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Abstract.
Recovering the 3D shape of deformable surfaces from single images is
difficult because many different shapes have very similar projections.
This is commonly addressed by restricting the set of possible shapes to
linear combinations of deformation modes and by imposing additional
geometric constraints. Unfortunately, because image measurements are
noisy, such constraints do not always guarantee that the correct shape
will be recovered. To overcome this limitation, we introduce an efficient
approach to exploring the set of solutions of an objective function based
on point-correspondences and to proposing a small set of candidate 3D
shapes. This allows the use of additional image information to choose
the best one. As a proof of concept, we use either motion or shading cues
to this end and show that we can handle a complex objective function
without having to solve a difficult non-linear minimization problem.

Key words: 3D shape recovery, deformation model, nonrigid surfaces.

1 Introduction

It has been shown that the 3D shape of deformable surfaces can be recovered
from even single images provided that enough correspondences can be established
between that image and one in which the surface’s shape is already known [1–3].
While effective, these techniques return one single reconstruction without ac-
counting for the fact that several plausible shapes could produce virtually the
same projection and therefore be indistinguishable on the basis of correspon-
dences and geometry alone. In practice, as shown in Fig. 1 disambiguation is
only possible using additional image information.

In this paper, we introduce an efficient way to sample the space of all plausible
solutions. We achieve this by representing shape deformations in terms of a
weighted sum of deformation modes and relating uncertainties on the location
of point correspondences to uncertainties on the mode weights. This lets us
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the EU project FP7-247947 and by the Swiss National Science Foundation.
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Fig. 1. Handling 3D shape ambiguities. First Row. Image of a surface lit by a nearby
light source and the corresponding ground truth surface. Three other Rows. In each
one, a different candidate surface proposed by our algorithm is shown in black. The
corresponding projection and synthesized image given automatically estimated lighting
parameters are shown in the middle columns. As can be seen, its projection is very
similar, even though its shape may be very different from the original one. However,
when comparing the true and synthesized images, it becomes clear that the correct
shape is the one at the second row.

explore the space of modes and select a very small number of likely ones, which
correspond to 3D shapes such as those shown in the left column of Fig. 1.

In this paper, as a proof of concept, we use either shading or motion informa-
tion to select the best 3D shape among the candidates generated in this manner.
When using shading, we show that we can exploit it both when the light sources
are distant and when they are nearby. The latter is particularly significant be-
cause exploiting nearby light sources would involve solving a difficult non linear
minimization problem if we did not have a reliable way to generate 3D shape
hypotheses. In our examples, this is all the more true since the lighting parame-
ters are initially unknown and must be estimated from the images. Alternatively,
when a video is available, we can exploit three-frame sequences to pick the set of
candidate 3D shapes that provides the most temporally consistent motion. We
show that both these approaches outperform state-of-the-art methods [4, 5].

Summarizing, our contribution is an approach to avoiding being trapped in
the local minima of a potentially complicated objective function by efficiently
exploring the solution space of a simpler one. As a result, we only need to evaluate
the full objective function for a few selected shapes, which implies we could use
a very discriminating and expensive one if necessary.
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2 Related Work

Single-view 3D reconstruction of non-rigid surfaces is known to be a highly
under-constrained problem that cannot be solved without a priori knowledge.
A typical approach to introducing such knowledge and reducing the space of
possible shapes is to use deformation models [7–11]. Surface deformations are
expressed as weighted sums of modes and retrieving shape entails estimating
the modal weights by minimizing an image-based objective function. Since such
functions usually have many local minima, a good initialization is required.

Several recent methods propose to recover the shape of inextensible surfaces
without an explicit deformation model. Some are specifically designed for appli-
cable surfaces, such as sheets of paper [12, 13]. Others constrain the distances
between surface points to remain constant [6, 1]. This is generally applicable to
many materials that do not perceptibly shrink or stretch as they deform.

Other approaches achieve shape-recovery either in closed form [4] or by solv-
ing a convex optimization problem [2], and thus, eliminate the need for an initial-
ization. To this end, they require 2D point correspondences between the image
in which one wishes to compute the shape and one in which it is already known.
However, as will be shown in the results section, small inaccuracies in the cor-
respondences can result in erroneous reconstructions.

The method proposed in this paper builds on the formalism introduced in [4]
to return not a single solution but a representative set of all possible solutions
and then uses additional information to decide which one is best. In this paper,
we use shading or motion but any image cue could have been used instead.

Of course, many methods, such as [14, 15], have been proposed to merge geo-
metric and shading cues into a common framework. However, these techniques,
unlike ours, involve multiple iterative processes that require good initial esti-
mates. An exception is the algorithm of [5] that solves for shape in closed form
but is only applicable for Lambertian surfaces lit by a distant point light source.

3 Exploring the Space of Potential 3D Shapes

Let us assume that we are given a reference image in which the shape of a 3D
deformable surface represented by a triangulated mesh is known and a set of
2D point correspondences between this reference image and an input image in
which the shape is unknown. In [4], it was shown that this unknown 3D shape
could be computed in closed form by representing the surface deformations in
terms of a weighted sum of modes and picking the weights that minimize the
reprojection errors while preserving the length of the mesh edges. However, the
resulting shape is not always the right one, as shown in Table 1. This is because
the correspondences are not infinitely accurate and the algorithm can trade a
small amount of reprojection error against similarly small violations of the length
constraints. As it turns out, this is enough to result in large changes in 3D shape
since, as discussed earlier, very different shapes can have very similar projections.

To avoid this problem, we also represent the shape as a weighted sum of
modes. But, instead of picking the best set of weights according to a geometric
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Shape # 1 Shape # 2 Shape # 3

Reconst. Error (mm) 0.82 4.25 5.35
Reproj. Error (pix) 1.92 1.87 1.93
Inextens. Error (mm) 4.00 4.27 3.97

Table 1. Mean reconstruction, reprojection and inextensibility errors for the candidate
shapes of Fig.1. Note that, although shape#1 violates edge-length constraints slightly
more than shape#3, it still is the reconstruction closest to the ground truth by far.

criterion, we fit a Gaussian distribution to those that correspond to acceptable
projections. This lets us exhaustively sample the sets of weights that also preserve
the length of the mesh edges. This typically results in approximately one hundred
candidate shapes per image, among which the best can be picked using additional
sources of shape information. In Section 4, we show that either shading or motion
cues can be used for this purpose.

3.1 Problem Formulation

We represent our surface as a triangulated 3D mesh with nv vertices vi concate-
nated in a vector x=[v!

1 , . . . ,v!
nv

]!. We model surface deformations as weighted
sums of nm deformation modes Q = [q1, . . . ,qnm ], obtained by applying Prin-
cipal Component Analysis over a set of training meshes. We write

x = x0 +
nm∑

i=1

αiqi = x0 + Qα , (1)

where x0 is a mean shape and α = [α1, . . . ,αnm ]! are unknown weights that
define the current surface shape.

As in [4, 5], we treat a correspondence between a 2D point ri in the reference
image and a 2D point ui in the input image as a 2D-to-3D correspondence
between ui and pi, the 3D point on the mesh in its reference configuration that
projects at ri. We express the coordinates of pi in terms of the barycentric
coordinates of the face to which belongs as pi =

∑3
j=1 aijv

[i]
j , where the aij are

the barycentric coordinates and the v[i]
j are the vertices.

Assuming the matrix A of internal camera parameters to be known and that
the 3D points are expressed in the camera referencial, the fact that pi projects
at ui implies that

wi

[
ui

1

]
= Api =

[
A2×3

a!
3

]
pi , (2)

where wi is a scalar, A2×3 are the first two rows of A and a!
3 the last one. Since

wi = a!
3 pi, we can write

(
uia!

3 − A2×3

)
pi = 0. By representing pi with its

barycentric coordinates, we then have
3∑

j=1

aij

(
uia!

3 − A2×3

)
v[i]

j = 0 . (3)
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In short, for each 3D-to-2D correspondence, Eq. 3 provides 2 linear constraints
on x. nc such correspondences yield 2nc constraints which can be written as a
linear system Mx = 0, where M is a 2nc ×3nv matrix obtained from the known
values aij , ui and A. Injecting the modal description of Eq. 1 then yields

MQα + Mx0 = 0 , (4)

such that any set of weights α that is a solution of it corresponds to a surface
that projects at the right place.

3.2 Proposing Candidate Shapes

Since correspondences {pi,ui} are potentially noisy, the simplest way to solve
Eq. 4 is in the least-squares sense. This, however, may not be satisfactory be-
cause MQ is an ill-conditioned matrix with several small eigenvalues [4, 5]. As
a result, even when there are many correspondences, small changes in the ex-
act correspondence locations, and therefore in the coefficients of M, can result
in very large changes of the resulting α values. In other words, many different
sets of α weights can result in virtually the same projection. In [4], this is ad-
dressed by choosing the weights that best preserve the lengths of the mesh edges.
However, as shown by Table 1, this does not necessarily yield the best answer.

In this paper, instead of choosing the best set of weights based on geometric
considerations alone we have devised a way to quickly propose a restricted set of
candidate solutions among which the best can be chosen using additional sources
of image information, as will be done in Sections 4.1 and 4.2. To this end, we
first derive an analytical expression of the solution space as a function of the 2D
input data statistics. We then efficiently sample this space and keep the best sam-
ples in terms of both minimizing reprojection errors and preserving edge lengths.

Gaussian Representation of the Solution Space. The α weights we seek
can be computed as the least-squares solution of Eq. 4:

α = (B!B)−1B!b , (5)

where B=MQ is a 2nc×nm matrix, and b=−Mx0 is a 2nc vector. The compo-
nents of B and b are linear functions of the known parameters aij , ui, Q and A.
We have seen that this solution may not, in fact, be the right one because B is
ill-conditioned and solving the system in the least-squares sense magnifies small
inaccuracies in the correspondences. We can nevertheless exploit the expression
of Eq. 5 to model where to look for other potential solutions as follows.

Let us assume that the estimated correspondence locations are normally dis-
tributed around their true locations. Injecting the corresponding 2nc×2nc diag-
onal covariance matrix Σu into Eq. 5 means that the nm×nm covariance matrix
for the α weights can be written as Σα = JβΣuJ!

β , where Jβ is the nm×2nc

Jacobian of (B!B)−1B!b with respect to the 2D correspondence coordinates:

Jβ =
∂(B!B)−1

∂u
B!b + (B!B)−1 ∂B!b

∂u
. (6)
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Fig. 2. Efficient exploration of the solution space. Left: Number of samples ns needed

to correctly approximate Rα . We plot det(Σ̃α)−det(M2Σα)
det(M2Σα)

, an estimate of the distance

between the theoretical covariance matrix and its empirical estimate from the samples.
It diminishes quickly and becomes negligible for ns = 105. Right: We represent each
set of 30-dimensional α weights by a line whose color encodes the value of the error of
Eq. 9, according to the color-code at the right. The black line represents the ground
truth. Note how well distributed the samples are around it.

We can therefore represent the family of 3D surfaces whose projections are
close to the one that minimizes the reprojection error as being normally dis-
tributed around µα, the least squares solution of Eq. 4, with covariance Σα.
Note that, because µα is the solution of an ill-conditioned system, it is an unre-
liable estimate of the distribution’s center. We could have improved the system’s
conditioning by adding a damping term, but this would have amounted to ar-
bitrarily constraining the norm of µα. Instead, as discussed in the next section,
we use a sampling mechanism to explore different possible values of µα.

Efficiently Exploring the Solution Space. To create a set of plausible 3D
shapes whose projection are acceptably close to the correct one, we first define
a search region Rα in nm-dimensional space. We then sample it using a stan-
dard numerical technique and progressively apply more stringent constrains to
an ever decreasing number of samples.

Given the normal distribution N (µα,Σα) introduced above, we take Rα to
be made of the αi such that

(αi − µα)!Σ−1
α (αi − µα) ≤ M2 , (7)

where M is a threshold chosen to achieve a specified degree of confidence. To
compute its value we use the cumulative chi-squared distribution, which depends
on the dimensionality of the problem . In our experiments, we use nm = 30 modes
and M = 7 yields a 98% level of confidence.

To sample Rα, we draw ns random samples {α̃i}ns
i=1 from the distribution

N (µα,M2Σα). Let µ̃α and Σ̃α be the mean and covariance matrix of these
samples. The technique we use guarantees that µ̃α = µα and that the difference
between Σ̃α and M2Σα approaches zero as ns increases [16].

In practice, as the µα we use is unreliable, we do not draw all ns samples at
once. Instead, we draw successive batches and, having drawn batch k, we draw
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the next one by sampling from the distribution centered around

µk
α =

∑nk
s

i=1 πk
i α̃k

i∑nk
s

i=1 πk
i

, (8)

where the πk
i are weights associated to individual samples, computed as follows.

Let x̃ = [ṽ!
1 , . . . , ṽ!

nv
]! be the mesh computed using sample α̃, and let

{ũi}nc
i=1 be the 2D projections of the 3D points for which correspondences ui are

available. α̃ is assigned the weight π such that

1/π ∼ λ1

nc∑

i

‖ũi − ui‖ + λ2

∑

{i,j}∈N

‖l̃ij − lref
ij ‖ , (9)

where the two terms account for the reprojection and inextensibility errors, re-
spectively. Since these errors are expressed in different units of measurement,
we use λ1 and λ2 to give them similar orders of magnitude. In addition, l̃ij is
the distance between two neighboring vertices ṽi and ṽj , lref

ij is the distance
between the same vertices in the reference configuration, and N represents the
indices of neighboring vertices.

In our experiments we used ns = 105 random samples, which as shown
in Fig. 2(Left), approximate Rα with an error below 0.5%. These samples
were drawn in 10 consecutive batches of 104 samples each. As depicted by
Fig. 2(Right) the samples generated in this way densely cover a large region
of the solution space around the true one. To reduce their number and speed up
further processing, we only keep the 10% of the samples with highest weight.

By construction, all these samples represent shapes that yield similar projec-
tions and only small violations of the length constraints. Furthermore, many of
them yield almost undistiguinshable 3D shapes. To further reduce their number,
we therefore run a Gaussian-means clustering algorithm over all the remaining
samples in the space of the 3D coordinates [17]. This is a variant of the k-means
algorithm that automatically identifies the optimal number of clusters based on
statistical tests designed to check whether all the clusters follow a Gaussian dis-
tribution. These tests are controlled by means of a significance level parameter
which we set to a very low value to favor over-segmentation, that is, to pro-
duce more clusters than absolutely necessary to avoid grouping shapes whose
difference is statistically significant.

Finally, we take our candidates set of shapes to be the cluster centers. This
whole process typically reduces the initial 105 samples to about one hundred.

4 Using Additional Cues to Select the Best Candidate

Given correspondences between the reference image and the input image, the al-
gorithm discussed in the previous section returns about 100 candidate 3D meshes
that all project correctly in the input image and whose edges have retained their
original length. In this section, we show how to use either lighting or motion
cues to disambiguate and pick the best one.
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4.1 Shading Cues

We consider two different cases. First, we assume the surface is lit by a dis-
tant light source, which is the situation envisioned in earlier works on monocular
deformable surface reconstruction that use shading clues [14, 15, 5]. Second, we
address the situation in which the surface is lit by a nearby light source. This
is more difficult because the inverse of the changing distance to the light source
has to be taken into account, which rules out approaches based on simple linear
or quadratic constraints. In both cases, we do not assume the lighting parame-
ters known a priori and estimate them from the candidate 3D shapes. As shown
in Fig. 1, this lets us render the image we would see for any candidate shape,
compare it to the real one, and select the best. To perform the rendering, we
use ray-tracing and take into account visibility effects and shadows cast by the
object on itself. Such non-local and non-linear phenomena are rarely taken into
account by continuous optimization-based schemes because they result in highly
complex energy landscapes and poor convergence. We now turn to the estima-
tion of the lighting parameters in these two cases.

Light Source at Infinity. Recall from Section 3.1, that we start from a set of
correspondences between 3D surface points pi and 2D image points ui in the
input image with intensity Ii. For each i, we also know that pi projects at ri in
the reference image and has intensity Iref

i . In practice, we acquire the reference
image under diffuse lighting so that, assuming the surface to be Lambertian, we
can take the albedo ρi of pi to be Iref

i . In the remainder of this Section, let pi

denote the 3D coordinates of the 3D surface points in the candidate shapes. For
each candidate shape, these pi are recomputed using the barycentric coordinates,
which are the same for all candidates, to average the 3D vertex coordinates of
the facets they belong to.

Assuming a distant light source parameterized by its unit direction l and
power L, we can write Ii = ρiL(l · ni) , where ni is the surface normal at
pi, which may be estimated from the vi vertex coordinates. Grouping these
equations for all nc correspondences yields

Iρ = NL , (10)

where Iρ = [I1/ρ1, . . . , Inc/ρnc ]!, N = [n1, . . . ,nnc ]!, and L = L · l. Solving this
system in the least-squares sense yields an estimation of L, from which the light
intensity and direction can be taken to be L = ‖L‖ and l = L/L.

Nearby Light Source. When considering light sources that are not located
at infinity, the fact that the radiosity due to individual light sources decreases
with the square of the distance must be taken into account. The image irradiance
at pi therefore becomes

Ii = ρiL
li · ni

‖pi − s‖2
(11)
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where s is the position of the light source and li = 1
‖pi−s‖ (pi − s). s and L are

estimated by minimizing
nc∑

i=1

∣∣∣∣Ii − ρiL
li · ni

‖pi − s‖2

∣∣∣∣ , (12)

with respect to L and s using the nonlinear least-squares matlab routine lsqnonlin.
To avoid local minima, we define a sparse set of light positions {s̃j}nl

j=1 and use
each one in turn to initialize the optimization. In our experiments, we used
nl = 125 light positions uniformly distributed within a hemisphere on top of
the reference mesh. Its radius was taken to be sufficiently large to include all
distances for which the nearby light assumption holds.

Note that what makes this approach computationally feasible is the fact that
we are only attempting to recover the lighting parameters, while fixing the shape
parameters. Otherwise, the problem would be massively underconstrained. This
should also allow the use of more sophisticated lighting models [18] to relax the
single light and Lambertian assumptions.

4.2 Motion Cues

When video sequences are available, we can rely on temporal consistency between
consecutive shapes to select the most likely ones. Let us assume that a second
order autoregressive model [19] has been learned from training data. Given such
a model, the shape at time t, xt, can be expressed as function of the shapes at
times t − 1 and t − 2 as

xt = Â2xt−2 + Â1xt−1 + B̂wt , (13)

where Â2, Â1 and B̂ are 3nv × 3nv matrices learned offline, and wt is an nv

Gaussian noise vector.
For any three consecutive images and the corresponding shape samples,

the most plausible shape in the third one can be found by considering all
{x̃t−2

i , x̃t−1
j , x̃t

k} triplets and picking the x̃t
k belonging to the one that best sat-

isfies Eq. 13. Since this is done independently at each time step t, we are not
imposing temporal consistency beyond our three consecutive frames windows.

5 Results

We compare the performance of our approach on synthetic and real sequences
against that of two state-of-the-art techniques [4, 5], which we refer to as Salzm08
and Moreno09, respectively. As discussed in Section 2, the first essentially returns
the approximate solution of Eq. 4 that minimizes the variations in edge-length
from the reference shape while the second returns the solution that best fits
a shading model involving a point light source at infinity. Note that all three
methods compute the 3D shape from either individual images or consecutive
triplets, without enforcing temporal consistency across the sequence. We can
therefore treat their results as independent and compute their statistics.
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2D Projection 
(Our Approach)  Ground Truth Salzm08 Moreno09 

(Distant Light) 
Moreno09 

(Nearby Light) 
Our Approach 
(Distant Light) 

Our Approach 
(Nearby Light) 

Fig. 3. Results for the synthetic wave sequence. They are best viewed in color as
deviations from the ground truth are encoded according the color-code of Fig. 2. Errors
of more than 75% of the maximum amplitude of the ground truth shape appear in red.

5.1 Synthetic Experiments

We created two synthetic data sets by deforming an initially planar 9×9 mesh of
30×30 cm. In the first case, we created 500 meshes such as the one of Fig. 1 by
randomly changing the angles between neighboring facets. In the second case, we
built 250 meshes by giving the surface a wave-like shape, as shown in Fig. 3. In
both cases, the virtual camera was placed approximately 75 cm above the mesh
and we used a real image as a texture-map. We synthesized a shaded image
by selecting a random light-source direction in the hemisphere above the mesh.
The light was located either infinitely far or within 30cm of the mesh center.
We then produced 100 random 3D-to-2D correspondences between the reference
configuration and individual deformed meshes and added a 2-pixel standard
deviation Gaussian noise to the 2D coordinates. To compare the sensitivity of
Moreno09 and of our approach to lighting conditions, for each synthetic shape
we computed two different estimates, one using the image rendered using the
distant light and the other using the nearby light.

Fig. 3 depicts results on the synthetic wave sequence using Salzm08, Moreno09,
and our own approach in conjunction with either the distant or the nearby light-
ing. In Fig. 4, we use boxplots1 to summarize them. We also include the output
of an hypothetical algorithm that would be able to select the best candidate
shape among all the samples produced by the sampling mechanism of Section 3,
which represents the theoretical optimum an algorithm like ours could achieve
by using the image information as effectively as possible. Our method consis-
tently returns a lower 3D reconstruction error. This is true even though the
1 Box denoting the first Q1 and third Q3 quartiles, a horizontal line indicating the

median, and a dashed vertical line representing the data extent taken to be Q3 +
1.5(Q3 −Q1). The red crosses denote points lying outside of this range.
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(NL) 
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(NL) 
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Fig. 4. In each column, reconstruction, reprojection, and inextensibility errors for each
of the two synthetic and the two real sequences. Sa: Salzmann08. Mo: Moreno09. OA:
Our Approach. BC: An hypothetical algorithm that would always choose the Best
Candidate. DL: Distant Light. NL: Nearby Light. MM: Motion Model.

reprojection and inextensibility errors are very similar for all three methods,
which confirms that minimizing these is not sufficient by itself to retrieve the
correct 3D shape. Both Moreno09 and our approach address this issue by taking
advantage of shading cues. Since we explicitly model a nearby light, we clearly
outperform Moreno09 in that case.

Another measure of success is the Percentage of correct solutions of Table 2.
Given the ground truth solution, a 3D sample mesh is considered to be correct if
at least 75% of its vertices have a reconstruction error smaller than 0.5×Height,
where Height refers to the maximum amplitude of the ground truth shape. Again,
our approach clearly yields the best numbers. The specific ratios –75% and
0.5×Height– are of course ad hoc and have been chosen so that 3D meshes
that are deemed incorrect produce disturbing effects when viewed in sequence.
To provide the reader with an intuitive understanding of what this measure
actually represents, in Fig. 3 facets with reconstruction errors of more than 75%
are color-coded in red.

Finally, the table at the top of Fig. 5 depicts the accuracy of the estimated
lighting parameters. Note that we estimate the position and direction of a light
source that was allowed to move freely within a 30 cm radius hemisphere with
an accuracy of less than a 1 cm and 10 degrees.
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Salzm08 Moreno09 Our Method Best Cand.
DL NL DL NL MM

Random Meshes 84 81 15 91 99 – 100
Wave Sequence 78 95 31 100 100 – 100
Bending Paper 80 – 43 – 99 96 100

Deforming Cloth 59 – 57 – 97 81 99

Table 2. Percentages of correct solutions for all four set of experiments. DL: Distant
Light. NL: Nearby Light. MM: Motion Model.

5.2 Real Images

We tested our approach on a 120-frames sequence of bending paper and a 150-
frame sequence of a deforming T-shirt, both acquired with a Pointgrey Bum-
Blebee stereo rig. The surfaces were lit by a dim ambient lighting and a light
source located about 30 cm from the surface. We used the stereo pairs to esti-
mate the ground truth shape and then ran our algorithms using the output of a
single camera. We used SIFT [20] to establish correspondences between the ref-
erence and input images. In both experiments we used the algorithm described
in Sect. 3 to initially produce a set of candidate 3D shapes in each individual
frame. We then chose the best using either shading or motion information.

Using Shading to Disambiguate. When using shading, the reconstruction
errors depicted in the two right-most boxplots of Fig. 4 exhibit the same pat-
terns as those obtained for the synthetic sequences, which confirms that our
method outperforms the other two. As shown in Table 2, we obtain 97% of cor-
rect solutions, which represents a 30% increase in performance, using the same
definition of “correct” as before. In the bottom of Fig. 5, we plot the estimated
light source positions in each frame. Although we did not measure the exact light
source locations, the fact that the estimates are tightly clustered is an indication
that they are probably correct, given that they all were obtained independently.

Using Motion to Disambiguate. To learn the autoregressive model of Sect. 4.2,
we used additional sequences, obtained ground truth data using our stereo rig,
and learned the model parameters by probabilistic fitting [19]. In the case of the
sheet of paper, as shown in the third column of Fig. 4 and in Table 2, using the
motion model yields result similar to those obtained using shading. The perfor-
mance degrades slightly in the case of cloth because our second order motion
model is not accurate enough to perfectly capture the sharp cloth deformations.
Nevertheless, our method still outperforms both Salzm08 and Moreno09.

6 Conclusion

For the purpose of single view 3D non-rigid reconstruction, approaches that rely
on purely geometric constraints can return incorrect answers because several
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Distant Light Nearby Light
Direction Err(deg) Power Err(%) Position Err(mm) Power Err(%)

Random Meshes 6.9 ± 4.3 5.2 ± 2.1 7.4 ± 6.1 6.8 ± 3.3
Wave Sequence 2.1 ± 0.9 2.2 ± 0.8 3.2 ± 0.8 2.8 ± 1.0

Bending Paper Deforming Cloth

Fig. 5. Estimated lighting parameters. Upper table: Mean error and standard deviation
of the lighting parameters–direction, position and power– estimated independently in
each frame of the synthetic sequences. Bottom figures: Light source positions estimated
independently in all frames of the real sequences. Note how well clustered they are.

different shapes that obey, or nearly obey these constraints, often yield very
similar projections. To overcome this problem given that the input data is noisy,
we use error propagation techniques to derive an analytical expression of the
space of potential candidate shapes and to propose a small but representative
number of samples. The best among them can then be chosen based on additional
image cues, such as shading or motion, which significantly improves results with
respect to state-of-the-art methods.
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