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Abstract—We compare and contrast from a geometric
perspective a number of low-dimensional signal models
that support stable information-preserving dimensionality
reduction. We consider sparse and compressible signal
models for deterministic and random signals, structured
sparse and compressible signal models, point clouds, and
manifold signal models. Each model has a particular
geometrical structure that enables signal information to
be stably preserved via a simple linear and nonadaptive
projection to a much lower dimensional space; in each
case the projection dimension is independent of the signal’s
ambient dimension at best or grows logarithmically with it
at worst. As a bonus, we point out a common misconception
related to probabilistic compressible signal models, namely,
by showing that the oft-used generalized Gaussian and
Laplacian models do not support stable linear dimension-
ality reduction.

Index Terms—dimensionality reduction, stable embed-
ding, sparsity, compression, point cloud, manifold, com-
pressive sensing.

I. INTRODUCTION

A. Dimensionality reduction

Myriad applications in data analysis and
processing—from deconvolution to data mining and
from compression to compressive sensing—involve a
linear projection of data points into a lower-dimensional
space via

y = dx +n. (D

In this dimensionality reduction, the signal x € RY and
the measurements y € RM with M < N; ®isan M x N
matrix; and n accounts for any noise incurred.

Such a projection process loses signal information
in general, since ® has a nontrivial null space N(®)
whenever M < N. For any fixed signal z, then,
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dx = ®(xr + 2) for any z € N(P). Hence there
has been significant interest over the last few decades
in finding dimensionality reductions that preserve as
much information as possible in the measurements y
about certain signals x. In this paper, we consider the
application of ® not to arbitrary signals z € RY but
rather to some subset of RN, which we will call a
low-dimensional signal model or a model for short. For
signals from a model we are concerned with ensuring
that ® is information preserving, by which we mean that
® provides a stable embedding that approximately pre-
serves distances between all pairs of signals in the model.
Such projections certainly seem useful. For instance, in
some cases we should be able to recover z from its
measurements ¥; in others we should be able to process
the much smaller y to effect processing on the much
larger x in order to beat the curse of dimensionality.

Consider a very simple low-dimensional signal
model: a K-dimensional linear subspace spanned by K
of the canonical basis vectors in RY, where we assume
K < M < N. Signals conforming to this model have K
nonzero and (N —K) zero coefficients, with the locations
of the nonzero coefficients (called the support of x)
determined by the subspace. In this case, we can write
bxr = O xi, where x g consists of the K coefficients
in the support of z and ® i consists of the corresponding
columns of ®. Two key properties follow immediately.
First, ®x is an M x K matrix, and so as long as its K
columns are linearly independent, its nullspace contains
only the zero-vector. Second, ®x can be designed to
preserve distances between any two signals in the sub-
space (and thus be a perfectly stable embedding) merely
by making those same columns orthonormal.

B. Low-dimensional models

The problem with applying this classical linear al-
gebra theory is that in many applications such a simple
linear subspace model does not apply. Nonetheless, there
are a handful of alternative low-dimensional models ap-
propriate for wide varieties of real-world signals. In this
paper we will focus on the following salient examples.
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A menagerie of low-dimensional signal models in RY : (a) K -sparse signals, the union of K -dimensional subspaces

Yk from Section III-A; (b) K-model sparse signals, a reduced union of K -dimensional subspaces from Section V-A; (c) a point
cloud from Section VI-A; and (d) a smooth K -dimensional manifold from Section VI-B. All of these signal models support an
information-preserving, stable embedding into a much lower-dimensional space R™ .

To begin, sparse signal models generalize the linear
subspace model by again considering signals x contain-
ing just K < N nonzero coefficients but allowing the
locations of those nonzeros to be arbitrary. Moreover,
sparse signal models generally allow us to consider
arbitrary bases; that is, letting ¥ be an orthonormal basis
for RY represented as a unitary NV x N matrix, we have
x = Wa where « has just K nonzeros. Geometrically,
the set of K -sparse signals in the basis ¥ consists of the
union of all possible K-dimensional subspaces in RY
spanned by K basis vectors from W. This is a highly
nonlinear set (see Figure 1(a)).

Many transform-based data compression and data
processing algorithms rely on sparse models, computing
the transform coefficients « = W7z in order to exactly
or approximately “compact” the signal energy into just
K coefficients. Sparse signal models are appropriate in
the time domain for modeling intermittent spike trains;
in the frequency domain for modeling wideband signals
comprised of just a few arbitrary sinusoids; and in the
wavelet domain for modeling piecewise smooth signals
with intermittent discontinuities. An important extension
to sparse models are compressible signal models in
which signals 2 have coefficients & = U7z whose sorted
magnitudes decay rapidly to zero with a power law. Such
signals are well-approximated as K-sparse. Images, for
example, are frequently modeled as compressible in the
2-D wavelet domain.

As an additional layer of structure on top of these
models, many advanced data compression and Bayesian
estimation algorithms involve modeling the determin-
istic structure or probabilistic correlations among the
nonzero entries in a coefficient vector a. For example,
the locations of the nonzeros may tend to cluster in

groups, or in wavelet-sparse signals, the nonzeros may
concentrate along a connected tree. In cases such as
these, the resulting structured sparsity models consist of
a reduced union of subspaces in RV (see Figure 1(b)).

In statistics, pattern recognition, and learning theory,
we have frequently have access to only a finite number
of signals. Point cloud models (see Figure 1(c)) are
appropriate in settings such as these where a finite—but
possibly large—database of signals will be considered
but there is no additional structure (such as sparsity)
assumed for these signals.

Finally, in many problems such as object recognition,
manifold signal models may arise when a family of
signals M = {zg € RY : § € ©} is smoothly parame-
terized by a K -dimensional parameter vector 6. Example
parameterizations include: local signal parameters such
as the orientation of an edge in a small image segment,
or global parameters such as the position of a camera or
microphone recording a scene or the relative placement
of objects in a scene. Loosely speaking, the manifold M
corresponds to a nonlinear K -dimensional surface in R
(see Figure 1(d)).! Manifolds have also been proposed
as approximate models for nonparametric signal classes
such as images of handwritten digits [1]. In many cases
the manifold dimension for a signal family may be much
lower than the sparsity level afforded by any basis V.

A linear K-dimensional hyperplane is a very simple example of a
manifold. However, the set of K -sparse signals in a fixed basis does
not meet the technical criteria for a manifold due to the locations at
which the K-planes intersect.



C. Paper organization

The three main goals of this paper are to: (i) Provide
a unified treatment of the above low-dimensional, non-
linear signal models in both deterministic and random
settings. As we will see, each model has a particu-
lar geometrical structure that enables information in
RY to be stably preserved via a simple linear and
nonadaptive projection to a much lower dimensional
space RM. Moreover, M either is independent of the
ambient dimension N at best or grows logarithmically
with N at worst. (if) Point out a somewhat surprising
misconception regarding low-dimensional random signal
models. In particular, the oft-used generalized Gaussian
and Laplacian random models are in fact nor valid
low-dimensional models in that they do not support a
stable embedding as N grows. (iii) Indicate some fruitful
emerging research directions that are inspired by the
geometric viewpoint.

The results of this paper should be useful to readers
interested in understanding sparse signals models and in
particular to those interested in how the concept of spar-
sity generalizes from deterministic to random models and
from unions of subspaces to point clouds and manifolds.
Though many interesting applications are enabled by
low-dimensional stable embeddings, we focus primarily
in this paper on the task of recovering a signal x from
its compressive measurements y = ®x + n. For a given
number of measurements M, this recovery is generally
best accomplished by employing the lowest-dimensional
model for = that supports a stable embedding.

This paper is organized as follows. After defining
stable embeddings in Section II, we consider determin-
istic sparse models in Section III and random sparse
models in Section IV. In Section V we discuss structured
sparse signals, including models for signal ensembles.
We discuss how similar results hold for apparently quite
different models in Section VI, where we consider point
clouds and manifolds. We conclude with a discussion of
future areas for research in Section VII.

II. DIMENSIONALITY REDUCTION
AND STABLE EMBEDDING

In this paper, we will study several classes of low-
dimensional models for which the dimensionality reduc-
tion process (1) is stable, meaning that we have not only
the information preservation guarantee that ®x; # P,
holds for all signal pairs z1,z2 belonging to the model
set but also the guarantee that if x1 and x5 are far apart
in RN then their respective projections ®z; and ®z,
are also far apart in RM . This latter guarantee ensures

robustness of the dimensionality reduction process to the
noise n.

A requirement on the matrix ¢ that combines both
the information preservation and stability properties for
a signal model is the so-called e-stable embedding

(L =)z —22[3 < @21 —Paz|3 < (L+e)l|lz1 — 23
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which must hold for all x1, x5 in the model set. The in-
terpretation is simple: a stable embedding approximately
preserves the Euclidean distances between all points in
a signal model. This concept is illustrated in Figure 1
for the several models that we consider.

Given a signal model, two central questions arise:
(i) how to find a stable M x N embedding matrix
®, and (i) how large must M be? In general, these
are very difficult questions that have been attacked for
decades using various different approaches for different
kinds of models [2-7]. The models we consider in this
paper are united by the relatively recently proved facts
that their sparse geometrical structures can all be stably
embedded with high probability by a random projection
matrix ®. To generate such a ®, we draw realizations
from an independent and identically distributed (iid) sub-
Gaussian probability distribution.

In this sense, randomized compressive measurements
provide a universal mechanism for dimensionality re-
duction in which the operative signal model need not
be known at the time of measurement. Indeed a single
randomly generated ® can provide a stable embed-
ding of an exponential number of candidate models
simultaneously [8], allowing for later signal recovery,
discrimination, or classification [9].

We begin our exposé by introducing deterministic
sparse and compressible signal models.

III. DETERMINISTIC SPARSE MODELS

A. Sparse deterministic signals

A great many natural and manmade signals have
an exact or approximate sparse representation in an
orthonormal basis {¢;}; that is

N
=Y o 3)
=1

as usual but only K < N of the coefficients «; are
nonzero. Stacking the {v;} as columns into the N x N
matrix ¥, we can write x = Yo and o = U7z, with o
a K-sparse vector. Following a standard convention, we
define the ¢y “norm” ||« to be the number of nonzero
entries of « (though this is not technically a valid norm).



Geometrical structure: The set X = X () of all
K -sparse signals in the basis ¥ corresponds to the union
of all K-dimensional subspaces in R™V spanned by all
possible combinations of K basis vectors from W. This
is the low-dimensional, highly non-convex set depicted
in Figure 1(a).

The best K-sparse approximation xy to a signal z
in the basis VU is obtained via projection onto X :

. : /
Ty = argg;renzlng—x Il - 4

The corresponding coefficient vector ar = ¥z can
be computed simply by thresholding the vector «, that

is, by setting to zero all except the K largest entries.

Despite the large number (%) of subspaces com-

prising X g, since each subspace has K-dimensions, the
overall model set is amenable to a very low-dimensional
embedding. For example, for an M x N iid Gaussian ¢
with M > 2K, with probability one ®x; # dxo for all
r1,Ty € g [10]. Indeed, since @ is linear, each K-
dimensional subspace from X is mapped to a unique
K -dimensional hyperplane in R (see Figure 1(a)).

Stable embedding: For a stable embedding of the
form (2), more than 2K measurements (but not many
more) are required. It has been shown for a wide range of
different random & and for any fixed W that the set Xk
will have a stable embedding in the measurement space
RM with high probability if M = O(K log(N/K)) [8].
Note that the dimensionality of the measurement space
is linear in the sparsity K but only logarithmic in the
ambient dimensionality N. This bodes well for many
applications involving high-dimensional (large N) but
sparse (small K) data.

Stable recovery from compressive measurements:
Compressive sensing (CS) is a new field that fuses
data acquisition and data compression into a single
dimensionality reduction step of the form (1) [11-13].
In the CS literature, the stable embedding property (2)
is known as the Restricted Isometry Property (RIP) [11]
of order 2K .> The centerpiece of CS is the fundamental
result that a K -sparse signal = can be stably recovered
from the measurements y = ®x by searching for the
sparsest signal T that agrees with those measurements.

There are many forms of the CS recovery problem;
we will sketch just one of them here. Assume that ® is a
stable embedding for 2/ -sparse signals with € < v/2—1

2The CS literature uses 2/ rather than K to describe the order of
the RIP, because ¢ acts as an approximate isometry on the difference
signal 1 — x2, which is 2K -sparse in general. To connect with our
linear subspace example from Section I-A, a stable embedding of ¥ i
implies that all sets of 2K columns from ®W are nearly orthonormal.

in (2), and assume that the measurements y are corrupted
by noise n with ||n||, < ¢ for some ¢ (recall (1)). Let
Z = Va, where @ is the solution to the following convex
optimization problem

& = argmin l@'||1 subject to [y — ®Ta'||, < 4. (5)
a’eR
Then it has been shown [14] that

&~ 2l = llo — @lly < CLE 2l — a1 + Cad
(6)
for constants C and C'. The recovery algorithm (5) is a
noise-aware variation on the ¢;-minimization procedure
known as basis pursuit; similar recovery results have
also been shown for iterative greedy recovery algorithms
[15-17]. Bounds of this type are extremely encouraging
for signal processing. From only M = O(K log(N/K))
measurements, it is possible to recover a K -sparse x with
zero error if there is no noise and with bounded error
(>0 if there is noise. In other words, despite the apparent
ill-conditioning of the inverse problem, the noise is not
dramatically amplified in the recovery process.

Note that optimization (5) searches not directly for
the o that is sparsest (and hence has smallest £, quasi-
norm) but rather for the o’ that has smallest ¢; norm. It
has been shown that this relaxation of the highly non-
convex /y search into a convex ¢; search does not affect
the solution to (5) as long as ® is a stable embedding.

Note also the use of the ¢; norm on the right hand
side of (6). Interestingly, it has been shown that replacing
this ¢; norm with the more intuitive ¢ norm requires
that M be increased from M = O(Klog(N/K)) to
M = O(N) regardless of K [18]. However, it is possible
to obtain an /5-type bound for sparse signal recovery in
the noise-free setting by changing from a deterministic
formulation (where ® satisfies the RIP) to a probabilistic
one where z is fixed and ® is randomized [18, 19].

B. Compressible deterministic signals

In practice, natural and manmade signals are not
exactly sparse. Fortunately, in many cases they can be
closely approximated as sparse. One particularly useful
model is the set of compressible signals whose coeffi-
cients « in the basis ¥ have a rapid power-law decay
when sorted:

la@| < RiTYP, p<i1 (7)

where a(;), © = 1,2,... denote the coefficients of «
sorted from largest to smallest. For a given oo € R, if
we take the smallest R for which (7) is satisfied, then
we say that o lives in the weak ¢, ball, wt,, of radius
R, and we define |a|we, = R.



1 1 1

-1 0 1 -1 0 1 -1 0 1

Fig. 2. The weak ¢, balls (blue) and the standard ¢, balls
(outlined in black) in R? of radius R = 1 and, from left to
right, p = 0.25, p = 0.5, and p = 0.9.

Geometrical structure: Like the set of K-sparse
signals ¥ g, w¥, compressible signal models are highly
non-convex. Figure 2 depicts three w¢,, balls in R? for
various values of p. (As demonstrated in the figure, for
any N, the standard ¢, ball in RY is strictly contained
inside the wf, ball; for N — oo the fit is very tight,
since [lall, < [lallur, < ol for any p/ > p [201)
Moreover, the wf, balls are very close to Xk in the
sense that any compressible signal x whose coefficients
« obey (7) can be closely approximated by its best K-
sparse approximation [20]:

la — aklly < RKY971/P, (8)

where ¢ > p.

Stable embedding: w{, balls occupy too much of
RY to qualify as low-dimensional and support a stable
embedding for compressible signals of the form (2).
However, since the w¢, balls live near X, near stable
embeddings exist in the following sense. Given two
compressible signals x; and zo from a w¢, ball, then
while their projections ®x; and Pzs will not satisfy
(2), the projections of their respective best K-sparse
approximations ®z; g and Pxo x will satisfy (2).

Stable recovery from compressive measurements: Re-
turning to (6), then, we see that the /5 error incurred
in recovering a compressible signal z from the noisy
measurements y = ®x + n decays as K 1/2=1/p which
is the same rate as the best K-sparse approximation to
x [21].

IV. PROBABILISTIC SPARSE MODELS

A. Bayesian signal recovery

In parallel with the methods of the previous section, a
substantial literature has developed around probabilistic,
Bayesian methods for recovering a signal = from its
noisy measurements y = ®x + n from (1) [22-25].
Under the Bayesian framework, we assume that z is a
realization of a random process X with joint probability
distribution function (pdf) f(z), which we call the prior.

The information about z that is carried in the measure-
ments y is expressed using the conditional pdf f(y|z);
when the noise n is iid Gaussian with mean zero and
variance 7, then we can easily compute that f(y|z) is
also iid Gaussian with mean ®z and the same variance.
To estimate x, we use Bayes rule to form the posterior
pdf f(z]y) x f(y|x)f(x) and then compute some kind
of summary. Here, we are particularly interested in
arg max, f(z|y), which yields the maximum a posteriori
or MAP estimate of x given y.

Developing f(z|y) for the iid Gaussian noise case,
we can write the MAP optimization as

TMAP = arglrglgi/n ly — ®a'|3 — 271og f(z). (9

Different choices of the prior f(z) reflecting different
knowledge about the signal yield different optimizations.
We are interested here in pdfs whose realizations have
a stable embedding into a lower dimensional space. In
these cases, we can hope to be able to recover accurate
signal estimates from noisy compressive measurements.

B. Sparse random signals

To keep our notation simple, in this section, we take
¥ to be the canonical basis; hence x = «. The simplest
sparse signal prior is an iid, two-state mixture model in
which independently with probability K/N the signal
coefficient x; is distributed according to a distribution
f1(x) and with probability 1— K /N the signal coefficient
x; = 0. The resulting prior pdf can be written as

o) =y fila)+ (1- 5 ) 8t

where § is the Dirac delta function.

(10)

Geometrical structure and stable embedding: Real-
izations of this mixture model will be K -sparse on aver-
age, and hence all of the theory of Section III-A applies.
Namely, on average, realizations of the model can be
stably embedded into R™ and then stably recovered as
long as M = O(K log(N/K)).

C. Compressible random signals

Of particular interest to the Bayesian community for
dimensionality reduction problems has been the iid zero-
mean generalized Gaussian distribution (GGD) prior

q e ‘ H |q

faap(z) = A (1/g)’

where ¢ is the order, o is the shape parameter, and T’
is the gamma function. When ¢ = 1, this is known as
the Laplacian distribution. The reason for the lure is that

(1)
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Fig. 3. Numerical illustration of the w/, exponents of two

different pdfs. We generated iid realizations of each distribution
of various lengths N, sorted the values from largest to smallest,
and then plotted the results on a log-log scale. To live in w/),
with 0 < p < 1, the slope of the resulting curve must be < —1.
We also overlay the analytical expressions for the distributions
derived in Appendix A and B. (a) iid Laplacian distribution
(generalized Gasusian distribution, GGD with ¢ = 1) slope
is > —1 and moreover grows with N. (b) In contrast, iid
generalized Pareto distribution (GPD) with ¢ = 1 exhibits a
constant slope < —1 that is is independent of N.

when (11) is substituted into the MAP equation (9), we
stumble upon

Zaap = argmin [ly — @a'|l; + Al’g, (12)
with A\ = 27079, For ¢ = 1 (Laplacian), this optimiza-
tion is known widely as basis pursuit denoising (BPDN)
[26] which is simply the scalarization of (5); a related
formulation is known as the LASSO [27]. For ¢ < 1
this corresponds to the non-convex recovery algorithm of
[28]. Thus, we see a potentially striking correspondence
between deterministic and probabilistic sparse models.

Unfortunately, there is an important and heretofore
apparently unrecognized bug in this argument, because
realizations of the iid GGD are in general not com-
pressible. Indeed, as we calculate in Appendix A, with
high probability, a GGD realization with parameter g
lives in the w¢, ball with p = glog %. Recall from
(7) that we need p < 1 for compressibility. Thus, no
matter what GGD parameter ¢ is specified, as the signal
length N grows, eventually we will have p > 1 and
will lose compressibility. Figure 3(a) illustrates via a
numerical simulation both the non-compressibility of the
Laplacian and the fit of our analytical expression derived
in Appendix A. In this log-log plot, sorted realizations
of a Laplacian distribution need to decay with a slope
faster than —1, which is clearly not the case.

What is going on here? There is nothing particularly
wicked with the GGD prior, since clearly the resulting
MAP recovery optimization coincides with classical sig-
nal recovery tools like BPDN and the LASSO. What is
wrong is that while it appears natural to use a GGD prior
for signal recovery, we have no assurance that we can

actually recover a signal generated from the prior density.
Hence the GGD puts us in a Bayesian Catch-22 [29].

As an alternative to the GGD, we suggest the iid
zero-mean generalized Pareto distribution (GPD):

1 2| —(gq+1)
= —_— 1 _—
fapp () % ( + qa)

(13)

with order ¢ and shape parameter 0. As we show ana-
Iytically in Appendix B and numerically in Figure 3(b),
realizations of the GPD do, in fact, live in w¢,, balls with
p < 1 and hence are compressible. The compressibility
of this pdf can also be used to prove the compressibility
of the Student’s t-distribution [29], which is widely
employed in relevance vector machines [25].

Substituting the GPD prior into the MAP estimation
formula (9) we obtain the non-convex optimization

N /
Zmap = argmin ||y — @x/H% + /\logH (1 + |x’|>
! iy qo
(14)
with A = 27(14¢). Using the inequality of the arithmetic
and geometric means, we can relax the GPD penalty term
to

N
log [] 2l < Nlog 4 12l
pale qo ) Nqo (15)
< (go) " l2"[1,

which coincides with (12) with p = 1 (BPDN) and
A=270"1 (1 + qil). To summarize, a GPD prior both
generates compressible signal realizations and supports
stable recovery of those signals from compressive mea-
surements via the same convex linear program employed
for deterministic signals.

V. STRUCTURED SPARSE MODELS

The deterministic and probabilistic sparse and com-
pressible signal models we have discussed above are
powerful yet simplistic, because they do not aim to
capture any of the inter-dependencies or correlations
between the various signal coefficients. In contrast, state-
of-the-art compression algorithms for signal, image,
video, and other data (which have dimensionality reduc-
tion at their heart) significantly improve over more naive
methods by codifying the inter-dependency structure
among the signal coefficients. In this section, we will
review related recent progress on structured sparsity
models.



A. Deterministic structured sparsity

Recall from Section III that K-sparse signals live
in X, the union of (g), K-dimensional subspaces in
RY. But what if we know more about a signal than
merely that it has K dominant coefficients? For example,
what if we know that the significant coefficients of
the signal occur in pairs? It is easy to see that this
structure disqualifies many of the subspaces in X, since
( K]\;2) < (%), which significantly lowers the already
low-dimensionality of the model (see Figure 1(b)). As a
result, we should expect to be able to reduce the size M
of the dimensionality reduction matrix ¢ from (1) while
still preserving its information preservation and stable
embedding properties.

Geometrical structure: As an extension of K-sparse
signals, we define a reduced union-of-subspaces (RUS)
signal model as a subset of signals from Xy [30,31]
(see Figure 1(b)). We call signals from a RUS model
K-model sparse.

There are two broad classes of RUS models. (i) In
many applications, the significant coefficients cluster,
meaning, loosely speaking, that the significant coeffi-
cients have adjacent indices. A general model is the
(K, C)-sparse model, which constrains the K-sparse
signal coefficients to be contained within at most C-
clusters [32]. A specific instance of this model is block
sparsity, which assumes prior knowledge of the locations
and sizes of the clusters [33-36]. Clustered sparsity is
a natural model for a variety of applications, includ-
ing group sparse regression problems, DNA microar-
rays, MIMO channel equalization, source localization
in sensor networks, and magnetoencephalography [10,
32-40]. A related clustered model has been developed
for wavelet transforms of piecewise smooth signal and
image data, which in addition to their sparse primary
structure have a strong secondary structure where the
significant wavelet coefficients tend to cluster along the
branches of the wavelet tree [41-45]. (i) In many other
applications, the coefficients are dispersed in that each
significant coefficient must be separated from all others
by some number A of samples. Such a model has appli-
cations in neuroscience [46]. Still more general union-
of-subspace models can also be learned from sampled
data [47].

Stable embedding: Blumensath and Davies have
quantified the number of measurements M necessary for
a sub-Gaussian random matrix ¢ to be a stable embed-
ding in the sense of (2) for signals from a particular
structured sparse model [30]. Applying their result to the
above models, it can be shown that (K, C')-sparse signals

/\/\\/

(a) test signal

(b) CoSaMP

VeV

(d) model-based recovery

(c) ¢1-recovery

Fig. 4. Example of model-based signal recovery. (a) Piecewise-
smooth HeaviSine test signal of length N = 1024. This signal
is compressible under a connected wavelet tree model. Signal
recovered from M = 80 random Gaussian measurements using
(b) the iterative recovery algorithm CoSaMP, (c) standard ¢,
basis pursuit, and (d) the wavelet tree-based CoSaMP algorithm.

require M = O(K + C'log(N/C')) measurements; tree-
sparse signals require M = O(K) measurements; and
dispersed signal models require M = O(K log(N/K —
A)) measurements. All of these are significantly smaller
than the M = O(K log(N/K)) required for the unstruc-
tured sparse signals of previous sections.

Stable recovery from compressive measurements:
Signals from the structured sparse models described
above can be recovered efficiently with provable perfor-
mance guarantees using a variety of algorithms [33, 35,
36], including model-aware iterative greedy algorithms
that simply replace the best K -sparse approximation (4)
in each iteration with a best K-model sparse approxi-
mation [33]. Algorithms that have been adapted to date
include CoSaMP [16] and iterative thresholding [17].
Figure 4 demonstrates the potential gains for the clus-
tered tree model, for example.

B. Deterministic structured compressibility

Geometrical structure: Just as compressible signals
are “nearly K-sparse” and thus live close to the union
of subspaces ¥ in RY, model-compressible signals are
“nearly K-model sparse” and live (fairly) close to the
restricted union of subspaces defined by the K-model
sparse model. This concept can be made rigorous by
defining a model-compressible signal as one that can
be approximated by a K-model sparse signal with an
approximation error that decays according to a power
law as in (8). The only difference is that now ok stands
for the best K-model sparse approximation.

Stable embedding: A key result of Section III-B was
that when & is a stable embedding in the sense of (2)
for sparse signals, then it is a near stable embedding



for compressible signals. Unfortunately, this is not the
case for model-compressible signals: when ® is a stable
embedding for model sparse signals, then it is not neces-
sarily a near stable embedding for model-compressible
signals. The reason is that the set of model-compressible
signals live fairly close, but not close enough to the
set of model-sparse signals. A sufficient condition to
guarantee that ® is a near-stable embedding for model-
compressible signals has been put forth in [33]; the new
condition is called the restricted amplification property
(RAmP). Fortunately the RAmP is not much more
restrictive than the usual stable embedding condition
(RIP); for the three models described in Section V-A
(tree, (K,C) clustered, block sparse), the number of
measurements ) necessary for a sub-Gaussian random
matrix ® to have the RAmP is of the same order as the
number necessary to have the RIP [33].

Stable recovery from compressive measurements:
Given a ® that satisfies both the RIP and the RAmP,
signals from one of the models discussed above can
be recovered from their compressive measurements by
the same algorithms described in Section V-A with a
performance guarantee like that in (6) (up to a log
constant that depends on N [33]).

C. Probabilistic structured sparsity

Signal models that capture not just coefficient spar-
sity but also correlation structure have been widely
developed and applied in Bayesian circles. Markov and
hidden Markov models are ubiquitous in speech pro-
cessing [48], image processing [49], and wavelet-domain
processing [41-43]. However, these techniques have
been applied only sparsely to dimensionality reduction
and stable signal recovery, and few theoretical perfor-
mance guarantees are available. We cite two examples.
A variational Bayes recovery algorithm has been de-
veloped [50] for a tree-structured, conjugate-exponential
family sparse model for wavelet coefficients. The classi-
cal Ising Markov random field model capturing how the
significant image pixels cluster together has been applied
to background subtracted image recovery [51].

D. Multi-signal sparse models

Thus far, our attention has focused on the sparsity
structure of a single signal. However, many applications
involve a plurality of .J signals x1,...,2; € RY. When
the signal ensemble shares a common sparsity structure,
then we can consider joint dimensionality reduction and
stable recovery schemes that require fewer than O(J -
Klog(N/K)) total measurements.

Geometrical structure: A number of sparsity models
have been developed to capture the intra- and inter-
signal correlations among signals in an ensemble [10,
34,52-59]. For the sake of brevity, we consider just
one here: the joint sparsity model that we dub JSM-
2 [10,34]. Under this model, the K locations of the
significant coefficients are the same in each signal’s
coefficient vector «; (there is no constraint on any of
the coefficient values across the signals). Stacking the
coefficient vectors as rows into a J x N matrix, we
obtain a matrix containing only K nonzero columns;
vectorizing this matrix column-by-column into the super
vector x, we obtain a special case of the block sparse
signal model [33, 60] from Section V-A. The geometrical
structure of multi-signal sparse models is thus closely
related to that of single-signal structured sparse models.

Stable embedding: An added wrinkle that distin-
guishes signal ensembles from individual signals is that
many applications dictate that we apply a separate di-
mensionality reduction ®; independently to each signal
z; to obtain the measurements y; = ®;x;. Such a dis-
tributed approach to dimensionality reduction is natural
for sensor network scenarios, where each signal z; is
acquired by a different geographically dispersed sensor.
For the JSM-2 / block sparse model discussed above,
applying ®; independently to each z; is equivalent
to multiplying the super-vector z by a block diagonal
matrix ® composed of the individual ®;. In [10], we call
this process distributed compressive sensing (DCS) and
show that ® can be a very efficient stable embedding. By
efficient we mean that for JSM-2 ensembles of K -sparse
signals, ® can be as small as JK x JN, which means
that only M; = K measurements are needed per K-
sparse signal. This is clearly best-possible, since at least
K measurements are needed per signal to characterize
the values of their respective significant coefficients.

Stable recovery from compressive measurements:
Various algorithms have been proposed to jointly recover
the ensemble of signals {z;} from the collection of
independent measurements {y;}, including convex re-
laxations [10, 52-56, 58, 60, 61], greedy algorithms [10,
34,62], and statistical formulations [57, 59].

VI. OTHER LOW-DIMENSIONAL
GEOMETRIC MODELS

In this section we look beyond unions of subspaces
and w/,, balls to other low-dimensional geometric mod-
els that support similar stable embeddings.



A. Point clouds

A low-dimensional (actually zero-dimensional) set of
great importance in statistics, pattern recognition, and
learning theory is a point cloud consisting of a finite
number @ of points at arbitrary positions in RY. In the
context of this paper, each point corresponds to one of
the @ signals in the set.

Stable  embedding: The classical Johnson-
Lindenstrauss (JL) lemma [6,7] states that with
high probability, a randomly generated M x N
matrix ® with M = O(log(Q)e~?) yields an e-stable
embedding of the point cloud. An illustration is shown
in Figure 1(c).

The implications of the JL lemma are numerous.
For example, by storing only a set of compressive mea-
surements of a database of signals, we can reduce both
the memory storage requirements and the computational
complexity of solving problems such as nearest neighbor
search [63]. In addition, the JL lemma can be used
to prove that certain random probability distributions
generate ¢ with the stable embedding property [8].

B. Manifold models

As discussed in the introduction, nonlinear K-
dimensional manifold models arise when a family of
signals M = {zy € RY : 6§ € O} is smoothly
parameterized by a K-dimensional parameter vector 6.
Manifolds are also suitable as approximate models for
certain nonparametric signal classes such as images of
handwritten digits [1].

Stable embedding: The theory of manifold embed-
dings in low-dimensional Euclidean space has a rich
history. A proof of Whitney’s embedding theorem [2],
for example, demonstrates that with probability one, a
random linear projection ® with M = 2K + 1 will
ensure that ®z; # Pz for all 1,20 € M. (Note
the parallel with Section III, in which the same can
be guaranteed for all z;,z0 € Xg if M = 2K.)
However, this projection carries no guarantee of stability.
Nash [3], in contrast, considered embeddings of generic
manifolds not necessarily beginning in R™V; his objective
was to preserve only intrinsic metric structure (geodesic
distances).

Building on the JL lemma, we have shown [64] that
with high probability, a randomly generated M x N
matrix ® with M = O(K log(CN)e 2) yields an e-
stable embedding of a K -dimensional manifold M. Note
the strong parallel with all of the above models (M
grows linearly in K and logarithmically in V), except
that now K is the dimensionality of the manifold, not the

signal sparsity. The constant C' depends on factors such
as the curvature and volume of the manifold; precise
technical details are given in [64]. An illustration of
this stable embedding is shown in Figure 1(d). As a
corollary to this result, properties such as the dimension,
topology, and geodesic distances along the manifold are
also preserved exactly or approximately. Under slightly
different assumptions on M, a number of similar em-
bedding results involving random projections have been
established [65-67].

Stable recovery from compressive measurements: The
stable embedding of manifold signal models tempts us
to consider new kinds of signal recovery problems. For
example, given y = ®Px + n, suppose that the signal =
belongs exactly or approximately to a manifold M C
RY. By positing the manifold model for z (instead of
a sparse model like X k), we can formulate a manifold-
based CS recovery scheme. If we define =* to be the
optimal “nearest neighbor” to = on M, that is,

* = i —a 16
o” = arg min |z — 2|5, (16)
then we consider x to be well-modeled by M if
||z — x*||, is small. The hope is that such signals  can
be recovered with high accuracy using an appropriate
recovery scheme.

For example, we have shown that for any fixed = €
R¥, then with high probability over ®, letting

EzargTI%i}\lAHy—@x/Hg (17

yields the recovery error

|z — x|l < (140.25¢) ||z — ||, +(240.32¢) ||n| ,+C.

(18)
Precise technical details are given in [68]. Unfortunately,
in contrast to the sparsity-based case, we cannot hope to
solve a search such as (17) using a universal convex
optimization; in practice one may resort to iterative
algorithms such as Newton’s method [69]. Nonetheless,
we are able to provide a guarantee (18) that is highly
analogous to (6) and other guarantees from the CS
literature [19] in which the recovery error scales with
the distance from the signal to its model. For sparsity-
based models, this distance is measured between x and
T g ; for manifold models it is measured between x and

*

xT.

Manifold-based CS also enjoys the same universality
properties as sparsity-based CS, since the manifold M
need not be known at the time of data acquisition. Con-
sequently, we may also consider multi-class recognition
problems [9], in which the signal is compared to a
number of possible candidate manifold models.



() E
Fig. 5. Manifold lifting example. (a) Compressive measure-
ments of J = 200 overlapping sub-images were obtained from
hypothetical satellites. From each image of size N = 4096,
just M = 96 random measurements were obtained. The goal
is to reconstruct a high-resolution fused image from the low-
dimensional sub-image measurements. (b) Fusion of images
recovered independently via sparsity-based CS reconstruction,
PSNR=15.4dB. (c) Fusion of images via joint CS reconstruc-
tion that exploits a manifold model for the inter-signal structure,
PSNR=23.8dB.

Multi-signal recovery using manifold models: Ex-
tending the JSM/DCS framework of of Section V-D, we
can hypothesize a manifold model for the inter-signal
structure within a signal ensemble 1, . .., x ;. For exam-
ple, each of the J signals x; might represent an image of
a scene obtained from a different perspective. It follows
that the signals x1,...,x; will live on a common (but
unknown) K -dimensional manifold M C RY, where K
equals the number of degrees of freedom in the camera
position. Supposing that all ®; = & for some M x N
matrix @, the measurement vectors y; = ®x; will live
along the image ® M of M in the measurement space
RM . From these points, it is possible to estimate the
underlying parameterization of the data using manifold
learning algorithms such as ISOMAP [70] and to develop
a “manifold lifting” recovery technique, in which each
z; is restored from RM back to RY, while ensuring that
the recovered signals live along a common, plausible
manifold. See Figure 5 and [71] for a promising proof
of concept.

Alternatively, one can simply stack the signal en-
semble z1,...,z into a single super-vector z € R/VN.
The resulting super-vector still lives on a K -dimensional
manifold M that we call the joint manifold [72]. Thus,
with high probability, a randomly generated M x JN
matrix ® with M = O(K log(CJN)) yields a stable
embedding of M. This enables solutions to multi-sensor
data processing problems where the complexity grows
only logarithmically in both the ambient dimensionality
N and the number of sensors J.

VII. DISCUSSION AND CONCLUSIONS

We conclude our tour of low-dimensional signal
models for dimensionality reduction with a summary
and some perspectives for the future. As we have seen,
there are large classes of diverse signal models that
support stable dimensionality reduction and thus can be
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used to effect data acquisition, analysis, or processing
more efficiently. (Of course, we have also seen that
certain random signal models that are commonly cited
as producing low-dimensional, compressible signals—
the iid GGD and Laplacian distributions—actually do
not.) We expect that the diversity of the available models
will inspire the development of new kinds of signal re-
covery algorithms that go beyond today’s more agnostic
sparsity-based approaches. In particular, we see signifi-
cant promise in structured sparsity models (to leverage
the decades of experience in data compression) and
manifold models (to solve complex object recognition
and other reasoning tasks). We also expect that new
low-dimensional models will continue to be discovered,
which will further broaden and deepen the impact of this
rapidly developing field.

APPENDIX A
NON-COMPRESSIBILITY OF THE
GENERALIZED GAUSSIAN DISTRIBUTION

In this section, we show that signal realizations x
whose entries are generated according to the iid GGD
distribution (11), that is, z; ~ GGD(xz;;q,0), are not
compressible according to the definition in Section III-B.

Order statistics: Let u; = |z;|. From basic prob-
ability, the random variables (RV) w; are also iid and
have pdf w; ~ f(u) where f(u) = GGD(u;q,0) +
GGD(—u;q,0). Denote the cumulative distribution
function (cdf) of f(u) by F(u).

Arranging the u; in decreasing order of size
19)

we call u; the i-th magnitude order statistic (OS) of .
Even though the RVs z; are independent, the RVs u;
are statistically dependent.

U(1) = U2) = - = UN),

Quantile approximation to the OS: For relatively
large sample sizes N, a well-known approximation to
the expected OS of a RV is given by the quantile of its

i

cdf [73]:
N+ 1) '

The variance of this approximation is quantified in [29].
Bounds on F(u): The cdf F(u) can be written as

L (1/9,(5)")
r'(l/q) ~

where T'(s,z) = [“t*~'e~'dt is the incomplete
Gamma function. It is possible to bound (21) by [74]:

[1- e T @

Elug)) ~ F~* (1 - (20)

Flu)=1- 1)

u

o

K
o

)q] 1/q < F(u) < [1 _ 670[(



where a > max{l,[F(lJrl/q)]*q} and 0 < 3 <
min{1,[r(1+1/q)rq}.

Bounds and approximations of F~'(u): Using (22),
we can bound the inverse of the cdf F'(u) as

1/q

o[-a"tlog(1—u?)] " < F'(u) <

o [~ log (1 —u?)]"/.
(23)
Hence, F~}(u) = © (o [~ log (1 — un)] "),

It is then straightforward to derive the following
approximations:

: : 1/q
-1 ¢ 1 1q
_ < _
F (1 N+1) U[ b 10g<N+1>]
< Ri~Y/r
(24)
where
. q 1/q
wea ot (5)]
N+1
p=qlogT-

The non-compressibility then follows from (20).

APPENDIX B
COMPRESSIBILITY OF THE
GENERALIZED PARETO DISTRIBUTION

For the GPD (13), our analysis parallels that of
Appendix A except with a more positive conclusion. The
key departure is that the magnitude order statistics of the
iid GPD RVs can be approximated as

)—1/q

p=gq

(3

< Ri_l/pi_l/q,

(26)

where

R =qo(N +1)Y/4, (27)

Note that the GPD converges to the Laplacian distribu-
tion in the limit as ¢ — oo.

REFERENCES

[1] G. E. Hinton, P. Dayan, and M. Revow, “Modeling the manifolds
of images of handwritten digits,” IEEE Trans. Neural Networks,
vol. 8, pp. 65-74, Jan. 1997.

M. W. Hirsch, Differential Topology, vol. 33 of Graduate Texts
in Mathematics. Springer, 1976.

J. Nash, “The imbedding problem for Riemannian manifolds,”
Annals of Mathematics, 2nd Series, vol. 63, pp. 20-63, January
1956.

[2]
[3]

11

[4]

[5]
[6]

[7]

[8]

[9]

[10]

(11]
[12]
[13]

[14]

[15]

[16]

[17]
(18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

B. Kashin, “The widths of certain finite-dimensional sets and
classes of smooth functions,” Izv. Akad. Nauk SSSR Ser. Mat,
vol. 41, no. 2, pp. 334-351, 1977.

A. Garnaev and E. Gluskin, “On the widths of the Euclidean
ball,” Doklady, Akad. Nauk SSSR, vol. 277, pp. 1048-1052, 1984.
S. Dasgupta and A. Gupta, “An elementary proof of the Johnson-
Lindenstrauss lemma,” Tech. Rep. TR-99-006, Berkeley, CA,
1999.

D. Achlioptas, “Database-friendly random projections,” in Proc.
Symp. on Principles of Database Systems (PODS °01), pp. 274—
281, ACM Press, 2001.

R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple
proof of the restricted isometry property for random matrices,”
Constr. Approx., vol. 28, pp. 253-263, December 2008.

M. Davenport, M. Duarte, M. Wakin, J. Laska, D. Takhar,
K. Kelly, and R. Baraniuk, “The smashed filter for compressive
classification and target recognition,” in Proc. Computational
Imaging V at SPIE Electronic Imaging, January 2007.

D. Baron, M. B. Wakin, M. Duarte, S. Sarvotham, and R. G.
Baraniuk, “Distributed compressed sensing.” Rice University
Technical Report TREE-0612, Nov 2006.

E. J. Candes and T. Tao, “Decoding by linear programming,”
IEEE Trans. Info. Theory, vol. 51, pp. 4203—4215, Dec. 2005.
D. L. Donoho, “Compressed sensing,” IEEE Trans. Info. Theory,
vol. 52, pp. 1289-1306, Sept. 2006.

R. G. Baraniuk, “Compressive sensing,” IEEE Signal Processing
Mag., vol. 24, no. 4, pp. 118-120, 124, July 2007.

E. J. Candes, “The restricted isometry property and its impli-
cations for compressed sensing,” Compte Rendus de I’Academie
des Sciences, Series I, vol. 346, pp. 589-592, May 2008.

D. Needell and R. Vershynin, “Uniform uncertainty principle
and signal recovery via regularized orthogonal matching pursuit,”
Dec. 2007. Preprint.

D. Needell and J. Tropp, “CoSaMP: Iterative signal recovery
from incomplete and inaccurate samples,” Applied and Compu-
tational Harmonic Analysis, June 2008. To be published.

T. Blumensath and M. E. Davies, “Iterative hard thresholding for
compressed sensing,” July 2008. Preprint.

A. Cohen, W. Dahmen, and R. DeVore, “Compressed sensing
and best k-term approximation,” 2006. Preprint.

R. DeVore, G. Petrova, and P. Wojtaszczyk, “Instance-optimality
in probability with an ell-1 decoder,” 2008. Preprint.

R. A. DeVore, “Lecture notes on Compressed Sensing,” Rice
University ELEC 631 Course Notes, Spring 2006. Available at
http://cnx.org/content/col10458/1atest/.

E. Candes and T. Tao, “Near optimal signal recovery from
random projections: Universal encoding strategies?,” IEEE Trans.
Inform. Theory, vol. 52, pp. 5406-5425, Dec. 2006.

D. P. Wipf and B. D. Rao, “Sparse Bayesian learning for basis
selection,” IEEE Transactions on Signal Processing, vol. 52,
no. 8, pp. 2153-2164, 2004.

S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,”
IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2346-2356, 2008.
P. Schniter, L. C. Potter, and J. Ziniel, “Fast bayesian matching
pursuit,” in Information Theory and Applications Workshop,
pp. 326-333, 2008.

M. Tipping, “Sparse bayesian learning and the relevance vector
machine,” The Journal of Machine Learning Research, vol. 1,
pp. 211-244, 2001.

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic
Decomposition by Basis Pursuit,” SIAM Journal on Scientific
Computing, vol. 20, p. 33, 1998.

R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society, pp. 267-288, 1996.

R. Saab, R. Chartrand, and O. Yilmaz, “Stable sparse approxima-
tions via nonconvex optimization,” in /CASSP 2008, pp. 3885—
3888, 2008.



[29]

[30]

(31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

V. Cevher, “Learning with compressible priors,” in Neural Infor-
mation Processing Systems (NIPS), (Vancouver, B.C., Canada),
7-12 December 2008.

T. Blumensath and M. E. Davies, “Sampling theorems for signals
from the union of finite-dimensional linear subspaces,” IEEE
Trans. Info. Theory, Dec. 2008. To be published.

Y. M. Lu and M. N. Do, “Sampling signals from a union of
subspaces,” IEEE Signal Processing Mag., vol. 25, pp. 41-47,
Mar. 2008.

V. Cevher, P. Indyk, C. Hegde, and R. G. Baraniuk, “Recovery
of clustered sparse signals from compressive measurements,”
in Sampling Theory and Applications (SAMPTA), (Marseilles,
France), May 2009.

R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde,
“Model-based compressive sensing,” 2008. Preprint. Available
at http://dsp.rice.edu/cs.

J. Tropp, A. C. Gilbert, and M. J. Strauss, “Algorithms for si-
multaneous sparse approximation. Part I: Greedy pursuit,” Signal
Processing, vol. 86, pp. 572-588, Apr. 2006.

Y. Eldar and M. Mishali, “Robust recovery of signals from a
union of subspaces,” 2008. Preprint.

M. Stojnic, F. Parvaresh, and B. Hassibi, “On the reconstruction
of block-sparse signals with an optimal number of measure-
ments,” Mar. 2008. Preprint.

Y. Kim, J. Kim, and Y. Kim, “Blockwise sparse regression,”
Statistica Sinica, vol. 16, no. 2, p. 375, 2006.

L. Meier, S. van de Geer, and P. Buhlmann, “The group lasso
for logistic regression,” Journal of Royal Stat. Society: Series B
(Statistical Methodology), vol. 70, no. 1, pp. 53-71, 2008.

F. Parvaresh, H. Vikalo, S. Misra, and B. Hassibi, “Recovering
Sparse Signals Using Sparse Measurement Matrices in Com-
pressed DNA Microarrays,” IEEE Journal of Selected Topics in
Sig. Proc., vol. 2, no. 3, pp. 275-285, 2008.

I. F. Gorodnitsky, J. S. George, and B. D. Rao, “Neuromagnetic
source imaging with FOCUSS: a recursive weighted minimum
norm algorithm,” Electroenceph. and Clin. Neurophys., vol. 95,
no. 4, pp. 231-251, 1995.

M. S. Crouse, R. D. Nowak, and R. G. Baraniuk, “Wavelet-based
statistical signal processing using Hidden Markov Models,” IEEE
Trans. Signal Processing, vol. 46, pp. 886902, Apr. 1998.

J. K. Romberg, H. Choi, and R. G. Baraniuk, “Bayesian tree-
structured image modeling using wavelet-domain Hidden Markov
Models,” IEEE Trans. Image Processing, vol. 10, pp. 1056-1068,
July 2001.

J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, “Im-
age denoising using a scale mixture of Gaussians in the wavelet
domain,” IEEE Trans. Image Processing, vol. 12, pp. 1338-1351,
Nov. 2003.

J. Shapiro, “Embedded image coding using zerotrees of wavelet
coefficients,” IEEE Trans. Signal Processing, vol. 41, pp. 3445—
3462, Dec. 1993.

A. Cohen, W. Dahmen, 1. Daubechies, and R. A. DeVore, “Tree
approximation and optimal encoding,” Applied and Computa-
tional Harmonic Analysis, vol. 11, pp. 192-226, Sept. 2001.

C. Hegde, M. F. Duarte, and V. Cevher, “Compressive sensing
recovery of spike trains using a structured sparsity model,” in Sig-
nal Processing with Adaptive Sparse Structured Representations
(SPARS), (Saint-Malo, France), 13—16 April 2009.

Y. Ma, A. Yang, H. Derksen, and R. Fossum, “Estimation
of subspace arrangements with applications in modeling and
segmenting mixed data,” SIAM Review, vol. 50, no. 3, pp. 413—
458, 2008.

L. Rabiner et al., “A tutorial on hidden Markov models and
selected applications in speech recognition,” Proceedings of the
IEEE, vol. 77, no. 2, pp. 257-286, 1989.

R. Chellappa and A. Jain, “Markov random fields: theory and
application,” Academic Press, 1993.

12

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

L. He and L. Carin, “Exploiting structure in wavelet-based
Bayesian compressive sensing,” 2008. Preprint. Available at
http://people.ee.duke.edu/ lcarin/Papers.html.

V. Cevher, M. F. Duarte, C. Hegde, and R. G. Baraniuk, “Sparse
signal recovery using markov random fields,” in Neural Infor-
mation Processing Systems (NIPS), (Vancouver, B.C., Canada),
8-11 December 2008.

J. Tropp, “Algorithms for simultaneous sparse approximation.
Part II: Convex relaxation,” Signal Processing, vol. 86, pp. 589—
602, Mar. 2006.

P. Nagesh and B. Li, “Compressive imaging of color images,”
in [EEE Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP), (Taipei, Taiwan), April 2009.

H. Jung, K. Sung, K. Nayak, E. Kim, and J. Ye, “k-t FOCUSS:
a general compressed sensing framework for high resolution
dynamic MRL” Magnetic Resonance in Medicine, vol. 61, no. 1,
20009.

J. Y. Park and M. B. Wakin, “A multiscale framework for com-
pressive sensing of video,” in Proc. Picture Coding Symposium
(PCS), (Chicago, Illinois), May 2009.

R. Marcia and R. Willet, “Compressive coded aperture video
reconstruction,” in Proc. European Signal Processing Conf. (EU-
SIPCO), 2008.

C. Qiu, W. Lu, and N. Vaswani, “Real-time dynamic MR image
reconstruction using Kalman filtered compressed sensing,” in
IEEE Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP), (Taipei, Taiwan), April 2009.

D. Angelosante and G. B. Giannakis, “RLS-weighted LASSO
for Adaptive Estimation of Sparse Signals,” in IEEE Int. Conf.
on Acoustics, Speech and Signal Processing (ICASSP), (Taipei,
Taiwan), April 2009.

S. Ji, D. Dunson, and L. Carin, “Multi-task compressive sensing,”
IEEE Transactions on Signal Processing, vol. 57, no. 1, pp. 92—
106, 2009.

Y. Eldar and M. Mishali, “Robust recovery of signals from a
union of subspaces,” 2008. preprint.

M. Fornasier and H. Rauhut, “Recovery algorithms for vector
valued data with joint sparsity constraints,” SIAM J. Numer. Anal,
vol. 46, no. 2, pp. 577-613, 2008.

R. Gribonval, H. Rauhut, K. Schnass, and P. Vandergheynst,
“Atoms of all channels, unite! Average case analysis of multi-
channel sparse recovery using greedy algorithms,” Journal of
Fourier Analysis and Applications, vol. 14, no. 5, pp. 655-687,
2008.

P. Indyk and R. Motwani, “Approximate nearest neighbors:
Towards removing the curse of dimenstionality,” in Proc. Symp.
Theory of Computing, pp. 604-613, 1998.

R. G. Baraniuk and M. B. Wakin, “Random projections of smooth
manifolds,” Foundations of Computational Mathematics, vol. 9,
pp. 51-77, February 2009.

P. Indyk and A. Naor, “Nearest neighbor preserving embeddings,”
ACM Trans. Algorithms, 2006. To appear.

P. Agarwal, S. Har-Peled, and H. Yu, “Embeddings of surfaces,
curves, and moving points in euclidean space,” in Proceedings of
the twenty-third annual symposium on Computational geometry,
pp. 381-389, ACM New York, NY, USA, 2007.

S. Dasgupta and Y. Freund, “Random projection trees and low
dimensional manifolds,” in Proceedings of the 40th annual ACM
symposium on Theory of computing, pp. 537-546, ACM New
York, NY, USA, 2008.

M. B. Wakin, “Manifold-based signal recovery and parameter
estimation from compressive measurements,” 2008. Preprint.
M. B. Wakin, D. L. Donoho, H. Choi, and R. G. Baraniuk, “The
multiscale structure of non-differentiable image manifolds,” in
Proc. Wavelets XI at SPIE Optics and Photonics, (San Diego,
California), August 2005.

C. Hegde, M. Wakin, and R. Baraniuk, “Random projections



[71]

[72]

[73]

[74]

for manifold learning,” in Proc. Neural Information Processing
Systems (NIPS), December 2007.

M. B. Wakin, “A manifold lifting algorithm for multi-view
compressive imaging,” in Proc. Picture Coding Symposium (PCS
2009), (Chicago, Illinois), May 2009.

M. Davenport, C. Hegde, M. Duarte, and R. Baraniuk,
“A Theoretical Analysis of Joint Manifolds,” Arxiv preprint
arXiv:0901.0760, 20009.

H. David and H. Nagaraja, Order statistics. Wiley-Interscience,
2004.

H. Alzer, “On some inequalities for the incomplete gamma func-
tion,” Mathematics of Computation, vol. 66, no. 218, pp. 771-
778, 1997.

13



