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Abstract

Fisher kernels combine the powers of discriminative and generative classifiers by
mapping the variable-length sequences to a new fixed length feature space, called
the Fisher score space. The mapping is based on a single generative model and
the classifier is intrinsically binary. We propose a strategy that applies a multi-
class classification on each Fisher score space and combines the decisions of multi-
class classifiers. We experimentally show that the Fisher scores of one class provide
discriminative information for the other classes as well. We compare several multi-
class classification strategies for Fisher scores generated from the Hidden Markov
Models (HMMs) of sign sequences. The proposed multi-class classification strategy
increases the classification accuracy in comparison with the state of the art strategies
based on combining binary classifiers. To reduce the computational complexity of
the Fisher score extraction and the training phases, we also propose a score space
selection method and show that, similar or even higher accuracies can be obtained by
using only a subset of the score spaces. Based on the proposed score space selection
method, a signer adaptation technique is also presented that does not require any
re-training.
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1 Introduction

Sign language recognition relies on spatiotemporal modeling of the hand. This
can be achieved by using models that can handle variable length sequences
and the dynamic nature of the data. Several methods are proposed and ap-
plied in the literature for modeling the dynamics of signs or hand gestures.
These include Hidden Markov Models (HMM) [1] and its variants, dynamic
time warping, time delay neural networks, and temporal templates [2,3], with
HMMs being the most extensively used method.

Isolated sign language recognition can be defined as a sequence classification
problem where each sign is represented as a variable length sequence. With
their power in modeling sequential data and processing variable length se-
quences, HMMs offer a natural solution for modeling signs. However, HMMs
as generative models, are not as successful as discriminative models on classi-
fication problems. Discriminative methods (such as support vector machines
and neural networks) have flexible decision boundaries and better classification
performance. Although most of the discriminative methods in the literature
are only suitable for fixed length data, several approaches are proposed to
learn variable length sequential data via discriminative models [4],[5].

Fisher kernels have been proposed as a method to map a variable length se-
quence to a new fixed dimension feature vector space [6]. The mapping is
obtained by the derivatives of the parameters of an underlying generative
model. This new feature space is called the Fisher score space [7] on which,
any discriminative classifier can be used to perform discriminative training.
The main idea of Fisher kernels is to combine generative models with dis-
criminative classifiers to obtain a robust classifier which has the strengths of
each approach. Since each Fisher score space is based on a single generative
model, the new feature space is assumed to be suitable for binary classification
problems in nature. In a multi-class classification problem where each class is
represented by a different generative model, one would have as many Fisher
score spaces as classes.

In the literature, Fisher kernels have been applied to binary classification
problems such as bio-sequence analysis [6], protein homology detection [8],
and also to multi-class classification problems such as audio classification [9],
speech recognition [7], object recognition [10], texture classification [11], and
face recognition [12]. To solve these multi-class classification problems, in most
of these works, the researchers apply either a one-versus-one (1vs1) or a one-
versus-all (1vsAll) scheme. In 1vs1 and 1vsAll, binary classification is applied
and then the decisions of the binary classifiers are combined to give a multi-
class decision [9][7][10][11]. In [12], the authors concatenate all the Fisher
scores generated from the models of each class into a single feature vector.
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Then, they apply a multi-class classification to this combined feature vector
and achieve higher recognition performance when compared to binary classi-
fication schemes.

This study aims to use Fisher kernels to map the original variable length
sign sequences based on HMMs to the fixed dimension Fisher score space,
and to apply a discriminative multi-class classification on this new feature
space. Preliminary versions of this work can be found in [13],[14]. In this
work, we propose a new multi-class classification scheme that applies a multi-
class classification on the Fisher score space of each generative model. In this
approach, we use the discriminative power of the Fisher scores of one class to
classify other classes. We compare this scheme with state of the art techniques
applied for multi-class classification and show that the method is both more
accurate in comparison with binary classification schemes and computationally
more effective than concatenating all the score spaces into one feature vector,
especially in terms of the memory requirements for high dimensional problems.
Our results show that if the multi-class scheme is not properly determined,
the recognition performance of the combined classifier may decrease even with
respect to the underlying generative model.

One disadvantage of the Fisher scores is the high dimensionality of the gen-
erated feature vectors. The dimension of the new feature vector is directly
related to the number of parameters of the underlying generative model. Al-
though the generative models for gesture and sign sequences are as simple as
a left-to-right HMM with a few states, the dimensionality of the Fisher scores
gets higher with the feature dimensionality of the sequences and the number
of classes. So, both the computation of the Fisher scores and the discrimina-
tive training on the new feature space become costly. We analyze the effect
of the parameters of the generative model and each score space, on the recog-
nition performance. To reduce this computational complexity, we propose to
perform score space selection and compare several methods such as parameter
selection, and dimensionality reduction with PCA or LDA.

Our contributions in this paper can be summarized as follows: We propose a
new multi-class classification scheme that applies a multi-class classification on
the Fisher score space of each generative model. We compare state-of-the-art
techniques to reduce the computational complexity of Fisher score extraction,
training and testing phases and we show that the complexity can be further
reduced, without compromising the accuracy, by an intelligent score space
selection strategy. Lastly, we present a signer adaptation strategy that does
not require re-training of the system. During the score space selection phase,
examples from the current signer is used to determine the score space subset.
To show the validity of the proposed techniques, we conduct experiments on
a sign language dataset as well as on a hand gesture and a head gesture/facial
expression dataset. We compare the performance of several state-of-the-art
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multi-class classification schemes with the proposed scheme and show that the
proposed scheme provides the highest accuracy and enhances the performance
of the base classifier the most. The organization of the paper is as follows: In
Section 2, we introduce the Fisher kernel methodology in detail. The multi-
class classification strategies are discussed in Section 3. Section 4 presents our
proposed multi-class classification strategy. In Section 5, we discuss several
strategies for reducing the computational cost of Fisher score calculation and
classification. The results of the experiments are reported in Section 6.

2 Fisher Kernels and Score Spaces

A mapping function, φ, that is capable of mapping variable length sequences
to fixed length vectors enables the use of discriminative classifiers for vari-
able length examples. Fisher kernel [6] defines such a mapping function and
is designed to handle variable length sequences by deriving the kernel from a
generative probability model. The gradient space of the generative model is
used for this purpose. The gradient of the log likelihood with respect to a pa-
rameter of the model describes how that parameter contributes to the process
of generating a particular example. All the structural assumptions encoded in
the model about the generation process are naturally preserved in this gradi-
ent space [6]. Higher order Fisher kernels can also be constructed by taking
the second or third order derivatives.

Fisher score, UX , is defined as the gradient of the log likelihood with respect
to the parameters of the model:

UX = ∇θlogP (X|θ) (1)

UX defines a mapping to a feature vector, which is a point in the gradient space
of the manifold of the probability model class. The direction of steepest ascent
in logP (X|θ) along the manifold can be calculated by the Fisher score, UX . By
normalizing via the diagonal of the covariance matrix, ΣS , of the score space
estimated from the training set, the normalized Fisher kernel can be defined
as follows:

K(Xi, Xj) = UT
Xi

Σ−1
S UT

Xj
(2)

In practice, Fisher scores are used to extract fixed size feature vectors from
variable length sequences modeled with any generative model. This new fea-
ture space can be used with any discriminative classifier. However, the dimen-
sionality of this new feature space can be high when the underlying generative
model has many parameters and the original feature space is multivariate.
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Table 1
Fisher, likelihood and likelihood ratio score spaces

Score Space Feature Vector

FSS ∇Θ̂1
log p1(O|Θ̂1)

LSS





log p1(O|Θ̂1)

∇Θ̂1
log p1(O|Θ̂1)





LRSS











log p1(O|Θ̂1) − log p2(O|Θ̂2)

∇Θ̂1
log p1(O|Θ̂1)

−∇Θ̂2
log p2(O|Θ̂2)











Thus, Support Vector Machines (SVMs) become a good choice of a classifier
since they do not suffer from the curse of dimensionality [15].

2.1 Fisher Score Spaces

Score spaces are generalizations of Fisher kernels and define the mapping space
[16]. A score space is derived from the likelihood of a generative model. Score
vectors are calculated by applying a score operator to the score argument.
Score argument can be the log likelihood or posterior of the generative model,
whereas the score operator can be the first or second derivative, or the argu-
ment itself. Table 1 shows the Fisher (FSS), Likelihood (LSS) and Likelihood
Ratio (LRSS) Score Spaces. p1(O|θ̂1) and p2(O|θ̂2) are the likelihood estimates
produced by the generative models of class 1 and class 2, respectively. Other
score spaces and their derivations can be found in [7].

The difference between the FSS and the LSS is that the latter also uses the
likelihood itself in the score vector. LRSS represents the two classes by putting
the likelihood ratio instead of the likelihood in the score vector, together with
the score operators for each of the classes.

2.2 Fisher Kernels for HMMs Using Continuous Density Mixture of Gaus-

sians

In sign language recognition and hand gesture recognition problems, HMMs
are extensively used and have proven successful in modeling hand gestures.
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Among different HMM architectures, left-to-right models with no skips are
shown to be superior to other HMM architectures [17].

In this work, we have used continuous observations in a left-to-right HMM
with no skips. The parameters of such an architecture are, prior probabilities
of states, πi, transition probabilities, aij and observation probabilities, bi(Ot)
which are modeled by mixture of M multivariate Gaussians:

bi(Ot) =
M
∑

m=1

wim N (Ot; µim, Σim) (3)

where Ot is the observation at time t and wim, µim, and Σim are weight, mean
and covariance of the Gaussian component m at state i, with a total of M

Gaussian components.

For a left-to-right HMM, the prior probability matrix is constant since the
system always starts with the first state with π1 = 1. Moreover, using only self-
transition parameters is enough since there are no state skips (aii+ai(i+1) = 1).
Observation parameters in the continuous case are weight, wim, mean, µim and
covariance, Σim of each Gaussian component. The first order derivatives of the
log-likelihood, P (O|θ) with respect to each parameter are given below:

∇aii
=

T
∑

t=1

γi(t)

aii

−
1

T aii (1 − aii)
(4)

∇wim
=

T
∑

t=1

[
γim(t)

wim

−
γi1(t)

wi1
] (5)

∇µim
=

T
∑

t=1

γim(t) (Ot − µim)T Σ−1
ik (6)

∇Σim
=

T
∑

t=1

γim(t) [−Σ−1
im + Σ−1

im (Ot − µim) (Ot − µim)T Σ−1
im] (7)

where γi(t) is the posterior probability of state i at time t and γim(t) is the
posterior probability of component m of state i at time t, and T is the total
length of the data sequence. Since the component weights of a state sum to
1, one of the weight parameters at each state, i.e. wi1, can be eliminated.
The derivations of these gradients can be found in [18]. These gradients are
concatenated to form the new feature vector which is the Fisher score. The
log-likelihood score space where log-likelihood itself is also concatenated to
the feature vector is given as:

φOt
= diag(ΣS)−

1

2

[

log p(Ot|θ) ∇aii
∇wim

∇µim
∇vec(Σ)im

]T

(8)
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When the sequences are of variable length, it is important to normalize the
scores by the length of the sequence. We have used sequence length normaliza-

tion [16] for normalizing variable length sign trajectories by using normalized
component posterior probabilities, γ̂im(t), in the above gradients:

γ̂im(t) =
γim(t)

∑T
t=1 γi(t)

(9)

3 Methods for Multi-class Classification Using Fisher Scores

As Fisher kernels are extracted from generative models which are trained with
the examples of a single class, the new feature space of Fisher scores is mainly
representative of that class. In [6], where the idea of Fisher kernels is proposed,
the authors applied Fisher scores to a binary classification problem.

For a binary classification problem, one might have three different score spaces
based on likelihoods:

(1) LSS from the generative model of class 1
(2) LSS from the generative model of class 2
(3) LRSS from the generative models of class 1&2

LRSS contains discriminative features from each class and provides a good
representation for binary classification problems. Experiments show that it
gives slightly better results with respect to LSS, which is based on single class
information [7].

For a multi-class problem, one needs a similar combination method: Fisher
scores from each generative model must be combined to obtain a good multi-
class representation. A general method to extend the Fisher scores to multi-
class classification problems is to apply binary classification and combine the
results via decision or score level combination. In the next section, we summa-
rize four schemes that are commonly used for the multi-class classification on
Fisher scores. The first three schemes, B1vs1, B1vs1R, and B1vsALL are the com-
monly used multi-class classification techniques based on a binary classifier,
such as 1vs1 and 1vsAll. Alternatively, in [12] authors use a feature level com-
bination approach (MFLC) and concatenate all the Fisher scores into a single
feature vector. Then, they apply multi-class classification on the combined
feature vector. We present our approach, (MDLC) in Section 4.

A summary of all the schemes is given in Figure 1 and Table 2. For the strate-
gies that use decision/score level combination, the fusion is done via weighted
voting: a test example is given to each classifier and the final result is ob-
tained by selecting the class with the maximum weighted vote, with posterior
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(a) (b)

(c) (d) (e)

Fig. 1. Multiclass classification strategies: (a) B1vs1, (b) B1vs1R, (c)
B1vsALL, (d)MFLC , and (e) proposed method, MDLC

Table 2
Multiclass classification strategies for Fisher scores. K denotes the number of classes

Strategy Score Space Used # & type of classifiers Combination of Score Spaces

B1vs1 LSS K · (K − 1), binary Decision/score level

B1vs1R LRSS K·(K−1)
2 , binary Decision/score level

B1vsALL LSS K, binary Decision/score level

MFLC LSS 1, multiclass Feature level

MDLC LSS K, multiclass Decision/score level

probabilities as the weights.

3.1 B1vs1: One-vs-One binary classification based on LSS

We can form a multiclass scheme by utilizing the LSS of each class: For each
class pair (i, j), a binary classification is performed to classify whether the
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example belongs to class i or j.

Note that the binary classifier for class pair (i, j) uses the LSS of class i and
the binary classifier for class pair (j, i) uses the LSS of class j. Hence, (i, j)
and (j, i) are not symmetric problems.

For a problem of K classes, K · (K−1) binary classifiers must be trained with
examples from class i and j for each (i, j) pair, where i, j = 1 . . .K and i 6= j.

3.2 B1vs1R: One-vs-One binary classification based on LRSS

Since the LRSS is the best performing score space for binary problems, a mul-
ticlass scheme which performs a binary classification for each pair of classes,
(i, j), by using the LRSS of classes i and j can be formed.

For each class pair (i, j), a binary classification is performed to determine
whether the example belongs to class i or j. The binary classifier for class pair
(i, j) uses the LRSS of classes (i, j). Unlike the previous scheme, (i, j) and
(j, i) are now symmetric problems: the LRSS of (i, j) is the same as that of
(j, i), except for a sign difference (see Table 1).

For a problem of K classes, K·(K−1)
2

binary classifiers must be trained with
examples of class i and j for each (i, j) pair, where i, j = 1 . . .K and i 6= j

since i-vs-j and j-vs-i are symmetric problems.

3.3 B1vsALL: One-vs-All binary classification based on LSS

Another multiclass scheme can be formed by using one-vs-all scheme. The one-
vs-all scheme is shown to be as successfull as other multi-class classification
schemes[19].

We use the LSS of each class and apply a binary classification: for each class
i, a binary classification is performed to classify whether the example belongs
to class i or any other class.

For a problem of K classes, K binary classifiers must be trained with all the
examples of the training set where for each classifier Ci, i : 1 . . .K, examples
of class i are labeled as 0 and all other examples are labeled as 1.
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3.4 MFLC: Multi-class classification based on feature level combination of

LSS

In this scheme, the score spaces of each class are combined into a single feature
space and a multiclass classification is performed on this new feature space,
as proposed in [12]. For a problem of K classes, a single multi-class classifier
is trained, using the original class labels.

The main disadvantage of this scheme is the memory consumption since the
resulting feature vector is the combination of multiple Fisher scores. When
the input dimensionality, the number of parameters of the generative models
and the number of classes are high, the dimensionality of the combined feature
space will be extremely high, making it hard, or sometimes impossible, to keep
the training data in the memory.

4 A New Multi-Class Classification Scheme for Fisher Scores

We propose a new strategy, MDLC , which applies a multi-class classification
on the LSS of each class and then combines the decisions of each classifier.
MDLC is especially suitable for applications where the number of classes is
large and computational resources are critical.

MDLC uses the Fisher scores of each class for the discrimination of all the other
classes, not just for the class that produces the scores. In the above schemes,
for a binary classification between class i and class j, Fisher scores extracted
for related generative models (models for class i or j) are used. However, in
this study, we show that Fisher scores extracted from class i may provide a
discrimination for classes other than i (i.e. discrimination between class j and
k).

For a problem of K classes, we train K multi-class classifiers with all the
examples of the training set, using the original class labels. The main difference
of this scheme is that, each of the K classifiers is performing a multi-class
classification, whereas in all the above schemes except MFLC , each classifier
is a binary classifier.

To demonstrate this multi-class scheme, let us consider a toy problem. We
have generated 2-D random data from four different Gaussian distributions
(Figure 2) and added a small amount of noise. Each example consists of the
x, y values and the corresponding class label. Fisher scores are extracted for
each Gaussian model for the parameters (µ1, σ1, µ2, σ2). An example plot for
the score space of class 4 is shown in Figure 3. It can be seen from the derivative
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plots that the Fisher scores obtained from a single parameter, µ or σ, provide
good discrimination among classes. Similar behavior is observed in the score
spaces of other classes as well.

−20 −15 −10 −5 0 5 10 15 20 25
−20

−15

−10

−5

0

5

10

15

20
Data plot

 

 
Class 1
Class2
Class 3
Class 4

Fig. 2. Artificial data generated from four 2D Gaussian distributions

The classification results of applying a multi-class classification on each score
space are shown in Table 3. Different rows show the score space used and the
columns show the classification accuracy among all the classes and also of each
class pair. The classification on each score space is performed with SVMs that
apply multi-class classification. Note that the multi-class classification strategy
used by the SVMs is not related to the multi-class classification strategy used
for the Fisher scores and is completely independent. Apart from SVMs, other
discriminative multi-class classifiers may also be employed.

Classes 2, 3 and 4 are easily separated by any of the score spaces, where LSS4

provides the best discrimination among classes. As can also be seen from the
distribution of the classes in Figure 2, using only the generative model of
i.e. class 1, one can obtain very high classification performance. This small
experiment shows that the score space obtained from the generative model of
class i is not only capable of discriminating between class i and other classes,
it also provides valuable discriminative information for classes other than i,
such as j and k. For example, in Table 3, we observe that the score spaces of
class 1 and 4, LSS1 and LSS4, provide the highest accuracy in discriminating
between classes 2 and 3.
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Fig. 3. Score space plot of Class 4, N(−3, 1)

Table 3
Classification results of applying multi-class classification on each score space. The
highest accuracy in each column is shown in bold.

Classification Accuracy (%) for

Score Space(s) All Classes Classes Classes Classes Classes Classes

used classes 1&2 1&3 1&4 2&3 2&4 3&4

LSS1 93.25 88.83 88.50 88.50 98.00 98.00 97.67

LSS2 93.00 89.33 88.00 88.33 97.67 98.00 96.67

LSS3 93.08 88.83 88.33 88.33 97.83 97.83 97.33

LSS4 93.33 88.83 88.50 88.67 98.00 98.17 97.83

LSS1234 93.08 88.83 88.33 88.33 97.83 97.83 97.33

5 Reducing the Computational Cost

In this section, we first list the elements that affect the computational cost
and then discuss possible techniques that can be used to reduce it. The com-
putational complexity of Fisher score usage arises from two phases: extraction
of Fisher scores and training.
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Table 4
Techniques to reduce the computational cost

Time required to # of Training/

extract a score spaces Testing

single score space to extract time

Feature/parameter selection ↓ - ↓

Dimensionality reduction - - ↓

Score space selection - ↓ ↓

In the extraction phase, critical parameters are the number of parameters
of the underlying generative model, the length of the input data sequence,
and the number of classes/models. In the training phase, the Fisher score
dimensionality (dependent on the number of parameters of the generative
model) and the number of classes/models are the critical parameters.

The computational cost of the extraction phase can be decreased by either
using simpler base models and simpler feature vectors or by considering only
a subset of the parameters of the base model for Fisher score extraction. For
the rest of this section we will assume that the models and the features of the
sign sequences are fixed and we will concentrate on reducing the complexity of
processes directly related to the Fisher score extraction and training. Table 4
shows three possible techniques that can be used to reduce the computational
cost. Parameter selection and dimensionality reduction are commonly used
techniques. We propose score space selection to reduce the computational cost
which follows the idea of our proposed multi-class classification strategy. In
the MDLC strategy, we can obtain classification decisions for all classes even
with a single Fisher score mapping. Similar to the parameter selection, a score
space selection strategy can be applied to find a reduced set of score spaces
that performs well enough. This selection will affect both the Fisher score
extraction and the training time since the number of score spaces to work on
will be smaller.

5.1 Parameter Selection

Selecting a subset of the model parameters effects both the Fisher score ex-
traction time and the training time since dimensionality of the Fisher score
spaces will be smaller. Some of the parameters may have a greater effect on
the classification performance and the optimal reduced parameter set with an
acceptable performance can be determined in a validation phase. For the case
of HMMs, Fisher scores extracted from the transition parameters and the ob-
servation parameters can be of different importance during the discriminative
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training and thus have a different effect on the accuracy.

5.2 Dimensionality Reduction

The training time can be further reduced by applying dimensionality reduc-
tion techniques, such as Principal Component Analysis (PCA) and Linear
Discriminant Analysis (LDA), on the extracted Fisher scores [20].

5.3 Score Space Selection Strategies

In a multi-class classification task with Fisher scores, multiple score spaces
are obtained from the generative model of each class. In the MDLC strategy,
as each score space is able to provide a decision for all of the classes, a subset
of these score spaces can be used instead of using all. Then, one should select
the best subset that gives the highest recognition accuracy. As the number
of classes increases, the number of possible subsets increases exponentially.
Hence, efficient and effective search techniques should be applied. We will use
and compare the following search techniques, which are commonly used in the
literature:

Sequential Floating Forward Search (SFFS) is originally proposed as
a feature selection algorithm that applies a top down search strategy [21]. At
each iteration of SFFS, the algorithm attempts to add one of the features to
the combined feature set, which is initially empty. The feature to be added is
selected such that, when added to the combined set, it increases the accuracy
the most. This step is called the forward optimization or the inclusion. The
floating property comes from the fact that after each forward optimization, a
backward optimization (exclusion) step, which attempts to remove one of the
features from the combined feature set, is applied. The feature to be removed
is selected such that, when removed from the combined set, it increases the
accuracy the most. The algorithm stops when there is no improvement in the
accuracy at the end of forward and backward optimization steps.

We use SFFS as a score space selection method and for each score space,
obtained from the generative model of each class, we train a classifier. Our aim
is to select the score spaces (classifiers) to be combined by running Sequential
Forward Floating Selection (SFFS) with the classification accuracy as the
objective function.
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Sequential Floating Backward Search (SFBS) is a variant of SFFS,
in which, instead of starting with an empty set, the algorithm starts with all
the features in the combined set and attempts to remove the features at each
iteration. Thus, SFBS first performs a backward optimization step, followed
by a forward optimization step.

Selecting the best performing N score spaces (BNSS) attempts to
find a subset of N score spaces with respect to their single subset accuracies.
The method orders the score spaces with respect to their accuracy and selects
the first N as the subset.

6 Experiments

We have performed experiments on the eNTERFACE American sign language
database [22], which contains 19 signs with both manual and non-manual
components. The manual components are the ones that are performed by the
hand motion, hand shape and position and the non-manual components are
performed by the facial expressions, and head and body movements. The signs
in the eNTERFACE database are multimodal (contain hand and head modal-
ities) and are selected such that some signs have exactly the same manual
component and can only be differentiated by the non-manual components.

We have concentrated on the manual component and extracted features only
from the hand motion, shape and position. The videos are first processed for
hand and face detection and segmentation. Then, sign features are extracted
for manual signs (hand motion, hand shape, hand position with respect to
face). For hand motion analysis, the center of mass (CoM) of each hand is
tracked and filtered by a Kalman filter. The posterior states of each Kalman
filter, x, y coordinates of CoM and horizontal and vertical velocities, are the
hand motion features. Hand shape features are appearance based shape fea-
tures calculated on the segmented hand images. These features include the
width, height and orientation parameters of an ellipse and seven Hu moments
[23] calculated on the binary hand image. Hand position features are the nor-
malized horizontal and vertical distances of the hand center to the face center.
As a result, the feature vector dimensionality is 32 per frame (four hand mo-
tion, 10 hand shape and two hand position features for each hand). More
information on the database and feature extraction can be found in [22,24].
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6.1 Experimental Setup

We followed a signer independent protocol in the experiments where the sub-
jects in the training set and in the validation and test sets are different. The
eNTERFACE database is collected from eight subjects where each subject
performed five repetitions for each of the 19 signs.

In the experiments, we used training and validation sets for parameter and
model selection, and an independent test set to assess the generalization per-
formance of our methods. To perform signer independent experiments, we
applied eight-fold, leave-one-subject-out cross validation and in each fold, we
separated the examples of one subject as the test set. Figure 4 shows the
experimental setup for the 8th fold. For the rest of the seven subjects, we per-
formed a seven-fold cross validation where in each fold, we put examples of
one subject in the validation set, and the rest in the training set. For each clas-
sifier in the experiments, we performed seven trainings and obtained results
on the validation set, where the average and standard deviation are reported.
All the decisions for parameter selection, score space selection, etc. are given
with respect to the accuracies on the validation set. The test set is completely
independent and never used either during training or selection processes. For
each training set in each fold, we also calculated the performance on the inde-
pendent test set and report the average and standard deviation. Note that, as
a result of this setup, each training set consists of examples from six subjects,
since one subject is used in the validation set and one subject is used in the
test set.

As the generative model, we trained a left-to-right continuous HMM for each
sign. Therefore, 19 HMMs are trained. Each HMM has four states, and a single
Gaussian density is used in each state. Fisher score spaces are calculated for
each HMM and the discriminative classification is done via SVM. The SVM
runs are performed with the LIBSVM toolbox [25]. LIBSVM uses one-vs-one
strategy to perform multi-class classification. However, note that the multi-
class classification strategy used by the SVMs is not related to the multi-class
classification strategy used for the Fisher scores and is completely independent.
We use the multi-class SVM as a black box and use the classification result in
our multi-class strategy of combining Fisher scores. Before any training, for
each strategy, the kernel type (RBF or linear) and the parameters are deter-
mined separately by cross-validation on the training set, over a set of param-
eter values (cost:10/100/100, epsilon:0.001/0.0001, gamma:0.1/0.001/0.0001).
We use the probability outputs calculated by LIBSVM when a score level
combination method, such as sum or product rule is used.
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Fig. 4. Signer independent experimental setup for the 8th fold in eight fold cross
validation. In each fold, i, the examples of subject i are separated as the test set.
The rest of the dataset is divided into training and validation sets via seven fold
cross validation.

6.2 Comparison of Multiclass Strategies

Comparison of the different multi-class strategies, together with the perfor-
mance of the underlying generative model are given in Table 5. The baseline
accuracies, obtained by HMMs, on validation and test sets are 53,78% and
52,82% respectively. Note that this is a difficult dataSET and some clsses are
indistinguishable [22]. As the combination method we used and compared sum
and product rules, where necessary. The proposed method MDLC outperforms
all, demonstrating that using all score spaces to discriminate each class pair is
an advantageous strategy. Instead of using binary classifiers, using multi-class
classifiers on each score space increases the accuracy and provides a better
strategy for multi-class classification. Note that the accuracy even drops down
with some of the binary classifiers. Although MFLC has a comparable per-
formance with MDLC , the memory requirement, proportional to the number
of classes, is extremely high as a result of combining high dimensional score
spaces into a single one. MDLC not only has less memory requirement but
also has a better accuracy than MFLC: around 13% increase in the baseline
accuracy is observed both on the validation set and test set, with sum combi-
nation rule. As this result is the highest accuracy on the validation set, MDLC

strategy with sum rule will be used in the following experiments.

The results in Table 5 are the averages of eight fold cross validation. We
performed a paired t-test with 0.05 significance level and the results of MDLC
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Table 5
Comparison of different multi-class schemes. Average validation and test accuracies
((%)±std) are reported.

Baseline Algorithm

Validation Set Test Set

HMM 53,78 ± 7,78 52,82 ± 5,55

Fisher Score MultiClass Strategy

Validation Set Test Set

Sum Product Sum Product

B1vs1 61,37 ± 6,19 61,24 ± 6,58 61,65 ± 4,18 61,39 ± 4,78

B1vs1R 59,53 ± 6,90 60,43 ± 6,42 61,13 ± 5,26 61,03 ± 5,13

B1vsALL 54,08 ± 7,89 45,88 ± 8,01 54,66 ± 6,27 46,09 ± 5,89

MFLC 61,35 ± 5,99 61,18 ± 4,82

MDLC 66,73 ± 7,80 66,18 ± 7,99 65,68 ± 3,84 65,71 ± 3,91

Table 6
Detailed signer independent performance of the baseline model, HMM and MDLC

with sum rule. Average test accuracies for each subject ((%)±std) and the increase
in the accuracy are reported. Statistically significant differences are shown in bold.

Test subject HMM MDLC Accuracy increase

# 1 52,93 ± 5,53 67,67 ± 4,77 14,74

# 2 63,46 ± 5,95 66,77 ± 2,57 3,31

# 3 51,13 ± 7,19 67,22 ± 7,18 16,09

# 4 56,24 ± 6,98 58,50 ± 2,64 2,26

# 5 47,37 ± 4,42 58,05 ± 2,68 10,68

# 6 48,87 ± 5,60 75,64 ± 3,24 26,77

# 7 47,82 ± 4,12 57,74 ± 4,32 9,92

# 8 54,74 ± 4,63 73,83 ± 3,30 19,10

are statisticall significantly better than both the baseline HMM and the other
multi-class classification strategies. We also present the details of each fold for
the best performing approach, MDLC strategy with sum rule. Table 6 shows
the average test accuracies of each fold in eight fold cross validation. The
results show that using MDLC we can obtain higher accuracies in each fold, in
comparison to the baseline model, HMM. The increase in the accuracy varies
from 2,3% to 26,8%. The statisticaly significant results are shown in bold.
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6.3 Feature Selection and the Effect of HMM Parameters on the Classifica-

tion Performance

Although one can use classifiers that do not suffer from the curse of dimen-
sionality (such as SVMs), the dimensionality of the Fisher score space can
be extremely high depending on the number of parameters of the underlying
generative model and the input dimensionality. In this section, we investigate
the effect of each HMM parameter on the classification accuracy. The compu-
tational cost of Fisher score calculation can be decreased by considering only
the most important parameters.

With the HMM as the underlying generative model, the normalized Fisher
likelihood score space is given in Equation 8. The number of features in this
new feature space is:

Flog p(Ot|θ) + Faii
+ Fµim

+ FΣim
+ Fwim

(10)

where Fp stands for the number of features extracted with respect to the
parameter p. The number of features for each parameter is as follows:

Flog p(Ot|θ) =1

Faii
=N − 1

Fµim
=NMV

FΣim
=NMV 2

Fwim
=N(M − 1)

where N is the number of states, M is the number of mixtures and V is the
input dimensionality.

Among the parameters of the HMM, the discriminative power of all parameter
combinations are explored and the results are given in Table 7. The multi-class
classifications are performed via the MDLC strategy.

All combinations of feature sets are explored and the best single parameter
result is obtained by (Σ) on the validation set, with an increase of 0.15% on
the accuracy and the corresponding test set accuracy is a bit higher than the
accuracy of the complete set. If the parameters are used alone, the results
show that most discriminatory features are the derivatives of the component
means, (µ), and covariances, (Σ). There are also other reduced sets with accu-
racies either equal or better than using the complete parameter set. The log-
likelihoods on which the HMM decision is based are found to be less discrimi-
native than expected. This result follows from the fact that each Fisher score
space is processed independently with no regard to the relationship between
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Table 7
Effect of HMM parameters on the recognition performance. The abbreviations refer
to the score spaces: ll for logp(Ot|θ), a for ∇aii

, µ for ∇µik
, and Σ for ∇Σik

Selected HMM Validation Set Test set

Parameters Acc. (%) & Std Acc. (%) & Std

(ll, a, µ,Σ) 66,73 ± 7,80 65,68 ± 3,84

(ll, a, µ) 66,18 ± 7,16 66,32 ± 4

(ll, a,Σ) 66,80 ± 7,94 65,62 ± 3,80

(ll, µ,Σ) 66,73 ± 7,83 65,68 ± 3,83

(a, µ,Σ) 66,75 ± 7,82 65,68 ± 3,81

(ll, a) 49,91 ± 6,28 50,02 ± 4,11

(ll, µ) 66,32 ± 7,29 66,35 ± 4

(ll,Σ) 66,88 ± 8,01 65,62 ± 3,86

(a, µ) 66,33 ± 7,77 66,62 ± 3,72

(a,Σ) 66,88 ± 7,98 65,70 ± 3,86

(µ,Σ) 66,77 ± 7,82 65,68 ± 3,80

(ll) 38,63 ± 7,33 38,55 ± 4,05

(a) 47,16 ± 6,96 46,90 ± 4,22

(µ) 66,45 ± 7,42 66,50 ± 3,75

(Σ) 66,88 ± 7,95 65,71 ± 3,83

log-likelihoods of the HMMs of each class. This relationship is apparently lost
in the normalization process of the score spaces since the normalization of
each score space is independent of others.

6.4 Dimensionality Reduction of Fisher Scores

We can reduce the dimensionality of the new feature space, by applying state-
of-the art dimensionality reduction techniques. We compare two techniques,
PCA and LDA, where the former aims to maximize the variance in the features
and the latter aims to maximize the class separability in the new feature
space. For PCA, we evaluated the performance of using different proportions
of variance explained: 90%, 95%, and 99%. When applying LDA, we used the
reduced feature space found by PCA and further reduced the dimensionality
to 18 (# of classes − 1), which is the maximum dimensionality that can be
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Table 8
Dimensionality reduction

Var. explained Validation Set Test Set

/ # dims PCA LDA PCA LDA

0.90/ ∼55 65,17 ± 7,82 64,59 ± 6,23 64,64 ± 4,05 63,80 ± 4,32

0.95 / ∼75 64,38 ± 7,23 65,85 ± 6,48 64,12 ± 4,06 65,73 ± 4,17

0.99 / ∼150 66,48 ± 8,95 67,65 ± 7,93 66,17 ± 4,36 67,54 ± 3,71

achieved with LDA.

The results are given in Table 8. The first column shows the proportion of
variance explained and corresponding average number of PCA dimensions. In
general, accuracies obtained by PCA and LDA are comparable. Best result
on the validation set is obtained by LDA with 99% proportion of variance
explained. With only 18 dimensions, we can achieve higher accuracies both in
validation and test sets (1% increase in the validation set and 2% increase in
the test set).

6.5 Score Space Selection

In the MDLC strategy, each single classifier is capable of making a multi-
class decision and their decisions are combined at the decision or score level
to obtain an improved accuracy. Experiments show that sometimes a small
subset of classifiers, or even a single classifier, may perform equally well (see
Table 3). Hence our aim is to find techniques to select a subset out of K Fisher
score mappings and use only the classifiers based on this subset.

We first run an exhaustive search for all the possible combinations of the score
spaces. Figure 5 shows the result of the exhaustive search on the validation
and test sets of Fold 8. With the 19 classes in the eNTERFACE dataset, one
can have 219 − 1 possible subsets. The highest accuracy is obtained by using
only five and four score spaces on validation and test sets, with an accuracy
increase of 2% and 3.5% respectively, when compared to using all of the score
spaces. Moreover, both in validation and test sets, we see that there are many
subsets that have equal or better accuracy than all score spaces.

Since exhaustive search is impractical for high number of classes, we imple-
mented Sequential Floating Forward and Backward Search (SFFS, SFBS)
strategies and also selecting the best of N score spaces (BNSS). We applied
these techniques on the validation set and obtained the score space subset
selected by each technique. To evaluate the performance on the independent
test set, we used the subsets selected on the validation set and calculate its
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(a) (b)

Fig. 5. Exhaustive search over all score space combinations in Fold 8: (a) Validation
set, (b) Test set.
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Fig. 6. Score space selection performances in Fold 8: (a) Validation set accuracies of
score space subsets and the number of score spaces used, (b) Test set accuracies of
score space subsets selected on validation set and the number of score spaces used.
The bars show the accuracies of each selection method and the bold line shows the
number of score spaces used.

accuracy on the test set.

We give the score space selection results of Fold 8 in Figure 6. Although the
subsets found on the validation set are higher than the accuracy of using all
score spaces, these subsets do not always generalize well to the test set. When
we apply an exhaustive search directly on the test set, as shown in Figure
5b, we see that there are subsets that have better accuracy than all score
spaces. However, these subsets can not be found by the score space selection
techniques performed on the validation set.
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Fig. 7. Signer adaptation results in Fold 8: (a) Adapted validation set accuracies of
score space subsets and the number of score spaces used, (b) Test set accuracies of
score space subsets selected on the adapted validation set and the number of score
spaces used. The bars show the accuracies of each selection method and the bold
line shows the number of score spaces used.

6.6 Signer Adaptation

In the previous section, we see that the score space subsets selected on the
validation set do not generalize well to the test set, which contains examples of
an unseen signer. Due to the presence of significant inter-person differences, the
system needs to be adapted to the new signer to achieve better performance
[26,27]. We propose a signer adaptation scheme, which is performed during the
score space selection phase. Our scheme uses the trained system as is and uses
only a small part of data from the new signer to select a better score space
subset that generalizes to the new signer. We use three randomly selected
examples per sign for the adaptation and apply the score space selection on
the validation and adaptation data jointly. The accuracy of each score space
subset is calculated as follows

Acc = w ∗ AccV a + (1 − w) ∗ AccAd (11)

where the total accuracy (Acc) of a subset is the weighted sum of the accuracies
on the validation (AccV a) and adaptation (AccAd) sets. We use w = 0.5 and
give equal importance to validation and adaptation sets.

Figure 7 shows the score space selection accuracies for fold 8 when the signer
adaptation scheme is applied. The results show that by applying signer adap-
tation, all of the score space selection techniques are able to find smaller score
space subsets with better accuracy than using all of the score spaces. Although
the accuracy of the subsets found by SFFS, SFBS, and BNSS are not as high
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Table 9
Score space selection results. Test accuracy (% acc) of each method and the number
of score spaces used (# ss) with and without signer adaptation are given.

Test All Exhaustive SFFS SFBS BNSS

subject % acc # ss % acc # ss % # ss % # ss % # ss

W
it
h
o
u
t

a
d
a
p
ta

ti
o
n

# 1 67,67 19 68,72 7 67,82 5 67,52 14 66,92 17

# 2 66,77 19 67,37 4 67,22 4 66,02 15 64,36 3

# 3 67,22 19 61,50 3 63,16 3 66,47 12 62,11 2

# 4 58,50 19 59,40 5 59,40 5 58,50 19 59,70 5

# 5 58,05 19 59,40 7 58,65 7 57,74 16 58,95 8

# 6 75,64 19 74,29 4 74,29 4 75,19 13 73,83 5

# 7 57,74 19 60,00 8 59,85 3 57,44 17 58,05 16

# 8 73,83 19 73,53 6 71,28 4 73,83 19 74,59 5

Avg 65,68 19 65,53 5,50 65,21 4,38 65,34 15,63 64,81 7,63

W
it
h

a
d
a
p
ta

ti
o
n

# 1 67,67 19 69,77 5 68,87 4 68,87 15 68,72 6

# 2 66,77 19 68,12 8 66,92 4 67,67 17 67,52 6

# 3 67,22 19 71,58 5 71,58 4 68,27 16 70,83 6

# 4 58,50 19 60,30 6 63,31 3 60,15 12 61,05 5

# 5 58,05 19 61,95 9 61,95 6 59,55 15 60,45 4

# 6 75,64 19 76,09 6 76,39 7 76,69 15 77,29 10

# 7 57,74 19 63,31 4 63,31 4 60,75 10 62,11 5

# 8 73,83 19 76,39 7 74,44 5 75,34 13 75,49 10

Avg 65,68 19 68,44 6,25 68,35 4,63 67,16 14,13 67,93 6,50

as that of the exhaustive search, it is still higher than the accuracy of all score
spaces. SFFS selects the smallest sized subset, with five score spaces, with an
accuracy of 74.44%, in comparison to using all 19 score spaces, which yields
an accuracy of 73.83%.

Overall results for all folds are given in Table 9. We see that without signer
adaptation, none of the subset selection methods is able to find a subset that
has a better accuracy than using all score spaces. However SFFS finds subsets
with an average accuracy of 65.21% with only using around four score spaces
in average. This is a very similar accuracy in comparison to using all score
spaces, 65.68%, but with a significant decrease on the number of score spaces.
When we apply signer adaptation, we are able to obtain higher accuracies
with all of the methods. The smallest sized subset is found by SFFS with an
average accuracy of 68.35%, using around five score spaces in average, which
is almost the same accuracy with that of the exhaustive search, 68,44%, with
even fewer score spaces.

In comparison to our baseline test accuracy, 52.82%, by applying Fisher score
extraction, MDLC multi-class classification strategy and score space selection
with signer adaptation, we are able to obtain an average accuracy of 68.35%.
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6.7 Experiments on other datasets and summary of the results

In this section we present an overall summary and discussion of the results
together with experiments on other datasets, to show the generalization of the
proposed techniques. We perform the experiments on two additional databases:

TWOHAND Idiap Hand Gesture Database: TWOHAND is a hand gesture
database, with seven two-handed gestures to manipulate 3D objects. The
training set contains 280 examples recorded from four people and the test
set contains 210 examples recorded from three different people, with 10 ex-
amples per subject. More information on the database can be found in [28].
We extracted features for hand position in each frame (two features per hand
per camera), and for hand shape, which is modelled with a simple ellipse and
the lengths of the ellipse axes and the rotation angle are used as hand shape
features (three features per hand per camera). The feature dimensionality is
20 per frame. More information on feature extraction can be found in [14].

For the experimental setup, we performed leave-one-subject-out cross valida-
tion on the training set and tested on the test set. Since the subjects in training
and test sets are different, this is again a subject independent setup. We used
a left-to-right continuous HMM with 4 states and a single Gaussian per state.

BUHMAP Turkish Non-manual signals database: BUHMAP is a database of
non-manual signals, with seven gestures (head movements and facial expres-
sions) used in Turkish sign language. The database contains 210 examples
recorded from four people, with 5 examples per subject. As features, we use
the x,y coordinates of automatically tracked 52 facial landmarks, normalized
and postprocessed to get smoother trajectories. The feature dimensionality is
104 per frame. More information on the database and feature extraction can
be found in [29,30].

We followed the same experimental setup in which we performed leave-one-
subject-out cross validation on the whole dataset to separate the test set and
again a leave-one-subject-out cross validation on the remaining set to get the
training and validation sets. This set up provides us four different test sets
and for each test set 3 different training-validation set pairs. For generative
modeling, we used a left-to-right continuous HMM with 6 states and mixtures
of two Gaussians per state with diagonal covariance matrix.

The results on TWOHAND and BUHMAP datasets with different multi-class
classification strategies, together with the baseline HMM accuracy are shown
in Table 10. The combination of scores in multi-class strategies is done by
sum rule. The results on the eNTERFACE dataset are also shown for compar-
ison purposes. Statistically significant results (significance level = 0.05) when
compared to the baseline and other multi-class strategies are shown in bold.
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Table 10
Average test accuracies (%) of different multi-class schemes on eNTERFACE, TWO-
HAND and BUHMAP datasets.

eNTERFACE TWOHAND BUHMAP

baseline - HMM 52.82 98.8 66.67

B1vs1 61.65 95.36 65.24

B1vs1R 61.13 92.74 66.19

B1vsAll 54.66 91.55 66.67

MFLC 61.18 99.52 67.38

MDLC 66.68 99.64 73.57

On eNTERFACE and BUHMAP datasets, accuracy of MDLC is statistically
significantly higher than the other techniques. On TWOHAND dataset, since
the baseline accuracy is already quite high, there is no statistical significance
as a result of the ceiling effect.

Table 11 shows the results of the score space selection with and without adap-
tation. Statistically significant results of non-exhaustive score space selection
strategies are shown in bold. The bold values in the number of score spaces
show the strategy with a statistically significant result and the least number
of score spaces.

The results show that

• By performing score space selection, a subset of score spaces can be found
that gives a good enough accuracy with fewer number of score spaces

• Score space selection techniques, SFFS, SFBS, BNSS, provide comparable
performance to that of exhaustive search.

• SFBS gives the best results but with a trade off: using larger subsets. BNSS,
a very light weight score space selection method, gives consistently high
accuracies with smaller subsets.

• Proposed signer adaptation technique significantly increases the accuracy
when compared to the accuracies without signer adaptation.

7 Conclusions

HMMs provide a good framework for recognizing hand gestures, by handling
translation and scale variances and by modeling and processing variable length
sequence data. However, performance can be increased by combining HMMs
with discriminative models which are more powerful in classification problems.
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Table 11
Score space selection results on eNTERFACE, TWOHAND and BUHMAP datasets.
Test accuracy (% acc) of each method and the number of score spaces used (# ss)
with and without signer adaptation are given.

eNTERFACE TWOHAND BUHMAP

Test % # of ss Test % # of ss Test % # of ss

w
/o

ad
ap

ta
ti
on Exhaustive 65.53 5.50 99.17 4.00 69.52 3.67

SFFS 65.21 4.38 96.79 2.00 66.67 2.00

SFBS 65.34 15.63 98.33 5.00 71.75 5.67

BNSS 64.81 7.63 98.33 4.00 73.02 6.67

w
/

ad
ap

ta
ti
on Exhaustive 68.44 6.25 99.29 4.00 72.22 3.67

SFFS 68.35 4.63 96.43 2.00 69.05 2.00

SFBS 67.16 14.13 99.05 5.00 74.60 5.67

BNSS 67.93 6.5 99.05 4.00 76.98 6.67

Fisher kernels are suitable for combining generative models with discriminative
classifiers and theoretically, the resulting combined classifier has the powers of
both approaches and has a better classification accuracy. However, as Fisher
kernels are intrinsically binary, a multi-class strategy must be defined properly
in order to achieve high recognition accuracies for multi-class classification
problems such as gesture and sign recognition.

In this study, we proposed a multi-class classification strategy for Fisher scores.
The main idea of our multi-class classification strategy is to use the Fisher
score mapping of one model in the classification process for all of the classes. As
a result, each mapping is able to discriminate all the classes up to some degree.
When all of these mappings are combined, higher accuracies are obtained when
compared to the existing multi-class classification approaches in the literature.

As the dimensionality of the Fisher scores is high, we applied several dimen-
sionality reduction techniques on each of the Fisher score mappings and see
that it is able to reduce the dimensionality without any decrease in the accu-
racy. Moreover, we show that we can obtain similar or better accuracies if we
combine only a subset of the Fisher score mappings. We compare several score
space selection strategies and see that the SFFS strategy finds the smallest
sized subsets with performance comparable to that of exhaustive search or
all score spaces. The selected subset generalizes to a new signer only when
a signer adaptation scheme is applied. We present here a signer adaptation
scheme which is able to adapt the system and achieve better performance with
only a few number of examples of the new signer.
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We have tested our proposed technique, the feature selection idea and the
user adaptation scheme on a sign language dataset that is difficult due to the
presence of very similar signs. We have seen that performance increases sig-
nificantly when compared with the baseline model and the other multi-class
classification strategies. Also the results with the score space selection show
that without a significant decrease in the accuracy, we are able to reduce the
computational cost. We have further tested the techniques with two additional
datasets: A hand gesture dataset and a sign language expression dataset. We
have observed similar gains and have successfully demonstrated that the pro-
posed techniques generalize to other problems.
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