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Fig. 12. Chevy Impala noise residuals from (a) the envelope estimates when
the additive Gaussian model is used [2] (dashed line in Fig. 10), (b) the
logarithm of the envelope estimates when the multiplicative noise model
introduced here is used without the ES components (dotted line in Fig. 10),
and (c) the logarithm of the envelope estimates when the multiplicative noise
model is used along with the ES components (solid line in Fig. 10). (d-f)
The noise spectra are plotted with respect to the normalized frequency. The
spectra in (d-f) correspond to the noise residuals in (a-c), respectively. The
noise residual in (c) is white as demonstrated by the flat spectrum in (f).
Note that the interference components remove the time-varying mean from
the noise residual of the multiplicative noise model in (b) while at the same
time extracting useful information such as vehicle dimensions.
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Fig. 13. Log-likelihood surface for the vehicle dimensions for Isuzu Rodeo.
Note the bi-modality of the likelihood surface.
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Fig. 14. (a) Estimated vehicle lengths are compared. There is a clear separation
between compact cars and large vehicles. (b) Estimated vehicle sizes are
compared. (c) Logarithm of the vehicle signal amplitudes are plotted with
respect to their speed. There is a linear trend in the plot as also indicated
by [15], [16]. The solid line represents a least squares fit to the data without
the Nissan Maxima. The dotted lines are one standard deviation away from the
mean. The Nissan Maxima is louder than the other cars because the vehicle
has mechanical problems.

D. Scaling Ambiguity

We also investigated the sensitivity of the vehicle profile vector
estimates to the scaling ambiguity issue. Figure 15 illustrates the
estimation results for different ym values for the Chevy Impala and
Honda Accord. The true values of the parameter ym are shown in
Table III. The speed estimates are proportional to the assumed ym
(Fig. 15(a) and (d)), because the vehicle speed is entangled with ym as
discussed in Sect. III. The width estimates are somewhat insensitive
to the assumed ym (Fig. 15(b) and (e)) because they only depend on

the asymptotic interference angles, which do not depend on ym. The
length estimates increase as ym is increased; however, they are not
proportional to ym. The cost function shows a flat response around
the true ym value for the Chevy Impala whereas the cost function is
at a local optimum for the Honda Accord around the true value of
ym.
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Fig. 15. (a) Chevy Impala speed estimates are proportional to the assumed
ym values. Dashed line corresponds to the vehicle profile vector estimates
whereas the dotted line is a linear fit that shows that the speed estimates are
approximately proportional to ym. The estimate at the true ym is marked with
a star. (b) Vehicle width and length estimates are shown. The length estimates
increase with ym whereas the width estimates are somewhat insensitive to the
changes in ym. (c) The cost function (33) exhibits a flat response around the
true value. Hence, the cost function is likely to be at the global stationary
point. (d) Honda Accord speed estimates are also proportional to the assumed
ym values. (e) Vehicle width and length estimates follow a similar pattern as
in Chevy Impala. (f) The cost function (33) for the Honda Accord at the true
ym value is at a local optimum because the optimization algorithm yields a
lower cost value when ym = 5.35m is used as opposed to the true value
ym = 4.3m.

VIII. CONCLUSIONS

We presented a method to determine a vehicle’s speed via its
acoustic drive-by sounds recorded at a microphone, by formulating
the problem as a joint speed and acoustic pattern estimation problem.
We achieve this estimation using a vector that profiles the directional
variation of the vehicle acoustic pattern. The vehicle profile vector en-
ables a signal processor to better address the vehicle correspondence
problem since the vehicle profile vector reduces the bias in speed and
loudness estimates as well as vehicle dimensions. It also generates
better discriminative features that can be compactly represented by a
15-dimensional space. Parameters λv and λf of the vehicle profile
vector can improve the confidence of the correspondence matches,
also allowing minimal communication between a calibration micro-
phone and a control microphone. However, given the difficulty of the
correspondence problem, one should not expect perfect performance
for all cases even with the vehicle profile vector.

While determining the vehicle speed, we relied on the signal
power calculations and argued that the signal frequency information
(Doppler) was not useful when only a single microphone is used.
On the other hand, when an array of microphones is available, one
can also obtain information from the phase of the received acoustic
data across the array. In this case, we expect that the performance
should improve more than what is gained from multiple independent
amplitude observations. We envision that when multiple vehicles are
present, the array can provide the acoustic beam steering necessary
to remove the cocktail party effect on the ES components. Hence,



the approaches in the literature can be improved to reduce the biased
speed estimates when an array is used. As future work, we plan to
investigate how our proposed framework performs when the vehicle
CPA’s are relatively large.
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APPENDIX I
BIAS ANALYSIS

A. Multiplicative Noise vs. Additive Noise

We use the following example to argue that a multiplicative noise
model on the signal envelope should be used to estimate the speed in
our problem. Let fk(v) denote monotonically decreasing functions
of v for all k, e.g., the envelope observations indexed by k. Define
two generative models as follows

Model I: Ek = fk(v) + nk, Model II: Ek = fk(v)e
mk , (37)

where nk and mk are i.i.d. zero mean Gaussian random variables
with variances σ2

n and σ2
m. Let v∗ be the true speed and v be the

maximum likelihood estimate assuming observation noise Model I:

v = arg min
v
J(v), J(v) =

∑
k

(Ek − fk(v))
2 , (38)

Given sufficient number of Ek measurements, we expect the ML
solution to be around the true value of v∗. Hence, we can assume
v = v∗+ε, where ε is small enough so that fk(v) ≈ fk(v

∗)+ḟk(v∗)ε
for all k.

The ML estimate of v is found by taking the derivative of J(v)
with respect to v and then equating to zero. Now, let us assume that
the measurements are actually generated by Model II:

J(v) =
∑
k

(fk(v
∗)emk − fk(v))

2

≈
∑
k

(
fk(v

∗)emk − fk(v
∗) − ḟk(v

∗)ε
)2

,
(39)

which only depends on ε. By taking the derivative and equating to
zero, we solve the bias and take its expected value:

ε =

∑
k ḟk(v

∗)fk(v∗) (emk − 1)∑
k

[
ḟk(v∗)

]2 ,

⇒ ε =

∑
k ḟk(v

∗)fk(v∗)
(
e

σ2
m
2 − 1

)
∑
k

[
ḟk(v∗)

]2 ,

(40)

which is always negative since fk(v) > 0 is a monotonically
decreasing function of v, i.e., ḟk(v∗) < 0. Hence, given v∗, the
expected value of the ML estimate of Model I will always have a
negative bias when the data is actually generated by Model II. That
is, E {v|v∗} − v∗ = ε < 0.

B. Bias due to Directional Variation

From the ML cost function (33) and the expression for the
directional power variation function Aλ[nτ ] in (28), we can see that
the ES components account for a time-varying mean of the logarithm
of the power envelope. Hence, method M2 solves for the vehicle

speed without taking into account of this mean shift. To understand
the effect of this ignorance, we follow the same strategy as above
and consider the following generative models

Model I: log Ek = log fk(v) + nk,

Model II: log Ek = log fk(v) + ρk +mk,
(41)

where mk is i.i.d. noise independent of ρk, whereas ρk is the
time-varying mean shift that is proportional to the sum of the ES
components, where the proportionality constant is positive.

With the same assumptions as in Appendix I.A, we expect the ML
solution to be around the true value of v∗ for small mean shifts ρk.
When the mean shifts are large, the analysis here is not valid. Hence,
we can again assume v = v∗ + ε, where ε is small enough so that
fk(v) ≈ fk(v

∗) + ḟk(v
∗)ε for all k. Then, it is straightforward to

show that if Model I is used to solve for the speed parameter when
Model II is true, the expected bias is given by

ε =

∑
k ρk∑

k

(
ḟk(v∗)
fk(v∗)

) . (42)

Hence, the expected bias is negative if
∑
k ρk is positive (and vice

versa) since fk(v) > 0 and ḟk(v
∗) < 0. If we look at the results

in Figs. 9-11, we see that
∑
k ρk > 0 for our test cases. Therefore,

this result gives an empirical reason why the method M2 results in
negatively biased speed estimates.
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