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IUHET-316September 1995Results from 3D Electroweak phase transition simulationsK. Farakosa, K. Kajantieb, M. Laineb, K. Rummukainenc� and M. ShaposhnikovdaNational Technical University of Athens, Physics Department, Zografou, Gr-15780, Athens, GreecebDepartment of Physics, P.O.Box 9, 00014 University of Helsinki, FinlandcIndiana University, Department of Physics, Swain Hall-West 117, Bloomington, IN 47405, USAdTheory Division, CERN, CH-1211 Geneva 23, SwitzerlandWe study the phase transition in SU(2)-Higgs model on the lattice using the 3D dimensionally reduced formal-ism. The 3D formalism enables us to obtain highly accurate Monte Carlo results, which we extrapolate both to thein�nite volume and to the continuum limit. Our formalism also provides for a well-determined and unique wayto relate the results to the perturbation theory. We measure the critical temperature, latent heat and interfacetension for Higgs masses up to 70 GeV.1. WHY 3D SIMULATIONS?Perturbative calculations have been extremelysuccesful in describing the physics of Electroweakinteractions at zero temperature. However, at�nite temperatures a purely perturbative analy-sis fails because of infrared problems: it is wellknown that the e�ective potential of the scalar�eld cannot be computed perturbatively for small�, in the symmetric phase. Thus, the calculationof the quantities characterizing the phase transi-tion { for example, the critical temperature Tc,interface tension �, and latent heat L { requiresthe use of non-perturbative methods.A direct way to include the non-perturbativee�ects is to perform 4D �nite-temperature latticesimulations of SU(2)-Higgs models. However, inthe interesting parameter range the theory is stillweakly coupled, and we can use perturbative di-mensional reduction (DR) to convert the 4D ac-tion into a 3D e�ective one. This step consists ofintegrating out all the massive modes (not con-stant in imaginary time) of the theory. In thistalk we present results from 3D simulations withHiggs masses up to 70GeV (for earlier results, see[1,2]; the results presented here will be describedin detail in [3]).We maintain that, in practice, 3D simulations�Presented by K. Rummukainen

are the method of choice for studying the EWphase transition [4,5]:(I) 3D model has one or two essential mass scalesless than the original 4D model: in 4D, the latticespacing a and the linear size of the lattice Nx haveto satisfy the limits T � a�1 � mH (T )Nx. In3D, the heavy T -scale does not exist, and we haveto require only thatmW (T )� a�1 � mH (T )Nx.(II) 3D theory is superrenormalizable | thisgives an exact relation between the 3D lattice andcontinuum couplings in the limit a ! 0, and wecan relate any lattice observable to the physicalone for given Higgs and W masses.(III) For a given a and Nx, the number of latticevariables is much less in 3D than in 4D, makingthe simulations easier.(IV) We can consistently include the e�ects offermions and even typical extensions of the Stan-dard Model (for example, minimal SUSY exten-sions, the two-Higgs model) to the purely bosonic3D SU(2)-Higgs simulations [5].The dimensionally reduced 3D SU(2)-Higgs La-grangian is formally similar to the 4D one:L = 14F 2 + (Di�)y(Di�) +m23�2 + �3(�2)2 (1)where �2 = �y� and the 3D couplings g23 and�3 have dimension GeV (Here we discuss onlythe case where A0 | the temporal component ofthe gauge �eld | is integrated over). We relate



2the 3D couplings to the 4D ones at 2-loop levelby Green's function matching [4,5]; using thismethod the nonlocal 2-loop terms which plaquestraightforward DR [6] do not appear at all. TheLagrangian (1) is an approximation of the exact3D one; by systematically estimating the e�ectsof the neglected terms we can conclude that formH>�60GeV the errors are less than 1%, depend-ing on the observable.The 3D lattice action can be written asS = �G Xx;i<j(1� 12TrPx;ij)� �HXx;i 12Tr�yxUx;i�x+i+ Xx [�2 + �R(�2 � 1)2]: (2)Due to superrenormalizability (II), we have anexact relation between lattice and continuumparameters (�G; �H ; �R) $ (g23a; �3=g23;m23=g43)when a ! 0; for example, �G = 4=(g23a) directlyconnects the coupling constant �G to the latticespacing a. In 4D, the corresponding relation con-tains the RG constant �Latt, which has to be�xed by measurements. The 3D parameters areparametrized as (h = mH=80.6GeV) [3,5]g23 = 0:44015T�3=g23 = �0:00550 + 0:12622h2m23=g43 = 0:39818+ 0:15545h2� 0:00190h4� 2:58088m2H=T 2 : (3)Note that neither mH nor T here are true phys-ical quantities. The values mH = 35, 60 and70GeV used here correspond to physical polemasses mH (T=0) = 29:1, 54.4 and 64.3GeV in4D SU(2)-Higgs theory (without fermions). Forsome other 4D theory (but the same 3D one, see(IV) above) the physical masses would be di�er-ent [3]. Due to their transparency and universalnature we discuss only the 3D-values in the restof the paper.2. SIMULATIONS AND RESULTSWe �x the parameters according to eqs. (3) anduse mH = 35, 60 and 70GeV. For each mH , weuse �G = 5, 8, 12 and 20, which correspond todi�erent lattice spacings. For each �G we have
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Figure 1. The distribution of R2 = �y� for somemH = 60GeV, �G = 8 volumes.several volumes, allowing us to extrapolate themeasurements (A) to the thermodynamical limitV ! 1 and (B) to the continuum limit a ! 0.All in all, we have 59 di�erent combinations ofmH ; �G; V .For each lattice we search for the transitionpoint by adjusting �H . We have mainly concen-trated our e�ort to the mH = 60GeV case. In�g. 1 we show the distribution of R2 = �y� forthe largest �G = 8 volumes at the critical cou-pling �H;c. The �rst order nature of the transitionis obvious. As a rule, our 3D results qualitativelyagree with the 4D results [7{9] and the recent 3Dsimulation [10]. However, the statistical errorsin 3D are considerably smaller. For reviews, see[11,12].The critical temperatureWe monitor the phase transition with orderparameters R2 and L = 13V Px;i 12TrV yxUx;iVx,where V is the SU(2) direction of the Higgs �eld� = RV . The critical coupling �H;c is locatedwith several di�erent methods:(1) maximum of C(L) = h(L� hLi)2i(2) maximum of C(R2) = h(R2 � hR2i)2i(3) minimum of the Binder cumulant of L:B(L) = 1� hL4i=(3hL2i2)(4) Equal weight value for the distribution p(R2)(5) Equal height value for the distribution p(L)For each individual volume, the de�nitions (1){



3
0 1e-05 2e-05 3e-05 4e-05

1/V

0.347965

0.347970

0.347975

0.347980

minimum of B(L)
maximum of C(L)
maximum of C(R

2
)

equal weight of p(R
2
)

equal height of p(L)

mH = 60 GeV   βG = 8   

 

 

 

 βH,c  

  

Figure 2. The V ! 1 limit of �H;c measure-ments.(5) yield di�erent values for �H;c, but when V !1 all converge to the same limit, as is shownin �g. 2. For other values of �G the situation issimilar.For each �G, we convert the V = 1 valueof �H;c to transition temperature Tc. These arein turn extrapolated to the continuum limit, asshown in �g. 3. For mH = 60 we have high preci-sion data for �G = 5,8,12 and 20, and a good �trequires that we use a quadratic �t in 1=�G. FormH = 35 and 70GeV linear �ts are acceptable.The �nal results are given in table 1; in all casesthe transition is unambiguosly of �rst order.Numerically, the Tc values from the simulationsare quite close to the perturbative ones, but dueTable 1The critical temperature Tc, the interface tension� and the latent heat L for di�erent Higgs masses.The value of � at mH = 35GeV comes only from�G = 8 simulations.mH/GeV 35 60 70Tc/GeV 92.64(7) 138.38(5) 154.52(10)T pertc /GeV 93.3 140.1 157.0�=T 3c [0.0917(25)] 0.0023(5) |�pert=T 3c 0.061 0.008 0.005L=T 4c 0.256(8) 0.0406(7) 0.0273(16)Lpert=T 4c 0.22 0.041 0.028
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Figure 3. The continuum limit of the criticaltemperature Tc for mH = 60GeV. Only thequadratic �t has an acceptable �2/d.o.f.to the very high accuracy, they still di�er at �10� level, signaling signi�cant non-perturbativeand higher order perturbative e�ects.The interface tension and the latent heatWe measure the interface tension with the his-togram method : at the critical temperature thedistribution of the order parameter develops adouble-peak structure (�g. 1). The interface ten-sion can be extracted from the limit�T = limV!1 12A log PmaxPmin ; (4)where A is the area of the interface and Pmaxand Pmin are the distribution maximum and theminimumbetween the peaks. To use eq. (4) �nitesize corrections are needed; for details, see [3].A crucial requirement is the \at minimum" inthe distribution between the peaks; this excludesall but the largest cylindrical volumes from theanalysis.In �g. 4 we show the V ! 1 extrapolationof � for mH = 60GeV. These values are thenfurther extrapolated to �G ! 1; the �nal valueis � = 0:0023(5)T 3c . This is substantially smallerthan the perturbative result 0.008T 3c , and signalsthe presence of non-perturbative e�ects for �.For mH = 35GeV we cite only �G = 8 result(table 1), since we do not have \at" histograms
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Figure 4. The interface tension extrapolated toV !1 for mH = 60GeV.for other �G values; the continuum value is quitelikely considerably smaller. For mH = 70GeV wecannot reliably extract any non-trivial value.The latent heat L can be extracted from thediscontinuity of R2 at Tc. For details, we againrefer to [3]; in contrast to �, the continuum limitcan be taken for all mH , and the results are re-markably close to the perturbative values, as canbe seen from table 1.The Higgs and W massesIn order to measure mH (T ) and mW (T ) weperform a separate series of simulations aroundTc for mH = 60GeV. We observe a good scal-ing between �G = 8 and 12. Both mH (T ) andmW (T ) have a discontinuity at Tc, and the massesare higher in the symmetric phase. In �g. 5 weshow mW (T ) in units of g23 = g2T . The valueof mW (T > Tc) contradicts the analytical limitmW =g23<�0:29 [13]. Similar behaviour has beenobserved in 4D [9] and 3D [10] simulations atsmaller mH .REFERENCES1. K. Kajantie, K. Rummukainen and M. Sha-poshnikov, Nucl. Phys. B 407 (1993) 3562. K. Farakos, K. Kajantie, K. Rummukainenand M. Shaposhnikov, Nucl. Phys. B 407(1993) 356
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