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Abstract

We address the problem of prioritized video streaming over lossy overlay networks. We propose to exploit network path
diversity via a novel Randomized Network Coding (RNC) approach that provides unequal error protection (UEP) to the packets
conveying the video content. We design a distributed receiver-driven streaming solution, where a client requests packets from the
different priority classes from its neighbours in the overlay. Based on received requests, a node in turn forwards combinations
of packets from the different classes to the requesting peers. Selecting a network coding strategy at every node can be cast as
an optimization problem that determines the best rate allocation among the different packet classes so that the averagedistortion
at the requesting peer is minimized. As the optimization problem has log-concavity properties, it can be solved by an iterative
algorithm, with low complexity. Our simulation results demonstrate that the proposed scheme respects the relative priorities of
the different packet classes and achieves a graceful quality adaptation to network resource constraints. Therefore, our scheme
substantially outperforms reference schemes such as baseline network coding techniques as well as solutions that employ rateless
codes with built-in UEP properties. The performance evaluation additionally provides evidence about the substantialrobustness
of the proposed scheme in a variety of transmission scenarios.

Index Terms

Network coding, rate allocation, unequal error protection, video streaming, overlay networks.

I. I NTRODUCTION

Spurred by the advances in broadband technologies and videocompression an ever increasing amount of multimedia content
is flowing over our computer networks [1], [2]. In order to facilitate the delivery of such data, networks are often organized
in overlay structures that provide better control of the stream delivery. Among them, peer-to-peer systems have experienced a
fast development and emerged as one of the most popular paradigms for online media delivery [3]–[5].

In addition to increased path or source diversity, overlay networks offer the possibility to request basic processing operations
from the network nodes. Both properties can contribute to improved delivery performance. For example, the nodes can perform
simple coding operations on packets before transmission inorder to increase the goodput. This concept is known as network
coding and it has gone a long way from a purely analytical technique, as introduced originally in [6], to an approach applicable
to data dissemination in the Internet [7] at present. Network coding has also attracted a lot of attention for multimedia
communication as it enables efficient distributed deliveryin lossy overlay networks. This technique also effectivelydeals
with bandwidth variations and packet duplication that typically arise in such networking environments. While computational
complexity still represents an issue in network coding, a few algorithms have been proposed recently that successfullyapply
network coding principles as part of multimedia streaming applications [8]. At the same time, the growing heterogeneity
of Internet access links’ characteristics in terms of packet loss and bandwidth has created a need for scalable delivery
mechanisms. Multimedia data that are typically characterized by differences between the importance of the packets in terms of
their contribution to the reconstructed quality should thus be arranged such that peers are served according to their capacity,
with a graceful quality degradation when resources become scarcer.

In the present paper, we address the problem of prioritized media streaming in overlay networks, where network coding
operations are designed for media packets of different importance. Such networking environments are usually characterized
by a large diversity in terms of client capabilities and access speeds. Therefore, an efficient streaming scheme should allow
for multiple levels of quality of service in order to accommodate for this heterogeneity, as illustrated in Fig. 1. Similarly
to the work in [9], we build on the results of randomized network coding (RNC) [10] for the construction of a distributed
streaming solution that improves the robustness to erasures without the need for centralized control. The coding decisions are
adapted to prioritized video delivery for receivers with different capabilities. We extend our prior work [11] and propose a
novel receiver-driven network coding strategy where the receiving peers request packets from classes with varying importance.
Packet classes can be constructed by considering the unequal contribution of the various video packets to the overall quality
of the presentation [12] or simply from the arrangement of data in scalable video streams [13]. Prioritized transmission is then
achieved by varying the number of packets from each class that are used in embedded network coding operations performed
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Fig. 1. Illustration of scalable video streaming in overlaynetworks with network coding (NC) nodes.
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Fig. 2. The overlay node combines incoming packetspi and generates network coding packetscm. A headerf ′
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is appended to each coded packet that

carries the coding coefficients.

in the overlay nodes. We formulate an optimization problem that characterizes the optimal network coding strategy undertaken
at the nodes forwarding data to a receiving peer as a functionof the available bandwidth. The optimal strategy is computed by
the receiving peer that determines the best rate allocationbetween packet classes that leads to minimum expected distortion.
The receiving peer subsequently requests packets from the parent nodes according to the resulting rate allocation. As the
optimization problem is shown to be log-concave, we proposea new low-complexity algorithm that computes the best coding
strategy in only a few iterations. It is shown that the proposed scheme has clear advantages over network coding methods that
do not consider the importance of the packets and leads to more graceful quality degradation when the effective bandwidth
decreases. Our technique outperforms baseline network coding algorithms and other unequal error protection (UEP) approaches
based on rateless codes [14] that are specifically designed for the delivery of layered media streams.

The rest of the paper is organized as follows. In Section II, we review the general characteristics of network coding as
they pertain to networked media and we describe our novel UEPnetwork coding algorithm. Then, we analyze in Section III
the expected distortion at a decoding peer as a function of its network coding strategy. Next, we formulate in Section IV the
optimization of the network coding choices that can be achieved via a low complexity iterative solution. Subsequently,we
examine various performance aspects of the proposed schemethrough simulation experiments in Section V. Finally, we discuss
related work in Section VI and conclude the paper with summarizing remarks in Section VII.

II. N ETWORK CODING FORUEP VIDEO STREAMING

A. Practical network coding

Here, we briefly review the basics of network coding and its application to practical streaming solutions. Network coding
has been originally proposed with the goal of increasing network throughput in push-based data delivery [6]. Instead ofsimply
forwarding packets or symbols on the outgoing network links, the nodes in the network perform linear combinations of the
received packets and transmit the coded packets to the destination nodes. The receivers can then recover the original data by
receiving and subsequently decoding a sufficient number of linearly combined packets.

The specific coding strategy employed at each node could be globally optimized with a comprehensive knowledge of the
network topology. However, such an assumption is not realistic in practical streaming systems. Instead, distributed algorithms
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Fig. 3. Communication protocol. (a) Children nodesu1 and u2 calculate their optimal coding policiesw1 and w2. These policies are forwarded to the
parent nodev1. (b) The parent generates packets according tow1 and w2 and feeds them back tou1 and u2. The packets at nodev are categorized into
two importance groups based on their information content.

are considered where each node independently chooses its coding strategy based on a local network view. RNC [10] is an
efficient solution for network coding in distributed settings, since coding coefficients are selected randomly by each network
coding node without any need for a central coordination. It can be adapted to practical streaming applications, as proposed in
[9], where network nodes independently perform linear combinations of packets and forward them to their neighbors. As the
coding coefficients are chosen randomly, a header of constant length is appended to each packet with the coefficient information
so that the decoder can decode the stream and recover the original data packets.

The network coding operations can be written as follows. If anodeu generatesM packets by RNC, then themth network
coded packetcm is of the form

cm =
∑

pi(u)∈S(u)

fm,i · pi(u)

wherei is the index of theith packet at nodeu, S(u) corresponds to the set of packets available at the node,pi(u) denotes
either a network coded packet or a native (uncoded) packet, and fm,i is a random coefficient over the Galois field of sizeq,
GF(q). The basis of the Galois field is typically set toq = 256, as it has been shown in [9] that this guarantees high symbol
diversity and low probability of building duplicate packets. As the packets combined at a node are actually combinations of
the original data packets, the encoded packets can be expressed as a function of the native packets

cm =

N
∑

i=1

f
′

m,i · ni

where i denotes the index of theith native packets andN is the total number of native packets, e.g., the number of video
packets. The parametersni andf

′

m,i represent respectively the native packets and their corresponding coding coefficients after
random network coding operations. It is worth noting that some of the coefficientsf

′

m,i can be zero, which means thatcm

does not contain information about the native packetni. A network coded packet is finally augmented withN · log2(q)-bit
header containing the vector of coding coefficients[f

′

m,1, . . . , f
′

m,N ]. Note that the header does not grow with the number of
hop transmissions, but it depends on the number of native packets. The encoding procedure at a peer node is illustrated inFig.
2.

An important aspect of streaming applications is the delay constraints that are imposed by the requirements of continuous
playback at the receiver. In particular, the network nodes cannot buffer packets for long periods of time. At the same time, they
should only combine packets with similar decoding time-stamps so that the decoding is not excessively delayed. In orderto
deal with the timing constraints, the concept of generations has been introduced in [9]. The packet stream is split into multiple
generations and coding operations are restricted to packets within the same generation. Furthermore, since generations are
characterized with playback deadline information, the network nodes only transmit useful packets that correspond to generations
whose decoding deadlines have not passed. All the other packets can be deleted from the nodes’ buffers. The latency incurred
by the streaming application waiting for the media packets to be decoded at the destination obviously becomes dependenton
the length of the generation. Typically, a generation can correspond to a group of pictures (GOP) that are the images between
two reference frames in encoded video sequences.
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B. Prioritized RNC

Our objective is to design a network coding algorithm in overlay networks that is able to deal with packets of different
importance and that increases the likelihood of delivery for higher priority packets. Overlay mesh networks typicallyexhibit
links with heterogeneous bandwidth values and dramatic variations in channel conditions due to random node departures. The
traditional streaming systems utilize variations of channel coding algorithms for robust media delivery in this framework. It
could be achieved with prioritized coding and unequal errorprotection (UEP) [15]–[17], or with variants of multiple description
coding (MDC) algorithms [18]. However, most of these methods are hard to implement in distributed settings and require a
full knowledge of the overall topology and channel conditions in order to determine the optimal coding strategy. Whenever
this information is not available they often overprotect the streams or conversely fail to provide the required protection.

Network coding in turn is very appealing because it can work with limited knowledge of network resources and conditions,
and it can be implemented in a distributed manner. In particular, intermediate network nodes forward on their outgoing link(s)
packets that represent linear combinations of the packets received on their incoming links. The destination nodes can then
recover the original data by receiving and subsequently decoding a sufficient number of these linearly combined packets. Since
packets have different importance, the amount of protection or equivalently the number of network coded packets in eachclass
of importance has to be determined by taking into account thepriorities of the packets. Ideally, the mixing operations should
not be uniform across all packets arriving at a node, but instead packets with higher importance should be involved in more
coding operations.

In order to adapt locally the network coding operations, we propose a scheme where the children peers send requests to their
parents, where they specify the relative number of packets from each importance class that they would like to receive. This
receiver-driven policy provides a simple way to adapt to thecapabilities of the peers without large communication costin the
system. It also provides a finer control of the packet delivery compared to sender-driven error resilient coding or push-based
strategies [9]. This becomes particularly important when most of the network nodes subscribe to the video content and not
only forward the information, as in P2P networks. In our system, the coding operations are, therefore, driven by the children
nodes that determine the optimal amount of coding allocatedto each importance class of the data they subscribe to.

In particular, the packets are organized intoC classes depending on their importance, where the layers areorganized along
decreasing levels of priority. The classc is defined as the set of packets that are linear random combinations of packets from
the c most important classes. In practice, the class of a packet isidentified by a small header which is appended to the packet.
Then, the packet delivery protocol proceeds in two phases. First, as shown in Fig. 3(a), children nodesui compute the optimal
coding strategy that should be implemented at their parent nodesvj , based on the available network bandwidth, the expected
loss probability and the importance of packets in each class. They subsequently send a request message to their parents,which
specifies the distributionwi of the relative number of packets in each class that they would like to receive. The parent nodes in
turn randomly combine their packets according to the computed coding strategies and forward the corresponding coded packets
to their children. This procedure is depicted in Fig. 3(b). Achild node finally inspects the incoming packets to determine whether
they are innovative, i.e., whether they provide any new information relative to the packets already received. Non-innovative
packets are removed from the node’s buffer. Based on the state of its buffer and the local network status, the child node then
computes again the optimal coding strategy and sends it to its parent nodes. This procedure is repeated periodically. Finally,
note that the request-based coding decisions contrasts with the work in [19] proposed for wireless transmission, wherea parent
node sends the same distribution of network coded packets toall of its children. Our algorithm permits to adapt to each child
node on an individual basis, thereby ensuring that the resulting video quality at each of them is maximized for their given
specific network conditions.

We show in the next section how a child node can compute the expected quality for each coding strategy. Then, we propose
an optimization algorithm that has a simple solution for thechild node to decide on the best rate allocation to be requested
from its parents.

III. D ISTORTION ANALYSIS

In this section, we analyze the expected distortion in a decoding peer, as a function of the coding decision and the local
network state. The distortion is dependent on the number of classes that can be decoded, where the probability of decoding a
class depends on the number of network coded packets that have been received. We assume that the available bandwidth between
nodes is fully used by the network coding system. Its value may depend on background traffic or concurrent applications and
we assume it can be estimated locally.

A child nodeu requests packets of different classes from its parent nodes. It sends the same request to all its direct parents.
The request typically takes the form of a rate distribution vectorw, whosecth componentwc denotes the proportion of packets
from classc among the requested packets. By definition, we have

∑C

c=1 wc = 1 andwc ≥ 0, whereC is the number of packet
classes in the network. If we denoteNI(u) the total number of packets requested by the nodeu, the expected number of
packets of classc sent by the nodeu is given as

rc(u) = ⌊NI(u) · wc⌋ (1)
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These packets are lost with probabilityπI(u) which is the average packet erasure rate on the incoming links of nodeu. As
the parent nodes fully use the available upload bandwidthBv,u between nodesv and u, the number of transmitted packets
NI(u) is determined based on the overall incoming bandwidth at node u asNI(u) =

∑

v∈I(u) Bv,u, whereI(u) denotes the
set of parental nodes of nodeu. For the sake of clarity, we assume that the bandwidth is given in packets/sec. The packet loss
probabilityπI(u) is equal to

πI(u) =

∑

v∈I(u)

Bv,u · pu,v

NI(u)
(2)

wherepu,v is the packet loss probability between nodesu andv.
The video distortion at the client peer is dependent on the number of classes that can be decoded. We denote the quality

improvement or distortion reduction after successful decoding of thecth class asdc. The number of native video packets in

the first c classes is written asβc =
c

∑

j=1

αj , whereαj stands for the number of source video packets in classj. The total

number of source or native packets isβC = N . A client is able to decode thecth class as soon as it receivesβc innovative
network coded packets. In our network coding algorithm, these packets represent linear combinations of packets from the first
c classes. Recall that a packet is called innovative when it increases the rank of the equation system constructed by the set of
packets received at a peer node.

The distortion experienced at nodeu is simply written asDmax − D(u), whereDmax represents a constant maximal
distortion when no video class can be decoded. The expected reduction in video distortionD(u) is a function of the number
of classes that the nodeu can decode. It can be written as

D(u) =
C

∑

c=0

dc · pd(c) (3)

where pd(c) denotes the probability that the nodeu is able to decodec video classes. We denote the probability that an
innovative packet arrives at nodeu aspi(u). This probability depends on the local packet loss probability, and the probability
ρ that an encoded packet at a parent node is innovative. We can provide a lower bound on this later probability that only
depends on the size of the Galois Field,q, i.e., ρ ≥ (1 − 1/q) [20]. The equality stands for the case when a node needs one
packet to form a full rank equation system. Since we use the same GF size in each packet class, and since the number of
packets in each class is small comparatively to the possiblenumber of different packets, we consider thatpi(u) is identical in
each class. We further assume that the probability of two parent nodes generating the same network coded packet is negligible.
Thus, the (lower bound) value of the probability for receiving an innovative packet is simply given aspi(u) = (1 − πI(u)) · ρ,
since a packet should not be erased and it should be innovative.

We can now rewrite the expected reduction in distortionD(u) from Eq. (3) as

D(u) =

C
∑

c=1

r1(u)
∑

l1=0

. . .

rc(u)
∑

lc=0

(4)

βc+1−βc−1
∑

lc+1=0

. . .

βC−βc−
C
P

j=c+1

lj−1

∑

lC=0

C
∏

j=1

(

rj(u)
lj

)

· (1 − pi(u))lj · pi(u)rj(u)−lj · dc .

The sequence of summation terms in the first line of the right side of Eq. (4) counts the events of receiving enough packets
to decode up to classi packets, while not being able to decode packets of subsequent classes(c + 1, . . . , C). This latter
condition is described with the second sequence of sums in the second line of Eq. (4). Finally, the product term in the third
line of Eq. (4) denotes simply the likelihood (probability)of one such joint event described by the two previous conditions.

Instead of the overall incoming bandwidth at a node, we actually consider the maximum value between the incoming and
outgoing bandwidths at a peer node as the capacity constraint in our network coding algorithm. This represents a crucialfactor
in maintaining a high packet diversity in the network. In particular, the factorNI(u) in Eq. (1) is replaced by the rate limit
Φ(u) that is defined as

Φ(u) = max{NI(u) · (1 − πI(u)) , NO(u) · (1 − πO(u))}

whereπO(u) and NO(u) are respectively the average packet erasure rate on the outgoing links at nodeu, and the overall
number of packets sent by this node. The packet loss probability πO(u) is defined similarly to Eq. (2). The number of packets
from classc received at nodeu thus becomes

rc(u) = ⌊Φ(u) · wc⌋ (5)
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Specifically, the number of received packets in Eq. (1) is replaced by

rc(u) =

{

⌊NI(u) · wc⌋ , if Φ(u) = NI(u) · (1 − πI(u))

⌊NO(u) · wc⌋ , if Φ(u) = NO(u) · (1 − πO(u))
. (6)

Finally, we observe that the expected distortion depends onthe local network statistics (i.e., the packet loss ratio and the
incoming bandwidth at each node), but also on the number of requested packets in each class viarc(u). As the local network
statistics are given, a peer node can still maximize the expected reduction in distortion by optimizing the packet classdistribution
that represents the relative number of network coded packets requested in each class. We study the optimization of the network
coding strategy in the next section.

IV. OPTIMIZED NETWORK CODING STRATEGY

A. Optimal rate allocation

We can now formulate the optimization problem solved by eachclient nodeu. The node is interested in determining the
number of packets it should request from its parents for eachpacket class. The optimal class distributionw⋆ is computed such
that it minimizes the expected distortion, or alternatively it maximizes the expected reduction in distortion, as contributed by
the received packets. Formally, the optimal rate allocation problem can be written as follows:

Rate Allocation Problem (RAP):

w⋆ = argmax
w

D(u), (7)

such that
C
∑

c=1
wc = 1 andwc ≥ 0 , for c = 1, . . . , C .

The peeru is interested in selecting the vector of coefficientsw⋆ = [w⋆
1 , . . . , w⋆

C ] such that the network coding strategy
employed by its parent nodes maximizes the received video quality. This distribution is then sent as a request to all the parent
nodes of peeru, which then perform network coding operations in order to match the requested distribution.

B. Optimization algorithm

Every client peer has to solve theRAP problem independently based on local network information.Since the search space
is huge, exhaustive algorithms are too complex and cannot beimplemented even for a small number of packets. Fortunately,
the objective function in Eq. (4) is a log-concave function,which leads to a simple iterative solution of theRAP problem in
each peer node. We prove below that the objective function islog-concave and we later present the optimal rate allocation
algorithm.

Proposition 1: The expected distortion functionD(u) in Eq. (4) is log-concave.
Proof: We show that Eq. (4) is log-concave by proving that all termsf(wc) in the product are log-concave, where

f(wc) =

C
∏

j=1

(

rj(u)
lj

)

· pi(u)lj · (1 − pi(u))
rj(u)−lj · dc

We notice that the terms inf(wc) actually represent the convolution of functions of the formg(wc) = (1 − pi(u))lj ·
pi(u)rj(u)−lj · dc. The factordc is simply a constant independent ofwc, as it represents the importance of classc. The
functionsg(wc) are log-concave as they represent a product of log-concave binomial coefficients and exponential terms and
log-concavity is maintained under multiplication. Therefore, the functionf(wc) is also log-concave, as convolution preserves
log-concavity. Finally, the objective function in Eq. (4) is log-concave, as it is a cumulative distribution function [21].

The log-concavity property of the objective function permits to devise a low cost iterative optimization algorithm that is able
to determine the optimum of the class rate allocation vectorin a finite number of steps. We now propose a greedy algorithm
that searches for the optimal distributionw∗ independently at each nodeu.

The optimization algorithm starts from a pivotal packet distribution w over the priority classes that is then refined iteratively.
The initial distribution depends on the number of classes that a node can optimally decode given the overall number of received
packets. Specifically, when the bandwidth is adequate to decode the firstc classes in an error-free case, the pivotal distribution
respects the percentage fractions of the packets comprising the firstc classes. No packets are requested from the other classes,
i.e., the corresponding entries inw are zero. In every step of the algorithm, we examine the neighbors of the distribution vector
w obtained from the previous iterations. In particular, a neighbor distribution is obtained by changing the rate allocation with
the transfer of a unit rate from one class to an adjacent one, while the overall rate stays constant in order to fully utilize the
available bandwidth. For example, if the video is encoded with packets in 3 classes arranged in order of importance, we can
write the lth candidate distribution vector of the iterative search algorithm at stept aswt,l = (wt,l

1 , wt,l
2 , wt,l

3 ) (l is the index
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Fig. 4. Evolution of the optimal class distribution given bythe coefficientswi with respect to the available bandwidth for (a) exhaustive search and (b) The
proposed search algorithm.

of the candidate distribution vector). It corresponds to a rate allocationrt,l(u) =
(

rt,l
1 (u), rt,l

2 (u), rt,l
3 (u)

)

. The following rate

allocations are considered as neighbor vectors ofrt,l(u), by the transfer of one rate unit between the neighbor classes:






























(

rt,l
1 (u) + 1, rt,l

2 (u) − 1, rt,l
3 (u)

)

,
(

rt,l
1 (u) − 1, rt,l

2 (u) + 1, rt,l
3 (u)

)

,
(

rt,l
1 (u), rt,l

2 (u) + 1, rt,l
3 (u) − 1

)

and
(

rt,l
1 (u), rt,l

2 (u) − 1, rt,l
3 (u) + 1

)

.

(8)

The algorithm checks the expected reduction in distortion for each of the neighbor rate allocations. If one of them results
into a larger reduction in distortion than the starting rateallocationrt,l(u), then the neighbor allocation is included in the list
of candidate solutions. This procedure is repeated for all new candidate solutions: the neighbor allocations are tested, as long
as the unit rate transfer between the priority classes decreases the overall distortion. When there are no further beneficial packet
exchanges the algorithm stops and the best candidate solution is retained. Note that the proposed algorithm implicitlyuses
the log-concavity property of the objective function, which guarantees the convergence to the optimum solution by a descent
strategy, as described above. The algorithmic computationthat this process embodies is summarized in Algorithm 1.

Each client peer runs the above optimization problem periodically and requests the optimal distributionw∗ from its parent
nodes. The parents then implements network coding operations in order to match the requested distribution. Note that itmight
happen in practice that parents are not able to transmit the requested packets. In the case wherew∗ allocates non-zero weights
to classes for which a parent node does not have any packets, the parent node distributes these weight values uniformly to
the classes it can transmit. This modification normally doesnot alter significantly the performance of the peer-to-peersystem
as the network can compensate for this by exploiting the existing network diversity and the fact that the nodes consider the
maximum of their incoming and outgoing link capacities.

We illustrate the performance of the proposed search algorithm by comparing its solution to a full search strategy. We
consider a simple scenario with three quality layers of 20 packets each and RNC inGF (28) and one hop transmission. The
loss probability between each pair of nodes is set to5%. Figs. 4(a) and (b) illustrate respectively the rate allocation computed
by full search and the one found by the algorithm proposed above. We can see that the proposed algorithm is always able
to find the optimal coding strategy except for the rounding effects of the numerical computation of the binomial coefficients.
We can also see that, whenever the bandwidth is sufficient to transmit two classes, the weights in the first two classes are
identical. When the available bandwidth further increases, then the weight of the first class decreases. Though this mayappear
counter-intuitive, it is explained by the operation of the embedded network coding algorithm where coded packets in thesecond
class contain information from the first two classes.

V. UEP-NCPERFORMANCE EVALUATION

A. Simulation setup

We consider the streaming of actual video content on overlaynetworks. We encode the Foreman sequence in CIF image
size encoded with the scalable extension (SVC) of the latestvideo compression standard H.264 [13] into three quality layers,
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Algorithm 1 Optimal Rate Allocation Search
1: Initialization

• Set t = 1 and l = 1.
• Select a pivotalw1,1 and include it in the listL1

• Compute the expected reduction in distortionD1,1(u) corresponding tow1,1

• SetDmax = D1,1(u)

2: while Lt 6= ∅ do
3: Pick wt,l in Lt

4: Compute{Ki}, the neighbor distributions ofwt,l

5: for all i do
6: ComputeDi, the distortion reduction corresponding toKi

7: if Di > Dt,l(u) then
8: InsertKi in Lt+1

9: Setwt+1,l+1 = Ki

10: Set l = l + 1
11: end if
12: if Di > Dmax then
13: SetDmax = Di

14: Setw∗ = Ki

15: end if
16: Removewt,l from Lt.
17: end for
18: end while
19: t = t + 1
20: if Lt 6= ∅ then
21: Go to step 2
22: end if
23: Outputw∗

where the number of packets per layer is respectively(38, 15, 20). The size of the Group of Pictures (GOP) is set to 30 frames
and the frame rate is30 fps. We use packets of1500 bytes that are augmented by the TCP/IP and the network codingheaders.
All network coding operations are performed inGF (28), where it is expected that the size of the Galois Field does not have
a large influence on the performance, as long as it is large enough [9].

Each evaluation point in our analysis is the average performance computed over 100 network topologies with similar
statistical properties. These topologies represent irregular mesh networks that are generated by randomly modifyingan initial
regular network. Specifically, we start with a regular topology where the nodes are organized into stages depending on their
hop-distance from the servers. In the original topology, each peer at every stage is connected to all the peers in the neighboring
stages, and the nodes at the first coding stage are server nodes. We then build irregular topologies by randomly removing
links from the regular topology. We further change some links by rewiring them to different destination nodes (peers) inthe
network [22]. The new destination nodes for these links are selected at random from the nodes at the same stage as the original
destinations or from nodes at subsequent stages, both in reference to the original regular topology. The pruning and shifting
probabilities permit to control the “irregularity” of the resulting network. We validate the resulting topology by ensuring that
it does not contain any cycles and that every peer has at leasttwo incoming and two outgoing links, since path diversity is
critical in network coding. The capacities in each topologyare finally controlled by varying the bandwidth and packet loss
ratio on the network links. For the evaluation of video quality, we only consider the last stage nodes as system clients that
consume the data.

We compare the performance of our UEP network coding system,denoted henceforthUEP-NC, against those of four
competing schemes. The first scheme only considers packets from the first class. The peers perform network coding on these
packets and use fully the available bandwidth. This first baseline scheme is calledClass-1. Two other schemes, denotedClass-2
andClass-3, employ only packets from the first two and three layers, respectively. The nodes perform network coding on the
set of packet under consideration up to the network capacity. These three baseline schemes use the same number of source
packets per class as theUEP-NC scheme.

The fourth competing scheme denoted asSV-EWF is a method based on [23], [24] which employs expanding window
fountain codes (EWF) [25] for scalable video multicasting.EWF codes consist of several LT codes [26] that are applied
separately to expanding windows of data. Packet combinations are generated only with packets from the same window, which
actually coincide with the importance classes of the sourcedata. We select the robust soliton degree distribution (RSD) [26]
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Fig. 5. PSNR comparison of the proposed UEP scheme with baseline NC solutions and theSV-EWF scheme: (a) influence of the available bandwidth and
(b) influence of the network regularity (pruning and shifting probabilities).

in SV-EWF due to the relatively small reception overhead that it incurs. We further select the reception overhead in each
window by estimating the expected error decoding probability in each window based on the local network statistics. The exact
encoding procedure can be found in [23]. Finally, we apply EWF codes in a receiver-driven mode, similar to theUEP-NC
method. The children peers compute the optimal rate allocation [23] and send requests to the parent peers, which implement
the corresponding coding strategy. In order to provide higher adaptivity to network dynamics and increase the information
throughput relative to end-to-end solutions, each peer in the system decodes and then adaptively re-encodes the received
information content, before forwarding it. We considerSV-EWF to be an excellent scheme for comparison since it shares many
concepts with our UEP scheme.

B. Decoding performance

We first analyze the performances of the competing schemes asa function of the link bandwidth in the network. We consider
irregular network topologies, generated by randomly pruning and shifting links from a regular topology with seven coding
stages and three peers per stage. The shifting and pruning probabilities are set to5%, i.e., a link is either shifted or removed
from the network, each respectively with a probability of5%. Furthermore, the packet loss ratio on each link is set to5%. We
show in Fig. 5(a) the average performance of each scheme given as the average video quality as a function of the link bandwidth
in the network, which varies from 160 to 360 kbps. The proposed scheme performs better than the other schemes over the
whole range of bandwidth values. TheClass-1 solution exhibits a comparable performance. However, it tends to overprotect the
data as it only considers packets from the first layer to guarantee the decoding of a minimum video quality. The performance
gap increases as the link capacity increases since ourUEP-NC scheme is able to take advantage of the increased bandwidth
in order to transmit data from other layers. The other two baseline schemes perform poorly for low link capacities as they
do not transmit enough packets for the successful decoding of layers two and three. These schemes become competitive only
at high bandwidth values. However, even in this case they still have an inferior performance as they suffer from the on-off
performance characteristic, (i.e, they are either able to decode a full class or do not decode anything) while on the other
hand ourUEP-NC scheme can provide more adaptivity. The performance ofSV-EWF lies in between the performances of the
Class-1 andClass-2 schemes. As the bandwidth increasesSV-EWF performance converges to that ofClass-2 scheme, while it
performs considerably worse than theUEP-NC scheme. This can be attributed to the rather conservative allocation of symbols
to the three expanding windows (classes) given the available network bandwidth, which in turn does not allowSV-EWF to
produce symbols from the third class. The conservative allocation is due to the higher reception overhead ofSV-EWF codes
for short codeblocks (they perform close to MDS codes only for large codeblocks).

Next, we examine the influence of the irregularity of the network topology. In particular, we fix the packet loss rate to5%
and the link bandwidth to 360 kbps. We then vary the characteristics of the network by changing the pruning and shifting
probabilities in the construction of the irregular topologies. Both of these probabilities are always selected to be identical. The
corresponding performance results are shown in Fig. 5(b). It can be seen that when the network is quite regular (i.e., when
the shifting and pruning probabilities are low), theClass-3 scheme performs equally well withUEP-NC as both schemes are
able to exploit efficiently the network resources. However,when the irregularity of the network increases, the performance
of UEP-NC degrades gracefully while theClass-3 scheme exhibits a significantly lower performance since itsadaptivity is
reduced by the pre-defined encoding strategy. The other two baseline schemes also seem to be robust to network variations,
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Fig. 6. Network scalability.Class-2 scheme is compared with theUEP-NC scheme with three video layers andSV-EWF for network of various scales where
all links have capacity: (a) 270kbps and (b) 338kbps.

but their performance is limited by the smaller number of video layers that they consider. The performance ofSV-EWF in
topologies with low irregularity is comparable to the performance of theClass-2 scheme. However, its performance rapidly
approaches the one of theClass-1 scheme when the network topology becomes more irregular. Furthermore, it can be seen
in Fig. 5(b) thatUEP-NC outperformsSV-EWF at all topology irregularity levels. This is because bandwidth variations force
SV-EWF to generate symbols from the first class only as the availablebandwidth is insufficient to transmit data from other
classes. Furthermore, the second class cannot often be retrieved and the source symbols diversity in the network degrades
quickly. This is the case even if next hop nodes have enough bandwidth for serving transmission of data from higher classes.

We further study the influence of the size of the network on theperformance of the competing algorithms in order to
understand how successive bottlenecks affect the robustness of the algorithms. We consider irregular topologies withthree
nodes per stage, but we vary the number of stages. The link pruning and shifting probability is equal to5% in the construction
of the network topologies. The packet loss rate on each link is set to5%. The bandwidth of all the links is set to 270 kbps
and 338 kbps, in Fig. 6(a) and Fig. 6(b), respectively. Fig. 6(a) shows that theUEP-NC scheme is extremely robust and that
its performance remains unaltered by the size of the network. The SV-EWF scheme is also robust since it generates mainly
packets from the first window (the first video layer) when the link capacities are limited. TheClass-2 solution is, however,
affected more significantly in small size networks due to theon-off performance of the decoding algorithm (i.e., eitherall
packets are decoded, or none). For larger networks, the penalty is smaller since the network diversity assists this scheme to
cope with the bandwidth variations. The bandwidth variations are due to the removal and shifting of some links. When the
link bandwidth is larger, we see in Fig. 6(b) that theUEP-NC still shows a sustained performance for all network sizes. In the
Class-2 solution, the symbol diversity remains high as network sizeincreases and the performance does not vary a lot. At the
same time, the performance ofSV-EWF degrades smoothly with the network size. This performance drop can be explained by
the fact that few initial nodes are unable to retrieve the second video layer. Subsequently, the next nodes also lose the second
layer as they cannot collect a sufficient number of packets todecode this layer.

C. Performance under timing constraints

As we target streaming applications, we propose now to analyze the performance of the peer-to-peer streaming solutions
under timing constraints. We build irregular topologies with seven stages and three nodes per stage, where the topology
generation uses pruning and shifting probabilities of5%. The packet loss rate is set to5% and the link bandwidth varies
in the range[160, 360] kbps. All the network links have the same bandwidth. We implement the different schemes in the
NS-3 network simulator [27], which permits to study the timing information appropriately. As in the previous evaluations, all
presented results represent averages over 100 simulations.

First, we analyze the average decoding time in Fig. 7 (a). We observe that the decoding times for the baseline network
coding schemes decrease with the increasing link bandwidth. When the links are faster, the peers obviously need less time
to gather a sufficient number of packets for decoding. We onlyconsider results where all the clients are able to decode all
the video information in the baseline schemes. It can be further observed that theUEP-NC is very adaptive to the network
capacities. It shows comparable decoding times to each of the baseline network coding solutions. Specifically, for low link
capacities, theUEP-NC scheme transmits mostly packets from the first layer and its performance coincides with theClass-1
scheme. For medium link capacities, theUEP-NC show higher decoding times, as some of the clients also decode the second
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Fig. 7. (a) Decoding time comparison of the proposedUEP-NC scheme with the baseline network coding solutions. (b) PSNRcomparison of theUEP-NC
scheme for various link capacities and various playback delays.
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video layer. It reaches performance similar to theClass-2 scheme when all the clients are able to decode the first two layers.
Then, the decoding time decreases again as the necessary time to gather enough packets of the first two video layers decreases
with increasing link capacities. Note that we do not providea comparison with theSV-EWF scheme here, since the delay for
this scheme rapidly becomes very large, as nodes have to successively decode and recode the video information. In this case,
the delay grows with the size of the network and a comparison with the UEP-NC is not meaningful.

We provide another perspective on the performance under timing constraints in Fig. 7(b). We constrain the playback delay
to values between 250 and 2000 msec, which are reasonable forreal time streaming applications. Packets that are late are
discarded by a decoder. The deadline constraints are given by the packet time-stamps that depend on the generation and the
playback delay value. When the timing constraints are very tight, theUEP-NC scheme does not perform well as the playback
delay is too small to gather enough packets for decoding. When the playback delay increases, theUEP-NC algorithm is able to
decode the video only when the bandwidth is high enough, since the delivery is faster in this case. For higher playback delays,
which are actually closer to the typical constraints imposed in practical systems, theUEP-NC scheme is able to provide high
video quality for medium to high bandwidth networks.

Next, we analyze the influence of the buffer size at the peer nodes. We consider four different buffer sizes, i.e., 10, 30, 50
and 110 packets. Note that the last value basically corresponds to an infinite buffer in our setup, as it is much larger thana
GOP (generation) size in packets. The performance of the proposed scheme with constrained buffers is illustrated in Fig. 8,
where the playback delay constraint is set to 250 msec. We canobserve that the buffer size is actually not a critical parameter
in our network coding scheme. This can be explained by the high symbol diversity provided by the servers and the peer nodes.
The UEP-NC scheme is further able to generate a high symbol diversity with network coding operations on generations and
classes of relatively small sizes. It permits achieving a sustained performance even with small peer buffers.
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VI. RELATED WORK

While initially network coding research has mainly focusedon throughput benefits, nowadays, many researchers investigate
the application of network coding to error resilient video communication. This research is driven by similarities between
network coding and traditional channel coding techniques.

A testbed called “Lava” that applies network coding concepts to streaming systems was developed in [28]. Lava is based on
a standard pull-based peer-to-peer streaming protocol. The randomized network coding is implemented as a plugin component.
Prior to transmission, the streams are divided in segments of predefined duration. These are further divided into blocks. In
Lava, the peers exchange periodically messages to announcethe availability of certain segments. The peers possessinga
certain segment are used as seeds for the other peers requiring this segment. Progressive decoding is achieved by a Gauss-
Jordan elimination. The evaluation is encouraging and shows that the scheme is resilient to network dynamics, maintains
stable buffering levels, and limits playback skips. Motivated by the success of [28], Wanget al proposed a novel architecture
known by the acronymR2 [29]. In this work, RNC is combined with a randomized push algorithm to take full advantage of
coding operations at peer nodes. WheneverR2 detects a transmission opportunity it chooses at random a segment [30] that
the downstream peer has not downloaded yet and it generates acorresponding network coded block. Frequent buffer map
exchanges are required to identify segments that have not been downloaded. The buffer maps are sent together with previously
requested segment. To avoid an explosion of overheads sent between the peers larger size segments are employed.

Using network coding techniques in conjunction with Raptorcodes [31] has shown in [22], [32] that they resolve problems
related to strict timing constraints and reduce significantly the computational cost. The optimal rate allocation is determined
by the least reliable user which can be a limiting factor whenwe have to cope with heterogeneous networks and users. In
such networks, network coding with built-in UEP can be beneficial as it can offer a variety of quality of service levels without
employing expensive control protocols in the network for achieving the same goal.

To date, only a few works have addressed the prioritization of packets in network coding algorithms. Furthermore, the
proposed solutions are usually computationally complex and difficult to extend to distributed settings. For example, priority
random linear codes [33] are proposed for data dissemination in peer-to-peer and sensor networks, where improved data
persistence is achieved due to the fact that the most important video data represents a combination of fewer source packets.
The global encoding kernel (GEK) approach is proposed in [34] for defining unequal amount of protection to scalable data.GEK
permits a decomposition of the network graph into connectedline graphs where different coding operations are applied like
in [35]. The optimization is defined asminmax and solved exhaustively. In [36], the problem is consideredas an inter-session
network coding problem [37]. In inter-session network coding various sources access the network and mixing of packets from
different sources is allowed when the clients receiving themixed packets are interested in the content of all mixed sources.

Practical distributed network coding algorithms are largely inspired by the work of Chouet al [9] that adapts RNC [10] to
streaming applications. For UEP protection, the authors have employed a modified version of the well-known PET algorithm
[38]. A complete overview of this system can be found in [7]. The recent work in [39] applies similar concepts, but replaces
the PET algorithm in the UEP strategy by an MD-FEC scheme [18]. It computes the optimal source and channel rate allocation
so that the average distortion is minimized for given channel conditions. In [40], another rate allocation algorithm isemployed
for scalable video streaming over multicast networks. All these works provide limited adaptivity to the system dynamics, as the
coding strategy is generally pre-defined at the server basedon global knowledge about the network. The work in [19] provides
finer adaptivity in addressing the problem of streaming of H.264/AVC encoded video content where frame dependencies
are taken into account for determining the optimal network coding operations for each video quality layer. This scheme
bases its decisions on estimating the number of innovative packets received by each client. The optimization is performed at
the intermediate network nodes. However, the related coding decisions are complex to compute due to the high number of
dependencies between the video packets. The coding decisions are much simpler when the peers implement embedded network
coding strategies as proposed in our novelUEP-NC algorithm.

VII. C ONCLUSIONS

We have proposed a novel receiver-driven RNC technique withbuilt-in UEP properties. The technique considers the unequal
importance of the various packet classes and implements different random network coding protection levels. The randomized
coding strategy permits to keep a simple code design and avoids the use of expensive policies at the intermediate network
nodes. The UEP properties are achieved simply by choosing the proper rate allocation among the different classes. Each
client node periodically requests different shares of network coded packets from each importance class. The requests are
computed independently at each node such that the expected distortion is minimized. We exploit the properties of the objective
function to propose a simple iterative search algorithm that finds the optimal rate allocation at each node. We then demonstrate
through simulation results that the proposed solution outperforms baseline network coding strategies for peer-to-peer delivery
of scalable video content. By properly handling the different video classes and providing adaptivity to local network statistics
our framework achieves efficient distributed video delivery over heterogeneous and unreliable overlay networks.
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