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1 IntroductionThe infrared problem in the thermodynamics of Yang-Mills �elds prevents a purelyperturbative study of the electroweak phase transition. It is well known that thee�ective potential for the scalar �eld cannot be computed perturbatively for small�, in the symmetric phase. Accordingly, all the quantities characterizing the phasetransition region, Tc, metastability and tunnelling temperatures, �c, latent heat andinterface tension are not computable in perturbation theory. At the same time, someproperties of the high energy particle excitations in broken and unbroken phases allowperturbative treatment. Moreover, the broken phase of the electroweak theory is weaklycoupled, provided the vacuum expectation value of the Higgs �eld is large enough. Thusit is essential to apply both perturbative and non-perturbative methods to determinethe nature of the electroweak (EW) phase transition.These general remarks suggest that probably the best way to determine the param-eters of the electroweak phase transition relevant for cosmology with su�cient accu-racy should consist in two steps, separating the perturbative and the non-perturbativephysics. At the �rst step one goes as far as possible with analytical perturbative calcu-lations, which can simplify greatly the underlying 4d EW theory. The second consists innumerical lattice Monte Carlo simulations of non-perturbative physics. This programwas initiated in ref. [1] and consists in the following ingredients:(i) Dimensional reduction of 4d high temperature theory. This step provides ane�ective 3d theory containing one (or even two) essential mass scales less than theunderlying 4d theory. The scales of the 4d theory are the temperature T , the Debyescreening mass mD � gT , and the infrared scale g23 = g2T , while those of the reducedtheory are mD and g23 (or just g23 if A0 { the temporal component of the gauge �eld { isintegrated out). This part of the analysis has been carried out in [2] on the 2-loop level;the 2-loop contribution is essential both for numerical and conceptual reasons. The 3dtheory is an excellent approximation to the 4d world for realistic Higgs masses. At thesame time, this theory is much easier to analyze with perturbative or non-perturbativemethods. The main reason is its super-renormalizable character. In contrast to the 4dtheory, where ultraviolet divergences exist in any order of perturbation theory, in 3donly 1- and 2-loop graphs are divergent. This makes the scaling behaviour, essential forrelating lattice and continuum parameters, much simpler than that in 4d, and allowsone to make computations with high accuracy.(ii) A relation between lattice couplings and couplings of the 3d theory, which is exactin the continuum limit. With this relation, and using (i), one can relate any of thelattice observables to physical ones for given Higgs and W masses. The existence of anexact relation is a consequence of the super-renormalizable character of the 3d gauge-Higgs system, where 3-loop or higher order terms do not contribute to renormalization.(iii) The study of di�erent observables on the lattice in the broken phase (below thecritical temperature) and a comparison of them with 2-loop perturbative predictions5. This allows one to estimate higher (3-loop, etc.) order perturbative corrections to-5As we have shown in [2] the 2-loop level of perturbative computation is a minimal one for whichthe result is practically scale-independent. 1



gether with an estimate of �nite a (lattice spacing) e�ects. This part of the frameworkis quite important, since it can provide a justi�cation for the use of perturbative meth-ods in the broken phase for concrete values of the Higgs mass and the temperature.If perturbation theory works with su�cient accuracy, then in some sense at least onehalf of the problems associated with the electroweak phase transition { the propertiesof the broken phase at Tc { can be dealt with analytical methods.(iv) The study of di�erent observables in the symmetric phase (above Tc). Here themost interesting characteristics are correlation lengths of operators with di�erent quan-tum numbers, in particular those that would be associated with Higgs and W bosonsin the broken phase. The results of this study cannot be reproduced by perturbativemethods, since the symmetric phase is in the strongly coupled con�ning phase. Thispart of the study is important since most of the mechanisms for electroweak baryoge-nesis are linked in one way or another with the properties of the symmetric phase.(v) As a combination of (iii) and (iv), the study of the system in the transition regionand the determination of the parameters of the phase transition (such as its order, thecritical temperature, the jump of the order parameter, etc.).This paper sets up points (ii) and partially (iii) of the above proposal, and addsseveral remarks to (i). These steps are necessary for the detailed study of the EW phasetransition itself [3]. Some qualitative results on the EW phase transition has appearedin [1] (mostly for the light Higgs boson, mH = 35 GeV) and in [4] for mH = 80 GeV.The paper is organized as follows. In section 2 we provide further motivation of step(i), i.e. the use of a 3d e�ective theory [2, 4],[5] rather than the full 4d one [6]{[10]. Insection 3 we summarize the results from the 2-loop perturbative analysis [2]. In sections4 and 5 we introduce a set of gauge-invariant observables (condensates), which can becomputed with a simple manipulation from the 2-loop e�ective potential and can bemeasured on a lattice with high precision. A discussion of the renormalization of theground-state energy "vac in the MS scheme is given in section 4. As a new perturbativeresult, section 5 contains a 2-loop perturbative computation of "vac and h�y�i in theMS scheme.The lattice action is given in Section 6, as well as a detailed discussion of relatinglattice numbers to physical quantities, i.e. de�ning the constant physics curve. It isshown that the relation of the lattice to continuum requires the computation of threenumbers, �; �� and ~�. Two of these are computed in 2-loop lattice perturbation theory6.The third one, �, is related to the pure gauge sector, in which lattice perturbation theoryis very complicated. We determine it in Section 7 by measuring h�y�i on the latticedeep in the broken phase and by comparing this with the 2-loop perturbative result.This comparison involves the constant physics curve and permits one to calibrate �.The constant physics curves we found do not have any higher loop contributions7.Simultaneously, we use Monte Carlo data to estimate higher order corrections to the6In analogy to the derivation of the relation between �QCD in lattice and continuum regularizationschemes [11, 12] in QCD, the calculation amounts to computing the constant term besides the leadinglogarithmic term. However, now the logarithmic term arises only at the 2-loop level, which accountsfor the greater complexity of the problem.7In [1] the corresponding relation was obtained at the 1-loop level.2



e�ective potential and the magnitude of �nite- a e�ects. In Section 8 we construct theconstant physics curves for a theory in which the A0 �eld { the former time componentof the gauge �eld { is integrated out. Section 9 is a conclusion. Several technicalpoints are covered in Appendices. In particular, we derive the 2-loop form of thegauge-invariant e�ective potential introduced in [13].In this paper we frequently use the results of ref. [2]. All references to speci�cformulae from that paper are indicated by a I followed by the equation number.2 3d versus 4dIn the following subsection we discuss the basic properties of dimensional reduction.We also introduce a criterion for a dimensional reduction di�erent from that previouslydiscussed in the literature and discuss the role of fermions. In the second subsection wediscuss the quantitative advantages of the 3d formulation in the study of the electroweakphase transition.2.1 Why the 3d description is possibleThe idea of dimensional reduction [14]{[19] comes from a statement that equilibrium�nite temperature �eld theory is equivalent to a Euclidean zero temperature �eld the-ory de�ned on a �nite imaginary time interval 1=T supplied with periodic boundaryconditions for bosons and antiperiodic for fermions. Therefore, 4d �nite temperature�eld theory is exactly equivalent to a 3d �eld theory at T = 0, but with an in�nitenumber of �elds. The 3d masses of bosons are mB = 2�nT and those of fermionsmF = �T (2n+ 1); n = 0; 1; :::.The 3d e�ective bosonic action is de�ned asexp(�Se�) = Z D[heavy modes] exp(�S); (1)where the functional integral is taken over all modes with masses � T . The e�ectiveaction is a complicated functional of 3d bosonic �elds. The use of it is, of course,equivalent to the full 4d theory.Suppose now that we are dealing with infrared physics only, so that the typicalenergy scale (which we denote as Q and discuss in more detail later) of the problemis much smaller than the temperature. Then all 3d fermionic modes and all bosonicmodes besides the one corresponding to n = 0 have masses larger than �T and arevery heavy in comparison with our scale. So, the integration over the heavy modes canbe done perturbatively with an expansion parameter Q=(�T ). The e�ective 3d actioncan be represented in the formSe� = cV T 3 + Z d3xLe�(T ) +Xn OnT n ; (2)where Le�(T ) is a renormalizable 3d e�ective bosonic Lagrangian with temperature-dependent constants, On are operators of dimensionality n, suppressed by powers of3



temperature, c is a number related to the number of degrees of freedom of the theoryand V is the volume of the system. For example, the 3d gauge coupling is g23 = g2T .The last step of dimensional reduction amounts to neglecting the terms On. Note thatthe constant part of the action is irrelevant for a discussion of phase transitions.Formally, the operators On are suppressed by the powers of temperature. It seems,therefore, that their contribution is negligible in the limit T ! 1. This is, however,wrong since the 3d coupling and mass also grow without bounds in this limit. ThusOn / T n, and the extra contributions to the 3d action do not vanish when T ! 1.Thus, the Landsman [17] criterion of exact dimensional reductionlimT!1(V4d � TV3d)=T 4 ! 0; (3)where V4d is the e�ective potential computed in 4d and V3d is the potential computedwith a renormalizable part of 3d action (with temperature-dependent parameters), doesnot hold. Instead, one has(V4d � TV3d)=T 4 = O(m2i (T )=T 2); (4)where themi(T ) are the relevant mass scales (inverse screening and correlation lengths)of the system. The question of validity of dimensional reduction thus becomes a prag-matic one: when is the r.h.s. of (4) negligible? At very high T all masses are propor-tional to coupling constants times T and the r.h.s. of (4) is some power of 4d couplingconstants. These extra terms are small only when the dimensionless coupling constants(run to the scale of about 7T , see below) of the underlying 4d theory are small. So,the criterion for dimensional reduction to work is thus the same as that for T = 0perturbation theory: g2 � 1 and � � 1, � being a scalar self-coupling constant. Forthe electroweak theory (minimal standard model) this implies that mH should not bevery large, say, mH<�3mW .However, we are mainly interested not in very large T but in T close to a possiblephase transition temperature. Then the system contains two phases and may containother mass scales than those set by the product of T and coupling constants. We willsee below that the dimensional reduction is valid for the electroweak theory near Tc,provided that the Higgs mass is su�ciently large, say, mH>�30 GeV.One may wonder if we achieved anything going from 4d to 3d: dimensional reductionrequires small coupling constants and works only when 4d perturbation theory works.The answer is: Yes, we do. The region of applicability of perturbation theory is di�erentat zero and at high temperatures. The criterion for �nite T perturbation theory towork is g23=Q� 1 (5)(for example, in the calculation of the e�ective potential the condition is g23=(�mT )� 1,in hot QCD perturbation theory breaks down for distances 1=Q > 1=(g2T ), etc.), whilethe criterion for T = 0 perturbation theory to work, which is the same as the criterionof dimensional reduction to be valid, is g2 � 1. In other words, at high temperatures,we can �nd ourselves in a situation in which 4d �nite T perturbation theory does notwork (g23=Q = g2T=Q � 1), but dimensional reduction is possible (g2 � 1). As we4



shall see, this is a typical situation in electroweak theory. After the reduction is doneanalytically, we can do some analytic perturbative or, most importantly, numericalnon-perturbative analysis of the 3d theory. This may be easier and more precise thanthe analysis of the 4d one.Now, we can assert a di�erent formal criterion for the validity of dimensional reduc-tion: take the limit T ! 1, with 3d parameters �xed. Then the di�erence between4d and 3d computations always vanishes. This is not a physical limit since it implies atransition between di�erent physical theories at zero temperature (g2 = g23=T ! 0). Itis, however, quite helpful from a practical point of view, since it provides a de�nitionof the formal expansion parameter, Q=T with Q � g23, which must be small for the di-mensional reduction be be valid. The important point is that in this limit the resulting3d theory has a non-trivial dynamics, which can be completely non-perturbative.A �nal comment concerns QCD at �nite temperatures: one should not expect di-mensional reduction to be valid in the vicinity of the QCD phase transition, wherethe 4d gauge coupling is not small. However, at large enough temperatures, it may beused.2.2 Why a 3d description is more e�cientIn the previous subsection we argued that 3d e�ective theories can be used for thenon-perturbative study of high temperature phase transitions in weakly coupled �eldtheories. In this subsection we will discuss the qualitative and quantitative advantagesof the 3d formulation.We start from the qualitative features. An important aspect of dimensional reductionconcerns the role of fermions. Since the fermion masses (2n + 1)�T and bosonic non-static mode masses 2�nT both get large simultaneously, both will give a contributionof the same order. Thus either both can be integrated out in the vicinity of Tc, i.e.the 4d!3d reduction is valid, or both have to be included and the 3d e�ective theoryis not accurate8. Moreover, a realistic electroweak theory contains chiral fermions,which are impossible at present to put on the lattice. So, they must be integrated outanalytically. In other words, 4d bosonic theory, which one can study on the lattice, isin any case an e�ective theory and not better than a dimensionally reduced 3d one.The second advantage is that complete 4d perturbative computations of the �niteT e�ective potential are known only in the 1-loop approximation. The existing 2-loop computations [20]{[22] deal with high-temperature asymptotics only, which isequivalent to a 3d computation [2]. So, one is forced to compare the results of 4dlattice simulations with e�ectively 3d perturbative computations. Why then not carryout 3d simulations?The last, but not the least, advantage is the great simpli�cation of perturbativecomputations in the 3d e�ective theory, in comparison with resummed perturbation8The former is the case for the electroweak theory for an interesting range of mH . The latterholds for QCD, for which the gauge coupling is large at Tc. In fact, it is well known that the QCDtransition depends sensitively on the fermion content and that, for pure SU(3) gauge theory, the 3dapproximation starts to work somewhat above Tc, for T>�1:5Tc.5



theory in 4d. This allowed one to clarify the nature of the large 2-loop logarithmiccorrections in the MS scheme and to introduce a method of summation of those basedon the renormalization group [2].We now turn to more quantitative aspects of the use of 3d e�ective theory.2.2.1 The quality of dimensional reduction in continuumWe demonstrate our point by a study of di�erent approximations to the quantityrelated to the 1-loop free energy of free bosons at high temperatures, entering the 1-loop evaluation of the e�ective potential and the computation of the e�ective scalarmass at high temperatures:I(m;T ) = T 1Xn=�1 Z d3k(2�)3 1k2 +m2 ; (6)where k2 = k2 + (2�nT )2.The high temperature expansion of (6) in continuum theory in the MS scheme reads:I(m;T ) = T 212 � mT4� � m28�2 log(�TT ) + �(3)128�4m4T 2 +O(m6T 4 ); (7)where �T = 4�Te�
 � 7T . The procedure of dimensional reduction takes into accountthe �rst three terms here. Namely, the �rst term changes the zero-temperature massto the e�ective high-temperature mass, the third term �xes the scale at which the 4dcoupling constants should be normalized, and the second term is purely 3-dimensional(it comes from the n = 0 term in the sum). The O(m4) term and the higher-orderterms are omitted in the e�ective 3d theory. They represent the contribution of higherdimensional operators to the e�ective action.By comparison of the second and the fourth terms in the expansion we see that the3d description is accurate within, say, a 1% level, provided that�(3)32�3m3T 3 < 0:01; (8)i.e. m=T < 2:0. This condition is satis�ed for all particles in the broken phase inthe vicinity of the electroweak phase transition, if the Higgs mass is not very small,mH > 30 GeV. In fact, m=T is smaller than 0:5 for any realistic Higgs mass mH > 60GeV. This gives an accuracy better than 0:1%. In other words, the 3d descriptionis a very good approximation to the real 4d high- temperature case, at least fromthe point of view of one-loop computations. The excellent convergence of the hightemperature expansion has been mentioned in many papers on this subject (see, forexample [23]{[25]).Of course, the small coe�cients in front of higher powers of (m=T ), found in one-loop approximation, do not necessarily reappear in 2 or higher loops. The accuracy ofthe dimensional reduction on the 2-loop level certainly deserves a careful investigation,which can be done on a basis of 2-loop computations in refs. [20, 21, 2, 22].6



2.2.2 Finite lattice spacing e�ectsNext we wish to argue that the 4d lattice simulations of the electroweak phase transitioncan provide the same accuracy in the description of the EW phase transition as 3dsimulations, only at the cost of a considerable increase of lattice volume.We start from a simple heuristic estimate. Let us take for simplicity a 4d lattice withequal lattice spacing a in temporal and spatial directions. The typical momentum of theparticle in the plasma is about 3T , and to have an adequate description of that on thelattice we must have a� 1=(3T ). In contrast, in 3d simulations the only requirementis that the lattice spacing should be much smaller than a typical correlation length,a� 1=m, with m being a particle mass. For example, for the theory with Higgs massmH = 80 GeV the ratio of W mass (de�ned as gv(T )=2 and measured on the lattice)to the temperature at the transition point is of the order of m=T � 0:2, so that the 3drequirement is about 3=0:2 = 15 times weaker than that for 4d simulations. Hence, inorder to have the same �nite a and �nite volume e�ects, one should use 153 � 3 � 103larger lattices for 4d simulations.This rough estimate can, in fact, be con�rmed by an analytic study of �nite a e�ectsin the quantity I(m;T ). For simplicity we take a spatially in�nite lattice. Then, in adimensionally reduced theory we haveIdimred(m;T ) = T 212 + TI � m28�2 log(�TT ): (9)The function I, being a 3d tadpole graph, has the following expansion (see AppendixA): I = 14�a[�� (am)� �(am)2 +O(am)3]; (10)with � = 3:17591 and � = 0:15281 9. Apart from counterterms, (9) di�ers from thecontinuum expression by two terms. First, it does not contain the O(m4=T 2) term,dropped by the dimensional reduction procedure. As we argued above, this term isnegligibly small for the realistic case of electroweak theory. Second, it contains termsproportional to a, which vanish in the continuum limit. We denote the magnitude ofthe �nite a correction by p. To have, say, p = 10% (3%), �nite a corrections to the 3dcontribution to I3, the lattice should obey the condition 1=(am) > �=p ' 1:5(5), whichis quite easy to realize in practice.The 4d lattice approximation to (6) on an asymmetric lattice, which has a �nitenumber of steps Nt = (aT )�1 in the temporal direction, isI(m;T;Nt) = T Nt�1Xn=0 Z �=a��=a d3k(2�)3 1m2 + ( 2a)2P sin2(kia2 ) + ( 2a)2 sin2(�nNt ) : (11)The large Nt (small a) expansion of this quantity reads:I4dlatt(m;T;Nt) = 14��1:94695a2 �+ T 212 [1 + f1(Nt)]9Contrary to the 4d case, where �nite a corrections scale like a2, scaling violations start from linearin a terms in 3d. 7



+ T (I3 � �4�a + �am24� ) (12)�m28�2 [log(Nt)� 0:057 + f2(Nt)] + �(3)128�4m4T 2 [1 + f3(Nt)] +O(m6);where the functions f1(Nt); f2(Nt) and f3(Nt) vanish in the continuum limit Nt !1as O(1=N2t ) and can be computed numerically (see Table 1).Nt 2 3 4 5 6 7 8 9 10f1 0.200 0.108 0.056 0.032 0.021 0.015 0.011 0.009 0.007f2 0.336 0.144 0.076 0.047 0.031 0.023 0.018 0.014 0.009Table 1: The values of functions f1 and f2 for di�erent numbers of sites Nt in thetemporal direction.Let us �rst take for simplicity a lattice minimal subtraction scheme in which onlythe terms singular in a are removed by counterterms. The formal advantage of 4d isthat the scaling violation is proportional to a2 � 1N2t , and not to a, as in 3d. So, thefunctions f1 and f2 decrease quite rapidly with increase of Nt. However, the numericalsmallness of the coe�cient � (re
ecting the qualitative discussion of the di�erent scalesabove), together with the smallness of the ratio m=T near the phase transition, makesthe 3d case more advantageous than the 4d one. Indeed, to have the same level papproximation to 4d physics, one should have at leastf1(Nt) < 124�pmT : (13)For example, for p = 10% we have Nt > 5, and for p = 3% Nt > 8. Of course, thisis not too di�cult to achieve with computers available at present. However, at thesame time, this requirement puts a rather strong limitation on the size of the latticein the spatial direction. Indeed, for, say, p = 10% (3%) and m=T ' 0:3 we have forthe correlation lengths 1=(am) ' 16(55). In other words, to achieve in 4d the sameaccuracy of description of the EW phase transition as a 3d dimensionally reducedtheory can provide, one should use about 103 larger 3d volumes. In total, counting thenumber of sites in the 4th direction, the use of 3d theory provides a 3 to 4 orders ofmagnitude gain in computer time10.The way out of this argument is the use of the temperature-dependent subtractionscheme, removing the �nite contributions to I4dlatt(m;T;Nt), proportional to f1 and f2.This requires a careful study of the �nite a behaviour of observables in 4d simulationsat zero and non-zero temperatures11. It is, however, highly non-trivial (but in principlepossible [9]), since 4d theory contains at least three di�erent mass scales (temperature,Debye screening mass, and 3d coupling g2T ).10If the computer time is not a problem, then the 4d simulations with, say, Nt = 8, may besuperior to 3d simulations, provided the 2- and higher-loop dimensional reduction corrections comewith coe�cients so large that these corrections are larger that 4d �nite a e�ects.11We are grateful to I. Montvay for a discussion on this point.8



3 Survey of continuum resultsIt this section we summarize the continuum formulae relating 3d and 4d theories, andpresent a number of 2-loop relations in 3d. The starting point is the 4d Lagrangian ofSU(2) + fundamental doublet Higgs theoryL = 14F a��F a�� + (D��)y(D��)� 12m2�y�+ �(�y�)2: (14)We have thus omitted from the full standard model the U(1) subgroup as well asfermions, which { with some reservation for the top quark { are inessential for thethermal phenomena studied. In fact, fermions can be trivially included in the schemeof dimensional reduction. Their e�ect is to modify expressions relating 3d parameterswith 4d ones, but they do not in any way change the qualitative nature of the e�ective3d theory.The leading principle of our analysis is the replacement of the full 4d theory (14) by ane�ective 3d theory, obtained by integrating over the non-static modes perturbatively.As we discussed in the previous section, this is a very good approximation to theproblem under consideration.Integrating over the non-static modes to 1-loop accuracy in the MS scheme thefollowing e�ective action is obtained:Se�[Aai (x); Aa0(x); �i(x)] = Z d3x�14F aijF aij + 12(DiA0)a(DiA0)a + (Di�)y(Di�) ++12m2DAa0Aa0 + 14�A(Aa0Aa0)2 +m23�y�+ �3(�y�)2 + h3Aa0Aa0�y��: (15)The key property of the theory (15) is that all the couplings �A; �3; h3 and g23 are3d renormalization group invariants (there is no ultraviolet renormalization of them).These couplings are given in terms of the 4d couplings byg23 = g2(�T )T; (16)�3 = T ��(�T ) + 116�2 38g4(�T )�; (17)h3 = 14g23�1 + 116�2�12�(�T ) + 496 g2(�T )� 13g2(�T )��; (18)�A = 17g4(�T )T48�2 ; (19)where the 4d couplings are run to the scale �T by the standard � functions.On the contrary, the 3d mass operators for the Higgs and A0 �elds contain linear andlogarithmic divergences. To renormalize the theory, one adds to eq.(15) the countertermaction �S = � Z d3x��m2�y�+ 12�m2DAa0Aa0�; (20)where �m2 = f1m�lin + f2m�log; �m2D = f1D�lin + f2D�log: (21)9



Here f1m = 94g23 + 6�3; f1D = 5(g23 + �A); (22)and f2m = 8116g43 + 9�3g23 � 12�23; f2D = 5�2A � 20g23�A (23)are exact expressions with no higher-order corrections and �lin and �log are counter-terms depending on the regularization scheme used. The linearly divergent counterterm�lin vanishes in dimensional regularization; on the lattice it behaves like �lin = �=4�a(� = 3:1759114, a is the lattice spacing). The quantity �log is related to the log-arithmically divergent 2-loop sunset diagram (eq.(22) of [2]). In the MS scheme itis �log = 164�2� (24)and on the lattice �log / � 116�2 log(aT ): (25)In the MS scheme the masses are scale-dependent:�3@m23(�3)@�3 = � 116�2f2m; �3@m2D(�3)@�3 = � 116�2f2D; (26)which can be integrated to givem23(�3) = 116�2f2m log �m�3 ; m2D(�3) = 116�2f2D log �D�3 ; (27)where �m and �D are integration constants. The constant �m can be obtained bycomparing the 4d and 3d calculations:m23(�3) = � 316g2(�T ) + 12�(�T ) + g216�2�16796 g2 + 34���T 2�� 12m2(�T ) + 116�2 �f2m�log 3T�3 + c�� = (28)� 316g23T + 12�3T + g2316�2�14996 g23 + 34�3��� 12m2H + 116�2 �f2m�log 3T�3 + c��;where m2H � m2(�T ) and [26]c = [log(8�=9)� 2
E + � 0(2)=�(2)]=2 = �0:348725: (29)For mD one can similarly writem2D(�3) = 56g2(�T )T 2 + 116�2f2D log(3T�3 ) + 116�2 (c1g43 + c2g23�3); (30)but the constants c1; c2 and, hence, �D have so far not been computed.10



In practice, one can writeg(�T ) = 23 ; �3 = g23m2H8m2W ; mW = 80:6GeV h3 = 14g23: (31)The explicit form of the total 2-loop e�ective potential is needed frequently in whatfollows. The tree and 1-loop parts areV0(�) = 12m23(�3)�2 + 14�3�4; (32)V1(�) = � 112� (6m3T + 3m3L +m31 + 3m32) (33)and the 2-loop part is (eq.(33) of [2])V2(�; �3) = 116�2��3g4316 �2�2 �H(m1;mT ;mT )� 12 �H(m1;mT ; 0) + �H(m1;mL;mL)+m21m2T [ �H(m1;mT ; 0)� �H(m1;mT ;mT )]+ m414m4T [ �H(m1; 0; 0) + �H(m1;mT ;mT )� 2 �H(m1;mT ; 0)]� m12mT � m214m2T �� 3�23�2[ �H(m1;m1;m1) + �H(m1;m2;m2)]+2g23m2T�6316 �H(mT ;mT ;mT ) + 316 �H(mT ; 0; 0) � 4116��32g23[(m2T � 4m2L) �H(mL;mL;mT )� 2mTmL �m2L]+4g23m2T + 38g23(2mT +mL)(m1 + 3m2)+154 �Am2L + 34�3(m21 + 2m1m2 + 5m22)�38g23[(m2T � 2m21 � 2m22) �H(m1;m2;mT ) + (m2T � 4m22) �H(m2;m2;mT )+(m21 �m22)2m2T [ �H(m1;m2;mT )� �H(m1;m2; 0)]+(m21 �m22)(m1 �m2)=mT +mT (m1 + 3m2)�m1m2 �m22]�: (34)Here the masses are mT = 12g3�; m2L = m2D + 14g23�2;m21 = m23(�3) + 3�3�2; m22 = m23(�3) + �3�2: (35)11



and the �nite part of the sunset function is�H(m1;m2;m3) = log �3m1 +m2 +m3 + 12 : (36)The coe�cient of 12 log(�3)�2, coming entirely from the H-terms, gives the value off2m=16�2.This potential has been calculated in the Landau gauge. In a general covariantgauge the potential has been computed in [27, 28]. The 4d computation of the hightemperature asymptotics of the potential [20]{[22] leads to the same result as the 3done [2].The 3d scale �3 appearing in (28) and in (34) is arbitrary. We refer here to [2] for adiscussion of the renormalization group improved e�ective potential, which allows oneto �x this scale in a natural way.4 Gauge-invariant order parameters { condensatesAs was argued in ref. [2] a reliable perturbative computation of any physical observablein 3d theory should be done at least on the 2-loop level. The reason for this is the factthat the logarithmic renormalization of masses in 3d starts at the 2-loop level. Theonly quantity known at present for a 3d gauge-Higgs system on 2-loop approximation isthe e�ective potential in Landau gauge [2] or in arbitrary gauge [27, 28]. The e�ectivepotential, is, however, a gauge-dependent quantity, and cannot be immediately usedfor the extraction of gauge-invariant information. In this section, we show how simplemanipulations with the e�ective potential can generate a set of gauge-invariant orderparameters { condensates. Those condensates can be computed with 2-loop accuracywith little extra work and can be easily measured on the lattice.By condensates, in general, we mean vacuum averages of any local composite gaugeinvariant operators, hOi = R D e�S( )O( )R D e�S( ) : (37)Examples are provided by the scalar condensate h�y�i, the \gluon" condensate hF aijF aiji,etc. These composite operators contain the product of �elds at the same point. There-fore, their expectation values are divergent (in�nities cannot be removed by countert-erms renormalizing the masses, couplings and �elds of the underlying theory). So, theirvalue is prescription dependent and cannot be �xed unambiguously.We would like to provide a natural prescription for a number of condensates relatedto the ground state energy. We de�ne its renormalization prescription in the nextsubsection.4.1 Renormalization of vacuum energyThe renormalization of our 3d theory requires the introduction of 2-loop mass countert-erms for m23 and m2D. After that, the computation of any physical amplitude does not12



contain ultraviolet divergences. However, the computation of the value of the groundstate energy de�ned by the functional integrale�V3"vac = Z D e�S( ); (38)with V3 being a spatial volume, does contain ultraviolet divergences. We extend theprescription of the MS scheme (remove poles in �) to the vacuum graphs. Thus, vacuumcounter-terms are V ct2 = � 116�24� [6m2Dg23 + 3m23g23];V ct4 = � 1(4�)44� [e1g63 + e2g43�3 + e3g23�23 + e4�33]; (39)(�A-terms are, for brevity, not included). Since in the MS scheme linearly divergentintegrals are equal to zero, there are no 1- or 3-loop counterterms. After this renor-malization the vacuum energy density "vac is �nite, but �3 dependent. For example,the 2-loop expression for the ground state energy of the unbroken phase found fromVMS(� = 0) in (34) is:V (0) = �hV1(0) + �h2V2(0)= � �h12� [3m3D + 4m33(�3)]+ 3�h216�2 �(2g23 log �32mD + 32g23 + 54�A)m2D + g23mDm3 ++(g23 log �32m3 + 34g23 + 2�3)m23�: (40)Clearly, the �3 dependence here is a re
exion of the arbitrariness in the de�nition of"vac.The relation of the ground state energy to the e�ective potential is obvious. Thelatter is de�ned throughe�V3V (�)�J� = Z D e�S( )�J = e�W (J); (41)with � = W 0(J). The external current J is needed to give the scalar �eld the requiredvalue �. If the external current vanishes, V 0(�) = �J = 0, the system settles in itsphysical ground state and by evaluating eq.(41) we obtain the value of the e�ectivepotential at its minimum, V (v(T )) , V 0(v(T )) = 0. This is precisely the ground stateenergy "vac of the 3d theory de�ned above by (38).4.2 Renormalized condensates in MS schemeNow we are ready to de�ne gauge-invariant condensates. Our 3d theory contains �vedi�erent parameters, g23;m23;m2D; �3 and �A. So, there are �ve special condensates13



that can be computed by a simple di�erentiation of the ground state energy density.Since "vac is �nite, all its derivatives are �nite (but �3-dependent). So, we de�ne therenormalized condensates as corresponding derivatives of "vac. They are related to theunrenormalized condensates as follows:1. Quadratic scalar condensates:h�y�iR = @"vac@m23 = h�y�i � 364�2�g23; (42)12hAa0Aa0iR = @"vac@m2D = 12 hAa0Aa0i � 664�2�g23:2. Quartic scalar condensates:h(�y�)2iR = @"vac@�3 = h(�y�)2i+ @f2m@�3 h�y�i64�2� + @V ct4@�3 ; (43)14h(Aa0Aa0)2iR = @"vac@�A = 14h(Aa0Aa0)2i + @f2D@�D hAa0Aa0i128�2� + @V ct4@�A :3. Gauge condensate:�14hF aijF aijiR = g23 @"vac@g23 = �14hF aijF aiji + g23 @f2m@g23 h�y�i64�2�+g23 @f2D@g23 hAa0Aa0i128�2� + g23 @(V ct2 + V ct4 )@g23 : (44)All renormalized condensates de�ned above are �nite but �3-dependent.For completeness, we also write here the relations between the condensate of thekinetic part of the action with other unrenormalized condensates. These follow fromthe independence of the ground state energy on the normalization of the � and A0�elds in the functional integral (38):h(Di�)y(Di�) + (m23 + �m2)�y�+ 2�3(�y�)2 + h3Aa0Aa0�y�i = const;h(DiAa0)y(DiAa0) + (m2D + �m2)Aa0Aa0 + �A(Aa0Aa0)2 + 2h3Aa0Aa0�y�i = const;(45)which are nothing but Schwinger{Dyson equations. The constants here do not dependon the parameters of the theory.The condensates themselves do not have much physical meaning, just because they(and the ground state energy) are dependent on the normalization point. However,if the system exhibits a �rst-order phase transition, then in the di�erences betweencondensates in di�erent phases the �3 dependence cancels out. An important physi-cal characteristic of the system, namely the latent heat, is related to the jump of therenormalized (or, what is the same, unrenormalized) Higgs scalar condensate. Anotherapplication of condensates is that they can be measured on the lattice with high accu-racy. Below we will provide a relation between condensates on the lattice and in thecontinuum. 14



4.3 The latent heat of the phase transitionThe computation of the latent heat of the �rst-order phase transition is based on threeequations.1. The ground state energy density depends on six dimensionful variables and has thedimensionality GeV3. From here we get[g23 @@g23 + �3 @@�3 + �A @@�A + 2m23 @@m23 + 2m2D @@m2D + �3 @@�3 ]"vac = 3"vac: (46)2. The di�erence between the ground state energies �" of the broken and unbrokenphases is renormalization group invariant (�3-independent). Therefore�3d�"vacd�3 = [�3 @@�3 � f2m16�2 @@m23 � f2D16�2 @@m2D ]�"vac = 0: (47)3. The derivative of �" with respect to the temperature for g; � and mH �xed 12 atthe transition point (where �" = 0) is justT 2d�"vacdT = m2HT�h�y�i: (48)Remembering that, in 4d notation, �"vac = �F=T = ��p(T )=T , this is nothing butthe latent heat L = �[Tp0(T )] of the transition. Here F is the free energy and p isthe pressure of the system. According to (42), the jump of this order parameter doesnot contain any divergences, and, therefore, does not depend on the regularizationscheme. The simplicity of expression (48) could be contrasted with the form of thecorresponding expression in 4d theory [6].Another quantity which may be of interest is the di�erence between the ground stateenergies in the close vicinity of the phase transition. It is given by�"vac = ��13hZ d3xV3 �14F aijF aij � 2(m23 + �m2 + f2m32�2 )�y�� �3(�y�)2�(m2D + �m2D + f2D32�2 )Aa0Aa0 � 14�A(Aa0Aa0)2�i: (49)We stress that all condensates appearing in this expression are unrenormalized, so thatthere is no di�culty in putting it on the lattice.5 Perturbative results for the ground state energyand h�y�iIn this section, we shall compute the ground state energy "vac = V (v(T )), V 0(v(T )) = 0and the scalar condensate h�y�i in 2-loop perturbation theory. The second can be12We neglect here the slow logarithmic variation of all coupling constants with the temperature.15



obtained from the �rst by the use of eq.(42) and the �rst can be obtained from the2-loop e�ective potential (34).In perturbation theory the e�ective potential is derived as an expansion with respectto the Planck constant �h, which serves as a loop counting parameter:V (�) = NXn=0 �hnVn(�): (50)Simultaneously, the equation for the determination of the vacuum expectation valuev(T ) is NXn=0 �hn dVn(�)d� �����=v(T ) = 0: (51)We should now solve v(T ) from (51) and insert in (50). Two di�erent regimes shouldbe distinguished.1. The \classical" regime. In this case, spontaneous symmetry breaking occurs onthe tree level, and the equation dV0(�)=d� = 0 has a non-trivial solution, v2(T ) = �m23�3 .If the expansion parameter � = g23=(�mT ) = 2�qg23�3=(�m23) is small enough, eq. (51)can be solved perturbatively: v(T ) = NXn=0 �hnvn(T ): (52)Inserting this in (50), the ground state energy becomes a power series in �h up to theorder N : "vac = NXn=0 �hnVn(�)j�=v(T ); (53)where all terms containing powers of �h higher than N should be dropped. It is assumedthat Vn(�) are re-expanded in powers of �h. This approximation works provided thatm23 < 0; jm23j � g23�3: (54)2. The Coleman-Weinberg regime. Here spontaneous symmetry breaking occursdue to radiative corrections and the equation dV0(�)=d� = 0 need not have non-trivialsolutions. The conditions (54) are not satis�ed. In this case a perturbative solution ofeq. (51) makes no sense. So, eq. (51) should be solved exactly. We denote the solutionby vN(T ). Again, if the parameter � = g23=(�mT ) = 2g3=(�vN(T )) is small enough, thequantity "vac = NXn=0 �hnVn(vN(T )) (55)is a good approximation to the ground state energy. One usually enters the Coleman-Weinberg regime when the tree scalar mass is small enough and when �3 � g23. Form23 = 0, expression (55) provides an expansion of the vacuum energy with respectto �3=g23; in each order of �3=g23 the summation of all powers of �h is automatically16



performed. Very close to the phase transition the �rst method certainly fails and thesecond method should be used. On the contrary, if condition (54) is satis�ed, then aColeman-Weinberg type of computation of the ground state energy can be performedas well. In 3d, if the e�ective potential is computed up to the terms of order �hN , thenthe di�erence between the two computations is of the order of �h(N+ 12 ). The fractionalpower of �h is due to the contribution of Goldstone bosons to the e�ective potential,which produces infrared-dangerous terms in the second type of computation. Sincefractional powers of �h must be absent, the �rst method of computation should be usedin this regime.Below we shall derive explicit formulas for the ground state energy in the brokenphase in the 2-loop approximation in the classical regime. The Coleman-Weinberg typeof computation does not require any additional analytic work: simply, one numericallyminimizes the 2-loop potential de�ned in eq.(34) and then determines the ground stateenergy at the minimum of the potential. Finally, one can use (42) for the determinationof condensates.5.1 The ground state energy to order �h2Let us compute "vac = V (v(T )) in the classical regime, when spontaneous symmetrybreaking occurs already at tree level,�20 = �m23�3 : (56)It is assumed that �m23 > 0, and su�ciently large. At this point the masses are�m2T = �m23g234�3 ; �m2L = m2D + �m2T ; �m21 = �2m23; �m22 = 0 (57)and the leading approximation to V (v) is:V0(v) = �m434�3 : (58)The corrections to eqs.(56) and (58) can be obtained from the 2-loop result (I.33)for the e�ective potential as follows. The de�nition of v isV 0(v) = 0; V (v) = V0(v) + �hV1(v) + �h2V2(v) +O(�h3); (59)where v2 coincides with �20 only to leading order. To higher orders (note that v2(n) isthe order �hn contribution to v2, not (vn)2)v2 = v2(0) + �hv2(1) + �h2v2(2) +O(�h3): (60)Inserting this in V 0(v2) = 0 (prime means derivative with respect to �2) and expandinggives the equations m23 + �3v2(0) = 0; (61)�3v2(1) + 2V 01 (v2(0)) = 0; (62)�3v2(2) + 2V 001 (v2(0))v2(1)+ 2V 02 (v2(0)) = 0: (63)17



For later use, we tabulate the partial derivatives of V1:@V1@m23 = � �h8� (m1 + 3m2); (64)@V1@�2 = �3�h8��3[m1 +m2 + g234�3 (2mT +mL)]; (65)@2V1@�2@m23 = � 3�h16��3� 1m1 + 1m2�; (66)@2V1@�2@�2 = � 3�h16��23� 3m1 + 1m2 + � g234�3�2� 2mT + 1mL��: (67)From these one �ndsv2(0) = �20 = �m23�3 ; (68)v2(1) = � 2�3V 01(v2(0)) = 34� � �m1 + g234�3 (2 �mT + �mL)�; (69)v2(2) = 4�23V 001 (v2(0))V 01(v2(0))� 2�3V 02(v2(0))= 932�2�3� 3�m1 + 1�m2 + � g234�3�2� 2�mT + 1�mL��[ �m1 + g234�3 (2 �mT + �mL)]� 2�3V 02(v2(0)): (70)We have here explicitly written out the \disconnected" parts that follow from thederivatives of the 1-loop potential. The 2-loop expressions follow automatically fromeq.(34), but are much lengthier. Note that the second derivatives of V1 in (66,67)contain terms � 1=m2, which diverge at the saddle point. Similar terms appear in the�rst derivatives of V2. Evaluating the �rst derivative dV2=d�2 one can show that the1=m2-terms cancel between the 1- and 2-loop parts in eq.(70) before taking the limitm2 ! 0. This cancellation actually takes place only in the Landau gauge [27], but thisis not surprising since v(T ) is not a physical gauge invariant quantity.With this expansion of v2(T ) we can writeV (v(T )) = V0(v2(0) + �hv2(1) + �h2v2(2)) + �hV1(v2(0) + �hv2(1)) + �h2V2(v2(0)) == V0(v2(0)) + �hV1(v2(0)) + �h2fV2(v2(0))� ��13 [V 01(v2(0))]2g= �m43(�3)4�3 � �h12� (6 �m3T + 3 �m3L + �m31) (71)+�h2�V2( �mT ; �mL; �m1;m2 = 0)� 9�364�2� �m1 + g234�3 (2 �mT + �mL)�2�:In other words, the value of V (v) in the loop expansion is given by the value of the2-loop potential for the saddle point masses in eq.(57) corrected to order �h2 by the lastterm in eq.(71). This corresponds to a set of 1-particle reducible diagrams, which areneglected in the computation of the e�ective potential.18



We shall later also need the 3- and 4-loop contributions to V (v(T )). These areV(3)(v(T )) = V3 + (V 02 + 12V 001 v2(1))v2(1); (72)V(4)(v(T )) = V4 + [V 03 + 12V 002 v2(1) + 16V 0001 (v2(1))2]v2(1)� 14�3(v2(2))2;where all the potentials should be evaluated at the saddle point as in (71). Theseequations can be used for an estimate of the higher-order corrections to the e�ectivepotential through the lattice measurements of the scalar condensate.For completeness we also present 2-loop expressions for the unbroken phase. Ifm23 > 0, there is another symmetric phase saddle point at �20 = 0 with the associatedmass values ~mT = 0; ~mL = mD; ~m21 = ~m22 = m23 (73)and a vanishing leading minimum valueV0(0) = 0: (74)At the point (73) higher-order loop expansion will lead to infrared divergences, butto this order one similarly obtains v = O(�h3) = 0 (h�y�i is non-vanishing, see below)and V (0) = �hV1(0) + �h2V2(0) as given by eq.(40). Note the explicit �3-dependencehere. As it should, the di�erence V (v(T ))� V (0) computed from eqs.(71) and (40) isindependent of �3 to this order in �h.5.2 Computation of h�y�i to 2 loopsThe result for h�y�i to 2 loops can now be directly obtained from the expansion (68-70)and the general formula (42). According to (42) we have, in the broken phase (R d3x=V3is implied in the averages),h�y�i = @(V0 + V1 + V2)@m23= 12[v2(0)+ �hv2(1)+ �h2v2(2)] + @V1(v2(0))@m23 + @2V1(v2(0))@m23@�2 �hv2(1) + @V2(v2(0))@m23= h�y�i(0) + �hh�y�i(1) + �h2h�y�i(2); (75)where h�y�i(0) = �m232�3 ; (76)h�y�i(1) = @V1@m23 � @V1�3@�2 = 14� � �m1 + 3g238�3 (2 �mT + �mL)�; (77)h�y�i(2) = 12v2(2) + @2V1(v2(0))@m23@�2 v2(1) + @V2(v2(0))@m2319



= �� 1�3 @2V1@�2@�2 + @2V1@m23@�2��� 2�3 @V1@�2�+ � @V2@m23 � @V2�3@�2�= 9�h264�2�3� 2�m1 + � g234�3�2� 2�mT + 1�mL��[ �m1 + g234�3 (2 �mT + �mL)]�2 @V2@m21 � g234�3� @V2@m2T + @V2@m2L�� 1�3 @V2@�2 : (78)All derivatives here should be evaluated at the saddle point masses in eq.(57); inpractice those of V2 are most conveniently evaluated numerically. The 1-loop expression(77) will be written later in a more general form, appropriate for lattice regularization,by using the tadpole function I(m) introduced in Appendix A. Note that here also polesin m2 are generated by the derivatives dm2=dm23 = 1=2m2 and dm2=d�2 = �3=2m2.Because m22 = m23+ �3�2, these precisely cancel in eq.(78) and leave only the terms inthe last of eqs.(78). As shown in [27] this cancellation takes place for any gauge �xingparameter �, as should for a physical quantity.In the symmetric phase one similarly obtains from eq.(40) that13h�y�isymm = ��hm32� + 3�h216�2�g23 log �32m3 � 14g23 + 2�3 + g23mD2m3 �: (79)In a 3d theory the perturbative computation of h�y�i contains a linear 1-loop andlogarithmic 2-loop divergence and these have been treated above in the continuum MSscheme. Due to their importance for the lattice computation it may be useful to specifytheir origin once more. Their coe�cients can be obtained as follows:h2�y�i = 2dV (v(T );m23)dm23 + h 3X0 �2aidiv= 2dV (v(T );m23)dm23 + 4 Z d3p(2�)3 1p2 +Ap == 2dV (v(T );m23)dm23 + 4 Z d3p(2�)3 1p2 + 3g234 Z d3p(2�)3 1p3 + ::: ; (80)where A = �3g23=16 is the coe�cient of the linear term in the 1-loop Higgs self-energy(��(k) = Ak, [2], eq.(83)). In other words, the linear divergence comes from the simplescalar loop and the logarithmic divergence from the linear term in the scalar self energycaused by the emission and absorption of a gauge particle.The computation of the vacuum expectation value of the composite gauge invariantoperator �y� is related to the e�ective potential for this quantity introduced in [13].We clarify this relation and compute the corresponding e�ective potential to 2 loopsin Appendix B.13We would like to note here that since perturbation theory does not work in the unbroken phasethis expression cannot be used for any comparison with the lattice results.20



5.3 Computation of hAa0Aa0i to 2 loopsIn contrast to the doublet Higgs �eld �, the triplet scalar �eld Aa0 is dynamicallyinessential and can be integrated over [2]. Due to the relatively large value of the massmD, the vev of the triplet scalar �eld is zero. For pure SU(2) gauge theory this hasbeen numerically studied in [29]. Thus the �eld Aa0 feels the phase transition only inthat the �eld � in m2L = m2D + g2�2=4 develops an expectation value v(T ). In analogywith � in the symmetric phase (eq.(79)) in 2-loop perturbation theory one can writefor the �nite parthAa0Aa0i = 2dV (v(T );m2D)dm2D = � 34�mL ++ 316�2�g23�4 log �32mL +mT � 2m2D � 2m2T �mTmL(2mL +mT )mL ++8mT +m1 + 3m2mL �+ 52�A�: (81)The linear and logarithmic divergences arehAa0Aa0idiv = 3 Z d3p(2�)3 1p2 + 3g232 Z d3p(2�)3 1p3 : (82)6 The lattice action and the curves of constantphysics6.1 The lattice actionThe lattice action corresponding to the continuum Lagrangian in eq.(15) has the fol-lowing form: S = �GXx Xi<j(1 � 12TrPij) ++12�GXx Xi [TrA0(x)U�1i (x)A0(x+ i)Ui(x)� TrA20(x)] ++Xx �A2 12TrA20(x) +Xx �A4 (12TrA20(x))2 + (83)+�HXx Xi [12Tr �y(x)�(x)� 12Tr�y(x)Ui(x)�(x+ i)] ++Xx [(1� 2�R � 3�H)12Tr �y(x)�(x) + �R(12Tr�y(x)�(x))2]�12�HXx [12TrA20(x)12Tr�y(x)�(x)]:21



Here Ui(x) and Pij are the standard link and plaquette variables, the scalar �eld � onthe lattice is related to the continuum scalar �eld � through� = V RL; R2L = 2a�H �y� = 12Tr�y�; (84)where a is the lattice spacing, V is a unitary SU(2) matrix, RL is the radial mode ofthe Higgs �eld, and the lattice matrix �eld A0 is given in terms of continuum �eld Aa0as A0 = 12ig3a�aAa0: (85)The main aim of this section is to �nd the relation between the parameters �G, �H,�R; �A2 and �A4 of the lattice action and the parameters g23, �3, m23; �A, m2D of the3d continuum theory. The super-renormalizable character of the 3d theory allows oneto write the relation in a form that is exact in the continuum limit N ! 1; a !0; N=�G !1. The 3d continuum parameters were related to the physical 4d ones inthe previous section.The lattice{continuum relation is established in several steps:1. In subsection 6.2 we formulate the general problem of de�ning the constant physicscurves in the 3d gauge-Higgs system. Then (subsection 6.3) we consider simpli�cationsarising in electroweak theory and show that the problem is reduced to the computa-tion of three pure numbers (�; ��; ~�) { originating from three di�erent classes of 2-loopdiagrams contributing to the Higgs self-energy. In subsections 6.4{6.6 we compute twoof those numbers (�� and ~�) analytically and formulate a way of MC computation ofthe third one (�).2. In subsection 6.7 we work out an exact relationship between the condensates in thelattice regularization scheme and MS scheme.4. Finally, in Section 7 we use the 2-loop continuum computation in Section 5 and therelationship between di�erent renormalization schemes in subsection 6.7 to determinethe constant � by comparison of the lattice data with perturbation theory. This allowsone also to estimate the magnitude of 3-loop corrections to the e�ective potential andthe magnitude of 2-loop �nite a e�ects.6.2 Constant physics curves: general formulation of the prob-lemIn the tree approximation all the �ve lattice coupling constants are given in terms ofcontinuum ones by the following equations, which directly follow from the discretizationprocedure and the form of the continuum Lagrangian:�G = 4g23 1a; (86)�R = 14�3a�2H = �3g23 �2H�G ; (87)�A4 = �Ag23 �G; (88)22



m23jtree = 2(1 � 2�R � 3�H)�Ha2 ; (89)m2Djtree = �2 �A2�Ga2 : (90)The �rst three relations (86,87,88) are not spoiled by the renormalization procedureand are exact in the continuum limit, while (89) and (90) are modi�ed when radiativecorrections are taken into account. As we have discussed in [2], 1-loop and 2-loopcounterterms must be added, so that in the continuum limit a! 0 we have the exactrelations 2(1� 2�R � 3�H)�Ha2 = m23(�3)� f1m �4�a � f2m16�2 log( 6a�3 )� P2m16�2 ; (91)�2 �A2�Ga2 = m2D(�3)� f1D �4�a � f2D16�2 log( 6a�3 )� P2D16�2 ; (92)de�ning the constant physics curves. Here � = 3:17159 (Appendix A) and the coef-�cients fi of the linear 1-loop and logarithmic 2-loop terms were given in the section3. However, one also needs the 2-loop constant terms (when a ! 0) P2m and P2Dand their determination is our main task. Note that the above relations are, in fact,�3-independent, due to the �3-dependence of the mass parameters in the minimal sub-traction scheme.Exactly as f2m and f2D, the constants P2m and P2D are, for dimensional reasons,quadratic polynomials constructed from the coupling constants g23; �3 and �A. Thecoe�cients in the polynomial Pi can be determined by explicit computation of the 2-loop mass renormalization in lattice regularization. There are at most six dimensionlessnumbers (�i) determining P2m:P2m = �gg43 + ���23 + �A�2A + �g�g23�3 + �gAg23�A + �A��3�A: (93)From the structure of the 2-loop scalar mass renormalization graphs, one can see that�A� = �A = 0, so that four numbers should be determined. In the A0 case we have, incomplete analogy:P2D = �gg43 + ���23 + �A�2A + �g�g23�3 + �gAg23�A + �A��3�A: (94)For the same reasons as in the scalar doublet case we have �A� = �� = 0. So, thegeneral analysis of this 3d theory requires a knowledge of eight pure numbers which�x the relation between the lattice renormalization and MS schemes. To �nd them,one should compute the renormalization of the Higgs and A0 masses on the 2-looplevel in MS and the lattice regularization schemes, and compare the results. Once theyare known, there is a one-to-one correspondence between the lattice couplings andcontinuum parameters which allows one to relate the results of lattice simulations tothe 3d e�ective theory. Then, to relate 3d and 4d high- temperature physics one shoulduse (28) and (30). The two so far unknown constants in (30) are to be computed bycomparison of continuum 3d 2-loop renormalization of the Debye screening mass withcorresponding 4d computations. To summarize, we have 10 numbers to be determinedto relate 3d lattice simulations to 4d high temperature theory.23



6.3 Simpli�cations for EW theoryIn the context of the EW transition the problem can be simpli�ed, with a good accu-racy, by making use of the fact that the coupling constant �A = 17g248�2 g23 is numericallyvery small and that there is no g43-term in f2D. This allows one to use a formalexpansion with respect to the 4d coupling constant g, assuming for power countingthat � � g2 and keeping at most the terms � g4 in the previous expressions. Inthis approximation14f2D = 0, while the polynomials P2m and P2D are de�ned by �veconstants �g; �g�; �� and �g; �g�. In more detail, we shall parametrizeP2m = 8116g43� + 9�3g23�� � 12�23~� + f2mc; (95)where c is the constant de�ned in eq.(29). This will cancel when m23(�3) is related to4d physics.Another simpli�cation takes place when we notice that the mass of the A0 �eld isparametrically and numerically larger than that of the vector boson and scalar �eldnear the phase transition in the broken phase, at least for a su�ciently heavy Higgsboson [2]. In addition, the A0 mass in the unbroken phase is parametrically larger thanthe typical 3d mass scale g23. So, in principle the A0 �eld can be integrated out anda theory without the A0 �eld with modi�ed coupling constants can be formulated [2].From eqs.(I.51,I.52,I.53) one can see that the uncertainty of the order of g4 in the Debyemass gives an order g6 uncertainty in the gauge and scalar self-coupling constants andan O(g5) uncertainty in the Higgs mass. These are higher-order terms according to ourconvention. Therefore, we take P2D = 0 and omit the O(g4) terms from eq.(30).Note that the formal suppression of the higher-order terms does not necessarily implynumerical suppression. We consider the systematic uncertainties associated with theignorance of those terms below.To summarize, the approximate constant physics curves for the electroweak theoryare given by eqs.(91,92) withf2D = P2D = �A = �gA = �A� = 0 (96)and P2m given by eq.(95).In spite of all these simpli�cations we still have to compute three numbers, �; �� and~�. In the next subsection and Appendix A we carry out an analytic computation of theparameters ~� and ��. The one remaining parameter will be determined by a combinationof analytical and Monte Carlo methods.The previous discussion referred entirely to the 3d e�ective theory. To have anexplicit relation between the temperature and lattice parameters, we introduce intoeq.(91) the explicit relations between the parameters of the 4d and 3d theories in14Formally, f2D is multiplied by log 2aT = log g2�G2 , which is singular in the continuum limit. How-ever, in real lattice simulations with �G < 40, the value of this log never exceeds 2, and this term maybe neglected. We will estimate the possible in
uence of this term on the results below.24



eqs.(28). Using the parametrization (95) the constant physics curve becomesm2H4T 2 = 12
 + 1(Ta)2�3� 1�H + 2�R�H � Ta f1m8��+(Ta)2 f2m32�2 log Ta2 + (Ta)2f2m � cP2m32�2 �; (97)where 
 = 316g2 + 12� + g216�2�14996 g2 + 34��: (98)In a more explicit form this ism2H4T 2 = �g2�G4 �2�3� 1�H + m2H4m2W �H�G � 98��G  1 + m2H3m2W !� ��12� 94��G�2��1 + 2m2H9m2W � m4H27m4W � log g2�G2 + � + 2m2H9m2W �� � m4H27m4W ~���+g22 � 316 + m2H16m2W + g216�2�14996 + 3m2H32m2W ��: (99)It is illuminating to de�ne from here �H for large �G. One �nds that�H(T ) = �H(T =1) + � 2mH3g2�GT �2 +O(��3G ); (100)where �H(T =1) = 13 + 1�G � �8��1 + m2H3m2W �� m2H108m2W �� 19�2G � 8g4
 � 13(A� �=12)(A � �=6) �B�+O(��3G ); (101)where the abbreviations are: � = m2H=m2W , A = 9�(1 + �=3)=8� and B = secondline of eq.(99) without sign and the factor 1=�2G. One sees that the T -dependence of�H is very simple and that the interval between �H = 1=3 and �H = �H(T = 1) isunphysical.The constants �, �� and ~� can be found by computing the 2-loop Higgs mass renor-malization in the lattice scheme. Instead of considering only this, we prefer to work inan equivalent language, namely with the e�ective potential. This will allow us to getsimultaneously a number of results concerning the values of di�erent condensates inthe ground state. To make the method clear we shall �rst consider the simplest case,the computation of ~�.For those who are not interested in details of computations we give the result below:� = 2:18(6); �� = 1:01; ~� = 0:44; (102)where only MC statistical errors in determination of � are shown.25



In [4] some combinations of these numbers, relevant for the study of mH = 80GeV Higgs boson were presented. At that time the quantity �� was computed by MCmethods, rather than analytically. Due to a mistake in the computation of parameter~�, made in [4], the numbers in [4] must be corrected as follows: in eq.(11) of [4] � = 2:0instead of 1:35, and in eq.(13) �� = 0:66 instead of �4:70. This change slightly a�ectsthe extraction of the critical temperature from the lattice data, but does not a�ectqualitative results and conclusions of [4], see [3].6.4 The 2-loop lattice e�ective potential in scalar theory:computation of ~�The constant ~� multiplies the scalar coupling constant. Therefore, it can be computedin pure scalar theory with SU(2) symmetry. To be more general we take the SO(N)scalar theory with the scalar �eld in a fundamental representation, considered in Ap-pendix B.1 of ref. [2] (the case we are interested in corresponds to N = 4). Since theperturbative computations in scalar �eld theory on the lattice are not so complicatedas in gauge theories, the 2-loop lattice e�ective potential accounting for �nite size and�nite a e�ects can be quite easily computed.The continuum Lagrangian is (in this subsection, �3 ! �;m3 ! m)L = 12(@i�a)2 + 12m2�2a + 14�(�2a)2; (103)and the 2-loop e�ective potential for the scalar �eld �0 in the MS scheme is:VMS(�0) = 12m2(�)�20 + 14��40 �� 112� [m31 + (N � 1)m32] + (104)+ �64�2 [3m21 + 2(N � 1)m1m2 + (N2 � 1)m22]��3 �216�2�log �3m1 + N � 13 log �m1 + 2m2 + N + 26 ��20;where m21 = m2(�) + 3��20, m22 = m2(�) + ��20 and�@m2(�)@� = � f2m16�2 ; f2m = �2(N + 2)�2: (105)In order to �nd the relation between the MS and the lattice regularization schemes,we have to perform the corresponding computation on the lattice. We take the latticeLagrangian in the form LL = 12(�i�a)2 + 12m2B�2a + 14�(�2a)2; (106)26



where �i is a lattice di�erence in the i-th direction and mB is the bare mass. Thenthe e�ective potential is given by (�h is a loop counting parameter)VL = Vtree + �hV1-loop+ �h2V2-loop (107)with V1-loop = J(m1L) + (N � 1)J(m2L); (108)V2-loop = �4 [3I(m1L)2 + 2(N � 1)I(m1L)I(m2L) + (N2 � 1)I(m2L)2]�3�2[HL(m1L;m1L;m1L) + N � 13 HL(m1L;m2L;m2L)]�20; (109)where m21L = m2B + 3��20, m22L = m2B + ��20, and the functions I; J and HL are thelattice analogues of the continuum tadpole, 1-loop energy and sunset diagram functions,de�ned in Appendix A. For small am these functions have the following expansion inpowers of the lattice spacing a:I(m) = 14�a [�� (am)� �(am)2 +O((am)3)]; (110)J(m) = 14�a3 [const + 12�(am)2 � 13(am)3 � 14�(am)4 +O((am)5)]; (111)HL(m1L;m2L;m3L) = 116�2�log 6a(m1L +m2L +m3L) + 12 + ��� H(m1L;m2L;m3L) + 116�2�log 6a� + ��: (112)where the numbers � and � were determined numerically, � = 0:15281; � = 0:09.Expanding for small a one obtainsVL = 12m2B�20 + 14��40 � �ha�16� [m41L + (N � 1)m42L]+��h �8�a � �h2���(N + 2)32�2 �[m21L + (N � 1)m22L]� �h12� [m31L + (N � 1)m32L]� �h2��(N + 2)32�2a [m1L + (N � 1)m2L]+�h2 �64�2 [3m21L + 2(N � 1)m1Lm2L + (N2 � 1)m22L]� 3�216�2 [HL(m1L;m1L;m1L) + N � 13 HL(m1L;m2L;m2L)]�20: (113)With the choice of the following relation between the lattice and continuum massesm2B = m2(�) � �h�(N + 2) �4�a + �h2�2(N + 2)8�2 �log 6a� + ��: (114)27



we get VL = VMS + �hN�8�am2: (115)Note, in particular, thatm31L + �h3�(N + 2)8�a m1L = �m21L + �h��(N + 2)4�a �3=2 +O(�h2) = m31 +O(�h2); (116)that in 2-loop terms m1L and m1 are equivalent and also that the term � am41L !constant when a! 0. Of course, m2B is �-independent. In terms of the parametrizationin eq.(95) we have P2m = f2m(~� + c); ~� = � � c = 0:44: (117)This completes an estimate of ~�.6.5 The e�ective potential in MS and lattice regularizationschemesSince the lattice regularization provides nothing but another subtraction scheme inperturbation theory, and since the only divergences of the 3d theory are those relatedto mass and vacuum energy renormalization, the exact lattice e�ective potential candi�er from the exact MS continuum one by only two types of terms. The �rst one,multiplying �2=2, is associated with the Higgs mass renormalization, and knowingit would give us the unknown constants in P2m. The second is a �-independent piececonnected with the renormalization of the ground state energy. Just by power counting,it comes from diagrams up to 4-loop order. It is irrelevant for the study of the phasetransitions but will be related to the di�erent condensates introduced in Section 4.Generalizing the result for the scalar theory derived above, the a ! 0 limit of thelattice e�ective potential is thusVL(�) = VMS(�) + f1m �4�a 12�2+ 116�2 [f2m(log 6a� + c) + 8116g43� + 9�3g23�� � 12�23~�]12�2+V vacL : (118)In section 4 we have already speci�ed the renormalization of the vacuum energy orthe convention for the value of VMS(� = 0). This is a nonphysical divergent quantityand its value could thus be �xed at will. Now when it is �xed, any additional latticee�ect is contained in V vacL .The general form of V vacL to di�erent orders in the loop expansion can be �xed asfollows. The 1-loop contribution to it, V vac1L , can be found from the 1-loop latticee�ective potential, which as a direct generalization of eq.(108) or of eq.(33) isV L1-loop = 6J(mT ) + 3J(mL) + J(m1) + 3J(m2); (119)28



where the particle masses are given by eqs.(35). To this order the lattice bare massm2B and m23 are equivalent. Including the m2=a-term in the expansion of J(m) one hasV vac1L = �2�am23 + 3�8�am2D: (120)The 1-loop term comes just from a bare loop and no coupling constants enter. To 2loops, �rst powers of g23 and �3 enter and the structure of the 2-loop constant term isV vac2L = 116�2 [m2D(a1g23 + a2�3) +m23(a3g23 + a4�3)]: (121)From the consideration of possible 2-loop diagrams, a2 = 0. Similarly, from the compu-tation of the previous section we �nd directly that a4 = 0 (in scalar theory the 2-looplattice potential for a ! 0 vanishes when � = 0, see (115)). The dependence of a1and a3 on the renormalization scale can be established from the obvious fact that thelattice e�ective potential or VMS(� = 0) + V vac2 must be �3-independent. From theexplicit expression for VMS(� = 0) in eq.(40) we get in the a! 0 limita1 / �6 log(a�); a3 / �3 log(a�): (122)However, the real task is to compute the constant terms here, which will give ��.The 3- and 4-loop ground state contributions are, analogously,V vac3 = 1(4�)3a[d1g43 + d2g23�3 + d3�23]V vac4 = � 1(4�)4 log(a�)[e1g63 + e2g43�3 + e3g23�23 + e3�33]; (123)where di and ei are pure numbers (we omitted for simplicity the contributions propor-tional to �A). Since there is (for a! 0) nothing to compensate for the dimensionalitiesof higher powers of coupling constants, there are no higher-loop contributions to Vvac.6.6 The constants a3; a1 and ��The constants a3 and a1 can be found from the computation of the vacuum energy 2-loop diagrams (Fig. 1) in a theory with unbroken symmetry. This is equal to Vvac. Theconstant �� can be found from the 2-loop mass operator of the Higgs �eld containing theproduct of scalar and gauge coupling constants. In the Landau gauge the correspondinggraphs are shown in Fig. 2. We denote this contribution to the mass operator as ��g(p),where p is the momentum. It is easy to see that��g(0) = 3�3 @Vvac@m2B : (124)From here we get a relation between a3 and ��,a3 = 3[log( 6a�) + �� + c]: (125)29



The constant a1 is proportional to a3 with a simple symmetry coe�cient, i.e. a1 = 2a3.So, all three constants are related to one-another. We choose to compute the gaugeinvariant quantity Vvac. This can be done in the unbroken phase, since this quantity isby de�nition �-independent. The lattice gauge-Higgs vertices are shown in Fig. 3.The contributions of the two Feynman diagrams areISV = 32g23 Z dp dq 1q̂2(p̂2 +m2)�Xi cos(api)� (1� �) 1̂q2 Xi q̂2i cos(api)� (126)and ISSV = �34g23 Z dp dq 1(p̂2 +m2)(k̂2 +m2)q̂2 Xij 4a2 sin a2(2pi + qi) sin a2(2pj + qj)��ij � 1 � �q̂2 4a2 sin a2qi sin a2qj�; (127)where Z dp = Z �=a��=a d3p(2�)3 ; q̂i = 2a sin a2qi; q̂2 =Xi q̂2i ; k̂i = p̂i + q̂i (128)and � is the gauge-�xing parameter. The way to handle the trigonometric factors inthe numerator is to separate from them terms that also appear in the denominator.Additional lattice corrections then also appear. Thus, for example,Xi cos api = 3� 12a2(p̂2 +m2) + 12a2m2; (129)Xi q̂2i cos api = q̂2 � 12a2Xi q̂2i p̂2i ; (130)and, putting for brevity a = 2,Xi sin2(2pi + qi) =Xi [2 sin2 pi + 2 sin2(pi + qi)� sin2 qi � 4 sin2 pi sin2(pi + qi)]= 2(p̂2 +m2) + 2(k̂2 +m2)� q̂2 � 4m2 � 4Xi sin2 pi sin2(pi + qi); (131)Xij sin(2pi + qi) sin(2pj + qj) sin qi sin qj=Xij [sin2(pi + qi) � sin2 pi][sin2(pj + qj)� sin2 pj ]; (132)Xi [sin2(pi + qi)� sin2 pi]=Xi [sin2 qi + 2 sin pi sin qi(1� 2 sin2(12pi + 12qi))]: (133)30



With these formulas and symmetries of the integrand one can �rstly show that theterm multiplying � in ISV + ISSV vanishes: this checks the gauge independence of theresult. In terms of the lattice integral I(m) one then obtainsISV = 32g23I(0)[3I(m)� 12a + 12(am)2I(m)]: (134)In the MS scheme this vanishes since then I(0) = 0. For the SSV diagram one hasISSV = �34g23�4I(0)I(m)� I2(m)� 4m2HL(m;m; 0)�a2 Z dp dq Pi p̂2i k̂2i(p̂2 +m2)(k̂2 +m2)q̂2�; (135)where HL is the lattice sunset function. The problem here is the last term; we �ndnumerically, by expanding for smallm, that it contains the term�4m2��=16�2, � = 1:94(see Appendix A.2). Thus the total contribution to Vvac isISV + ISSV = 3g23[HL(m;m; 0)m2 + 12I(0)I(m) + 14I2(m)� � m2 + 14(am)2I(0)I(m)]:(136)In the MS scheme this reproduces the g23m23 term in eq.(40). Now the additional termslead to the �nal result a3 = 3[log( 6a�) + � + 14�2 � �]: (137)This gives �� = 1:01.The most di�cult task is the determination of the constant �. Its computation withlattice perturbation theory needs quite complicated 3- and 4- gluon vertices. We do notattempt to make the corresponding computation. Instead, we determine this constantwith su�cient accuracy in MC simulations. The idea of that computation is simple.One should pick up some quantity which can be perturbatively computed (at least to2-loop accuracy) and compare it with a result of Monte Carlo simulations. We choosethe Higgs scalar condensate, de�ned below on the lattice, for these purposes. Its 2-loopcontinuum computation follows directly from the e�ective potential, while it can bedetermined by MC simulations with su�ciently high accuracy.6.7 The quadratic condensates on the latticeAny condensate de�ned in the MS scheme has its analogue on the lattice. The exactrelationship between the lattice and MS condensates follows from the results of thisand previous sections. We will give an explicit form for the quadratic scalar condensateonly, the relation between higher condensates requires computation of the ultravioletdivergent vacuum graphs in the lattice regularization scheme on the 3- and 4-loop levels(i.e. a computation of the coe�cients di and ei in eq.(123)). Using the exact relationbetween the lattice and continuum e�ective potential we get for the scalar condensate:h�y�ilatt = �2�a + 316�2 [g23(log 6a� + �� + c)] + h�y�iR; (138)31



or, in terms of the radial mode of the lattice scalar �eld:�HhR2Li = 8g23�G h�y�iR + �� + 32�2�G�log 3g23�G2�3 + �� + c�: (139)Knowing the e�ective potential, one also can obtain a width of distribution of the orderparameter R2 on �nite lattices. This point is discussed in Appendix C.For the A0 condensate we have, in complete analogy:hAa0Aa0ilatt = 3�4�a + 34�2 [g23(log 6a� + �� + c)] + hAa0Aa0iR; (140)or, in terms of the lattice notationsh12TrA20i = 8�2Gg23 12 hAa0A20iR + 3�G �4� + 3�2�2G�log 3g23�G2�3 + �� + c�: (141)Of course, the lattice condensates are �3-independent, but divergent in the continuumlimit a!1.We have now de�ned the relation between h�y�i in the continuum and on the latticeand computed it to 2 loops in the continuum. The comparison of the continuumcomputation with MC simulations will allow us to determine completely the constantphysics curve. In fact, this comparison will provide information on the magnitude ofhigher order e�ects (3 loops, etc.) as well as on the magnitude of 2-loop �nite scalingcorrections (see below).7 Monte Carlo determination of the constant physicscurvesNow we are ready for a Monte Carlo determination of the parameter � { the only oneleft in the relation of the lattice regularization scheme to the continuum one.Consider the theoretical prediction (139) for hR2Li. This relation is exact in thecontinuum limit. In real MC simulations, one has a �nite volume together with a �nitelattice spacing a. So, there are �nite size as well as �nite a corrections to (139). Finitesize corrections are easy to deal with, because in the broken phase with a non-zeromass gap m �nite size corrections die exponentially with lattice size, � exp(�mN).Hence, for any �xed �G one can choose a volume large enough so that the value of hR2Liis volume independent. In other words, MC simulations can always be done in such away that �nite size corrections are not essential, and for �G < 40 the necessary volumeis not very large. For the discussion of the probability distribution for the quantityh�y�i in the �nite volume, see Appendix C.The �nite a corrections are power-like and, therefore, more important. A way toimprove the situation is to use the analytical lattice 1-loop expression for the averageh�y�i, generalizing eq.(77):h�y�iL(1) = �4�a � I(N;m1) + 3g238�3 �3�a4� � 2I(N;mT )� I(N;mL)�: (142)32



Then the unknown �nite a e�ects appear on the 2-loop level only. With the use ofeq.(142) the theoretical prediction for h�y�i ish�y�i = �m232�3 + h�y�iL(1) + h�y�i(2) + �h�y�i; (143)where �h�y�i represents the value of the unknown higher order continuum contribu-tions.Let us analyse in more detail the behaviour of the function � � �G�H�R2 =8=g23 ��h�y�i, where �R2 is the di�erence between the MC and the analytical results(143) (we take �H corresponding to a \classical" regime, where spontaneous symmetrybreaking appears on the tree level). There are three mass scales in our theory in thebroken phase. Two of them (mT and m1) are related to each other through �mT= �m1 =mW=mH. The third one is the Debye screening mass mD. The general structure of �is: � = f(amT ; amD) + (g23a) ( g23�mT ; amT ; amD); (144)where f(amT ; amD) represents the 2-loop �nite a e�ects and  the 3- and higher-loop�nite a e�ects. Here � = g23=(�mT ) is the expansion parameter of the 3d theory. The�nite scaling behaviour of the function f is quite complicated due to the presence oftwo di�erent mass scales, mT and mD, which have di�erent dependence on the scalarmass m3. We notice, however, that if the vev of the Higgs �eld is large enough, thenmT ' mD, and the function f essentially depends on one variable only. In the followingwe used the constraint v(T )=T > 3:6, which ensures that mT ' mD with an accuracyof � 10%. In fact, this condition, being a bit arbitrary, has a weak in
uence on theparameter � extracted from MC simulations. A further simpli�cation comes aboutwhen we notice that for these values of v=T the loop expansion parameter is quitesmall, � � 0:1, and we neglect the 3- and higher-loop �nite a e�ects.In general, there are three possibilities:(i) The lattice spacing is so small that �nite a e�ects are not essential. Then the dif-ference between the lattice result and the 2-loop expression is related to the amplitudeof the higher-order corrections to the continuum scalar condensate,�2 = � 8g23 �h�y�i; (145)so that the function �2 depends on the variable g23=mT = 2gT=� only. It must go tozero for gT=� ! 0. The value of � can be found from this requirement. This type ofbehaviour is expected for a su�ciently small parameter amT , measuring the magnitudeof �nite a e�ects.(ii) Higher-order corrections are so small that their e�ects on the scalar condensateare negligible. Then the function �2 depends on the variable amT only and must goto 0 when amT=2 = �=(gT�G) ! 0. The value of � follows from this requirement.One expects to enter this regime when the expansion parameter � = g23=(�mT ) is smallenough. 33



(iii) In the most general case one can neglect neither higher- order nor �nite a correc-tions. Then the function �2 depends essentially on two variables, amT and g23=mT .We shall study the most general case. So, we need some expression for the �nite ae�ects described by f(amT ) and an ansatz for higher-order corrections to the scalarcondensate. The function f(x) can be expanded in a power series in x, starting with alinear term: f(x) = Ax+Bx2 + :::: (146)The linear term appears in the computation of the sunset diagram and the �gure-of-eight diagram on the lattice (see Appendix A). Moreover, from a computation of the�gure-of-eight graph we know that the (am)2 corrections come with a large coe�cient,of the order of the coe�cient in front of am. Therefore, in the analysis of the 2-loop�nite a e�ects it may not be su�cient to consider the linear term only. So, we willkeep two terms in the expansion of f(x).Simultaneously, we will use the following expression for the function �h�y�i account-ing for the 3- and 4- loop contributions:�h�y�i = � g238�3 g43(4�)3mT ( ~� + ~
 g234�mT ); (147)where ~� and ~
 are some unknown parameters.To summarize, the \theoretical" prediction for hR2Li contains �ve numbers (�, A;B,and ~� and ~
) which we want to determine by comparing the prediction with latticeMC data.The parameters of the lattice action (83) are �xed as follows. We choose �G =12; 20; 24; 32; 40, thus �xing a (since g = 2=3) and mH = 80 GeV �xing �. The A0couplings are �xed using eqs.(88,90) and eq.(92) with f2D = P2D = 0. The systemthen is simulated for various values of �H (�R is �xed by eq.(87)) for lattice sizesN = 12; 16; 24; 32; 40; 48. An example of distributions in R2L for �G = 12, mH = 80GeV and N = 24 is shown in Fig. 4. They show a single peak deep in the brokenphase, which develops into a 2-peak structure at the critical value �Hc. For each peakthe value of hR2Li with error is computed.In Fig. 5 we present � as a function of �=(gT�G) = amT=2 for the best �t set ofparameters for the Higgs mass mH = 80 GeV. The e�ect of variation of the di�erentparameters of the �t is roughly as follows: the change of ~� and ~
 changes the deviationof the points corresponding to di�erent �G from the single curve, parameters A and B�x the form of that curve, while the change in � moves the curve up or down. The�tted parameters are:� = 2:18(6); A = 5:09(25); B = �3:40(23); ~� = �162(22); (148)the parameter ~
 characterizing the 4-loop contribution to the e�ective potential cannotbe determined to any good accuracy by this �t; the numbers given above are stablewith respect to variation of ~
 within the limits �700 < ~
 < 700. The quality of the �tis quite good, �2 = 38:9=40. In the computation of the continuum scalar condensate34



we took �3 = 1:6mT , the value for which 2-loop corrections to the e�ective potentialare minimized in the vicinity of the minimum.The coe�cient � must be independent of the Higgs mass. To check this, we performedanalogous simulations for a di�erent Higgs mass, mH = 160 GeV, with the followingresult (�G = 20; 32):� = 2:44(29); A = 0:86(30); B = 0:67(19); ~� = �317(84); (149)with �2 = 11=9. Again, the parameter ~
 remains undetermined. One can see that thevalues of all the parameters besides � changed a lot, while � remains constant withinerror bars. The value of �3, minimizing the 2-loop contribution for this value of theHiggs mass, is �3 = 0:39mT .To check the stability of the result with respect to the constraint v=T > 3:6 we madea corresponding �t including the simulations with v=T ' 1. As expected, the quality ofthe �t is worse than previously15 (the function f for small v=T depends essentially ontwo variables rather than one), but the �t parameters are consistent with the numbersgiven above, i.e.� = 2:17(4); A = 5:10(18); B = �3:43(18); ~� = �151(12); ~
 = �98(83):(150)In this case the parameter ~
 is also determined.It is instructive to compare the �nite scaling contributions to �, which are deter-mined by this �t through the coe�cients A and B with a typical 2-loop contribution� f2m16�2 4�3g23 � 1 for mH = 80 GeV. These corrections are of the order of the 2-loopcontinuum contribution already at amT � 0:5.The knowledge of the parameter ~� allows one to get an idea of the magnitude ofthe 3-loop corrections to the e�ective potential, at least at su�ciently large �, so thatmT � mD. We parametrize the 3-loop corrections in this region asV3 = �(4�)3g43mT + V sing3 ; (151)where V sing3 is the piece of the 3-loop potential, which is singular in the limit m2 ! 0.It can be found from the equations of subsection 6.1, taking into account the conditionthat the O(�h3) contribution to the ground state is �nite. We get:V sing3 = � 27128m2 g43(4�)3 (2mT +mL + 4�3g23 m1)2: (152)Now, to relate � and ~� we use the relation of the 3-loop contribution to the scalarcondensate h�y�i through the 3-loop e�ective potential given in eq.(72). The di�erencebetween � and ~� appears from the existence of simply connected diagrams contributingto the condensate. We present here only the numerical result of this computation:~� ' � � 113: (153)15The �2 for this �t is 67=54 d.o.f, which gives a con�dence level of 0.11.35



This gives for the 3-loop contribution � = �49(22). This number is quite reasonableand agrees with the expectation that the true loop expansion parameter is about g23�mT[2].We conclude this subsection by an estimate of the systematic uncertainty in thedetermination of � due to the poor knowledge of the 2-loop corrections to the Debyescreening mass16. From eq.(I.53) the change of the e�ective scalar mass m23 due to thechange of the Debye mass mD and parameter � is�m23 = � g4316�2 8116�� � 3g23�m2D32�mD : (154)Using eq.(92) the variation of the Debye mass is�m2D = � g4316�2 (�g + �3g23 �g�): (155)Therefore, �� = 154� g23mD (�g + �3g23 �g�): (156)So, for j�g + �3g23 �g�j < 14 the systematic uncertainty in � is the same as the statisticalerror.8 The theory with the A0 �eld integrated outIn the main part of the paper we considered the 3d theory derived by dimensionalreduction from the full 4d high-temperature one. In addition to the 3d Higgs �eld andgauge �eld it contains a triplet of scalar �elds A0. The mass of this �eld � gT is largerthan the typical 3d scale � g2T , so that this �eld can be integrated out perturbatively.This has been done in ref.[2]. The result of this integration is a 3d gauge-Higgs systemwith e�ective parameters related to that of the original 3d theory, containing A0. Werefer here to the relations (I.51,I.52,I.53) of [2].In this section, we establish the constant physics curves for a corresponding 3d latticegauge-Higgs system, i.e. we will relate it to the original 4d high-temperature one.The lattice action is given by (83), where all terms containing A0 are omitted. Thecontinuum action is given by (I.51). The connection between the lattice couplings �G,�R and the continuum parameters �g32 and ��3 is�G = 4�g23 1a; (157)�R = 14��3a�2H = ��3�g23 �2H�G : (158)16There are no sizeable systematic uncertainties associated with the �nal volume e�ects, since inall cases simulations were done in such a volume that the �nal volume shift of hR2Li was smaller thanthe statistical error. 36



In analogy with eq.(97) we write:m2H4T 2 = 12
0 + 1(Ta)2�3� 1�H + 2�R�H � Taf01m8� �+(Ta)2 f02m32�2 log Ta2 + (Ta)2f02m � cP 02m32�2 �; (159)where 
0 = 
 � 3g2mD16�T ;f01m = 32�g23 + ��3; (160)f02m = 5116 �g43 + 9��3�g23 � 12��23;P 02m = 5116�g43�0 + 9��3�g23�� � 12��23~� + f02mc:Here the parameters �� and ~� are the same as in the theory with the A0 �eld, but �0is di�erent from �. The value of �0 can be de�ned in MC simulations in precisely theway we found � in the previous section. We get:�0 = 1:62(7); A = 2:62(14); B = �2:05(13); ~� = �67(20); (161)The �t (with �2 = 24=25 d.o.f.) is shown on Fig. 6. We took �3 = 2:37mT forthese computations [2]. The parameter ~
 remains undetermined, as in the previouscases. Now we can, with the use of eqs. (151,152), estimate the amplitude of the3-loop corrections to the e�ective potential in this theory. In complete analogy withthe previous discussion we obtain ~� = � � 52 (162)which gives � = �15(20). The error here can certainly be decreased by the increasingstatistics.In fact, the relation between � and �0 can be found analytically. To this end wecomputed the A0 contribution to the e�ective potential in lattice perturbation theory.The corresponding diagrams are shown in Fig. 7. The di�erence between the MS A02-loop contribution and the lattice one is found to be12 g4316�2 3016[log( 6a�3 ) + 85(�24 � �� � + 58�)]+ g2316�26m2D[log( 6a�3 ) + �24 � � + �]; (163)where the number � is related to a 2-loop integral de�ned in Appendix A and computedto be � = �0:314. This relation, together with (I.53), gives8116� = 5116�0 + 3(�24 � �� �) + 158 (log 3T2mD + 310 + �): (164)37



This establishes the required connection. With the parameter �0 determined above wecan derive an independent estimate of �:� = 2:03(5): (165)This value is about 2 standard deviations below that de�ned in eq.(148). The di�erencebetween the two numbers may have an only statistical origin. Also, it may come fromthe systematic uncertainties associated with the A0 �eld (see the discussion at the endof the previous section). In particular, if �g + �3g23 �g� � 15, the discrepancy disappears.In any case, the 2� uncertainty in the parameter � is 0:12, which gives already 0:3%accuracy in the determination of the temperature through the lattice parameters. Inabsolute units, this means �T ' 0:5 GeV in the vicinity of the phase transition formH = 80 GeV.We conclude this section by noting that the 2-loop computations of the gauge in-variant condensates in this theory can be extracted from sections 5 and 6 of this paperby simply dropping the A0 contribution.9 ConclusionThis paper is a quite technical (but absolutely necessary) step in the study of theelectroweak phase transition with the use of the lattice MC methods in the frameworkof 3d e�ective theory. It provides a bridge between the lattice and continuum in termsof the constant physics curves. These curves are parametrized by 3 pure numbers(�; �� and ~� and are exact in the continuum limit. In addition, we found a number ofrelationships, which are exact in the continuum limit, between lattice and continuumgauge-invariant observables { condensates. The condensates were computed on the2-loop level. This gives a possibility to study the convergence of perturbation theoryin the broken phase in the vicinity of the electroweak phase transition.The authors thank I. Montvay for many helpful discussions on dimensional reductionand on di�erent aspects of lattice perturbation theory. K.F. is partially supported by aCEC program (CHRX - CT93 - 0319), K.R. is supported by United States Departmentof Energy grant DE-FG02-91ER40661.A Some 1- and 2-loop computations on the latticeIn this appendix we derive the expressions for the 1-loop tadpole graph and for anumber of 2-loop graphs on the lattice.A.1 1-loop graphsAbbreviating the lattice propagator byd(n1; n2; n3;m) = sin2(�n1=N) + sin2(�n2=N) + sin2(�n3=N) + (am=2)2; (166)38



ni = 1; : : : ; N � 1, we can de�ne the lattice sum corresponding to a tadpole graph asaI(N;m) = 14N3 N�1Xni=0 1d(n1; n2; n3;m): (167)In the limit N !1 the sum can be converted into an integral,aI(1;m) = aI(m) = 14�3 Z �0 d3x 1sin2 x1 + sin2 x2 + sin2 x3 + (am=2)2= 14 Z 10 d�e� 14�(am)2[e� 12�I0(12�)]3; (168)where I0 is the modi�ed Bessel function. In the continuum limit a! 0,I(m) = 14�a [�� am� �(am)2 + 0:82�(am)3 +O((am)4))] (169)with� = 8� (18 + 12p2 � 10p3� 7p6)K((2�p3)2(p3�p2)2) = 3:1759114; (170)K being the complete elliptic integral of the �rst kind, and � = 0:15281. The values of� and of the next coe�cient are the results of a numerical computation.A related function is the 1-loop contribution to the vacuum energy,a3J(N;m) = 1N3 N�1Xni=0 12 log[d(n1; n2; n3;m)]: (171)In the continuum limit J(1;m) = J(m) satis�es 2dJ=dm2 = I(m2) and has the small-aexpansion J(m) = const + 14�a�12�m2 � 13am3 � 14�a2m4 +O(a3m5)�: (172)A.2 2-loop graphsThe scalar sunset integral H is given in eq.(I.22). Its lattice analogue is the doublesumH(N;m1;m2;m3) = 164N6 N�1Xni=0 N�1Xmi=0[d(n1; n2; n3;m1)]�1 (173)[d(m1;m2;m3;m2)]�1[d(n1 +m1; n2 +m2; n3 +m3;m3)]�1;where 0 � ni + mi � N � 1. The N ! 1 lattice limit (N ! 1; a ! 0; Na =constant) is also given byHL(m;m;m) = H(1;m;m;m) 39



= 164�6 Z �0 d3x d3y 1P sin2 xi + 14a2m2 1P sin2 yi + 14a2m2 1P sin2(xi + yi) + 14a2m2= 18 Z 10 d3� exp[�3(1 + 12a2m2)(�1 + �2 + �3)] ���Z 2�0 dx2�e�2 cosxI0(q�21 + �23 + 2�1�3 cos x)�3 (174)� 116�2�log 2am + 12 + � + �(am) +O((am)2)�� 116�2�log 6a�3 + log �33m + 12 + � + �(am) +O((am)2)�:The constants � ' 0:09 and � ' �0:6 have been estimated by computing the integral(174) numerically and also by computing the sums for values of N up to 24. Sincethe dependence on am=2 is only logarithmic, one has to go down to am=2 � 0:01to separate the logarithmic and constant terms, and the computation is numericallydemanding.We �nish this appendix by presenting two non-trivial 2-loop integrals needed for thecomputation of the parameter � and for relating � to �0 (the parameter for the theorywith the A0 �eld integrated out). Both come from the SSV type of graphs.The number � is related to the derivative of the SSV diagram with respect to thescalar mass and is given by� = 12�4 Z �2��2 d3x Z �2��2 d3y Pi[sin2 xi sin2(x+ y)i](Pi sin2 xi)2(Pi sin2(x+ y)i)(Pi sin2 yi) ' 1:94: (175)The number � is related to the derivative of the SSV diagram with respect to thevector mass and is given by� = 14�4 Z �2��2 d3x Z �2��2 d3y ( Pi[sin2 xi sin2(x+ y)i](Pi sin2 xi)(Pi sin2(x+ y)i) � Pi sin4 xi(Pi sin2 xi)2) 1(Pi sin2 yi)2' �0:314: (176)B The gauge invariant e�ective potentialA gauge-invariant e�ective potential V (�) has been introduced in [13] by including acurrent J coupling to �y�:exp[�W (J)] = Z DAaiD� exp[�S + Z d3xJ�y�] (177)and by performing the usual transformation from J to �. Thus simply (the three-volume V3 is not written explicitly)W (J) = V (v(T );m23+ J); (178)40



i.e. the generating functional W (J) is the same as the e�ective potential at its mini-mum, but computed for m23 ! m23 + J . The relation between � and J is given byW 0(J) = @V (v(T );m23+ J)@m23 � h�y�iJ = � (179)and the gauge-invariant e�ective potential is given byV (�) = V (v(T );m23+ J(�))� J(�)�: (180)To evaluate the Legendre transformation (180) we write J = J(0)+�hJ(1) (J(2) is notneeded). To leading order in �h, it follows from eqs.(71) and (179) thatJ(0) = �m23 � 2�3� (181)so that from eq.(71) V(0)(�) = V (v(T );m23+ J(0)) = m23� + �3�2: (182)To order �h J(1) = �32� � �m1 + 3g238�3 (2 �mT + �mL)�; (183)where now �m1 = q4�3�; �mT = s12g23�; �mL = sm2D + 12g23�: (184)These equations show that the calculation is valid for � > 0 or for m23 + J < 0, i.e. inthe broken phase. With these masses, the 2-loop result for the gauge invariant e�ectivepotential isV (� > 0) = m23� + �3�2 � �h12� (6 �m3T + 3 �m3L + �m31) (185)��h2�364�2 �m1[5 �m1 + 3g232�3 (2 �mT + �mL)] + �h2V2( �mT ; �mL; �m1;m2 = 0);where V2 is given in eq.(34).If � < 0 or m23 + J > 0 one has to use the eqs. (73), (74) and (40), which areappropriate for the symmetric saddle point. Now the leading term in V (v) in eq.(40)is O(�h) and one obtains �(J) = � �h2�qm23 + J: (186)The same procedure as before leads toV (� < 0) = �m23 � 3�h8�g23mD�� + 34�g23 log �3�h�4�� + 14g23 + 2�3��2 � 4�23�h2�3; (187)neglecting a �-independent part depending on mD, log(�3=mD), and the coupling con-stants. Note the dependence on �h.Although explicit forms of the gauge-invariant potential have been given here onehas not gained anything of practical use. One is anyway only interested in the physicalground-state value of h�y�i and this is already given by eqs.(76-78).41



C Distribution of h�y�i in a �nite systemIn the course of lattice simulations R2 = 1V3 R d3x�y(x)�(x) will be studied in �nitevolume systems and it is of great use to know its distribution dN=dR2 in the continuum,but in a �nite 3-volume V3. By de�nition we have, in terms of the functional integralin eq.(38), dNdR2 = Z D �(R2 � 1V3 Z d3x�y(x)�(x))e�S[ ]= Z 1�1 dt2� Z D exp(�S[ ] + itR2 � it 1V3 Z d3x�y�)= Z 1�1 dt2� expfitR2 � V3V [v(T );m23+ it=V3]g: (188)The integral over t is computed with the saddle point method: the saddle point ts isdetermined byR2 = dV [v(T );m23+ its=V3]dm23 = dV [v(T );m23]dm23 + i tsV3 d2V [v(T );m23](dm23)2 + ::: ; (189)so that the saddle point is at itsV3 = R2 � V 0[m23]V 00[m23] ; (190)where the derivatives always are with respect to m23, keeping � = v(T ). Near theaverage hR2i = V 0(m23); (191)ts=V3 is small relative to m23 and it is consistent to expand as in eq.(189). For thedistribution one obtainsdNdR2 = e�V3V [m23]q�2�V 00(m23)=V3 exp� V32V 00(m23) [R2 � V 0(m23)]2�: (192)This is a Gaussian with the average as in eq.(191) and the width �V 00(m23)=V3. Notethat V 00(m23) < 0: for a simple tree potential near a broken minimum (m23 < 0)the derivatives are V (m23) = �m43=(4�3); V 0(m23) = �m23=(2�3); V 00(m23) = �1=(2�3).Eq.(192) shows how the 
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Figure 1: The vacuum 2-loop diagrams used in the computation of ��.
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Figure 2: The Higgs self-energy 2-loop diagrams used in the computation of ��.45
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Figure 3: The scalar-gauge vertices in lattice perturbation theory.
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Figure 4: The evolution of the distribution of hR2Li with �H .47
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Figure 6: The same as Fig.5, for a theory without A0 �eld.49
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Figure 7: The A0 contribution to the e�ective potential.
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