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Introducing Crossmodal Biometrics:
Person ldentification from Distinct Audio & Visual Streams

Anindya Roy and Sébastien Marcel

Abstract— Person identification using audio or visual bio- surveillance system which has collected speech data dttere
metrics is a well-studied problem in pattern recognition. h  py a set of persons. In this phase (the ‘training phase’) no
this scenario, both training and testing are done on the g, a| information was available perhaps because the bpeec

same modalities. However, there can be situations where #hi .
condition is not valid, i.e. training and testing has to be dae ~ WaSs recorded from telephone conversations. Presently, the

on different modalities. This could arise, for example, in overt ~ System is in the ‘test phase’, i.e. it is observing a person
surveillance. Is there any person specific information commn  talking whom it should identify as one out of the set in the
to both the audio and visual (video-only) modalities which ould  training phase (closed-set identification). Identity imfation

be exploited to identify a person in such a constrained situgon? of this person might be useful in planning how to interact

wa;h:asno\llv g:‘ébcﬁ ;n\ére;rtr;gei\t/gﬂ(th\lfshigﬁesgr?npé?fo?mp{mgl?;es?( with this person or whether to interact at all. However, due

consistently better than chance, suggesting that such cremodal  t0 either the distance of the system from the person (a

biometric information exists. common occurence in covert surveillance), or due to a noisy
acoustic environment, only the visual data (dynamic facial
|. INTRODUCTION appearance) is available. In such a scenario, a crossmodal

Conventional biometric systems use person-specific mofiometric system could provide important information uati
els tested on the same modalities on which they are trainggPnventional biometric system could be employed. A similar
The modality can be audio [1], visual [2][3] or a fusion ofScenario cou!o_i be |mag|neq by |.nterchang|ng the audio and
audio and visual (bimodal) [4][5]. Such systems do not exvisual modalities, where prior visual data of a person hqs
ploit person-specific information which might be embeddeae?n coIIe_cted and presently the person should be identified
“crossmodally”, i.e. inboth the modalities. using audio data alone.

Let us first define any such person-specific information Beforé approaching the problem from a purely pattern
which exists jointly in two modalities as a “crossmodall€cognition perspective, |t.|s worthwhile to note that we, a
biometric” and any system able to exploit such informatiofiumans, often perform this task. We often create a mental
for the purpose of person identification as a “crossmoddf'@9€ Of a person whose voice is familiar (from telephone
biometric system”. Essentially, it means that the trairng conversations, for example) but whqm we have never seen.
test data are from distinct modalities. We also often create a mental “voice model” from visual

A necessary criterion for a crossmodal biometric is tha{"nformation (either static or dynamic) of persons we have
like conventional biometrics, it should not vary with time.NEVEr heard. i ) )

This means that its value should remain unchanged evenR€cent studies have investigated these phenomena from
when the audio and visual data of a person are recordgbe viewpoint of human perce_ptlon and  psychophysics
separately at completely non-overlapping times. We termtOl[111112][13][14]. Inthgse StUd'e_S’ human observeerw_
this the Audio-Visual Mismatch criterion. This means, anfSked to match an audio recordlng of an unknown voice
correlation or mutual information based on audio-visual © WO video (visual-only) recprdmgs of two L_mknown
synchrony which could arise if the audio and visual datgP€@kers, A and B, one of which is X, and vice versa,
were extracted at the same time [6][7][8] cannot be treatelﬁpder a variety of experimental co_ndltlons. Lachs et al],[11
as a crossmodal biometric. Additionally, it is preferalfiatt Rosenblum et al.[14] and Kgmachl etal. [10] reported human
such crossmodal information be robust to variations in thgbserve_rs correctly matching X to A or B around 65%
lexical content of speech. of the times compared to the chance value of 50%. This

The primary significance of such crossmodal biometrid/as shown to be statistically sighificant given the number
systems is in the context of surveillance [9]. Let us imagine of mdep_en_dent test.cases conS|dered._ Krausg ,et al. have
shown similar matching performance using static instead of
This work was supported by the Swiss National Science Fdionda dynamic visual information [13]. These studies suggest tha
projects MultiModal Interaction and MultiMedia Data Mign(MULTI, crossmodal biometric information exists.

200020-122062) and Interactive Multimodal Information rdgement ; ; _
(IM2, 51NF40-111401) and the FP7 European MOBIO projectT{IS In this work, we approach the task of extracting cross

214324). modal biometrics from audio and visual data in a principled
A. Roy is with Idiap Research Institute, Martigny, anficole way and propose a framework for crossmodal identification.
Zg'%’tr?gh”;qulgo é’eg?r;'e chde Lausanne, Lausanne, Switzerl Experiments on a standard multimodal database involving a
S M);rc'el ig with |£ép Research Institute, Martigny, Seitand large number of tests under several experimental condition
Sebasti en. Marcel @di ap. ch were conducted. These experiments have shown promising



results, comparable to the statistics obtained by the humarodel is matched with all the available train models, using a
studies. suitable model similarity measure and the person is idedtifi

The rest of the paper is organized as follows. In Sec.lgs the one whose train model shows maximum similarity
we give a general overview of the proposed approach, whichith the test model. Unlike feature-level mapping, thishtec
we describe in greater detail in Sec.lll. We describe oumique has proved to be much more robust to generalization
crossmodal person identification experiments in Sec.lV. land has achieved significantly better results in the task
Sec.V, we discuss the results of our experiments and higbf crossmodal identification. We discuss this approach in
light certain aspects of our method. Finally, Sec.VI ogtin subsequent sections.

the main conclusions of our work.
IIl. CROSSMODAL PERSON IDENTIFICATION SYSTEM

Il. GENERAL OVERVIEW In this work, we used non-parametric density estimation

The main challenge of crossmodal biometrics is that thE.7] involving smoothed probability mass functions (PMF)
datasets used to train and test the person-specific mod#ls creating the speaker-specific models and Hebbian pro-
are from different modalities. Our approach is to use jection matrices [18] for the model-mapping framework.
suitable mapping framework to transform the person-smecifVarious model similarity measures were explored to match
information present in the testing modality to the trainthe models. We discuss each of these concepts in more detail
ing modality and then match this transformed informatios follows.
against the models. A

The parameters of this mapping framework is to be learnt ) )
from a synchronized audio-visual dataset which we denote L&t R* denote the feature space corresponding to the audio
as thelearning datasetD, . The learning dataset comprisesmedality. Given a finite seX = {xi}; e R of feature
of an audio partp? and a visual partD). These two parts points extracted from the audio data of a certain person, the
are ordered such that th element? e D2 is synchronous @M IS t0 estimate the probability density function (PDF)
to thei-th elementx’ € DY. We term the data to be used"_Vh'Ch gengrateq these points [17]. In this work, teghmques
in the training phase as theain datasetand the data to be lIk€ Gaussian Mixture Models (GMM) [1][2] conventionally
used in the test phase as ttest datasetlt is to be noted used to _moc_je_l audio and visual data are not swtablg_be-
that persons in the learning dataset are all distinct frapsgh Cause it is difficult to map such models between modahpes.
in the train and test datasets (to preserve the Audio-VisuIStéad, we chose to represent the PDF non-parametrically

. Modelling the data

Mismatch criterion, ref. Sec.l). as a piecewise linear approximation, i.e., a probabilitgsna
The crossmodal mapping can be carried out at two distinf¢nction (PMF)K[17]- _ _
levels: 1) feature level and 2) model level. LetM = {u}j_, be a set of representative pointsRfl. In

In feature level mapping, the feature vectors from on@ractice, these point§u}ic ; are chosen by K-Means clus-
modality are directly transformed to feature vectors in thiing of the learning datasBf € R* for the audio modality.
other modality using a mapping function, exploiting theThls ensures that they are probablllstlcally evenly.dns-tned.
correlation which exists between them [15]. However, unlik N the space, already following a “background” distribatio
other applications [6] [7] [8][16], feature-level mappih@s of points _for that modality (ref. background modelsZ [1D.
not performed well in our task mainly due to the Audio-These point$1 decompose the spaé¥ into a set ofK dis-
Visual Mismatch criterion: the learnt mapping parametees a i0int regions {RE}¢ , which is termed a Voronoi tessellation
highly person-specific and cannot generalize from the learff R [17]- All points in a particular regioRy are nearer to
ing dataset to the train and test datasets. Even with namlingk according to a certain metrid, among all points irM.

mapping techniques like Support Vector Regression [17], n'{)his metricd can be the E_uclid_ean distance,_ the Mahalanobis
improvement was obtained. distance [17] or the Cosine distance with little effect oa th

inal results although Euclidean distance performs skghtl

In the second approach, instead of trying to directly ma(g ) ; N 2
features from one modality to another, a statistical model @€tter- Given this decomposition &°, the PMF ofX, p§

the features in one modality is mapped to a statistical mod&fn be estimated g% = [p(1) p(2) --- P(K)]", where

of the features in the other modality using a model-mapping p(k) = Pr(xeR2xeX) (1)
framework whose parameters are learned from the learning 1
dataset. More precisely, a feature point in one modality is = W z 1{xeR6k‘} 2)

mapped to a “probability density cloud” in the other modalit vxexX

instead of a precise point. Such clouds are then summed where 1<k <K and|-| denotes size of a countable set. This
to form the equivalent model in the other modality. PMF is the model ofX and hence the model of the given
Thus, in this approach, both train and test data are firperson. In practice, better results are obtained with highe
used to generate models in their respective modalitieng@r values ofK [17], and in fact, best results are obtained when
the train model and test modelrespectively. To identify K approachesdD}|, the size of the learning set. However,
a person, the test model in the testing modality is firstypically [D2| > N whereN = |X|. This implies thaK > N,
transformed to its equivalent model in the training mogaliti.e. the number of regions far outnumbé&tsthe number of
using the model-mapping framework. This transformed testata points inX. Hence, the PMF estimation is extremely



sparse which is not desirable. This problem is solved bthe estimation becomes gradually poorer since the number of
smoothing the PMF. The simplest way is to replace thquantities to be estimatedf) increases rapidly compared
probability estimatep(k) for a particular regiorR} by the to the size of available data. However, in the extreme case
average of the probabilities of ite nearest regions, where when K approachegD?|, the size of the learning dataset,

K is the smoothing parameterThe k nearest regions are each point of the learning dataset becomes a centroid in the
those whose centroidgy } are thek-nearest neighbours of setM = {g}K_; (ref. Sec.lll-A). Then, due to the one-to-
Hc in M. A similar procedure can be followed to generatene correspondence betweefiandDy', H2Y,H2 can in fact
models in the visual modality. Let us denote such a PMF ibe approximated reliably by the identity matii% of size

the visual feature space p¥. K x K. This is an important advantage.

B. Crossmodal Mapping of Models C. Model similarity measures - Person Identification

Let R?, RY denote the feature spaces corresponding to theLet the training modality be audio and testing modality
audio and visual modalities respectively. Model mapping bebe visual. We term this as the (a-v) case. In the training
tween the two modalities is achieved via Hebbian projectiophase, we generate a set of mod{q@}ﬁgl in the audio
matrices [18], which are conditional probability matricesfeature space from the feature points in the train datasét (r
Let H? denote theK x K Hebbian projection matrix from Sec.lll-A), eachw representing a different person. In the test
the audio to the visual modality, each of whose elemenjshase, a modgby, is generated in the visual feature space
H®"(ka,ky) estimates the conditional probability that a poinfrom feature points in the test dataset, extracted fromalisu
x" belongs to a particular regidRy in the feature spacR” data of an unknown person X. It is mapped to the audio
of the visual modality, given that its corresponding poifit feature space using eqn.7 to give the estimated P§Ifn
in the audio modality belongs to the regi®f in feature the audio modality. This estimated PMF is matched with the
spaceR?, i.e. H®(ka, k,) = Pr(x* € R [x* € Rf ). Since the set of PMFs{p2}"2, using a suitable similarity measuteé
points in the learning datase?,D{ have a one-to-one and the persoiX is identified as the one whose mogi.
correspondence based on synchrony (ref. Sec.ll), the matrias the highest similarity with the test model.

H2 can be estimated using data from the learning dataset as

follows, w* = arg max,W(pf,p%) 8
A
H¥(ka k) = 5 (3) The similarity measuré® can be the Bhattacharyya coeffi-
cient [17],
where 1 1
We(p%,P%) = S P& (k) 2p% (k)2 ©)
A= D Lovery) Logery,) ) (P Px ; &k 2Px(
WxPeDR

the L2 inner product [19],

B = Z Lpeera ) (5)
PERL Wi2(pg, PX) = ; e (k)X (k) (10)

1 <ka,ky <K andx? € D} is the audio vector synchronous v
with visual vectorxy € D). The inverse Hebbian projection or a simplified form of the Kullback-Leibler Divergence [17]
matrix H'@ from the visual to the audio modality can be a =a a s ma
calculated similarly by interchanging the audio and visual Wk (Pw:Px) = \;Iog(pw(k))px(k) (11)
modalities in the above equation. _

Given a PMFp2 generated from a set of poinksin the In practice, all three gave comparable results, with:

audio feature space as in Sec.lll-A, we can use the matrperforming slightly better than the others. For the reverse

Hav to “project” p& on the visual feature space, (v-a) case, where the training modality is visual while the
B v testing modality is audio, a similar procedure was followed
Px =H*pk (6)  with the roles of the modalities interchanged.

where py is an estimate of the true PMpBY of the set IV. EXPERIMENTS

of visual feature points corresponding to the audio featur
points inX. It is to be noted that these visual feature point
are actually not available, hence we ud&' to indirectly All experiments were performed on the standard M2VTS
estimatep},. A PMF pY; in the visual feature space can beaudio-visual database [20][5]. The database contains 10
similarly “projected” on the audio feature space ushYf, female and 24 male subjects. For each subject, synchronized
a ey audio and visual data was recorded in a controlled
Px =H"px (") environment across four sessions separated by one week
It is to be noted that wherK is high, the Hebbian intervals. In each session, the subjects counted from ‘0’ to

projection matrices become sparse and need to be smoothédh their native language. Lip annotations were obtained

out in a similar way as for the PMFs in Sec.lll-A. Even then/Tom http://wwv. ee. surrey. ac. uk/ Proj ects/
M2VTS/ experiments/|ip_tracking/. In this work,

1This is comparable to a Parzen window approach [17]. only the 24 male subjects were considered since the

. Database and features



number of female subjects was too few to yield statistically We performed separate experiments for different choices
significant results. of N to analyse the effect of varying the number of subjects
For the visual modality, we concentrated on lip appearande the match dataset and learning dataset. Experiments were
features since they have been shown to be efficient and robasto repeated by varying the value of the smoothing param-
to small errors in lip localization [16]. The video frameeat eterk from a few tens to a few hundreds and the number of
was 25fps. From each video frame, a>1&6 Region-Of- regionsK from a few tens tgD{|, the size of the learning
Interest (ROI) around the lips was extracted using avatlabHataset, which was approximately 5000.
annotation, followed by geometric normalization and inter Two types of experimental conditions were investigated,
frame alignment. Next, 2D-DCT features [16] were extracte(l) lexically matched condition and (2) lexically mismagch
and 39 to 10" highest energy coefficients were retained teondition. For condition (1), speech content in test and
form the visual feature vectors. Mean normalization watrain datasets were lexically matched: recordings from the
performed for each video sequence [16]. For the audidatabase were used unchanged. For the second (more dif-
modality, the audio data sampled at 8kHz was blocked intiicult) condition, the recordings were rearranged so that
frames equal in duration to the video frames (correspondirgggments used for training were lexically mismatched with
to 320 samples per frame) and 16 Mel-Frequency Cepstrag¢gments used for testing : if training data contained ‘0’ to
Coefficients (MFCC) [16][1] were extracted from each block;4’, testing data contained ‘5’ to ‘9’ and vice-versa.
out of which P! to 8" were retained to form the audio Experiments were performed for both the (a-v) and (v-
feature vector$. For each audio sequence, Cepstral Mean) cases (ref. Sec.lll-C). In all experiments, the Audio-
Subtraction [16] was performed. It is to be noted thaWisual Mismatch criterion was strictly imposed. For refer-
only voiced frames were used, both for audio and visua@nce, person identification experiments were also perfdrme

modalities. with both the train and test data from tlsamemodality
keeping the rest of the framework unchanged, i.e. both from
B. Protocol audio modality or both from visual modality (conventional

A complete experiment comprised of several independeHlometr_'CS)' We term these as the (a-a) and (v-v) cases
runs. In each run, a certain fixed numbeMNpfsubjects were respectively.
chosen at random from the 24 to form the learning datasgt, Results
while the remainindNg = 24— N, subjects formed thmatch
dataset All crossmodal mapping parameters were Iearn+
using the learning dataset while all person identificatests
were carried out on the match dataset. The match data

itself was broken into train and test datasets (ref. Sec.ll) different choices of the number of subjects in the match

i i i i av va i
Hebbla_n projection matricd$?V, HY@ were estimated from set,Ng — {4,8,12,16}. In each case, the number of subjects
the learning dataset (ref. Sec.lll-B). Next, a 4-fold cross; . .
L _In the corresponding learning datasetNs= 24— Nq. The
validation was performed on the match dataset as follows: in .
. . erformance of the proposed framework is given by the mean
each fold, a particular session out of the 4 was chosen to fo L tification rate®® . andPC . for the (a-v) and (v-a) cases
the test dataset, while the other 3 formed the train dataset a-v v-a

for each subject. Models were trained from both train an(rjefsgescg\t/gz' Eg;:é)msgllsc;nn’ trgi(;?)?régiirc]:tglicsagcl)snopgaeown
test datasets (Sec.lll-A) and mapped to the same modal@ y purely '

1
as required. Approximately 5 seconds of speech was used

We summarize the primary results of our experiments in
ables | and Il, showing lexically matched and mismatched
§ ditions respectively. Person identification perforoeis
reported in terms of the mean identification rdde for 4

is calculated ay = No Since each test is a one-iy

. NQ . e .
to create the test models, and about 15 seconds for the trg?r"f‘tChmg problem. Additionally, mean identification ratés

models per subject. Finally, closed-set person identifinat con\éent|onal cb|ometr|c §ystems (a-a) and (v-v) are relorte
asPS_, andP{_, respectively (ref. Sec.IV-B).

was performed on all thg, test recordings in the test dataset .
. . . Although a wide range of values of and K were
(one from each subject) against all they models in the . . . .

. investigated, the performance did not vary considerabty an
train dataset (ref. Sec.ll-C). Faachrun, a total of 4< No we report identification rates corresponding only to their
identification tests were performed. The correct identiiica rep . P g only

; optimal values. It is to be noted that the optimal value
rate for a run is measured as, ) . . :
for k remained within 300, while optimal performance was
obtained wherK — |D2|, the size of the learning dataset.
Although the primary notion of performance in a person

For each experiment, we report the mean identification ra'{gentification task is given by the mean identification rate

~ C H H H
PC by averaging the correct identification r&¥®for each run © » W€ also consider the case where it is required that the

across 200 runs. A highd¥® indicates better performance. COTTect identity may not be the very first but should be
The total number of tests in an experimentNs — 200x &t least within the firsR* identities selected according to

4% Ng decreasing similarity valu&’ (ref. Sec.lll-C). We consider

this relaxed scenario because this is intrinsically a diffic
2For both the audio and visual modalities, the coefficientsehaeen task. We rgport this perfo_r_mance in figs. 1 to 4 in terms of

selected by trial-and-error to give best performance. P(R<RY), i.e. the probability that the ranR of the correct

~ No. of corr identification
e _ No. of co ect identificatio S 100% (12)
Total no. of tests




Crossmodal Random Conventional
biometric systems| chance | biometric systems !
No N |Po, Ria R Pia Ry 0.9" :
1. 4 20 | 43.0 44.1 25.0 99.8 96.8
2. 8 16 | 26.7 26.2 12.5 99.3 92.4 0.8- 1
3. | 12 12 | 17.5 17.8 8.3 98.4 87.8 07 |
4. | 16 8 11.7 12.0 6.3 97.3 81.6 '
__0.6F g
TABLE | ™ 0al ——a-a |
MEAN IDENTIFICATION RATES P (%) UNDER LEXICALLY MATCHED g ——a-v
CONDITION. ROWS REPRESENT DIFFERENT CHOICES O¥g AND N. o4 —B-v-a i
0.3- —B-v-v |
—e—Random chance
0.2 .
Crossmodal Random Conventional
biometric systems| chance | biometric systems| 0.1- 1
No N Pg—v P\?fa P((): Pg—a P\(/:7v 0 1 I | I I I I
1. 4 20 | 30.0 31.1 25.0 69.9 80.3 0.5 1 15 2 25 3 35 4 4.5
2. 8 16 | 16.0 17.8 12.5 54.1 68.4 Rank value, R
3. | 12 12 | 11.0 12.4 8.3 44.4 58.0
4. | 16 8 8.1 9.0 6.3 36.8 47.1

Fig. 1. Expected probability that the rank of the correcniitg R is lower
than or equal tdr* at different values oR*, for the caseNg =4, N. =20

TABLE 1l . L

under lexically matched condition.

MEAN IDENTIFICATION RATES P (%) UNDER LEXICALLY MISMATCHED

CONDITION. ROWS REPRESENT DIFFERENT CHOICES d¥g AND N, .

0.9-

0.8
identity is less than or equal f&*. R* varies from 1 toNg.

A higher value ofP(R < R*) indicates better performance. T

0.6

As before, we consider four choicedg = {4,8,12 /16}. It 2
is to be noted that the value ®{R< R*) atR* =1 is equal o o
to PC. T o4 e ]
—— -V
V. DISCUSSIONS 03 —Hva ]
02 —B-v-v |
It is evident from tables | and Il that our proposed ' —s—Random chancg

crossmodal biometric systems ((a-v) and (v-a)) are able to oL ‘ ' 1
perform consistently better than random chance in all the o— L L . L L L L
cases, although performance is degraded in the lexically Rank value, K
mismatched condition (similar to the conventional sysfems
Given the high number of tests in each expgrlment (ranglqgg. 2. Expected probability that the rank of the correchiitg R is lower
from 3200 forNg = 4 to 12800 forNg = 16), it SeeEMS UN-  than or equal t&R* at different values oR", for the caseNg = 8, N = 16
likely that our proposed system consistently performetkibet under lexically matched condition.
purely by chance. This suggests that crossmodal biometric
information exists and our system is able to exploit this
information. be shown that the value d?(R < R*) at R* = Ng/2 in
As expected, our proposed crossmodal biometric systerf{gs: 1 t0 4 provides a rough estimate of the performance
are outperformed by the conventional biometric systems ((&f Such a framework in an XAB maiching task (ref. Sec.|
a) and (v-v)). This is not surprising since the crossmoda&nd [L0][14]). It is interesting to note that the value isselo
task is much more difficult than a direct matching within thd© 0.65 which is correlated by the values obtained by human
same modality. observers as reported in these studies although these fare no
It is observed from tables | and 11 that although the absddirectly comparable since the databases used were differen
lute value of the mean identification ral reduces as the
number of subjects in the match ¢4 increases, the ratio )
PC/P¢ indicating the relative improvement of the proposed™ Conclusions
system compared to a purely random system remains fairly In this work, we introduced the concept of crossmodal
stable irrespective of the fall in the amount of data in thdiometrics, person-specific information which is embedded
learning dataset (more than a 50% decrease g=4 to  “crossmodally” across two modalities. We investigated ap-
Ng = 16). proaches to extract and exploit such information for a cross
Figures 1 to 4 show that the proposed systems are congmsedal person identification task. In particular, we conside
tently better than random chance in terms of the probabilitgudio-visual crossmodal biometrics, i.e. matching test da
P(R< R") across different values &t*. Furthermore, it can from the visual modality with training data from the audio

VI. CONCLUSION AND FUTURE WORKS



0.9
0.8
0.7,
— 0.6
@
VI 0.5
'3 ——a-a
& 0.4r —o—a-v 1
—B-v-a
0.3 —B-v-v )
0.2- —e— Random chance| 4 [1]
0.1 8|

(2]

0 I I I I I I
2 4 6 8

Rank value, R
[3]

Fig. 3. Expected probability that the rank of the correcniitg R is lower
than or equal t&R* at different values oR*, for the caseNg =12, N =12
under lexically matched condition.

(4]
(5]

(6]
(7]

(8l
——a-v
—B-v-a
—B-v-v 1
—e— Random chance

El
[20]

[11]

0 I I I I I
2 4 6 8 10

Rank value, R

12 [12]

[13]

Fig. 4. Expected probability that the rank of the correchiitg R is lower
than or equal tdr* at different values oR*, for the caseNg =16, N. =8

- L 14
under lexically matched condition. [14]

[15]
modality, and vice-versa. We proposed a framework to pe{1—6]
form this task and evaluated its performance using a standar
audio-visual database under a variety of test cases and ex-
perimental conditions. Results from these experimentmseé”]
to suggest that such crossmodal person-specific informatig g;
exists, and it is possible to exploit it for person identifica

when conventional biometric systems are not practical. [19]

B. Future works

Although our framework performed consistently better?))
than chance, identification rates are still too low. In fetwe
will address this issue and aim to improve our framework so
that it is suitable for practical deployment in a real scenar
One possibility is to take into account dynamic audio and
visual information in addition to the static feature vestor
considered in this work. More sophisticated features and
modelling techniques optimized for the task will also be-con

sidered. Furthermore, we aim to use a larger database with
the possibility of a richer and more varied learning dataset
which could have a positive impact on the performance of
the system.
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