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ABSTRACT

Network tomography establishes linear relationships between
the characteristics of individual links and those of end-to-
end paths. It has been proved that these relationships can
be used to infer the characteristics of links from end-to-end
measurements, provided that links are not correlated, i.e.,
the status of one link is independent from the status of other
links.

In this paper, we consider the problem of identifying link
characteristics from end-to-end measurements when links
are “correlated,” i.e., the status of one link may depend on
the status of other links. There are several practical sce-
narios in which this can happen; for instance, if we know
the network topology at the IP-link or at the domain-link
level, then links from the same local-area network or the
same administrative domain are potentially correlated, since
they may be sharing physical links, network equipment, even
management processes.

We formally prove that, under certain well defined condi-
tions, network tomography works when links are correlated,
in particular, it is possible to identify the probability that
each link is congested from end-to-end measurements. We
also present a practical algorithm that computes these prob-
abilities. We evaluate our algorithm through extensive sim-
ulations and show that it is accurate in a variety of realistic
congestion scenarios.
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C.2.3 [Computer-Communication Networks]: Network
Operations—network monitoring
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1. INTRODUCTION
Network performance tomography infers the characteris-

tics of network links from end-to-end path measurements.
Such inference can be a powerful monitoring tool in situa-
tions where explicitly measuring the characteristics of each
link is impractical or is not an option. For instance, con-
sider the scenario where the operator of an Internet service
provider (ISP) wants to estimate the quality of service of-
fered by a peer. In this case, the operator needs to estimate
the quality of the peer’s links without having direct access
to these links. Alternatively, consider the scenario where
an operator wants to monitor the quality of a link in her
own domain. With conventional network equipment, this
can be done with the help of test traffic, e.g., traceroute
probes or custom probes explicitly exchanged between the
two end-points of the link; such probes, however, are typ-
ically generated and processed by the general-purpose pro-
cessor that handles the control plane of the corresponding
network equipment (as opposed to the specialized hardware
that handles the data plane), hence, can meet a different
fate (e.g., significantly different latency) than the one met
by the rest of the traffic.

Network performance tomography formulates the problem
of inferring link characteristics from end-to-end path mea-
surements as a system of linear equations, where the known
entities are the available path measurements and the net-
work topology, while the link characteristics constitute the
unknowns. There exist different tomographic algorithms,
depending on which link characteristics we are interested in
(e.g., latency, loss, congestion status) and how we conduct
the end-to-end measurements (e.g., using multicast probes,
packet trains, or normal traffic). Existing algorithms, how-
ever, form their linear equations assuming that links are not
correlated, i.e., that the latency, loss, or congestion status
of one link is independent from that of other links.

There exist at least two practical scenarios in which ignor-
ing link correlation is not reasonable. (i) Consider the sce-
nario where an operator uses network tomography to moni-
tor the quality of links in her domain in a non-intrusive man-
ner and relies on traceroute to discover the domain’s topol-
ogy. As a result, she misses all nodes that do not respond to
traceroute, necessarily including all network elements oper-
ating below layer 3. In the resulting network graph, nodes
represent layer-3 elements; hence, links between nodes lo-
cated in the same local-area network are potentially corre-
lated, because they may be sharing physical links. (ii)Con-
sider the scenario where the operator of one administrative
domain wants to monitor a set of neighboring domains at



the granularity of domain-level (as opposed to physical or
IP-level) links; this may be because the operator does not
have visibility into the internals of other domains, e.g., be-
cause they use multi-protocol label switching (MPLS) for
internal routing; it may also be because the operator does
not care to have such visibility—she is only trying to de-
termine whether the neighbors are honoring a service-level
agreement (SLA). In the resulting network graph, interme-
diate nodes represent border routers; hence, links between
nodes located in the same administrative domain are po-
tentially correlated, because they may be sharing physical
links, as well as management processes.

In this paper, we take the first step toward applying net-
work tomography on correlated links. We consider a network
model where we know the network topology and which links
are potentially correlated, but not to what extent (i.e., we
do not assume that we know the degree of correlation be-
tween links). For instance, we can use our model to describe
the fact that all links that are located in the same local-
area network and/or all links that are managed by the same
administrative entity are potentially correlated. Assuming
this model and that we can perform unicast end-to-end path
measurements, we seek to characterize the congestion be-
havior of each link, in particular, how frequently each link
is congested (we formally define “congestion” in Section 2).

We make two contributions. First, we formally prove that,
under certain well defined conditions, by using end-to-end
measurements, it is feasible to identify, for each link, the
probability that the link is congested, even in the presence
of correlated links (Section 3). Second, we show how to ac-
tually compute these probabilities, i.e., we present an algo-
rithm that takes as input (i) the network topology, (ii) which
links may be correlated, and (iii) end-to-end path measure-
ments, and outputs, for each link, the probability that the
link is congested (Section 4). We evaluate our algorithm
through extensive simulations and show that it is accurate
in a variety of congestion scenarios (Section 5).

2. SETUP

2.1 Network Model

Links and Paths. We model the network as a directed graph
G = (V, E). Each node vi ∈ V represents a network element
that generates, receives, and/or relays network traffic, e.g.,
an end-host, an Ethernet switch, or an IP router. Each
edge ek ∈ E represents a logical link between two network
elements. We use the term “logical” to emphasize the fact
that an edge does not necessarily represent a physical link;
it may also represent an IP-level or domain-level link—in
general, a sequence of physical links between two network
elements.

The underlying nature of each node and edge depends
on the method used for building the network graph. For
instance, if an operator relies on traceroute to build the net-
work graph, and all layer-3 elements in her network respond
to traceroute, then each node in the resulting graph repre-
sents a layer-3 network element, while each edge represents
an IP-level link. In the rest of the paper, unless otherwise
specified, we will use the term “link” to refer to an edge in
the network graph, i.e., a logical link between two network
elements.

We define a “path” as a sequence of links whose conges-
tion status (defined below) can be determined through end-
to-end measurements. We denote the set of paths in the
network by P. If a path Pi ∈ P traverses a link ek ∈ E , then
we write ek ∈ Pi. A path never crosses a link more than
once, i.e., there are no loops. All links participate in at least
one path, i.e., there are no unused links.

We also define the“path coverage”function ψ, which maps
a set of links A ⊆ E to the set of paths that they “cover,”
i.e., the set of paths that traverse at least one of these links:

ψ (A) = { Pi ∈ P | Pi ∋ ek for some ek ∈ A }. (1)

We denote by |ψ (A) | the number of paths in ψ (A). For ex-
ample, in Figure 1(a), we have: ψ ({e1, e2}) = {P1, P2, P3}.

Congestion. We divide time into even slots called “snap-
shots,” such that each experiment involves a finite sequence
of N snapshots.

We model the congestion behavior of link ek during an
experiment as a stationary random process: We define ek’s
“packet-loss rate”during the n-th snapshot of the experiment
as the fraction of packets that are not delivered to their next
link out of all the packets that arrive at ek during the snap-
shot. We say that ek is “congested” (resp. “good”) during
the n-th snapshot, if its packet-loss rate is above (resp. be-
low or equal to) a threshold tl (we follow the model proposed
in [10], where all links have the same link-congestion thresh-
old tl). For each link ek and each snapshot n, we define a
random variable Xek

(n) as follows:

Xek
(n) =



1, if ek is congested during the n-th snapshot
0, otherwise.

For a given link ek, all random variables Xek
(n), n = 1..N,

are identically distributed; hence, for simplicity, we use Xek

to denote any of them. This implies that the congestion
probability of each link remains the same throughout the ex-
periment. The scenario in which link ek is always congested
(resp. good) is a special, degenerate case of our model, where
Xek

is always 1 (resp. 0).
Similarly, we model the congestion behavior of path Pi

during an experiment as a stationary random process: We
define Pi’s “packet-loss rate”during the n-th snapshot of the
experiment as the fraction of packets that are not delivered
to their destination out of all packets sent on Pi during that
snapshot. We say that Pi is “congested” (resp. “good”) dur-
ing the n-th snapshot, if its packet-loss rate is above (resp.
below or equal to) a threshold tp = 1 − (1 − tl)

d, where d
is the number of links traversed by Pi. For each path Pi
and each snapshot n, we define a random variable YPi

(n) as
follows:

YPi
(n) =



1, if Pi is congested during the n-th snapshot
0, otherwise.

For a given path Pi, all random variables YPi
(n), n = 1..N,

are identically distributed; hence, for simplicity, we use YPi

to denote any of them. Finally, YPi
has expected value

E(YPi
) = P(YPi

= 1), equal to the fraction of snapshots dur-
ing which Pi is congested. In other words, if, during the ex-
periment, we observe that Pi is congested during half of the
snapshots, we model this by saying that P(YPi

= 1) = 0.5.
The scenario in which path Pi is always congested (resp.
good) is a special, degenerate case of our model, where YPi

is always 1 (resp. 0).



(a) A topology where Assumption 4 holds, i.e., each cor-
relation subset covers a distinct set of paths. Links
E = {e1, e2, e3, e4}. Paths P = {P1, P2, P3}. Correla-
tion sets C = {{e1, e2}, {e3}, {e4}}. Correlation subsets

C̃ = {{e1}, {e2}, {e1, e2}, {e3}, {e4}}.

(b) A topology where Assumption 4 does not hold, be-
cause correlation subsets {e1, e2} and {e3} cover the same
set of paths {P1, P2}. Links E = {e1, e2, e3}. Paths
P = {P1, P2}. Correlation sets C = {{e1, e2}, {e3}}. Cor-

relation subsets C̃ = {{e1}, {e2}, {e1, e2}, {e3}}.

Figure 1: Two toy topologies, where Assumption 4 holds (on the left) and does not hold (on the right).

Link Correlation. We say that two links ek and el are
“independent” or “uncorrelated” when the random variables
Xek

and Xel
are independent (or, equivalently, since they

are Bernoulli random variables, uncorrelated) from one an-
other; this corresponds to the situation where ek’s conges-
tion status during a snapshot cannot affect el’s congestion
status during the same or any other snapshot. Otherwise,
we say that the two links are “correlated.”

Previous work has generally assumed that links are un-
correlated. More precisely, the algorithm from [13] requires
that any two links that participate in at least one common
path are uncorrelated with one another, while the algorithms
from [10, 12] explicitly require that any link is uncorrelated
with any other link.

Instead, we assume that each link may be correlated with
a specific set of other links, and we assume that we know
which links may be correlated with one another. Based on
this knowledge, we group links into “correlation sets,” such
that two links from the same correlation set may be corre-
lated with one another, but not with links from other corre-
lation sets. For instance, in Figure 1(a), we know that links
e1 and e2 may be correlated (e.g., because they are sharing
a physical link), whereas each of links e3 and e4 may not be
correlated with any other link; hence, we assign links e1 and
e2 to the same correlation set C1, link e3 to correlation set
C2, and link e4 to correlation set C3.

More formally, consider a partition C = {C1, C2, ...C|C|}
of E , such that:

∀ek, el, k 6= l, s.t. ek ∈ Cp, el ∈ Cq, p 6= q,

ek is uncorrelated with el;

we call each set of links Cp ∈ C a “correlation set.” In the
scenario where each link in the network is uncorrelated with
any other, there are |E| correlation sets, one for each link
in the network, i.e., C = {{e1}, {e2}, ...{e|E|}}. At the other
extreme, if all links in the network are correlated with one
another, there is only one correlation set that consists of all
links in the network, i.e., C = {{e1, e2, ...e|E|}}.

In our analysis, we will often refer to a“correlation subset”
A ⊆ Cp, A 6= ∅, i.e., a non-empty subset of a correlation set.

We will also refer to the set of all possible correlation subsets:

C̃ = { A ⊆ E | A 6= ∅ and A ⊆ Cp for some Cp ∈ C }.

For instance, in Figure 1(a), we have C = {{e1, e2}, {e3}, {e4}}

and C̃ = {{e1}, {e2}, {e1, e2}, {e3}, {e4}}.

2.2 Assumptions
We make four assumptions. The first three are inherited

from previous work on tomography, whereas the fourth as-
sumption is new—and key to the contribution of this paper.

Assumption 1. Stability: The set of paths P remains un-

changed during each experiment.

This assumption is common in all tomographic algorithms.
In practice, if a path changes during a certain snapshot,
we discard the measurements collected during that snap-
shot and stop the current experiment, i.e., we apply our
algorithms only on sequences of snapshots during which P
remains unchanged.

Assumption 2. Separability: A path is good if and only

if all the links it traverses are good. A path is congested if

and only if at least one of the links it traverses is congested.

This assumption is common in Boolean-tomography algo-
rithms [10, 12]. It is closely related to the problem of setting
the link-congestion threshold tl, defined in Section 2.1. We
use tl = 0.01, which has been shown to work well for mesh
topologies and introduce negligible error [10].

Assumption 3. Stationarity: The congestion behavior of

any link during an experiment can be modeled as a stationary

random process.

This assumption is inherent in our congestion model (inher-
ited from [12]), since we use the identically distributed ran-
dom variables Xek

(n), n = 1..N, to represent link ek’s con-
gestion status during subsequent snapshots. We would like
to clarify that this does not mean that the congestion status
of link ek remains the same during the experiment, only that
the probability of link ek being congested remains the same.
We need this assumption in order to keep the theoretical



analysis (Section 3) simple—to model ek’s congestion status
as a non-stationary random process, we would need to as-
sume that each of the random variables Xek

(n), n = 1..N,
has a potentially different probability distribution.

Assumption 4. Identifiability: Given any two correla-

tion subsets A,B ∈ C̃, A 6= B, it holds true that ψ (A) 6=
ψ (B), i.e., A and B are not traversed by exactly the same

paths.

This generalizes a fundamental assumption of network to-
mography, that any two links are not traversed by exactly
the same paths [18]. Intuitively, this earlier assumption cap-
tured the fact that, when two links participate in exactly the
same paths, there is no way to differentiate between the two
links based on end-to-end observations. We are generalizing
this to say that, when two groups of correlated links par-
ticipate in exactly the same paths (and assuming we know
nothing about the nature of the correlation), there is no way
to differentiate between the two groups based on end-to-end
observations. Indeed, in the extreme case where each link in
the network is uncorrelated with any other, our assumption
becomes exactly the earlier assumption.

3. FEASIBILITY

3.1 Problem Statement and Result
Suppose we can perform unicast end-to-end path mea-

surements, i.e., measure the probability that any path or
combination of paths is congested. We want to determine
whether, given this information, it is feasible to identify the
probability that a particular set of links (or a particular link)
is congested.

Theorem 1. If Assumptions 1, 2, 3 and 4 hold, the prob-

ability that any set of links is congested is identifiable for all

possible sets of links.

Proof. In the Appendix, Section A.

To illustrate this result, we first consider the scenario de-
picted in Figure 1(a), where Assumption 4 holds. Here is the

set of paths ψ (A) covered by each correlation subset A ∈ C̃:

A ∈ C̃ ψ (A)
{e1} {P1}
{e2} {P2, P3}
{e1, e2} {P1, P2, P3}
{e3} {P1, P2}
{e4} {P3}

Indeed, each correlation subset A covers a distinct set of
paths ψ (A). Intuitively, this allows us to measure the prob-
ability that the paths covered by each correlation subset are
congested and infer, from that, the probability that the links
in each correlation subset are congested.

To illustrate the challenge introduced by link correlation,
we also consider the scenario depicted in Figure 1(b), where
Assumption 4 does not hold. In this case, we have:

A ∈ C̃ ψ (A)
{e1} {P1}
{e2} {P2}
{e1, e2} {P1, P2}
{e3} {P1, P2}

i.e., correlation subsets {e3} and {e1, e2} cover the same
set of paths {P1, P2}. As a result, we cannot distinguish
between the probability that e3 is congested and the proba-
bility that e1 and e2 are both congested.

If links e1 and e2 were uncorrelated, we would not have
this problem. We could do the following: (i) Measure the
probability that P1 is the only congested path, which is equal
to the probability that e1 is the only congested link; from
that, compute the probability that e1 is congested, as shown
in [12]. (ii) Repeat for P2 and e2. (iii) Using the fact that

e1 and e2 are uncorrelated, compute the probability that e1
and e2 are both congested as the product of the probability
that link e1 is congested and of the probability that link e2
is congested. (iv) Measure the probability that P1 and P2

are both congested, which is a function of the probability
that e3 is congested and the probability that e1 and e2 are
both congested. Since we have already computed the latter,
we could now compute the probability that e3 is congested.
This is, at a high level, the algorithm followed in [12].

The problem is that, in our setup, e1 and e2 are correlated,
which means that we cannot perform step (iii). We can go
directly to step (iv) and measure the probability that P1 and
P2 are both congested; however, since we do not know the
probability that e1 and e2 are both congested, we cannot
draw any conclusions about e3.

3.2 Proof Illustration
We now illustrate how our proof works using the example

of Figure 1(a). Again, we assume that we can measure the
probability that any set of paths is congested and we want
to identify the probability that each set of links is congested,
i.e., P(Xe1..4 = 1), P(Xe1 = 1, Xe2 = 1), etc.

As already hinted, the challenge in proving Theorem 1
comes from the fact that links may be correlated. As a re-
sult, we cannot easily compute joint probabilities, e.g., we
cannot compute P(Xek

= 1, Xel
= 1) simply by multiply-

ing P(Xek
= 1) and P(Xel

= 1). Yet to prove that we can
identify P(Xek

= 1) for all links ek, we do need to compute
many such joint probabilities. In fact, we need to compute
the probability that all the links in A are congested for ev-

ery possible correlation subset A ∈ C̃. Hence, the core of
our proof—and a key contribution of this work—consists of
showing that we can, indeed, compute all these |C̃| proba-
bilities.

Definitions and Notation. We start by defining and pro-
viding compact notation for certain terms that appear fre-
quently in our illustration. All defined symbols are summa-
rized in Table 1 in the Appendix.

⊲ Sp is a random set equal to the set of all congested links
in correlation set Cp during a snapshot:

Sp ≡ { ek ∈ Cp | Xek
= 1 }.

Since Xek
∈ Cp and Xel

∈ Cq 6= Cp are independent, it
is also the case that Sp and Sq 6= Sp are independent. In
the example of Figure 1(a), we have three such independent
random sets, S1, S2, and S3.

⊲ The“network state,”denoted by S, is a random set equal
to the set of all congested links during a snapshot:

S ≡
[

p=1..|C|

Sp.



E.g., in Figure 1(a), S ≡ S1 ∪ S2 ∪ S3.

⊲ ψ (S) is a random set equal to the set of congested paths
during a snapshot:

ψ (S) ≡
[

p=1..|C|

ψ (Sp) .

Given these definitions, we will refer to the following events,
given a correlation subset A ⊆ Cp:

⊲ (Sp = A) is the event that the links in A are the only
congested links in Cp ⊇ A. E.g., in Figure 1(a), (S1 = {e1})
is the event that e1 is congested and e2 is good.

⊲ (ψ (S) = ψ (A)) is the event that the paths covered
by A are the only congested paths in the network. E.g.,
in Figure 1(a), (ψ (S) = ψ ({e1})) is the event that P1 is
congested, while P2 and P3 are good.

⊲ Finally, for each correlation subset A ⊆ Cp, we define
its “congestion factor” αA as follows:

αA = P(Sp = A) / P(Sp = ∅). (2)

This expresses how often the links in A ⊆ Cp are congested
compared to how often all links in the correlation set Cp are
good.

Setup. Through end-to-end measurements, we can measure
the probability that all paths are good, i.e.,

P(ψ (S) = ∅) = P(S1 = ∅) P(S2 = ∅) P(S3 = ∅). (3)

Moreover, given a correlation subset A, we can measure the
probability that the paths in ψ (A) are the only congested
paths in the network, i.e., P(ψ (S) = ψ (A)).

Step 1. Consider correlation subset {e1} and the set of
paths it covers, ψ ({e1}) = {P1}. Consider the event that P1

is the only congested path in the network. If this is the case,
then e1 must be the only congested link, i.e, the network can
only be in state S = {e1}:

S1 S2 S3 S ψ (S)
{e1} ∅ ∅ {e1} {P1}

Hence, we can write:

P(ψ (S) = ψ ({e1})) = P(S1 = {e1}) P(S2 = ∅) P(S3 = ∅).

If we divide this by Eq. 3, we get

P(ψ (S) = ψ ({e1}))

P(ψ (S) = ∅)
=

P(S1 = {e1})

P(S1 = ∅)
= α{e1}.

Since both the numerator and denominator of the left-most
term can be measured, we can compute α{e1}.

Step 2. Consider correlation subset {e3} and the set of
paths it covers, ψ ({e3}) = {P1, P2}. Consider the event
that P1 and P2 are the only congested paths in the network.
If this is the case, either e3 is the only congested link, or
e1 and e3 are the only congested links, i.e., the network can
only be in state S = {e3} or in state S = {e1, e3}:

S1 S2 S3 S ψ (S)
∅ {e3} ∅ {e3} {P1, P2}

{e1} {e3} ∅ {e1, e3} {P1, P2}

Hence, we can write:

P(ψ (S) = ψ ({e3})) =

P(S1 = ∅) P(S2 = {e3}) P(S3 = ∅) +

P(S1 = {e1}) P(S2 = {e3}) P(S3 = ∅).

If we divide this by Eq. 3, we get

P(ψ (S) = ψ ({e3}))

P(ψ (S) = ∅)
= (1 + α{e1}) α{e3}.

Since both the numerator and denominator of the left-most
term can be measured, and we have already computed α{e1},
we can now compute α{e3}.

Step 3. With the same rationale, we compute all congestion

factors αA, ∀A ∈ C̃. The gist is that, thanks to Assump-
tion 4, we can order the correlation subsets and compute
their congestion factors such that each factor depends only
on terms that can be measured or have already been com-
puted. In our particular example, the ordering we follow is
〈{e1}, {e4}, {e3}, {e2}, {e1, e2}〉.

Step 4. According to Lemma 3 (Appendix, Section A.3),
once we have computed all congestion factors, we can derive
P(Xe1..4 = 1) and P(Xe1 = 1, Xe2 = 1). Once we know
these 5 probabilities, we can easily compute the rest, e.g.,
P(Xe1 = 1, Xe3 = 1) = P(Xe1 = 1) P(Xe3 = 1).

3.3 Practical Significance
We now answer certain questions regarding the practical

significance of our result.

⊲In what kind of scenarios are links correlated?
There are at least two situations that can lead to link

correlation: (i) a congested network resource is shared by
multiple links; (ii) congestion is caused by a traffic pattern
that involves a particular set of links.

The first situation can occur when an operator is using
network tomography to monitor the quality of links in a
network and relies on traceroute to discover the network
topology. As a result, she misses all nodes that do not re-
spond to traceroute, e.g., all Ethernet and MPLS switches.
In the resulting network graph, each node represents a layer-
3 element, while each edge represents a sequence of physi-
cal links between two layer-3 elements. Hence, two distinct
edges in the network graph (i.e., two distinct logical links)
may share physical links; when one of these shared physical
links is congested, both logical links are congested, which
means that the two logical links are correlated.

The second situation can occur when a badly written net-
work protocol, a distributed application, or even a denial-of-
service attack causes a particular set of source nodes to gen-
erate high-rate traffic to a particular set of destination nodes.
For instance, consider a group of end-hosts participating in
a distributed game, which causes them to periodically ex-
change high-rate traffic; or, a botnet master commanding a
group of compromised end-hosts to periodically send high-
rate traffic to a group of public-access sites. Either scenario
can result in a particular set of links becoming congested and
de-congested at the same times, i.e., becoming correlated.

⊲In which of these scenarios is our result useful?
In the scenarios where the operator knows which links are

most likely to be correlated.



(a) A local-area network. The undiscovered node in the
middle is an Ethernet switch.

(b) An administrative domain. The undiscovered nodes in
the middle are MPLS switches.

Figure 2: Two scenarios where logical links are correlated because they are sharing physical links. Each
figure shows a part of a network graph. Black nodes (circles) represent IP routers discovered with traceroute,
while black arrows represent logical links between discovered IP routers. Gray nodes represent undiscovered
network elements (that do not respond to traceroute), while gray lines represent physical links.

For instance, consider the scenario where an operator uses
network tomography to monitor the quality of links in her
domain and relies on traceroute to discover the domain’s
topology. This may seem unreasonable at first—one would
assume that an operator already knows the topology of her
own domain. Yet, in practice, the operator of a large net-
work (e.g., a university-campus network) does not always
have access to all areas and equipment of the network. More-
over, given that paths change in response to network condi-
tions, the operator does not always know which links com-
pose each path. In this context, it makes sense for the op-
erator to map each local-area network discovered through
traceroute to one correlation set (Figure 2(a)). The links in
each correlation set are potentially correlated, because they
may be sharing physical links and/or management processes.

Alternatively, consider the scenario where the operator of
one administrative domain uses network tomography to de-
termine whether a set of neighboring domains are honoring
their SLA, but does not have visibility into the internals of
these domains, because they use MPLS for internal routing.
In this context, it makes sense for the operator to map each
administrative domain to one correlation set (Figure 2(b)).
As above, the links in each correlation set are potentially cor-
related, because they may be sharing physical links and/or
management processes.

Our result is not useful in scenarios where the operator
does not know which links may be correlated, e.g., when an
unpredictable traffic pattern affects the congestion status of
multiple otherwise uncorrelated links. For instance, consider
the denial-of-service scenario mentioned above. Unless the
botnet’s structure and targets are known, there is no way
to guess the link-correlation pattern caused by the attack.
Hence, an operator using our algorithm to identify the links
affected by the attack would mislabel these links as uncor-
related, causing the algorithm to yield inaccurate results.

⊲In what topologies does Assumption 4 hold?
In topologies where each intermediate node touches mul-

tiple correlation sets, like the one depicted in Figure 1(a).
Assumption 4 does not hold when there exists an interme-

diate node that has all its ingress links in one correlation set
and all its egress links also in one (the same or different) cor-
relation set; this causes the correlation subset formed by its
ingress links and the correlation subset formed by its egress
links to cover exactly the same paths (all the paths that tra-
verse the node). This situation occurs when an intermediate
node touches one correlation set and sometimes even when it

touches two correlation sets, as in Figure 1(b). In contrast,
in Figure 1(a), there is no intermediate node that touches
one or two correlation sets, and Assumption 4 holds.

⊲What happens when Assumption 4 does not hold?
Our algorithm cannot accurately compute the congestion

probability of those links that belong to correlation subsets
for which the assumption does not hold—we will refer to
these links as “unidentifiable.”

One way to deal with this situation is to try to alter the
topology, i.e., add nodes and paths to the system, such that
Assumption 4 holds. For instance, consider the topology of
Figure 1(b), where the assumption does not hold; by adding
node v5 and path P3 we get the topology of Figure 1(a),
where the assumption does hold. If altering the topology
is not an option (e.g., because the operator does not have
access to additional nodes for performing end-to-end mea-
surements from/to them), we can act as if the unidentifiable
links were uncorrelated; as a result, we compute their con-
gestion probability inaccurately, but, at least, we can still
compute the congestion probability of the remaining links
accurately. We will look at this effect in Section 5.

Moreover, in certain cases, when Assumption 4 does not
hold, we can apply a transformation to the network topology
(merge certain consecutive links) so that it does. This is akin
to the merging of consecutive links traversed by the same
paths in the context of traditional network performance to-
mography. We will now outline how our transformation re-
lates to traditional tomography and how it works, however,
for lack of space, we will not provide here a formal descrip-
tion and analysis.

A fundamental assumption of network performance to-
mography is that any two links are not traversed by exactly
the same paths. However, if two such “indistinguishable”
links occur consecutively in the network, they can be el-
egantly abstracted away into a single “merged” link, such
that the above fundamental assumption holds. This trans-
formation enables tomographic algorithms to work, albeit at
decreased granularity, i.e., they can characterize each link in
the transformed network graph (including the merged links),
but not the original links that were merged.

We are in a similar situation: According to our Assump-
tion 4, any two correlation subsets must not be traversed by
exactly the same paths. However, if two such subsets occur
consecutively in the network, we can abstract them away
into a single subset of merged links, such that the assump-
tion 4 holds. This transformation enables our algorithm to



work, albeit at decreased granularity, i.e., it can accurately
characterize each link in the transformed network graph, but
not the original links that were merged.

The transformation works as follows: If intermediate node
v has all its ingress links in one correlation set and all its
egress links also in one correlation set, we remove v and all
its adjacent links from the network graph; if, in the original
network graph, there was a path that went consecutively
through nodes vlast, v, and vnext, then we draw a merged
link from vlast to vnext. For instance, to transform the topol-
ogy of Figure 1(b), we remove node v3 and its adjacent links
(links e1, e2, and e3) and draw, in their place, two merged
links, one from v4 to v1 and one from v4 to v2; as a result,
we end up with a single correlation set that contains two
(merged) links.

⊲Why not assign all links to one correlation set?
If we do that, Assumption 4 does not hold for any part of

the network graph, hence, our algorithm does not yield any
useful results.

If we assign all links in the network graph to the same
correlation set, Assumption 4 does not hold. If we apply the
transformation described above, we end up with a trans-
formed network graph where each link corresponds to an
end-to-end path. At that point, we can compute the con-
gestion probability of each link (in the transformed network
graph) through end-to-end measurements—network tomog-
raphy cannot provide any additional information. For in-
stance, consider a topology that consists of the nodes and
links depicted in Figure 1(a), but where all four links belong
to the same correlation set. In that topology, Assumption 4
does not hold, because node v3 has all its ingress and egress
links in the same correlation set. To apply our transforma-
tion, we remove v3 and all its adjacent links (i.e., all four
links), and draw three merged links in their place: from v4
to v1, from v4 to v2, and from v5 to v2. As a result, we get a
transformed network graph like the one of Figure 2(b), where
each link corresponds to an end-to-end path, which means
that we can measure its congestion probability through end-
to-end measurements.

⊲Can our result help determine whether a link was
congested or not?

Yes. Our result states that it is feasible to compute the
probability that any set of links is congested. Obtaining
this information is the first step toward accurately comput-
ing which particular set of links were congested during each
snapshot.

There exist several tomographic algorithms that observe
which set of paths were congested during each snapshot and
try to determine which set of links were congested during
the last snapshot [13, 10, 12]. This is an “ill-posed inverse
problem,” i.e., there are typically multiple sets of links that,
if congested, would have led to the observed outcome. Each
algorithm uses its own technique to choose which of all the
feasible solutions is the most likely: the first two algorithms
favor solutions that involve a small number of congested
links, whereas the last one explicitly computes which of the
feasible solutions is the most likely (albeit assuming no link
correlation).

Our result implies that the last approach (explicitly com-
puting which feasible solution is the most likely) can also
work in the presence of link correlations (as long as we have
observed the network long enough to have computed the
probability of each solution). As part of our future work, we

plan to build an algorithm that determines which particular
set of links were congested during each snapshot using this
approach.

4. ALGORITHM
In this section, we present an algorithm that takes as input

unicast end-to-end measurements and outputs, for each link,
the probability that the link is congested, i.e., P(Xek

= 1)
for all links ek in E .

We already know that such an algorithm exists from The-
orem 1 (which tells us that we can identify the probability
that any set of links is congested, hence, also the probability
that any individual link is congested). Moreover, we already
have such an algorithm from the proof of Theorem 1, which
is a proof by construction (we will refer to it as the “the-
orem algorithm”). Unfortunately, the theorem algorithm is
impractical, because it requires an amount of computation
that depends on the number of correlation subsets in the
network, which grows exponentially with the size of corre-
lation sets. For instance, if a correlation set consists of 100
links—a plausible number, if the correlation set represents
an Autonomous System (AS), it introduces more than 1030

correlation subsets.
We now describe a more practical algorithm, which re-

quires an amount of computation that depends only on the
number of links in the network. Our algorithm achieves this
by leveraging the following observation: The theorem al-
gorithm takes long, because it computes the probability of
congestion of every possible combination of links. However,
we are not interested in all these probabilities; we are only
interested in the probability of congestion of every individ-

ual link. Hence, our algorithm tries to form just enough
equations to solve for these unknowns.

We first illustrate through the example of Figure 1(a):
⊲ Consider the case where path P1 is good. Using As-

sumption 2 (when a path is good, all its links are necessarily
good), we can write:

P(YP1
= 0) = P(Xe1 = 0) P(Xe3 = 0) ⇔

log(P(YP1
= 0)) = log(P(Xe1 = 0) P(Xe3 = 0))

= log(P(Xe1 = 0)) + log(P(Xe3 = 0))

⇔ y1 = x1 + x3 (4)

where yi = log(P(YPi
= 0)) and xk = log(P(Xek

= 0)).
⊲ Similarly, if we consider the cases where paths P2 and

P3 are good, we can write:

y2 = x2 + x3 (5)

y3 = x2 + x4 (6)

⊲ Finally, if we consider the case where paths P2 and P3

are both good, we can write:

P(YP2
= 0, YP3

= 0) =

P(Xe2 = 0) P(Xe3 = 0) P(Xe4 = 0)

⇔ y23 = x2 + x3 + x4 (7)

where yij = log(P(YPi
= 0, YPj

= 0)).
⊲ Equations 4, 5, 6, 7 form a system of 4 linearly inde-

pendent equations, from which we can compute x1..4 and,
consequently, P(Xe1..4 = 0) and P(Xe1..4 = 1).

There are two things to note about the above example.
First, we used not only single-path observations (y1..3), but
also two-path observations (y23), which allowed us to form 4



linear equations, exactly as many as we needed to solve for
our unknowns. Second, to form our fourth equation, we used
paths P2 and P3. What is special about these two paths is
that they do not involve any correlated links. If, instead, we
had used paths P1 and P2, our fourth equation would have
been:

P(YP1
= 0, YP2

= 0) = P(Xe1 = 0, Xe2 = 0) P(Xe3 = 0)

⇔ y12 = x12 + x3 (8)

which introduces a new unknown, x12 = log( P(Xe1 = 0,
Xe2 = 0 ). So, by considering paths and combinations of
paths that do not involve any correlated links, we can form
equations that do not introduce new unknowns beyond xk
for all links.

Our algorithm, then, consists of the following steps:
⊲ Identify all paths Pi that do not involve correlated links

and form a set of N1 ≤ |P| linearly independent equations

yi =
X

k s.t. ek∈Pi

xk (9)

⊲ Identify all pairs of paths that do not involve correlated
links, and form a set of N2 linearly independent equations

yij =
X

k s.t. ek∈Pi
or ek∈Pj

xk (10)

⊲ If N1 +N2 = |E|, we compute xk for all links ek ∈ E by
solving the system of |E| equations that we have formed. If
N1 +N2 < |E|, there are multiple solutions that satisfy our
system of equations; we pick the one that minimizes the L1
norm error.

In all topologies we experimented with, by considering
paths and pairs of paths that did not involve correlated links,
we were able to gather close to |E| linearly independent equa-
tions; thanks to L1 norm minimization, the error introduced
by the (few) missing equations was negligible.

5. EVALUATION

Simulator. We built a simulator, in which the network is
represented as a graph, with vertices corresponding to nodes
and edges corresponding to links. In the beginning of each
experiment, we determine which links belong to each cor-
relation set, the probability of congestion of each link, and
the joint probability of congestion of each set of correlated
links.

An experiment consists of multiple rounds. In each round,
we take the following actions:
⊲ For each link, we determine whether it will be congested

in this round or not, such that we respect the individual and
joint probabilities of congestion determined in the beginning
of the experiment.
⊲ To each link, we assign a packet-loss rate according to

the loss model from [13] (also similar to the models from [11,
16]), which assigns packet-loss rates between 0 and 0.01 to
good links and between 0.01 and 1 to congested links.
⊲ We simulate the scenario in which a given number of

packets are sent along each path, hence, along each link.
For each packet that arrives at a given link, we flip a coin
to determine whether it will be dropped or not, such that
we respect the packet-loss rate of the link determined in the
previous step.

⊲ We measure the packet-loss rate of each path as the
fraction of packets sent along the path that were lost. If the
packet-loss rate of a path is above the congestion threshold
tp = 1−(1−tl)

d, we identify the path as congested; tl = 0.01,
as proposed in [10].

Topologies. We experimented with two types of topologies.

(i) Brite topologies: We used the Brite topology gener-
ator [1] to obtain pairs of AS-level and router-level topolo-
gies. From each pair, we used the AS-level topology to de-
rive a network graph for our simulator and the router-level
topology to determine the degree of correlation between each
pair of links in the network graph; the point was to simu-
late scenarios where each correlation set corresponds to an
administrative domain. More specifically, we mapped each
link in the AS-level topology to a sequence of links in the
router-level topology. We assumed that any two links in the
router-level topology are uncorrelated; and that two links in
the AS-level topology are correlated if and only if they share
at least one link in the underlying router-level topology. In
the beginning of the experiment, we assigned a probability
of congestion to each link in the router-level topology, then
derived the probability of congestion of each AS-level link
and each set of correlated AS-level links accordingly. We
show results for topologies consisting of 1500 paths.

(ii) PlanetLab topologies: To obtain each of these topolo-
gies, we got hold of several PlanetLab nodes and ran tracer-
oute between them to identify the sequence of routers on
each path; we discarded all paths with incomplete tracer-
oute results. We assigned links to correlation sets, such that
each correlation set consisted of a contiguous cluster of links;
the point was to simulate scenarios where each correlation
set corresponds to a local-area network or an administrative
domain. We show results for topologies consisting of roughly
2000 links and 1500 paths.

Simulated Algorithms. We compare the algorithm pre-
sented in Section 4 (we will call this “correlation algorithm”)
against the algorithm presented in [12], which assumes that
all links are independent (we will call this “independence
algorithm”). To the best of our knowledge, this is the only
tomographic algorithm that computes the congestion proba-
bilities of links. The fact that our algorithm performs better
is not surprising, since we consider scenarios where links are
correlated. The point of the comparison is to show that,
when links are correlated, ignoring this correlation leads to
significant error, even when congestion and correlation are
limited.

Metrics. To evaluate the performance of each algorithm,
we look at the absolute error between the actual conges-
tion probability of a link and its congestion probability as
computed by the algorithm. For instance, if the actual con-
gestion probability of a link is 0.5, but the algorithm thinks
it is 0.1, then the absolute error is 0.4.

We use three ways to illustrate the performance of each
algorithm for a given experiment: (i) We plot the cumula-
tive distribution function (CDF) of the absolute error for all
the potentially congested links, i.e., all links that participate
in at least one congested path. For a perfect algorithm, this
CDF would be a single point at x = 0, y = 100%, i.e.,
the algorithm would compute the congestion probability of
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(a) Mean of the absolute error when congested links are
highly correlated (more than 2 congested links per correla-
tion set). Brite topology.
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(b) The 90th percentile of the absolute error when con-
gested links are highly correlated (more than 2 congested
links per correlation set). Brite topology.
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(c) CDF of the absolute error when 10% of the links are con-
gested. Congested links are highly correlated (more than 2
congested links per correlation set). Brite topology.
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(d) CDF of the absolute error when 10% of the links are
congested. Congested links are loosely correlated (up to 2
congested links per correlation set). Brite topology.

Figure 3: Performance of the two algorithms under ideal conditions, when different fractions of the links are
congested.

all the potentially congested links with an absolute error of
0. In general, the earlier the CDF hits the y = 100% line,
the better the performance of the corresponding algorithm.
(ii) For a more compact illustration, we show the 90th per-
centile of the absolute error for all the potentially congested
links, i.e., the absolute error that corresponds to a value of
y = 90% of the CDF. For instance, if the 90th percentile of
the absolute error is 0.1, this means that the corresponding
algorithm computed the congestion probability of 90% of
the potentially congested links with an absolute error below
0.1. (iii) We show the mean of the absolute error for all the
potentially congested links.

Performance Under Ideal Conditions. We first look at
the performance of the two algorithms when the congestion
probabilities of all links are identifiable (i.e., Assumption 4
holds) and there are no unknown correlation patterns in the
network (i.e., links from different correlation sets are never
correlated). Figure 3 shows the results for a Brite topology
and various congestion scenarios.

First, we observe that our algorithm performs well even
when congested links are highly correlated. As the percent-
age of congested links in the network increases from 5% to
25%, the mean of the absolute error stays below 0.03 (Figure
3(a)), while the 90th percentile of the absolute error stays
below 0.1 (Figure 3(b)). For the independence algorithm,
the mean and the 90th percentile of the absolute error in-
crease with the percentage of congested links, because more
congestion in the network implies that more correlated links

are congested. When 10% of the links are congested, our al-
gorithm computes the congestion probability of 95% of the
links with an error below 0.1; the independence algorithm
computes the congestion probability of only 50% of the links
with this error (Figure 3(c)).

Second, we observe that taking correlation into account
matters, even when the congested links are (very) loosely
correlated. For instance, when 10% of the links are con-
gested, and there are only up to 2 congested links per cor-
relation set, our algorithm computes the congestion proba-
bility of 95% of the links with an error below 0.1; the inde-
pendence algorithm computes the congestion probability of
only 80% of the links with this error (Figure 3(d)).

Unidentifiable Links. Next, we look at the performance of
the two algorithms when Assumption 4 does not hold, i.e.,
there exist correlation subsets whose congestion probability
is unidentifiable; for brevity, we refer to links that belong
to such subsets as “unidentifiable links.” Figure 4 shows the
results for a Brite and a PlanetLab topology, when 10% of
the links in the network are congested.

We observe that our algorithm performs well (and bet-
ter than the independence algorithm), even when half of
the congested links are unidentifiable. This is true both for
the Brite (Figure 4(b)) and the PlanetLab topology (Fig.
4(d)). Interestingly, in certain cases, we outperform the in-
dependence algorithm even with respect to the unidentifiable

links (we do not show the corresponding graphs for lack
of space). This may seem counter-intuitive at first—why
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(a) CDF of the absolute error when 25% of the congested
links are unindentifiable. Brite topology.
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(b) CDF of the absolute error when 50% of the congested
links are unindentifiable. Brite topology.
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(c) CDF of the absolute error when 25% of the congested
links are unindentifiable. PlanetLab topology.
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(d) CDF of the absolute error when 50% of the congested
links are unindentifiable. PlanetLab topology.

Figure 4: Performance of the two algorithms, when different fractions of congested links are unidentifiable.
In all cases, 10% of the links are congested.

should the independence algorithm be any worse in char-
acterizing unidentifiable links? The reason is that, in to-
mographic algorithms, mistakes “propagate,” i.e., mischar-
acterizing one link leads to a cascade of link mischaracter-
izations; this effect is stronger when problematic links are
concentrated in the same few paths. Our algorithm charac-
terizes the identifiable links accurately, which means that it
makes fewer mistakes, hence suffers less from this cascading
effect, which improves its accuracy with the rest of the links
as well.

Unknown Correlation Patterns. Finally, we look at the
performance of the two algorithms when Assumption 4 does
not hold and there are unknown correlation patterns in the
network. In particular, we consider the scenario where a
worm has infected a large number of end-hosts and period-
ically orders them to flood a set of otherwise uncorrelated
links; as a result, these links become correlated, i.e., they get
congested at about the same time. Since there is no practi-
cal way for an operator to know of this correlation pattern,
we assume that it is unknown, i.e., our algorithm treats the
targeted links as uncorrelated; for brevity, we refer to these
links that are incorrectly labeled as uncorrelated with one
another as “mislabeled.” Figure 5 shows the results for a
Brite and a PlanetLab topology, when 10% of the links in
the network are congested.

We observe that our algorithm still performs well (and
better than the independence algorithm), even when half of
the congested links participate in unknown correlation pat-
terns (Figures 5(b) and 5(d)). Moreover, we significantly
outperform the independence algorithm, even with respect

to the links that are affected by the unknown correlation
patterns (graphs omitted for lack of space). The reason is
that we ignore one correlation pattern, whereas the inde-
pendence algorithm ignores all correlation patterns in the
network, which is compounded by the cascading effect men-
tioned above.

Ongoing Work: PlanetLab Tomographer. We are in the
process of building a network tomographer that runs on
PlanetLab nodes and infers the congestion probabilities of
the links between them (we measure its accuracy through
the indirect validation method proposed in [13]). Our tomo-
grapher uses traceroute to identify the sequence of routers
between each pair of PlanetLab nodes, then tries to map
each router to an AS number. Our plan is to run our to-
mographer (i) assuming that all links are uncorrelated and
(ii) assuming that all links in the same AS are correlated,
and compare the results; such a comparison would provide
evidence regarding the effect of link correlation on network
tomography in practice.

6. RELATEDWORK
Network performance tomography, which infers the char-

acteristics of links from end-to-end path measurements, is
an ill-posed inverse problem well studied in the last decade.
A number of methods have been proposed and validated,
which differ on the assumptions made about the network
and on the characteristics of links they provide.

In order to infer the characteristics of links, the initial
methods rely on temporal correlation, either by sending mul-
ticast packets (which are perfectly correlated) [5, 4, 2, 3], or
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(a) CDF of the absolute error when 25% of the congested
links are mislabeled. Brite topology.
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(b) CDF of the absolute error when 50% of the congested
links are mislabeled. Brite topology.
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(c) CDF of the absolute error when 25% of the congested
links are mislabeled. PlanetLab topology.
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(d) CDF of the absolute error when 50% of the congested
links are mislabeled. PlanetLab topology.

Figure 5: Performance of the two algorithms, when different fractions of the links are mislabeled, i.e.,
participate in unknown correlation patterns. In all cases, 10% of the links are congested.

emulating multicast by sending unicast back to back packets
(which are strongly correlated on shared links) [8, 9, 17]. All
moments of link loss rates and delays (except first moments)
are statistically identifiable in a multicast tree topology [7].
However, multicast is not widely deployed, and groups of
unicast packets require substantial development and admin-
istrative costs, hence, it is not easy to rely on temporal cor-
relations.

The set of methods that followed [13, 10, 19, 15], use
only unicast end-to-end measurements for the simpler goal
of identifying the congested links (i.e. identifying if the link
loss rate or delay exceeds some threshold, instead of com-
puting their actual value). These “Boolean” network tomo-
graphic methods use additional information or assumptions.
For example, the methods in [13, 10] identify the congested
links by finding the smallest set of links whose congestion
can explain the observed measurements. These methods es-
sentially use three assumptions: (i) network links are inde-
pendent, (ii) links are equally likely to be congested, and
(iii) the number of congested links is small.

Assumption (ii) holds for homogeneous networks, but the
Internet is a heterogeneous network, and some links such as
access links or peering links are often more congested than
core links. Fortunately, the congestion probabilities of links
can be identified from end-to-end measurements if the links
are independent (i.e. if Assumption (i) holds) [12]. These
probabilities can be learned from multiple network measure-
ments, and used to locate the congested links with higher
accuracy [12]. In addition, they correct the bias towards
the (usually non congested) core links, since these links are
shared by many more paths than access links, and there-

fore, by Assumption (iii) they are the smallest number of
links that explains the end-to-end performance.

However, all the previous methods strongly rely on As-
sumption (i), that is, links are independent. This paper
shows that one can lift this assumption in part, allow for
some local link correlation, and still identify correctly the
congestion probabilities of links. Our goal is not to deter-
mine the link correlations, we want to eliminate them as
to identify the first-order marginal distribution of congested
link probabilities.

Another network tomography problem that has received a
lot of attention is traffic matrix estimation, which infers the
volumes of end-to-end flows from link measurements [18, 6].
Here, the unknown variables are the flow volumes, and are
assumed to follow a certain parametric distribution. Flow
correlations have been studied by Singhal and Michailidis [14],
who showed that under some classes of dependencies, the
order n moments of the flow volumes are identifiable from
link measurements for n ≥ 2. Our approach differs in three
aspects. First, we are interested in the “dual” problem of in-
ferring link properties given the end-to-end measurements,
whereas in [18, 6, 14] link measurements are known, but
end-to-end traffic counts need to be inferred. Second, we
are interested in Boolean variables, and we do not need a
parametrization of the continuous distribution of the vari-
ables at stake. The different nature of the relation between
the unknown quantities of interest and the measurements re-
strain us to extend the theoretical results in [14]. Finally, we
prove identifiability of the first order moments of the quanti-
ties of interest, while the authors in [14] prove identifiability
of order n ≥ 2 moments.



7. CONCLUSION
We considered the problem of identifying the probability

that each link in a network is congested from end-to-end
path measurements. The key characteristic that sets our
work apart from related work is that it takes into account
link correlations. In particular, we considered the model
where we know which links are most likely to be correlated
(e.g., links from the same local-area network or the same
administrative domain), however, we do not know the exact
nature of the correlation (i.e., we do not assume knowledge
of any correlation coefficients). We formally proved that, un-
der certain well defined conditions, it is feasible to identify
the probability that each link is congested from end-to-end
path measurements, even in the presence of link correlations.
We also presented an algorithm that computes these proba-
bilities. We showed through simulations that our algorithm
is accurate in a variety of congestion scenarios, even when
we do not know all the correlation patterns in the network.
Moreover, by comparing with a similar algorithm that does
not take link correlation into account, we showed that con-
sidering link correlation matters, even when there is a low
level of congestion in the network and congested links are
only loosely correlated.
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APPENDIX

A. PROOF OF THEOREM 1

A.1 Definitions and Notation
We introduce three more symbols. All our symbols are

summarized in Table 1.

Network States. We denote by Sn a particular value of S
and by Spn ⊆ Cp the corresponding value of Sp (i.e., the set
of congested links in correlation set Cp when S = Sn). We
can write:

Sn ≡
[

p=1..|C|

Spn. (11)

During any particular snapshot, each correlation set (as well
as the entire network) can only be in one state, hence, any
two states Spn, S

p
m, n 6= m, (as well as Sn,Sm, n 6= m,) are

mutually exclusive.

Ordering of Path Sets. Consider two correlation subsets

A,B ∈ C̃. We define the precedence property as:

A ≺ B ≡ |ψ (A) | < |ψ (B) | (12)

that is, the edges in B are traversed by more paths than
the edges in A. Using this definition, we can determine a
partial ordering T of all the correlation subsets in C̃, i.e.,
order them by the number of paths that traverse them.



G the network graph
V the set of all nodes
E the set of all links
P the set of all paths
ek ∈ E a link
Pi ∈ P a path
ek ∈ Pi link ek is traversed by path Pi
ψ (A) the paths “covered” by the set of links A
|ψ (A) | the number of paths in ψ (A)
Xek

(r.v.) the state of link ek
YPi

(r.v.) the state of path Pi
C partition of E into correlation sets
Cp ∈ C a correlation set

C̃ the set of all correlation subsets

A,B ∈ C̃ two correlation subsets
Sp (r.v.) the set of congested links in Cp
S (r.v.) the set of all congested links
ψ (S) (r.v.) the set of all congested paths

αA congestion factor of A ∈ C̃
Sn a value of the random set S
Spn a value of the random set Sp

A ≺ B |ψ (A) | < |ψ (B) |

Table 1: List of defined symbols. “r.v.” = “random
variable.”

A.2 Some Basic Probabilities

Network State Probability. We will first express the prob-
ability that the network is in state Sn. We will use Eq. 11
and the fact that Sp and Sq, p 6= q, are independent.

P( S = Sn ) = P

0

@

\

p=1..|C|

( Sp = Spn )

1

A

=
Y

p=1..|C|

P( Sp = Spn ). (13)

All Paths Are Good. Next, we will express the probability
that all paths in P are good. We will use Assumption 2, in
particular, its implication that, if all paths in P are good,
then necessarily all links in E are good.

P( ψ (S) = ∅ ) = P( S = ∅ )

=
Y

p=1..|C|

P( Sp = ∅ ). (14)

Some Paths Are Congested. Next, we will express the
probability of event ψ (S) = ψ (A), i.e., that the paths cov-
ered by correlation subset A are the only congested paths in
the network.

P( ψ (S) = ψ (A) ) =
X

n s.t.
ψ(Sn)=ψ(A)

P( S = Sn ). (15)

Eq. 15 expresses the fact that, when the paths in ψ (A) are
the only congested paths, it must be true that a set of links
that cover exactly these paths (for which ψ (Sn) = ψ (A))

are the only congested links. One such set of links is A, but
there may be other sets that consist of multiple correlation
subsets.

We will now develop Eq. 15 further by considering the fol-
lowing: Since A ∈ C̃, there exists one correlation set Cq ∈ C,
which contains A. In the following, we denote by q the index
of the correlation set Cq such that A ⊆ Cq. We partition the
possible network states in two sets: the states where A = Sqn
(the only congested links in Cq are the links in A) and the
states where A 6= Sqn:

P( ψ (S) = ψ (A) ) =
X

n s.t. Sq
n=A,

ψ(Sn)=ψ(A)

P( S = Sn )

+
X

n s.t. Sq
n 6=A,

ψ(Sn)=ψ(A)

P( S = Sn ). (16)

Finally, if we combine Eq. 16 with Eq. 13, we get:

P( ψ (S) = ψ (A) ) =

P( Sq = A )
X

n s.t. Sq
n=A,

ψ(Sn)=ψ(A)

0

B

B

@

Y

p=1..|C|,
p 6=q

P( Sp = Spn )

1

C

C

A

+
X

n s.t. Sq
n 6=A,

ψ(Sn)=ψ(A)

0

@

Y

p=1..|C|

P( Sp = Spn )

1

A . (17)

Illustration. Consider Figure 1(a), correlation subset A =
{e1, e2}, and the event (ψ (S) = ψ (A) = {P1, P2, P3}), i.e.,
that all paths are congested. This means that the network
is in one of the following states:

Sn S1
n ∪ S2

n ∪ S3
n

S1 {e1, e2} ∪ ∅ ∪ ∅
S2 {e1, e2} ∪ {e3} ∪ ∅
S3 {e1, e2} ∪ ∅ ∪ {e4}
S4 {e1, e2} ∪ {e3} ∪ {e4}
S5 ∅ ∪ {e3} ∪ {e4}
S6 {e1} ∪ {e3} ∪ {e4}
S7 {e2} ∪ {e3} ∪ {e4}
S8 {e2} ∪ {e3} ∪ ∅

In this particular case, A ⊆ C1, i.e., q = 1. For the first four
states, S1

n = A, whereas for the rest, S1
n 6= A. Hence, if we

apply Equations 16 and 17, we get:

P( ψ (S) = ψ ({e1, e2}) ) =
4

X

n=1

P( S = Sn ) +
8

X

n=5

S = Sn ) =

P( S1 = {e1, e2} ) P( S2 = ∅ ) P( S3 = ∅ ) +
P( S1 = {e1, e2} ) P( S2 = {e3} ) P( S3 = ∅ ) +
P( S1 = {e1, e2} ) P( S2 = ∅ ) P( S3 = {e4} ) +
P( S1 = {e1, e2} ) P( S2 = {e3} ) P( S3 = {e4}) ) +
P( S1 = ∅ ) P( S2 = {e3} ) P( S3 = {e4} ) +
P( S1 = {e1} ) P( S2 = {e3} ) P( S3 = {e4} ) +
P( S1 = {e2} ) P( S2 = {e3} ) P( S3 = {e4} ) +
P( S1 = {e2} ) P( S2 = {e3} ) P( S3 = ∅ ).



A.3 Proof
If we divide Eq. 17 by Eq. 14, we obtain:

P( ψ (S) = ψ (A) )

P( ψ (S) = ∅ )
= αA ΓA + ΓĀ (18)

where

ΓA =
X

n s.t. Sq
n=A,

ψ(Sn)=ψ(A)

0

B

B

@

Y

p=1..|C|,
p 6=q

αSp
n

1

C

C

A

and

ΓĀ =
X

n s.t. Sq
n 6=A,

ψ(Sn)=ψ(A)

0

@

Y

p=1..|C|

αSp
n

1

A .

Lemma 1. The terms ΓA and ΓĀ depend on congestion

factors αSp
n
, where n and p are such that Spn = ∅ or Spn ≺ A.

Proof. We know that ΓA and ΓĀ depend on congestion
factors αSp

n
, where n and p are such that Spn 6= A. This is

because: ΓA depends on congestion factors αSp
n
, where n is

such that Sqn = A and p 6= q. ΓĀ depends on congestion
factors αSp

n
, where n is such that Sqn 6= A.

Moreover, ΓA and ΓĀ depend on congestion factors αSp
n
,

where n is such that ψ (Sn) = ψ (A). Since ψ (Spn) ⊆ ψ (Sn),
it implies that ψ (Spn) ⊆ ψ (A). We distinguish two cases:

1. ψ (Spn) = ψ (A). Correlation subsets Spn and A cover
exactly the same paths. From Assumption 4, it follows
that Spn = A, which contradicts the fact that Spn 6= A.

2. ψ (Spn) ⊂ ψ (A). Correlation subset Spn covers fewer
paths than A, i.e., |ψ (Spn) | < |ψ (A) |. Thus, either
Spn = ∅ or, by definition, Spn ≺ A.

Lemma 2. The congestion factors αA are identifiable, for

all A ∈ C̃.

Proof. We prove the lemma by induction on the partial
ordering T .

Initial Step. Let A be the first element from the partial
ordering T defined by Eq 12. We will prove that we can
compute αA from Eq. 18.

ΓA and ΓĀ consist of terms αSp
n
, where n is such that

ψ (Sn) = ψ (A) (call this Condition 1). Moreover, from
Lemma 1, we know that n and p are such that Spn = ∅ or
Spn ≺ A; since A is the first element in T , it cannot be that
Spn ≺ A, hence, Spn = ∅ (call this Condition 2). The only net-
work state that satisfies Conditions 1 and 2 is Sn = Sqn = A.

Hence, we have:

ΓA =
X

n s.t. Sq
n=A

Sn=A

0

B

B

@

Y

p=1..|C|,
p 6=q

αSp
n

1

C

C

A

=
Y

p=1..|C|,
p 6=q

P( Sp = ∅ )

P( Sp = ∅ )
= 1

and

ΓĀ =
X

n s.t. Sq
n 6=A

Sn=A

0

@

Y

p=1..|C|

αSp
n

1

A = 0.

Thus, we can compute αA from Eq. 18, where the term
on the left hand side is obtained through end-to-end mea-
surements.

Induction Step. We assume that we know αB , for all B ≺
A. We will prove that we can compute αA.

Let us recast Eq. 18 as

αA =

P( ψ(S)=ψ(A) )
P( ψ(S)=∅ )

− ΓĀ

ΓA
.

Note that the denominator ΓA is never 0, because for any
correlation subset A, there always exists at least one state
Sn such that ψ (Sn) = ψ (A) and Sqn = A, which is Sn = A.

According to Lemma 1, ΓA and ΓĀ depend on congestion
factors αSp

n
, where n and p are such that either Spn = ∅ or

Spn ≺ A. If Spn = ∅, then by definition, αSp
n

= P( Sp=∅ )
P( Sp=∅ )

= 1.

If Spn ≺ A with Spn 6= ∅, from the induction hypothesis, we
know αSp

n
. Thus, we can compute αA from Eq. 18, where

the term on the left is obtained through end-to-end mea-
surements.

Lemma 3. If the congestion factors αA are known for all

A ⊆ Cp, then the probability P( Xek
= 1 ) is identifiable for

all ek ∈ Cp.

Proof. As

P( Sp = ∅ ) = 1 − P( Sp 6= ∅ )

= 1 −
X

A⊆Cp,A 6=∅

P( Sp = A )

= 1 −
X

A⊆Cp,A 6=∅

αA P( Sp = ∅ )

we have that

P( Sp = ∅ ) =
1

1 +
X

A⊆Cp,A 6=∅

αA
.

Since αA is known for all A ∈ Cp, we can compute P( Sp =
∅ ) from the above equation.

Furthermore, we can compute P( Sp = A ) for all A ⊆
Cp, A 6= ∅:

P( Sp = A ) = αA · P( Sp = ∅ )

and P( Xek
= 1 ) for all ek ∈ Cp:

P( Xek
= 1 ) =

X

A⊆Cp

ek∈A

P( Sp = A).

We have proved that the congestion factors αA are identi-
fiable for all correlation subsets A ∈ C̃ (Lemma 2). We have
also proved that, if the congestion factors αA are known
for all A ⊆ Cp, the probability that all the links in A are
congested is identifiable for all A ⊆ Cp (Lemma 3), which
proves Theorem 1.


