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Abstract

We address the problem of prioritized video streaming oessy overlay networks. We propose to exploit network path
diversity via a novel Randomized Network Coding (RNC) apio that provides unequal error protection (UEP) to the gack
conveying the video content. We design a distributed recaiviven streaming solution, where a client requests gtackom the
different priority classes from its neighbours in the omgriBased on received requests, a node in turn forwards oatiims
of packets from the different classes to the requestingspeelecting a network coding strategy at every node can $&ieasa
an optimization problem that determines the best rate atilme among the different packet classes so that the aveliaggetion
at the requesting peer is minimized. As the optimizatiorbfgm has log-concavity properties, it can be solved by aratite
algorithm, with low complexity. Our simulation results denstrate that the proposed scheme respects the relativétips of
the different packet classes and achieves a graceful guadiaptation to network resource constraints. Therefane,scheme
substantially outperforms reference schemes such asrmseltwork coding techniques as well as solutions that eyngdteless
codes with built-in UEP properties. The performance euanaadditionally provides evidence about the substamtiblistness
of the proposed scheme in a variety of transmission scenario

Index Terms

Network coding, rate allocation, unequal error protecticideo streaming, overlay networks.

|. INTRODUCTION

Spurred by the advances in broadband technologies and ga@apression an ever increasing amount of multimedia conten
is flowing over our computer networks [1], [2]. In order to ifdate the delivery of such data, networks are often orgedi
in overlay structures that provide better control of theatn delivery. Among them, peer-to-peer systems have expmril a
fast development and emerged as one of the most popularigeasébr online media delivery [3]-[5].

In addition to increased path or source diversity, overletyworks offer the possibility to request basic processipgrations
from the network nodes. Both properties can contribute forawed delivery performance. For example, the nodes caonper
simple coding operations on packets before transmissiarder to increase the goodput. This concept is known as mktwo
coding and it has gone a long way from a purely analyticalréple, as introduced originally in [6], to an approach agxdlie
to data dissemination in the Internet [7] at present. Netwaoding has also attracted a lot of attention for multimedia
communication as it enables efficient distributed deliverylossy overlay networks. This technique also effectiveals
with bandwidth variations and packet duplication that ¢gtly arise in such networking environments. While compateal
complexity still represents an issue in network coding,va &gorithms have been proposed recently that successpyy
network coding principles as part of multimedia streamipgplizations [8]. At the same time, the growing heterogeneit
of Internet access links’ characteristics in terms of padkes and bandwidth has created a need for scalable delivery
mechanisms. Multimedia data that are typically charan¢erby differences between the importance of the packetsinst of
their contribution to the reconstructed quality shouldsttoe arranged such that peers are served according to tipaicita
with a graceful quality degradation when resources becaraesr.

In the present paper, we address the problem of prioritizedianstreaming in overlay networks, where network coding
operations are designed for media packets of different itapoe. Such networking environments are usually chaiaete
by a large diversity in terms of client capabilities and ascepeeds. Therefore, an efficient streaming scheme shibaid a
for multiple levels of quality of service in order to accomdabe for this heterogeneity, as illustrated in Fig. 1. Samiyl
to the work in [9], we build on the results of randomized neatkvooding (RNC) [10] for the construction of a distributed
streaming solution that improves the robustness to erasuitbout the need for centralized control. The coding densare
adapted to prioritized video delivery for receivers witlffelient capabilities. We extend our prior work [11] and poep a
novel receiver-driven network coding strategy where tloeiténg peers request packets from classes with varyingitapce.
Packet classes can be constructed by considering the Urmantdbution of the various video packets to the overalaliy
of the presentation [12] or simply from the arrangement déda scalable video streams [13]. Prioritized transmisssothen
achieved by varying the number of packets from each cladsatigaused in embedded network coding operations performed
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Fig. 1. lllustration of scalable video streaming in overlatworks with network coding (NC) nodes.
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Fig. 2. The overlay node combines incoming packetsand generates network coding packets. A headerf,, is appended to each coded packet that
carries the coding coefficients.

by ey

in the overlay nodes. We formulate an optimization probleat tharacterizes the optimal network coding strategy takien

at the nodes forwarding data to a receiving peer as a funofitime available bandwidth. The optimal strategy is comgutg
the receiving peer that determines the best rate allocattween packet classes that leads to minimum expectedtitisto
The receiving peer subsequently requests packets from alenfpnodes according to the resulting rate allocation. hs t
optimization problem is shown to be log-concave, we pro@osew low-complexity algorithm that computes the best cgdin
strategy in only a few iterations. It is shown that the pragbscheme has clear advantages over network coding metieds t
do not consider the importance of the packets and leads te graiceful quality degradation when the effective bandwidt
decreases. Our technique outperforms baseline netwoikgatyorithms and other unequal error protection (UEPYaaghes
based on rateless codes [14] that are specifically designettié delivery of layered media streams.

The rest of the paper is organized as follows. In Section #, review the general characteristics of network coding as
they pertain to networked media and we describe our novel b&®Rork coding algorithm. Then, we analyze in Section IlI
the expected distortion at a decoding peer as a functiorsafatwork coding strategy. Next, we formulate in Section ¥ t
optimization of the network coding choices that can be addevia a low complexity iterative solution. Subsequenihg
examine various performance aspects of the proposed sdheough simulation experiments in Section V. Finally, weatiss
related work in Section VI and conclude the paper with suniitay remarks in Section VII.

II. NETWORK CODING FORUEP VIDEO STREAMING
A. Practical network coding

Here, we briefly review the basics of network coding and itpliaption to practical streaming solutions. Network cagin
has been originally proposed with the goal of increasingvagk throughput in push-based data delivery [6]. Insteadiwiply
forwarding packets or symbols on the outgoing network lintke nodes in the network perform linear combinations of the
received packets and transmit the coded packets to thendisti nodes. The receivers can then recover the original loja
receiving and subsequently decoding a sufficient numbeineaily combined packets.

The specific coding strategy employed at each node could dizally optimized with a comprehensive knowledge of the
network topology. However, such an assumption is not réalis practical streaming systems. Instead, distributgdrithms
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Fig. 3. Communication protocol. (a) Children nodes and uz calculate their optimal coding policie®; and ws. These policies are forwarded to the
parent nodev;. (b) The parent generates packets accordingytoand w2 and feeds them back te; andus. The packets at node are categorized into
two importance groups based on their information content.

are considered where each node independently choosesditsgcstrategy based on a local network view. RNC [10] is an
efficient solution for network coding in distributed sets) since coding coefficients are selected randomly by eatkonk
coding node without any need for a central coordinational be adapted to practical streaming applications, as peapim
[9], where network nodes independently perform linear coatiions of packets and forward them to their neighbors. s t
coding coefficients are chosen randomly, a header of carstagth is appended to each packet with the coefficient métion
so that the decoder can decode the stream and recover tliabdgta packets.

The network coding operations can be written as follows. tiodew generates\/ packets by RNC, then the™ network
coded packet,, is of the form

Cm = Z fm,i - pi(w)

pi(u)€S(u)

wherei is the index of thei’” packet at node:, S(u) corresponds to the set of packets available at the nade) denotes
either a network coded packet or a native (uncoded) packdt/fa ; is a random coefficient over the Galois field of size
GF(q). The basis of the Galois field is typically setge= 256, as it has been shown in [9] that this guarantees high symbol
diversity and low probability of building duplicate packetAs the packets combined at a node are actually combisatibn
the original data packets, the encoded packets can be eggras a function of the native packets

N
’
Cm = § fm7i iz
i=1

wherei denotes the index of thé" native packets andv is the total number of native packets, e.g., the number ofovid
packets. The parameteus and fml represent respectively the native packets and their quoreing coding coefficients after
random network coding operations. It is worth noting thansoof the coeﬁicientg“;nyi can be zero, which means that,
does not contain information about the native packetA network coded packet is finally augmented with- log,(¢)-bit
header containing the vector of coding coefficieffts ,, . . ., ;mN]. Note that the header does not grow with the number of
hop transmissions, but it depends on the number of nativikepcThe encoding procedure at a peer node is illustraté&tin

2.

An important aspect of streaming applications is the delaystraints that are imposed by the requirements of contiiuo
playback at the receiver. In particular, the network nodamot buffer packets for long periods of time. At the sameetithey
should only combine packets with similar decoding time¥gia so that the decoding is not excessively delayed. In doder
deal with the timing constraints, the concept of generatioas been introduced in [9]. The packet stream is split inttiiphe
generations and coding operations are restricted to pacti¢hin the same generation. Furthermore, since genemtoe
characterized with playback deadline information, thewoek nodes only transmit useful packets that correspon@i®@ations
whose decoding deadlines have not passed. All the otheetsacin be deleted from the nodes’ buffers. The latency iadur
by the streaming application waiting for the media packetbdé decoded at the destination obviously becomes depeadent
the length of the generation. Typically, a generation camespond to a group of pictures (GOP) that are the imagesdagtw
two reference frames in encoded video sequences.



B. Prioritized RNC

Our objective is to design a network coding algorithm in daggmetworks that is able to deal with packets of different
importance and that increases the likelihood of deliveryHigher priority packets. Overlay mesh networks typicakhibit
links with heterogeneous bandwidth values and dramati@tians in channel conditions due to random node departiites
traditional streaming systems utilize variations of chelntoding algorithms for robust media delivery in this framoek. It
could be achieved with prioritized coding and unequal eprotection (UEP) [15]-[17], or with variants of multiple skiption
coding (MDC) algorithms [18]. However, most of these methade hard to implement in distributed settings and require a
full knowledge of the overall topology and channel condidn order to determine the optimal coding strategy. Whenev
this information is not available they often overprotea gtreams or conversely fail to provide the required praiact

Network coding in turn is very appealing because it can woitk Vimited knowledge of network resources and conditions,
and it can be implemented in a distributed manner. In pddicintermediate network nodes forward on their outgoing(k)
packets that represent linear combinations of the paclketsived on their incoming links. The destination nodes ¢eam t
recover the original data by receiving and subsequentlpdiag a sufficient number of these linearly combined paclk&itsce
packets have different importance, the amount of proteaiicequivalently the number of network coded packets in etss
of importance has to be determined by taking into accounptiwities of the packets. Ideally, the mixing operatiohssld
not be uniform across all packets arriving at a node, buteatsipackets with higher importance should be involved inemor
coding operations.

In order to adapt locally the network coding operations, weppse a scheme where the children peers send request#to the
parents, where they specify the relative number of packets feach importance class that they would like to receivés Th
receiver-driven policy provides a simple way to adapt tod¢hpabilities of the peers without large communication @oshe
system. It also provides a finer control of the packet defivampared to sender-driven error resilient coding or possed
strategies [9]. This becomes particularly important whewstrof the network nodes subscribe to the video content ahd no
only forward the information, as in P2P networks. In our systthe coding operations are, therefore, driven by thedimil
nodes that determine the optimal amount of coding alloctdeshch importance class of the data they subscribe to.

In particular, the packets are organized igtcclasses depending on their importance, where the layersrgamized along
decreasing levels of priority. The clasgs defined as the set of packets that are linear random cotidrisaf packets from
the ¢ most important classes. In practice, the class of a pachdeigified by a small header which is appended to the packet.
Then, the packet delivery protocol proceeds in two phadest, Bs shown in Fig. 3(a), children nodescompute the optimal
coding strategy that should be implemented at their paredésw;, based on the available network bandwidth, the expected
loss probability and the importance of packets in each clHssy subsequently send a request message to their paxdis,
specifies the distributiom; of the relative number of packets in each class that they avitke to receive. The parent nodes in
turn randomly combine their packets according to the coebubding strategies and forward the corresponding codekkep=
to their children. This procedure is depicted in Fig. 3(bxhd node finally inspects the incoming packets to deteemihether
they are innovative, i.e., whether they provide any newrimi@tion relative to the packets already received. Nonamatioe
packets are removed from the node’s buffer. Based on the efdts buffer and the local network status, the child nodmth
computes again the optimal coding strategy and sends it tpaitent nodes. This procedure is repeated periodicahllfF
note that the request-based coding decisions contradigivetwork in [19] proposed for wireless transmission, wheparent
node sends the same distribution of network coded packet tf its children. Our algorithm permits to adapt to eaclicch
node on an individual basis, thereby ensuring that the tiaguVideo quality at each of them is maximized for their give
specific network conditions.

We show in the next section how a child node can compute theateg quality for each coding strategy. Then, we propose
an optimization algorithm that has a simple solution for tild node to decide on the best rate allocation to be reqdest
from its parents.

IIl. DISTORTION ANALYSIS

In this section, we analyze the expected distortion in a diecppeer, as a function of the coding decision and the local
network state. The distortion is dependent on the numbelaskes that can be decoded, where the probability of degadin
class depends on the number of network coded packets thablean received. We assume that the available bandwidtkebetw
nodes is fully used by the network coding system. Its valug depend on background traffic or concurrent applicatiorts an
we assume it can be estimated locally.

A child nodeu requests packets of different classes from its parent nddesnds the same request to all its direct parents.
The request typically takes the form of a rate distributieaterw, whosect” components, denotes the proportion of packets
from classc among the requested packets. By definition, we I”E\fe:1 we = 1 andw. > 0, whereC' is the number of packet
classes in the network. If we denoié;(u) the total number of packets requested by the nedéhe expected number of
packets of class sent by the node is given as

re(u) = [Nz(u) - we) 1)



These packets are lost with probability (u) which is the average packet erasure rate on the incoming tfiltnodeu. As
the parent nodes fully use the available upload bandwigith, between nodes andu, the number of transmitted packets
Nz(u) is determined based on the overall incoming bandwidth aenmoas Nz(u) = }_, <7, Bv,u, WhereZ(u) denotes the
set of parental nodes of node For the sake of clarity, we assume that the bandwidth isngingpackets/sec. The packet loss
probability 7z (u) is equal to

Z Bv,u * Pu,v
vEZL(u)

Nz(u)

wherep,, ., is the packet loss probability between nodeand v.

The video distortion at the client peer is dependent on thabmr of classes that can be decoded. We denote the quality
improvement or distortion reduction after successful déup of thec" class asi.. The number of native video packets in
C

)

mr(u) =

the firstc classes is written ag. = > «a;, whereq; stands for the number of source video packets in cfasthe total
j=1

number of source or native packetsds = N. A client is able to decode thé" class as soon as it receivgs innovative
network coded packets. In our network coding algorithmséhpackets represent linear combinations of packets frenfirgt
c classes. Recall that a packet is called innovative whercieases the rank of the equation system constructed by tlué se
packets received at a peer node.

The distortion experienced at nodeis simply written asD,,,.. — D(u), where D,,,, represents a constant maximal
distortion when no video class can be decoded. The expeetedttion in video distortiorD(u) is a function of the number
of classes that the nodecan decode. It can be written as

C
D(u) = dc-pa(c) (3)
c=0

where p,i(c) denotes the probability that the nodeis able to decode video classes. We denote the probability that an
innovative packet arrives at nodeasp;(u). This probability depends on the local packet loss proiigbéand the probability
p that an encoded packet at a parent node is innovative. We roaidp a lower bound on this later probability that only
depends on the size of the Galois Fiejd,.e.,p > (1 — 1/¢) [20]. The equality stands for the case when a node needs one
packet to form a full rank equation system. Since we use theesaF size in each packet class, and since the number of
packets in each class is small comparatively to the posesilnieber of different packets, we consider that.) is identical in
each class. We further assume that the probability of twemgarodes generating the same network coded packet is ibdglig
Thus, the (lower bound) value of the probability for recetyian innovative packet is simply given agu) = (1 — 7z (u)) - p,
since a packet should not be erased and it should be innevativ

We can now rewrite the expected reduction in distortidofu) from Eq. (3) as

c i) re(u)
D) = > > ..> (4)
c=11;=0 l.=0
> lj—1
Ber1—PBc—1 ﬁc—ﬁc—j:§+1 T
lc+1:0 lC:0
C
H ( le(-u) ) (1= pi(u)? - pi(u) T,
i=1 !

The sequence of summation terms in the first line of the rigig of Eq. (4) counts the events of receiving enough packets
to decode up to class packets, while not being able to decode packets of subseqlesses(c + 1,...,C). This latter
condition is described with the second sequence of sumseirse¢bond line of Eq. (4). Finally, the product term in theadhir
line of Eq. (4) denotes simply the likelihood (probability) one such joint event described by the two previous cooakti

Instead of the overall incoming bandwidth at a node, we élgteansider the maximum value between the incoming and
outgoing bandwidths at a peer node as the capacity consimadr network coding algorithm. This represents a cruf@ator
in maintaining a high packet diversity in the network. Intpardar, the factorNz(u) in Eq. (1) is replaced by the rate limit
®(u) that is defined as

®(u) = max{Nz(u) - (1 - mz(u)), No(u) - (1 - 7o (u))}

wherero(u) and No(u) are respectively the average packet erasure rate on theiogttinks at nodeu, and the overall
number of packets sent by this node. The packet loss pratyabi (v) is defined similarly to Eq. (2). The number of packets
from classc received at node thus becomes

re(u) = | P(u) - we) ©)



Specifically, the number of received packets in Eq. (1) idaegd by

ro(u) = {uvz(u).wcj, it () = Nz(u) (1 - 7z(u)
c |No(u) -w.|, if @®(u)=No(u)-(1—7ro(u))

Finally, we observe that the expected distortion dependtherocal network statistics (i.e., the packet loss ratid tre
incoming bandwidth at each node), but also on the numbermqfested packets in each class wi&u). As the local network
statistics are given, a peer node can still maximize the@erpeeduction in distortion by optimizing the packet cldssribution
that represents the relative number of network coded packguested in each class. We study the optimization of tiveonie
coding strategy in the next section.

(6)

IV. OPTIMIZED NETWORK CODING STRATEGY
A. Optimal rate allocation

We can now formulate the optimization problem solved by ea@nt nodeu. The node is interested in determining the
number of packets it should request from its parents for gacket class. The optimal class distribution is computed such
that it minimizes the expected distortion, or alternagiviélmaximizes the expected reduction in distortion, as dbuated by
the received packets. Formally, the optimal rate allocagiooblem can be written as follows:

Rate Allocation Problem (RAP):

w* = argmax D(u), (7

w

c
such that)” w. =1 andw. >0, forc=1,...,C.
c=1
The peeru is interested in selecting the vector of coefficieats = [w}, ..., w] such that the network coding strategy
employed by its parent nodes maximizes the received vidaditguThis distribution is then sent as a request to all theept
nodes of peet:;, which then perform network coding operations in order tdainahe requested distribution.

B. Optimization algorithm

Every client peer has to solve tfAP problem independently based on local network informatfince the search space
is huge, exhaustive algorithms are too complex and cannanpkemented even for a small number of packets. Fortunately
the objective function in Eq. (4) is a log-concave functiamich leads to a simple iterative solution of tRAP problem in
each peer node. We prove below that the objective functidngsconcave and we later present the optimal rate alloeatio
algorithm.

Proposition 1. The expected distortion functioP () in Eq. (4) is log-concave.

Proof: We show that Eq. (4) is log-concave by proving that all terfit.) in the product are log-concave, where

c

s =TT (") w1 = )™ .

j=1

We notice that the terms irf(w.) actually represent the convolution of functions of the fogifw,) = (1 — p;(u))” -
pi(u)™ (W= . d.. The factord, is simply a constant independent of., as it represents the importance of classThe
functionsg(w,) are log-concave as they represent a product of log-condaeenial coefficients and exponential terms and
log-concavity is maintained under multiplication. Thenef, the functionf(w..) is also log-concave, as convolution preserves
log-concavity. Finally, the objective function in Eq. (4) liog-concave, as it is a cumulative distribution functi@d][ ]

The log-concavity property of the objective function petsiib devise a low cost iterative optimization algorithmttisaable
to determine the optimum of the class rate allocation veicta finite number of steps. We now propose a greedy algorithm
that searches for the optimal distributiarf independently at each node

The optimization algorithm starts from a pivotal packetmilsition w over the priority classes that is then refined iteratively.
The initial distribution depends on the number of classas @node can optimally decode given the overall number @&ived
packets. Specifically, when the bandwidth is adequate todkethe firstc classes in an error-free case, the pivotal distribution
respects the percentage fractions of the packets comptisinfirstc classes. No packets are requested from the other classes,
i.e., the corresponding entriesdinare zero. In every step of the algorithm, we examine the teighof the distribution vector
w obtained from the previous iterations. In particular, aghbor distribution is obtained by changing the rate allocatvith
the transfer of a unit rate from one class to an adjacent oh#éethe overall rate stays constant in order to fully uélithe
available bandwidth. For example, if the video is encodeith wackets in 3 classes arranged in order of importance, we ca

write the*" candidate distribution vector of the iterative search dthm at stept asw’! = (w'', wi' wh') (I'is the index
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Fig. 4. Evolution of the optimal class distribution given the coefficientsw; with respect to the available bandwidth for (a) exhaustearch and (b) The
proposed search algorithm.

of the candidate distribution vector). It corresponds tat mllocation*! (u) = (r‘fl(u), rg’l(u),rg’l(u) . The following rate
allocations are considered as neighbor vectors'6fu), by the transfer of one rate unit between the neighbor ctasse

(W) + 1y () = 1 () )

t,l t,l t,l

1 (U) - 1,7"2 (U) + 1,7"3 (U) )
1 (), 75" (u) + 1,75 () — 1) and
t t,l t,l
1 (U),TQ' (U) - 17T3 (U) +1

<

(8)

=

)
r

The algorithm checks the expected reduction in distortmmefach of the neighbor rate allocations. If one of them tesul
into a larger reduction in distortion than the starting ralflecationr!(u), then the neighbor allocation is included in the list
of candidate solutions. This procedure is repeated forell nandidate solutions: the neighbor allocations are destg long
as the unit rate transfer between the priority classes dsegsethe overall distortion. When there are no further beiakfiacket
exchanges the algorithm stops and the best candidate@oligtiretained. Note that the proposed algorithm implicites
the log-concavity property of the objective function, whiguarantees the convergence to the optimum solution by @edes
strategy, as described above. The algorithmic computdianthis process embodies is summarized in Algorithm 1.

Each client peer runs the above optimization problem péeradl¢g and requests the optimal distributiart from its parent
nodes. The parents then implements network coding opagaitoorder to match the requested distribution. Note thatigtht
happen in practice that parents are not able to transmitetipgested packets. In the case whereallocates non-zero weights
to classes for which a parent node does not have any packetparent node distributes these weight values uniformly to
the classes it can transmit. This modification normally doetsalter significantly the performance of the peer-to-pmstem
as the network can compensate for this by exploiting thetiegisietwork diversity and the fact that the nodes consider t
maximum of their incoming and outgoing link capacities.

We llustrate the performance of the proposed search dfgorby comparing its solution to a full search strategy. We
consider a simple scenario with three quality layers of 26kpts each and RNC i6’F'(28) and one hop transmission. The
loss probability between each pair of nodes is se€t%o Figs. 4(a) and (b) illustrate respectively the rate alimracomputed
by full search and the one found by the algorithm proposed/@bd/e can see that the proposed algorithm is always able
to find the optimal coding strategy except for the roundirfea$ of the numerical computation of the binomial coeffitée
We can also see that, whenever the bandwidth is sufficientattsmnit two classes, the weights in the first two classes are
identical. When the available bandwidth further increatfesn the weight of the first class decreases. Though thisappgar
counter-intuitive, it is explained by the operation of theleedded network coding algorithm where coded packets is¢bend
class contain information from the first two classes.

V. UEP-NCPERFORMANCE EVALUATION
A. Smulation setup

We consider the streaming of actual video content on overktyorks. We encode the Foreman sequence in CIF image
size encoded with the scalable extension (SVC) of the laidsb compression standard H.264 [13] into three qualiyets,



Algorithm 1 Optimal Rate Allocation Search
1: Initialization
o Sett =1 andl = 1.
« Select a pivotakv’'! and include it in the listC!
« Compute the expected reduction in distortibr! (u) corresponding tav’:!
o SetD,u. = DV (u)
2: while £! # () do

3 Pickw®! in £t

4. Compute{K;}, the neighbor distributions af*!
5. for all i do

6: ComputeD;, the distortion reduction corresponding kQ
7: if D; > D%!(u) then

8: Insert/C; in £t+!

9: Setw!thitl = K;

10: Setl=1+1

11 end if

12: if D; > D,,q. then

13: SetD, 00 = D;

14: Setw* = K;

15: end if

16 Removew®! from L.

17.  end for

18: end while

19:t=t+1

20: if L' # 0 then
21:  Go to step 2
22: end if

23: Outputw*

where the number of packets per layer is respectiv&dy 15, 20). The size of the Group of Pictures (GOP) is set to 30 frames
and the frame rate i80 fps. We use packets af500 bytes that are augmented by the TCP/IP and the network cdaiaders.

All network coding operations are performed@¥(28), where it is expected that the size of the Galois Field dog$have

a large influence on the performance, as long as it is largagm{9].

Each evaluation point in our analysis is the average pedooa computed over 100 network topologies with similar
statistical properties. These topologies representuteggnesh networks that are generated by randomly modifgmgnitial
regular network. Specifically, we start with a regular tagyl where the nodes are organized into stages dependingeon th
hop-distance from the servers. In the original topologghe@eer at every stage is connected to all the peers in thalmaigg
stages, and the nodes at the first coding stage are serves.nddethen build irregular topologies by randomly removing
links from the regular topology. We further change somedibly rewiring them to different destination nodes (peershim
network [22]. The new destination nodes for these links atected at random from the nodes at the same stage as theabrigi
destinations or from nodes at subsequent stages, bothdrengle to the original regular topology. The pruning andtiski
probabilities permit to control the “irregularity” of theesulting network. We validate the resulting topology byweitgy that
it does not contain any cycles and that every peer has at tiwasincoming and two outgoing links, since path diversity is
critical in network coding. The capacities in each topolagg finally controlled by varying the bandwidth and packesslo
ratio on the network links. For the evaluation of video qtyalive only consider the last stage nodes as system clieats th
consume the data.

We compare the performance of our UEP network coding systlanpted henceforttdEP-NC, against those of four
competing schemes. The first scheme only considers packeatsthe first class. The peers perform network coding on these
packets and use fully the available bandwidth. This firselias scheme is calle@lass-1. Two other schemes, denot€thss-2
andClass-3, employ only packets from the first two and three layers, @etyely. The nodes perform network coding on the
set of packet under consideration up to the network capatitgse three baseline schemes use the same number of source
packets per class as tlEP-NC scheme.

The fourth competing scheme denoted 5EWF is a method based on [23], [24] which employs expanding windo
fountain codes (EWF) [25] for scalable video multicastiiyVF codes consist of several LT codes [26] that are applied
separately to expanding windows of data. Packet combimaioe generated only with packets from the same window,hwhic
actually coincide with the importance classes of the sodata. We select the robust soliton degree distribution (R2DB]
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Fig. 5. PSNR comparison of the proposed UEP scheme withibassIC solutions and th&/-EWF scheme: (a) influence of the available bandwidth and
(b) influence of the network regularity (pruning and shitiprobabilities).

in SV-EWF due to the relatively small reception overhead that it iscWe further select the reception overhead in each
window by estimating the expected error decoding probighii each window based on the local network statistics. Ttece
encoding procedure can be found in [23]. Finally, we applyFE¥ddes in a receiver-driven mode, similar to tHEP-NC
method. The children peers compute the optimal rate almtdP3] and send requests to the parent peers, which impleme
the corresponding coding strategy. In order to provide éigidaptivity to network dynamics and increase the infoionat
throughput relative to end-to-end solutions, each peethé dystem decodes and then adaptively re-encodes the eéceiv
information content, before forwarding it. We consi@*tEWF to be an excellent scheme for comparison since it shares many
concepts with our UEP scheme.

B. Decoding performance

We first analyze the performances of the competing schemaguasction of the link bandwidth in the network. We consider
irregular network topologies, generated by randomly prgrand shifting links from a regular topology with seven cafi
stages and three peers per stage. The shifting and prurohglplities are set t6%, i.e,, a link is either shifted or removed
from the network, each respectively with a probability5§t. Furthermore, the packet loss ratio on each link is sét%foWe
show in Fig. 5(a) the average performance of each scheme g#/the average video quality as a function of the link badtiwi
in the network, which varies from 160 to 360 kbps. The propgoseheme performs better than the other schemes over the
whole range of bandwidth values. Tli#ass-1 solution exhibits a comparable performance. Howevernidseo overprotect the
data as it only considers packets from the first layer to guaeathe decoding of a minimum video quality. The perforneanc
gap increases as the link capacity increases sinc&J&iNC scheme is able to take advantage of the increased bandwidth
in order to transmit data from other layers. The other twoebias schemes perform poorly for low link capacities as they
do not transmit enough packets for the successful decoditayers two and three. These schemes become competitiye onl
at high bandwidth values. However, even in this case thdlyhstve an inferior performance as they suffer from the on-of
performance characteristici.€, they are either able to decode a full class or do not decogithiag) while on the other
hand ourUEP-NC scheme can provide more adaptivity. The performanc®eEWF lies in between the performances of the
Class-1 andClass-2 schemes. As the bandwidth increaSsEWF performance converges to that ©fass-2 scheme, while it
performs considerably worse than ti&P-NC scheme. This can be attributed to the rather conservatwestion of symbols
to the three expanding windows (classes) given the availabtwork bandwidth, which in turn does not all@®-EWF to
produce symbols from the third class. The conservativecation is due to the higher reception overheadS¢fEWF codes
for short codeblocks (they perform close to MDS codes oniyldoge codeblocks).

Next, we examine the influence of the irregularity of the ratwtopology. In particular, we fix the packet loss rate>té
and the link bandwidth to 360 kbps. We then vary the charsties of the network by changing the pruning and shifting
probabilities in the construction of the irregular topdkxy Both of these probabilities are always selected to eetichl. The
corresponding performance results are shown in Fig. 5{ljah be seen that when the network is quite regular (i.e.nwhe
the shifting and pruning probabilities are low), tBass-3 scheme performs equally well witHEP-NC as both schemes are
able to exploit efficiently the network resources. Howewenen the irregularity of the network increases, the pertoroe
of UEP-NC degrades gracefully while th€lass-3 scheme exhibits a significantly lower performance sinceadaptivity is
reduced by the pre-defined encoding strategy. The other ageline schemes also seem to be robust to network variations
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all links have capacity: (a) 278bps and (b) 338kbps.

but their performance is limited by the smaller number ofeadayers that they consider. The performanceS¢EWF in
topologies with low irregularity is comparable to the penfiance of theClass-2 scheme. However, its performance rapidly
approaches the one of tligass-1 scheme when the network topology becomes more irregulath&unore, it can be seen
in Fig. 5(b) thatUEP-NC outperformsSV-EWF at all topology irregularity levels. This is because bardttvivariations force
SV-EWF to generate symbols from the first class only as the availahielwidth is insufficient to transmit data from other
classes. Furthermore, the second class cannot often heveetrand the source symbols diversity in the network deggad
quickly. This is the case even if next hop nodes have enoughviadth for serving transmission of data from higher classe
We further study the influence of the size of the network on pireformance of the competing algorithms in order to
understand how successive bottlenecks affect the rolsssiofethe algorithms. We consider irregular topologies witree
nodes per stage, but we vary the number of stages. The limkngand shifting probability is equal t&% in the construction
of the network topologies. The packet loss rate on each Bnget t05%. The bandwidth of all the links is set to 270 kbps
and 338 kbps, in Fig. 6(a) and Fig. 6(b), respectively. F{g) &hows that th&JEP-NC scheme is extremely robust and that
its performance remains unaltered by the size of the netwiik SV-EWF scheme is also robust since it generates mainly
packets from the first window (the first video layer) when thk Icapacities are limited. Th€lass-2 solution is, however,
affected more significantly in small size networks due to d¢imeoff performance of the decoding algorithm (i.e., eitiaér
packets are decoded, or none). For larger networks, theltpeaamaller since the network diversity assists this sthdo
cope with the bandwidth variations. The bandwidth variai@re due to the removal and shifting of some links. When the
link bandwidth is larger, we see in Fig. 6(b) that tHEP-NC still shows a sustained performance for all network sizeshé
Class-2 solution, the symbol diversity remains high as network simeeases and the performance does not vary a lot. At the
same time, the performance 8¥-EWF degrades smoothly with the network size. This performamop dan be explained by
the fact that few initial nodes are unable to retrieve thesdovideo layer. Subsequently, the next nodes also loseettund
layer as they cannot collect a sufficient number of packetettode this layer.

C. Performance under timing constraints

As we target streaming applications, we propose now to aeallye performance of the peer-to-peer streaming solutions
under timing constraints. We build irregular topologieshwseven stages and three nodes per stage, where the topology
generation uses pruning and shifting probabilitiess@f. The packet loss rate is set §% and the link bandwidth varies
in the range[160, 360] kbps. All the network links have the same bandwidth. We inm@et the different schemes in the
NS-3 network simulator [27], which permits to study the tigiiinformation appropriately. As in the previous evaluasipall
presented results represent averages over 100 simulations

First, we analyze the average decoding time in Fig. 7 (a). Weeve that the decoding times for the baseline network
coding schemes decrease with the increasing link bandwiitien the links are faster, the peers obviously need less tim
to gather a sufficient number of packets for decoding. We aolysider results where all the clients are able to decode all
the video information in the baseline schemes. It can bééurobserved that thdEP-NC is very adaptive to the network
capacities. It shows comparable decoding times to eacheob#seline network coding solutions. Specifically, for lamk|
capacities, thaJEP-NC scheme transmits mostly packets from the first layer andatfopmance coincides with th€lass-1
scheme. For medium link capacities, tH&P-NC show higher decoding times, as some of the clients also @etmdsecond
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video layer. It reaches performance similar to €lass-2 scheme when all the clients are able to decode the first twerday

Then, the decoding time decreases again as the necessariptather enough packets of the first two video layers deesea
with increasing link capacities. Note that we do not provddeomparison with th&/-EWF scheme here, since the delay for
this scheme rapidly becomes very large, as nodes have tessieely decode and recode the video information. In thégca
the delay grows with the size of the network and a comparisitin the UEP-NC is not meaningful.

We provide another perspective on the performance undémgiconstraints in Fig. 7(b). We constrain the playback ylela
to values between 250 and 2000 msec, which are reasonabiedbtime streaming applications. Packets that are late are
discarded by a decoder. The deadline constraints are givehebpacket time-stamps that depend on the generation &nd th
playback delay value. When the timing constraints are vight,tthe UEP-NC scheme does not perform well as the playback
delay is too small to gather enough packets for decoding.n/the playback delay increases, tHEP-NC algorithm is able to
decode the video only when the bandwidth is high enoughedime delivery is faster in this case. For higher playbackyz|
which are actually closer to the typical constraints impbsepractical systems, the EP-NC scheme is able to provide high
video quality for medium to high bandwidth networks.

Next, we analyze the influence of the buffer size at the pedesioWe consider four different buffer sizes, i.e., 10, 3D, 5
and 110 packets. Note that the last value basically correlspto an infinite buffer in our setup, as it is much larger than
GOP (generation) size in packets. The performance of thposex scheme with constrained buffers is illustrated in 8jg
where the playback delay constraint is set to 250 msec. Welksarve that the buffer size is actually not a critical pagtan
in our network coding scheme. This can be explained by thie sygnbol diversity provided by the servers and the peer nodes
The UEP-NC scheme is further able to generate a high symbol diversitly métwork coding operations on generations and
classes of relatively small sizes. It permits achieving staned performance even with small peer buffers.
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VI. RELATED WORK

While initially network coding research has mainly focusedthroughput benefits, nowadays, many researchers igagsti
the application of network coding to error resilient videomomunication. This research is driven by similarities tesw
network coding and traditional channel coding techniques.

A testbed called “Lava” that applies network coding consdptstreaming systems was developed in [28]. Lava is based on
a standard pull-based peer-to-peer streaming protocelrdindomized network coding is implemented as a plugin comipo
Prior to transmission, the streams are divided in segméengsealefined duration. These are further divided into blodks
Lava, the peers exchange periodically messages to anndhbacavailability of certain segments. The peers possessing
certain segment are used as seeds for the other peers mgathis segment. Progressive decoding is achieved by a Gauss
Jordan elimination. The evaluation is encouraging and shthat the scheme is resilient to network dynamics, maistain
stable buffering levels, and limits playback skips. Mot by the success of [28], Waraj al proposed a novel architecture
known by the acronyniz? [29]. In this work, RNC is combined with a randomized pushoaihm to take full advantage of
coding operations at peer nodes. WheneRérdetects a transmission opportunity it chooses at randonymesat [30] that
the downstream peer has not downloaded yet and it generatesre@sponding network coded block. Frequent buffer map
exchanges are required to identify segments that have ot d@vnloaded. The buffer maps are sent together with puslyio
requested segment. To avoid an explosion of overheads semedn the peers larger size segments are employed.

Using network coding techniques in conjunction with Raptodes [31] has shown in [22], [32] that they resolve problems
related to strict timing constraints and reduce signifilyatite computational cost. The optimal rate allocation ited®mined
by the least reliable user which can be a limiting factor wkenhave to cope with heterogeneous networks and users. In
such networks, network coding with built-in UEP can be bemgfias it can offer a variety of quality of service levels atit
employing expensive control protocols in the network foniaging the same goal.

To date, only a few works have addressed the prioritizatibpazkets in network coding algorithms. Furthermore, the
proposed solutions are usually computationally complex @ifficult to extend to distributed settings. For examplgpiity
random linear codes [33] are proposed for data dissemmatiopeer-to-peer and sensor networks, where improved data
persistence is achieved due to the fact that the most impovtdeo data represents a combination of fewer source fmcke
The global encoding kernel (GEK) approach is proposed ihfil@ddefining unequal amount of protection to scalable datakK
permits a decomposition of the network graph into connetitexigraphs where different coding operations are applie |
in [35]. The optimization is defined asinmax and solved exhaustively. In [36], the problem is consider®@n inter-session
network coding problem [37]. In inter-session network cmdvarious sources access the network and mixing of pactats f
different sources is allowed when the clients receivingrttieed packets are interested in the content of all mixed casur

Practical distributed network coding algorithms are l&rdgespired by the work of Chowt al [9] that adapts RNC [10] to
streaming applications. For UEP protection, the authove leanployed a modified version of the well-known PET alganith
[38]. A complete overview of this system can be found in [7heTrecent work in [39] applies similar concepts, but reace
the PET algorithm in the UEP strategy by an MD-FEC scheme. [18pmputes the optimal source and channel rate allocation
so that the average distortion is minimized for given chaooaditions. In [40], another rate allocation algorithmeisployed
for scalable video streaming over multicast networks. Adlde works provide limited adaptivity to the system dynamas the
coding strategy is generally pre-defined at the server basegobal knowledge about the network. The work in [19] pd®&
finer adaptivity in addressing the problem of streaming 0264/AVC encoded video content where frame dependencies
are taken into account for determining the optimal netwooklicg operations for each video quality layer. This scheme
bases its decisions on estimating the number of innovatheiegts received by each client. The optimization is perémtrat
the intermediate network nodes. However, the related godetisions are complex to compute due to the high number of
dependencies between the video packets. The coding desiie much simpler when the peers implement embedded riketwor
coding strategies as proposed in our ndy&P-NC algorithm.

VII. CONCLUSIONS

We have proposed a novel receiver-driven RNC technique buitlt-in UEP properties. The technique considers the uakqu
importance of the various packet classes and implemerfesalift random network coding protection levels. The randeth
coding strategy permits to keep a simple code design andishe use of expensive policies at the intermediate network
nodes. The UEP properties are achieved simply by choosiagptbper rate allocation among the different classes. Each
client node periodically requests different shares of wetwoded packets from each importance class. The requests a
computed independently at each node such that the expestedidn is minimized. We exploit the properties of the extijve
function to propose a simple iterative search algorithn tinals the optimal rate allocation at each node. We then dstrate
through simulation results that the proposed solution eriépms baseline network coding strategies for peer-tr-pelivery
of scalable video content. By properly handling the différeideo classes and providing adaptivity to local netwdgkistics
our framework achieves efficient distributed video delvever heterogeneous and unreliable overlay networks.
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