
Least-Squares Minimization Under Constraints
EPFL Technical Report # 150790

P. Fua A. Varol R. Urtasun M. Salzmann
IC-CVLab, EPFL IC-CVLab, EPFL TTI Chicago TTI Chicago

Unconstrained Least-Squares minimization is a well-studied problem. For example, the Levenberg-
Marquardt is extremely effective and numerous implementations are readily available [Press et al., 1992,
Lourakis, 2009].

These algorithms are, however, not designed to perform least-squares minimization under hard con-
straints. This short report outlines two very simple approaches to doing this to solve problems such as
the one depicted by Fig. 1. The first relies on standard Lagrange multipliers [Boyd and Vandenberghe,
2004]. The second is inspired by inverse kinematics techniques [Baerlocher and Boulic, 2004] and has
been demonstrated for the purpose of monocular 3D surface modeling in [Salzmann and Fua, 2010]. In
both cases, we outline matlab implementations.

This write-up is intended more as a working document than as a pure research report. Comments
and suggestions are welcome.

Figure 1: Modeling the deformations of a main sail by minimizing an objective function under the
constraint that the length of the mesh edges must be preserved. The black circles in the leftmost image
are targets that were automatically detected and used to establish correspondences with a reference
configuration. The algorithm can estimate the 3D deformations at a rate of approximately 10 Hz on a
standard PC.

1

1 Using Lagrange Multipliers

We begin by discussing the enforcement of equality constraints. We then show how to extend the
formalism to handle inequality constraints as well.

1.1 Equality Constraints

We seek to minimize
1
2
||F (X)||2 subject to C(X) = 0 , (1)

where X is an n × 1 vector, F (X) is a r × 1 vector of image measurements, and C(X) is an m × 1
vector of constraints. We define the Lagrangian as

L(X, Λ) =
1
2
||F (X)||2 + ΛtC(X) , (2)

where Λ is the m× 1 vector of Lagrange multipliers. Linearizing F and C around X yields

L(X + dX,Λ) =
1
2
||F (X) + JdX||2 + Λt(C(X) + AdX) , (3)

=
1
2
(F (X) + JdX)t(F (X) + JdX) + Λt(C(X) + AdX) ,

where J is the r× n Jacobian matrix of F and A is the m× n Jacobian matrix of C. Finding a solution
for to this problem can be done by solving for the Karush-Kuhn-Tucker (KKT) conditions. The first
KKT condition is stationarity: At the minimum of L with respect to dX , we must have

0 =
∂L

∂dX
(X + dX,Λ) , (4)

= J tJdX + J tF + AtΛ ,

and therefore
dX = −(J tJ)−1(J tF + AtΛ) . (5)

The second KKT condition is primal feasibility, which translates into finding a solution X + dX that
satisfies the constraints. To this end, we must have

0 = C(X + dX) ,

= C(X) + AdX , (6)

= C(X)−A((J tJ)−1(J tF + AtΛ)) ,

= C(X)−BΛ−Ab ,

where B = A(J tJ)−1At and b = (J tJ)−1J tF . We can now compute Λ by solving

BΛ = C(X)−Ab (7)

and dX by injecting the resulting vector into Eq. 5, which can be rewritten as

dX = −(b + (J tJ)−1AtΛ) . (8)

2

A naive MATLAB implementation is listed in Fig. 3. It involves explicitly inverting the n × n J tJ
matrix, which is of computational complexity 0(n3) and therefore slow for large values of n. To speed
things up, it is possible to replace the explicit computation of the inverse by the solving of 3 n×n linear
systems, each one being of complexity 0(n2), as shown in Fig. 4.

Alternatively, if the matrices are sparse, it is more efficient to simultaneously solve equations 4
and 6. This results in the (n + m)× (n + m) linear system[

J tJ At

A 0

] [
dX
Λ

]
= −

[
J tF

C(X)

]
(9)

and the corresponding MATLAB implementation listed in Fig. 5. In theory, the complexity is 0((n +
m)2) but, in practice, much less if the matrices are sparse. Fig. 2 illustrates this computation for the pur-
pose of fitting an ellipse to noisy data points under tangency constraints. In practice, this is a standard ap-
proach to constraining the least-square problems that arise when performing bundle-adjustment [Triggs
et al., 2000].

(a) (b) (c) (d)

Figure 2: Fitting an ellipse to noisy data points under tangency constraints. (a) Given a ground-truth
ellipse shown in red, we fit in closed-form the ellipse shown in blue to noisy point samples overlaid as
green squares. (b,c,d) Enforcing tangency to the green lines by recursively solving Eq. 9 to compute the
dX increment, starting from the unconstrained solution represented by a 5-dimensional X vector.

function dX=ComputeStep(X,Cnst,Data)
% Jacobian and Vector of objective function
[J,F]=Data.Jacob(X);
% Jacobian and Vector of constraints
[A,C]=Cnst.Jacob(X);
% Compute auxiliary matrices
JtJ=inv(J’*J); B=A*JtJ*A’; b=JtJ*J’*F;
% Compute the Lagrange multipliers
Lambda=B\(C-A*b);
% Compute the iteration step
dX=-(b+JtJ*A’*Lambda);

Figure 3: Naive MATLAB code that implements the method of Section 1 by sequentially solving Eqs. 6
and then 4.

1.2 Inequality Constraints

The above formulation can easily be extended to also handle inequality constraints by using slack vari-
ables to reformulate them as equalities. To this end, we introduce a m-dimensional vector S of slack

3

function dX=ComputeStep(X,Cnst,Data)
% Jacobian and Vector of objective function
[J,F]=Data.Jacob(X);
% Jacobian and Vector of constraints
[A,C]=Cnst.Jacob(X);
% Compute auxiliary matrices
JtJ=J’*J; B=A*(JtJ\A’); b=(JtJ\J’)*F;
% Compute the Lagrange Multipliers
Lambda=B\(C-A*b);
% Compute the iteration step
dX=-(b+(JtJ\(A’*Lambda)));

Figure 4: Improved MATLAB code that implements the method of Section 1 by sequentially solving
Eqs. 6 and 4 without explicit matrix inversion.

function dX=ComputeStep(X,Cnst,Data)
% Jacobian and Vector of objective function
[J,F]=Data.Jacob(X);
% Jacobian and Vector of constraints
[A,C]=Cnst.Jacob(X);
% Get dimensions
m=size(A,1); n=size(A,2);
% Simultaneously Compute both the iteration step and Lagrange multipliers.
dXLambda=-[J’*J, A’; A , zeros(m,m)]\[J’*F;C]; dX=dXLambda(1:n);

Figure 5: MATLAB code that implements the method of Section 1 by solving the single larger linear
system of Eq. 9 without explicit matrix inversion.

variables, one for each inequality, and exploit the fact that

C(X) ≤ 0 ⇔ C(X) + S � S = 0 , (10)

where � is the element-wise Hadamard product. This lets us rewrite the problem of Eq. 1 as one of
minimizing

1
2
||F (X)||2 +

µ

2
‖S‖2 subject to C(X) + S � S = 0 , (11)

with respect to X and S simultaneously. Note that we added a regularizer on S that tends to favor
solutions that are closer to satisfying the equality constraints C(X) = 0, which can prove useful in
cases [Salzmann and Fua, 2011] such as the one depicted by Fig. 1. If the parameter µ is set to 0, the
constraints behave like true inequalities without preference for any specific solution.

Following the same approach as before, we can linearize the different terms of our problem around
the current solution (X, S), and write its Lagrangian as

L(dX, dS, Λ) =
1
2
||F (X) + JdX||2 +

µ

2
‖S + dS‖2 + Λt (C(X) + AdX + S � S + 2diag(S)dS) , (12)

where diag(S) is an m ×m diagonal matrix with S on its diagonal. We can then again solve for the
KKT conditions to obtain the optimal solution for dX , dS, and Λ. Stationarity with respect to dX yields
the same equation as in the equality constraints case, which we repeat here for convenience,

J tJdX + J tF + AtΛ = 0 . (13)

4

Similarly, stationarity of the Lagrangian with respect to dS yields

µdS + µS + RtΛ = 0 , (14)

where R = 2 ∗ diag(S). Finally, primal feasibility is expressed as the solution to the constraints, which
yields

C(X) + AdX + P + RdS = 0 , (15)

where P = S � S. The three equations above can be grouped in a single (n + 2m)× (n + 2m) linear
system of the form  J tJ 0 At

0 µI Rt

A R 0

 dX
dS
Λ

 = −

 J tF
µS

C(X) + P

 , (16)

whose solution can be obtained similarly as the one of Eq. 9. As discussed above, the parameter µ can
be set to zero but, in practice, doing so results in poor convergence due to the linear system of Eq. 16
being ill-conditioned. It is therefore preferable to set µ to a small but non zero value if one wishes the
system to enforce the C(X) ≤ 0 constraints without unduly favoring solutions such that C(X) ≈ 0.

If instead of seeking a solution that obeys a single inequality we seek the one that yields values
between two bounds, we can separate the bounds into two sets of inequalities and use the same approach
as before. This yields the transformation

B0 ≤ C(X) ≤ B1 ⇔ C(X)− S0 � S0 = B0 , C(X) + S1 � S1 = B1 . (17)

It can then easily be verified that the solution to the corresponding linearized constrained minimization
problem can be obtained by solving

J tJ 0 0 At At

0 µI 0 −Rt
0 0

0 0 µI 0 Rt
1

A −R0 0 0 0
A 0 R1 0 0




dX
dS0

dS1

Λ0

Λ1

 = −


J tF
µS0

µS1

C0(X)− P0

C1(X) + P1

 , (18)

where C0(X) = C(X)−B0, C1(X) = C(X)−B1, P0 = S0 � S0, P1 = S1 � S1, R0 = 2diag(S0),
and R1 = 2diag(S1). The parameter µ can now be used to set a prerefence for solutions whose value
of C(X) is close to the middle of the interval defined by the bounds. Defining other preferences can be
achieved by introducing two such parameters, one to regularize S0 and the other to regularize S1.

2 Minimizing in the Null Space of the Constraints

Given the current estimate for X , we can iteratively find the increment dX such that X + dX both
satisfies the linearized constraints and minimizes ||F (X + dX)||2. In other words, at each iteration, we
seek dX such that

C(X + dX) = 0 ⇒ AdX = −C(X) , (19)

⇒ dX = −A†C(X) + (I −A†A)dZ ,

where A is the m × n Jacobian matrix of C, A† its n ×m pseudo-inverse, and dZ an arbitrary n × 1
vector. When there are fewer constraints than variables, which means that m < n and is the normal

5

situation, A† can be computed as limδ→0A
t(AAt + δI)−1, which involves solving an m × m linear

system and can be done even if AAt itself is non invertible. P = I − A†A is known as the projection
operator, or projector, onto the kernel of A.

Let dX0 = −A†C(X) be the minimum norm solution of Eq. 19. We choose dZ by minimizing

||F (X + dX0 + PdZ)||2 ≈ ||F (X) + J(dX0 + PdZ)||2 , (20)

or, equivalently, solving in the least square sense

JPdZ = −(F (X) + JdX0) . (21)

Since J is an r × n matrix, this implies solving an n × n system with complexity 0(n2), which is
the dominant cost assuming that n > m. This is implemented by the MATLAB of Fig. 6 in which
we use δ = 1e − 10 to compute the pseudo-inverses. The convergence properties of the algorithm
can be improved by scaling dZ to guarantee that ||F (X + dX0 + PdZ)|| decreases as is done in the
Levenberg-Marquardt algorithm, which yields the slightly more involved code of Fig. 7.

A similar subspace minimization scheme was proposed in [Shen et al., 2009]. Instead of using
the projector P to formulate the minimization problem of Eq. 20 in terms of the dZ vector whose
dimensionality is the same as that of X , it involves performing a Singular Value Decomposition of
A to find the n − m Singular Vectors associated to zero values–assuming that the constraints are all
independent–and writing the dX increment as dX0 plus a weighted sum of these singular vectors. The
unknown become the weights and the minimization can be achieved by solving a linear smaller system,
at the cost however of performing an SVD that the scheme of Eqs. 19 and 21 does not require.

This projector-based scheme has been extensively tested for 3D sail reconstruction purposes, as
depicted by Fig. 1. In those input images, the black circles on the sails are automatically detected and
put into correspondence with the same circles on a reference image in which the shape of the sail is
known a priori and represented by a triangulated mesh. Recovering the unknown 3D coordinates of the
deformed mesh vertices can then be achieved by solving a linear system of the form

MX = 0, (22)

where X is the vector of all x, y, and z coordinates of the mesh describing the sail expressed in the
camera coordinate system and M is r × n matrix where r is twice the number of correspondences and
n the dimension of X . It can be shown that the rank of M is at most 2n

3 and that constraints are there-
fore required to guarantee a unique non-degenerate solutionh [Salzmann and Fua, 2010]. Furthermore,
because the correspondences are noisy, we minimize

||MX||2 subject to C(X) = 0 , (23)

where C(X) is the vector of changes in the length of triangulation edges. In other words, we force the
mesh edges to retain their reference length. In this case, J = M and Eq. 21 simplifies to

MPdZ = −M(X + dX0) . (24)

Because the deformations are relatively small, the optimization typically converges to a local minimum
in about 10 iterations, which allows for real-time performance.

Furthermore, even better results can be obtained by replacing the length equality constraints by
inequality constraints that state that the Euclidean distance between vertices is bounded by the known

6

geodesic constraints in reference configuration. This only involves a trivial modification of the algorithm
above: At each iteration, only currently active constraints are taken into account in the computation of
C(X) and its Jacobian A [Salzmann and Fua, 2010]. The results are very similar to those obtained using
the slightly more involved approach to handling inequalities by introducing slack variables discussed in
Section 1.

References

[Baerlocher and Boulic, 2004] P. Baerlocher and R. Boulic. An Inverse Kinematics Architecture for
Enforcing an Arbitrary Number of Strict Priority Levels. The Visual Computer, 2004.

[Boyd and Vandenberghe, 2004] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Uni-
versity Press, 2004.

[Lourakis, 2009] M. Lourakis. Levmar : Levenberg-Marquardt Nonlinear Least Squares Algorithms in
C/c++, 2009. http://www.ics.forth.gr/ lourakis/levmar/.

[Press et al., 1992] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes,
the Art of Scientific Computing. Cambridge U. Press, 1992.

[Salzmann and Fua, 2010] M. Salzmann and P. Fua. Deformable Surface 3D Reconstruction from
Monocular Images. Morgan-Claypool Publishers, 2010.

[Salzmann and Fua, 2011] M. Salzmann and P. Fua. Linear Local Models for Monocular Reconstruc-
tion of Deformable Surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(5):931–944, May 2011.

[Shen et al., 2009] S. Shen, W. Shi, and Y. Liu. Monocular 3D Tracking of Inextensible Deformable
Surfaces Under L2-Norm. In Asian Conference on Computer Vision, 2009.

[Triggs et al., 2000] B. Triggs, P. Mclauchlan, R. Hartley, and A. Fitzgibbon. Bundle Adjustment – a
Modern Synthesis. In Vision Algorithms: Theory and Practice, pages 298–372, 2000.

function dX=ComputeStep(X,Cnst,Data)
% Jacobian and Vector of objective function
[J,F]=Data.Jacob(X);
% Jacobian and Vector of constraints
[A,C]=Cnst.Jacob(X);
% Compute pseudo inverse and projector
AInv=PseudoInverse(A,1e-10); Proj=eye(size(A,2))-AInv*A;
% Compute projection increment to satisfy constraints only
dX=-AInv*C;
% Compute objective function increment
JP=J*Proj; dZ=LsqSolve(JP,F+J*dX,1e-10); dX=dX-Proj*dZ;

Figure 6: Simple MATLAB code that implements the method of Section 2.

7

function dX=ComputeStep(X,Cnst,Data)
% Jacobian and Vector of objective function
[J,F]=Data.Jacob(X);
% Jacobian and Vector of constraints
[A,C]=Cnst.Jacob(X);
% Compute pseudo inverse and projector
AInv=PseudoInverse(A,1e-10); Proj=eye(size(A,2))-AInv*A;
% Compute projection increment to satisfy constraints only
dX=-AInv*C;
% Compute objective function increment
JP=J*Proj;
dZ=LsqSolve(JP,F+J*dX,1e-10);
% Scale dZ to ensure that the objective function decreases.
Scale=1.0;
BestN=inf;
BestX=[];
for i=1:10
ScaledX=dX-Scale*Proj*dZ;
ScaledF=Data.Vector(X+ScaledX);
ScaledN=norm(ScaledF);
if(ScaledN<norm(F))
dX=ScaledX;
return;

else if(ScaledN<BestN)
BestN=ScaledN;
BestX=ScaledX;

end
Scale=Scale/2.0;
end

end
dX=BestX;

Figure 7: Slightly refined MATLAB code that implements the method of Section 2.

8

