq. (10):
the relative roles of the linear and cubic terms and discretization. The cubic term is
often used to generate a first order transition, but here it proves convenient to shift it
away.

Consider the theory

S =
∫

d3x
[

1

2
∂iφ∂iφ + hφ +

1

2
m2φ2 − 1

3
δφ3 +

1

4
λφ4

]

. (32)

Due to superrenormalisability, only the two 2-loop diagrams

are logarithmically divergent and lead to the following renormalisation scale depen-
dence of the mass and magnetic field terms in the MS scheme:

h(µ) =
2λδ

16π2
log

Λh

µ
, m2(µ) =

−6λ2

16π2
log

Λm

µ
. (33)

The theory now is specified by the four constants λ, δ, Λh, Λm or, equivalently, by

λ, x =
m2(λ)

λ2
, y =

h(λ)

λ5/2
, z =

δ

λ3/2
. (34)

However, as there is no φ ↔ −φ symmetry, one can perform a shift φ → φ+constant
and choose the constant so that the cubic term disappears. This corresponds to the
invariance of the theory under the transformation (x, y, z) → (x + zy/3 − 2z3/27, y −
z2/3, 0). Thus one can from the outset choose δ = 0 in Eq. (32). The magnetic field
term is then scale invariant (see Eq. (33)). However, it is not possible to eliminate the
linear term: it is anyway generated by radiative effects according to Eq. (33).

On the lattice the action corresponding to the theory without the cubic term becomes
(after scaling aφ2 → βHφ2)

S = −βH

∑

x,i

φ(x + i)φ(x) + β1

∑

x

φ(x)

+
∑

x

φ2(x) +
β2

H

4βG

∑

x

[φ2(x) − 1]2, (35)
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where the lattice couplings βH , βG, β1 are related to λa, x, y by

λa =
1

βG

,

x = 2β2
G

(

1

βH
− 3 − βH

2βG

)

+
3Σ

4π
βG − 6

16π2
log(6βG + ζ), (36)

y =
β1√
βH

β
5/2
G .

Here Σ, ζ are the same as in Eq. (7). Eq. (35) is a standard scalar lattice action but
with very specific couplings, determined by Eqs. (36). If the expectation value of φ
measured with Eq. (35) is 〈φL〉, then in continuum normalisation,

〈φ〉/λ1/2 =
√

βHβG〈φL〉. (37)

If higher order operators are included in Eq. (32), then the cubic term cannot, in
general, be shifted away any more. It becomes a running parameter which is generated
radiatively even if shifted away at some scale.
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