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Abstract

This paper aims at investigating the use of Kullback-Leible
(KL) divergence based realignment with application to &pea
diarization. The use of KL divergence based realignment op-
erates directly on the speaker posterior distributionnesties

and is compared with traditional realignment performed us-
ing HMM/GMM system. We hypothesize that using posterior
estimates to re-align speaker boundaries is more robust tha
gaussian mixture models in case of multiple feature streams
with different statistical properties. Experiments ar@ an

the NIST RT06 data. These experiments reveal that in case
of conventional MFCC features the two approaches yields the
same performance while the KL based system outperforms the
HMM/GMM re-alignment in case of combination of multiple
feature streams (MFCC and TDOA).

Index Terms: speaker diarization, information bottleneck, fea-
ture combination

1. Introduction

Speaker diarization systems address the problewwiod spoke
when” in a given audio recording. This involves determin-
ing the number of speakers and identifying the speech corre-
sponding to each speaker in an unsupervised manner. Con-
ventional speaker diarization systems use short term rgpect
features like mel frequency cepstral coefficients (MFCQJ an
are based on ergodic HMMs [1, 2]. Each speaker is modeled
with an HMM state with a minimum duration constraint. The
state emission probabilities are modeled with Gaussiariuvix
Models(GMM). The diarization algorithm follows an agglom-
erative clustering of initial speech segments followed by t
realignment over the estimated speaker models. GMMs have
been proved being very effective for clustering and reratignt
when a single feature stream is used.

Recently speaker diarization systems are converging to-
wards combining multiple feature streams. Alternate fiestu
such as features obtained from long-time windows, Time De-
lay of Arrivals (TDOA) features (in case of MDM data) have
been explored in the context of speaker diarization [3, 4mE
bination of such complementary features with the conveatio
MFCC features improves the diarization performance canmsid
ably [3, 4]. Conventional HMM/GMM systems construct differ
ent models for each feature stream. The feature combination
performed by a linear combination of the log likelihoodswHo
ever, different features possess very diverse statigticader-
ties. This could lead to two different problems. On one side
different features may need GMMs with different complexity
(i.e. different number of gaussians). On the other hand GMMs
may have totally different dynamic ranges of log likeliheddr
each feature stream. For example, in [3] the number of Gaus-
sian components in the initial model is fixed as five for MFCC

features and one for TDOA features. In addition, variab#it
across different recording conditions could influence tha- f
ture statistics. The dimension of TDOA features varies ddpe
ing on the number of distant microphones. Using a globabline
combination to combine log likelihoods may not be apprdpria
in such scenarios.

In our previous work [5], we partially addressed the
problem using a non parametric approach to multiple-steeam
speaker diarization based on the Information Bottleneah- pr
ciple. The clustering is based on a set of relevance vasgable
which are represented as posteriors of a background GMM
model. Whenever multiple features are used, the combimatio
happens at the posterior distribution level rather thahetdg-
likelihood level.

In this paper, we propose a method to perform re-alignment
using solely the posterior distribution values and ingsdg its
application into multi stream diarization. The approacbased
on the use of Kullback-Leibler divergence between distribu
tions. The problem of minimizing the KL divergence between a
reference posteriors and a learned set of models has bekn stu
ied in the context of Automatic Speech Recognition (ASR) and
can be solved by an EM algorithm [6]. In case of multi-stream
diarization, a posterior based combination is employeds th
avoiding the problem of different feature dynamic rangelse T
posterior space have the same dimension for all featuras, th
making the system more robust to variations in feature dimen
sion and scale. In addition, the complexity of the realignme
algorithm stays the same. In the present paper Section 2 re-
views the Information Bottleneck(IB) principle and speadie
arization using agglomerative IB. Section 3 then describes
proposed algorithm for realignment. Experiments and tgsul
are presented in Section 4, and finally section 5 concludes th

paper.

2. |B based Diarization

Let us consider a set of speech segmeXits= {z1,...,z7}
obtained from uniform linear segmentation of the speeca itat
the audio recording. The speaker diarization task aimsuat cl
tering the elements of that are uttered by the same speaker. In
[7] we proposed an approach based on the Information Bottle-
neck principle inspired from rate distortion theory. In trast to
conventional minimum distortion based clustering techag

it is based on preserving the relevant information spedaifia t
given problem. The IB principle states that the best clirsges

the one that compresses the input variables with minimum los
of mutual information with respect to set of relevance Jalga
referred asY”. Relevance variables are variables that are con-
sidered important or carry the relevant information for eegi
clustering problem. We had proposed to use the gaussian com-
ponents of a background GMM as relevance variablé&’§@t.



This is motivated by the wide success of GMMs for speaker
recognition. The clustering operates using probabilitiggx)
obtained in trivial way using Bayes’ rule.

Thus, let us consider a set of input variablégi.e. speech
segments) to be clustered into clustérs= {¢;,...,cx}, and
let Y denote the set of relevance variables which contain useful
information about the problem (i.e. the components of a back
ground GMM). The IB principle states that the best clustgrin
representatior”’ must preserve as much information ab&dut
as possible i.e. the clustering representation should nmagi
the mutual informatiorf (Y, C') under a constraint of minimum
mutual informationl (X, C') (See [8] for details). This corre-
sponds to the maximization of:

@)

Where 3 is a Lagrange multiplier (the notation is consistent
with [8]). This criterion should be optimized with respeot t
the stochastic mapping(c|z). This leads to a consistent sys-
tem of equations which can be solved using iterative optimiz
tion techniques [8].

The optimization of the objective function (1) can be done
in greedy fashion using the agglomerative Information Bett
neck method [8]. The algorithm is initialized with the tivi
clustering of each point considered as a separate clystér (
clusters). At each step of the algorithm a cluster mergeris pe
formed such that the information loss with respect to the rel
evance variables is minimum. The loss of mutual information

F—1I(CY) - %z(x, o)

at each step is given by a Jensen-Shannon divergence which

is straightforward to compute from the posterior distribot
p(y|x). This method is described in detail in [9]. The informa-
tion preserved (C,Y') monotonically decreases at each merge.
The optimal number of clusters are selected based on a thresh
old on the Normalized Mutual Information (NME(G5%. The
complete algorithm is summarized as follows.

1 Acoustic feature extraction from the beamformed audio.

2 Speech/non-speech segmentation and rejection of non-
speech frames.

3 Uniform segmentation of speech in chunks of fixed size
D =250ms i.e., sek.

4 Estimation of a Gaussian component with shared diago-
nal covariance matrix for each segment i.e.,Yset

5 Estimation of conditional distributiop(y|x).
6 alB clustering and model selection
7 Clustering refinement using Viterbi re-alignment.

Further details of the algorithm can be found in [7] wheresit i
shown that this approach yields state of the art resultsasily-
nificant speecd up factor. The algorithm produces a pantitfo
the data (i.e. a clustering) C'| X') as well as posterior distribu-
tion for each speaker (i.e. for each clusiere p(Y'|C). In the
following we will discuss how to re-align speaker segmeatat
using directly the distributiop(Y'|C') without any GMM.

2.1. Multiple Features

Whenever multiple feature streanidy; } are available the com-
bination can directly happen in the space of the relevande va
ables i.e. using the posterior probabilitie§|z) . For each
feature streanf; we estimate a background GMMr,. The
combined posterior distribution is then calculated as

pylz) = Zp(ylﬂm Mpg,)Pp. )

| SRR TR
(a) CMU 20050914-0900 (b) EDI 20050216-1051

Figure 1: Histogram of TDOA features of RT06 eval meetings

where PL is the prior probability corresponding to feature
streamF;. These combination scheme does not suffer from the
different dimensionality or the different statistics oétfeatures
because it make use of posterior estimategx) rather than
log-likelihoods.

3. Realignment

Speaker diarization systems make extensive use of Viterbi
realignment. The realignment is supposed to improve the
speaker boundaries obtained after the agglomerativescingt
HMM/GMM are used for this purpose [1, 2]. Generally multi-
ple realignment, re-estimation iterations are perfornied¢ase

of multiple feature streams, a weighted combination of iker-|
lihoods is used for the realignment [3].

However, the statistics of each feature stream are usually
different. Consider for example the MFCC features and TDOA
features. Figure 1 shows the histogram of the TDOA features o
two meetings. It can be seen that the distribution is impealsi
in case of TDOA feature stream, while MFCC features follow
approximately Gaussian distribution. Also the dimensibtine
TDOA features can vary from meeting to meeting depending on
the number of microphones used in recording. Figure 2 plots
the negative log-likelihood obtained using a GMM for MFCC
and TDOA features: while MFCC log-likelihood is approxi-
mately constant across meetings, TDOA log-likelihood gfgan
considerably according to the number of microphones theis th
dimensions of delay features.

We investigate here a new realignment algorithm based on
the posterior distribution values(y|z) (i.e. the posterior value
of a guassian component given the feature veejaiming at
being more robust against such variations in statistics.algo-
rithm is motivated by the IB principle and aims at using Mier
realignment in posterior space as defined in Section 2. Let us
start with the following proposition:

Proposition 1. The IB maximization of Equation (1) is equiva-
lent to the following minimization:
min[I(X,C) + B E(d(X,(C))] 3)

whered(X,C) = KL(p(Y|X)|lp(Y]C)), is the KL diver-
gence between the posterior distributions given by thetetus
and the input (proof in [10]).

Consider a feature streafm:, z2, ..., z7) partitioned into
a set of clusters (speakeks), . . ., cx by the alB algorithm. In
case of hard clusteringg — oo and the IB optimization of (3)
reduces to the minimization of second term:

E(d(X,C)) E(KL(p(Y[X)[lp(Y|C)))
> p(r) ZP(CH%)KL (p(Y]ze)|Ip(Ye:))



Given the cluster assignmepfc;|z:) € {0,1} (hard cluster-
ing), and assuming the input clustering elements have umifo
prior, the optimization turns out to be the minimization of:

argmin ) _ KL (p(Y|z0)||p(Y]er) 4

Wherec; is such thap(c:|z:) = 1.

Let us first consider the classical HMM/GMM realignment.
The system has a set of speaker models (GMM). These GMM
models are used as the state emission probabilities of an er-
godic HMM. The optimal Viterbi path (speaker sequence}
(c1,c2,...,cr) is determined as the best sequence of speakers
that gives the maximum likelihood for the feature stream:

¢! = arg max Z log(be, (v+)) +1log(ac,e,y)  (5)
t

Wherec; is the speaker at time indexb., (.) is the emission
probability distribution (GMM) corresponding to speakeand
ac;c; i the transition probability of transition from speaker

to speaker;. In case the speaker is represented with a single
feature stream GMM, we have:

log(be, () = log > wi, N (zs,pt,, 5,)  (6)

where N/(.) is the Gaussian pdfywy,, pr,, X, are weights,
means and covariance matrix corresponding to speakein

case of multiple feature streams GMM with features =

{x{,z?}, the log linear combination becomes:

log(be, (z¢)) = PI}“ log szr,lN(xtlv 1“‘237 Eztl)
r1

+(1 = Pp)log > wiiN(wez, ey, Ser)

T2

@)

whereP} is the log-linear combination weight and means, vari-
ance and covariance matrices are to be considered relative t
each feature stream. The weight is statically set and accord-
ing to figure 2 log-likelihood have large variations accaglto
number of channels.

In a similar manner, we propose to extend the objective
function from equation (4) as follows:

¢ = argmin Y KL (p(Y 20| [p(Y |e0)) — log(ac,e,.,)  (8)
t

Thus the KL divergence between each feature vector and the
posterior distribution of the speaker model is minimizedheT
problem of minimizing the KL divergence between a reference
posteriors (in this case thgy|z)) and the learned set of mod-
els (p(y|c)) can be solved by an EM algorithm [6]. The re-
estimation formula fop(y|c) is simply given by

> plyle)

T EC;

9)

p(ylei)

i.e. the new speaker model is obtained by averaging poste-
rior probabilitiesp(y|x:) for z; that belongs taz;. In both
HMM/GMM and HMM/KL systems, a minimum duration con-
strain on the speaker states is imposed as in [1].

Whenever multiple feature streams are used the re-
alignment can be performed using the combined posterida-pro
abilities as defined in Equation (2). These features, bestig e
mates of probability values, are normalized.
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Figure 2: Variation of average negative log likelihoods fué t
background GMM across meetings for MFCC and TDOA fea-
tures together with number of microphones. The negative log
likelihoods of TDOA features is dependent on the number of
microphones.

4. Experimentsand Results

Although the proposed framework is general, we explore here
the combination of TDOA features with conventional MFCC
features. We perform the experiments on NIST RT06 evalua-
tion data for “Meeting Recognition Diarization” task reded

via Multiple Distance Microphones(MDM). The data was pre-
processed and beamformed wigeamformIf11] toolkit. The

bug fixed version oBeamformlt 2.2is used for this purpose
which provides different features compared to those usgg].in

We verified an improvement with the new beamforming in the
MFCC based system as compared to what reported in [5]. 19
MFCC features and TDOA features were extracted from the
beamformed signal. TDOA feature dimension depends on the
number of microphones used. The variation of average nega-
tive log likelihood of the background GMM for these features
is illustrated in Figure 2. It can be seen that the statistics
the TDOA features vary considerably across meetings and de-
pends on the number of microphones used. The log likelihood
of MFCC features however, seems to be stable across differen
meetings.

Diarization systems are evaluated using Diarization Error
(DER) as the measure. DER is the sum of speech/non-speech
error and speaker errors. Speech/non-speech error cn§ist
missed speech and false alarm errors. Speech/no-speech seg
mentation is obtained using a forced alignment of the refaze
transcripts using the AMI RTO06 first pass ASR models [12].
Since the same speech/non-speech segmentation is used acro
all the experiments, only speaker error will be reportedcken
forth.

Experiments aims at comparing re-alignment performed us-
ing the HMM/GMM and the HMM/KL systems in case of sin-
gle and multiple feature streams. The agglomerative diinste
framework is described in details in [7] for the single featu
stream and in [5] for the multiple feature streams case. $e ca
of multiple feature streams, the weights are empiricalliede
mined from a development dataset. The MFCC weight is fixed
to 0.9 in case of HMM/GMM system (log-likelihood combina-
tion) and to 0.7 in case of alB clustering (posterior disttidn



Table 1: Speaker error comparison of proposed system aetifEas Individual features and combination

MFCC features TDOA features Feature Combination

Realignment Realignment Realignment

Meeting || Without | HMM/ KL || Without | HMM/ KL || Without | HMM/ KL
Realign| GMM | based| Realign| GMM | based| Realign| GMM | based

CMU_20050912-0900 12.2 9.0 8.4 25.40 235 | 225 7.6 3.8 5.7
CMU_20050914-0900 155 116 | 114 24.60 21.5| 21.9 4.8 3.0 3.1
EDI_20050216-1051 35.5 31.0| 30.7 36.30 40.4| 38.7 7.1 4.3 5.1
EDI_20050218-0900 26.8 23.2| 243 30.00 29.4| 31.1 18.6 16.2 | 15.7
NIST_20051024-0930 145 10.1| 10.2 10.90 9.2| 10.8 55 3.4 3.9
NIST_20051102-1323 14.4 10.1| 103 11.30 8.2 8.7 25 1.2 1.6
TNO-20041103-1130 19.9 18.6 | 16.0 47.90 48.5| 48.7 28.3 31.3| 26.5
VT_20050623-1400 11.4 5.5 6.6 22.90 216 | 22.2 22.0 22.3| 204
VT_20051027-1400 26.3 253 | 27.0 11.60 28.0| 134 12.1 16.6 | 11.0
ALL 19.3 15.7| 15.7 24.40 25.0| 23.9 11.6 10.7 9.9

combination).

Table 1 provides the meeting-wise speaker error rate for the
agglomerative clustering without realignment as well athwi
HMM/GMM and KL based realignments. The case of MFCC
features, TDOA features and MFCC+TDOA features are con-

sidered. Let us consider separately all the different cases

ber IST-033812, as well as KERSEQ project under the Indo Sdost Research

Program (ISJRP) financed by the Swiss National Science Feiamd This project

is pursued in collaboration with EPFL under contract nunibég. The authors

would like to thank Dr. Xavi Anguera and Dr.Chuck Wooters fioeir help with
the HMM/GMM system and Beamforming as well as Dr. John Dimmesfs help

with speech/no speech segmentation.

In case of MFCC features both HMM/GMM and KL based
system have the same overall performance showing that in suc

a case there is no reason for preferring a scheme over the othe
In case of TDOA features (where the number of features and
their statistical properties change from meeting to megtine
KL based system outperforms the HMM/GMM lyl % abso-

(1]
(2]

lute. In case of combination of MFCC and TDOA the improve-

ment of the KL based re-alignment (8% absolute i.e. from

10.7% 10 9.9%.

5. Conclusions

(3]

(4

In this work we have proposed a KL divergence based realign-
ment scheme that operates on the speaker posterior estimate  [5]

This extends our previous work on Information theoreticselu
tering. The system only depends on posterior probabildfes

set of relevance variables defined as the components of a back [6]
ground GMM model. When tested on single feature stream
(e.g. MFCC coefficients), the proposed re-alignment preduc
the same performance as the conventional HMM/GMM re- (7]
alignment. On the other hand when the diarization uses multi
ple feature streams i.e. MFCC and TDOA features with differ-

ent statistics and different dimensions, the KL divergdrased
re-alignment outperforms the HMM/GMM b§.8% absolute

reducing the speaker error from.7% to 9.9%.

(8]

Although in this study, we investigated the combination of (]
MFCC and TDOA the proposed multiple stream diarization sys-
tem is completely general and can be extended to other fea-

tures (acoustic or visual) with very different statistipabper-

[10]

ties . Given that combination and re-alignment is performed

with posterior distribution estimates, the proposed agginds
supposed to be more robust than conventional HMM/GMM.
Experiments with other feature sets are currently invastid

and will be addressed in future works.
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