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Abstract— We estimate a vehicle’s speed, its wheelbase length, and
tire track length by jointly estimating its acoustic wave pattern with
a single passive acoustic sensor that records the vehicle’s drive-by
noise. The acoustic wave pattern is determined using the vehicle’s
speed, the Doppler shift factor, the sensor’s distance to the vehicle’s
closest-point-of-approach, and three envelope shape (ES) components,
which approximate the shape variations of the received signal’s power
envelope. We incorporate the parameters of the ES components along
with estimates of the vehicle engine RPM, the number of cylinders, and
the vehicle’s initial bearing, loudness and speed to form a vehicle profile
vector. This vector provides a fingerprint that can be used for vehicle
identification and classification. We also provide possible reasons why
some of the existing methods are unable to provide unbiased vehicle
speed estimates using the same framework. The approach is illustrated
using vehicle speed estimation and classification results obtained with
field data.

I. INTRODUCTION

Estimation of vehicle motion parameters using signals received
at passive sensors is a classical signal processing problem [1]–[6].
When a single passive acoustic sensor is used, wave propagation
effects are used to determine the source movements based on the
following assumptions that the vehicle A) is a point source [1], [2],
B) has stationary signal characteristics that admit a model such as an
autoregressive moving average (ARMA) model [2], and C) produces
a pure tone [1]. These assumptions are only partially satisfied by
vehicles; hence estimation algorithms based on these assumptions do
not perform as expected when they are applied to field data.

When an array of passive acoustic sensors is used, existing
approaches in the literature concentrate on the correlation among
the multiple microphone signals. Forren and Jaarsma [4] aim to
classify vehicles based on their axle detections by exploiting the
tire noise generated by vehicles. They use signal correlations among
three known microphones under assumption B. However, they do not
model any interference effects of the tires. Valcarce et al. [3] exploit
the differential time delays to estimate the speed by assuming A and
B. They use additive Gaussian noise models and obtain biased speed
estimates as in [2]. They also explain the bias of their estimates
using a delay error term that models the movement of the vehicle
during the acoustic signal propagation [7]. Lo and Ferguson [5]
develop a nonlinear least squares method for speed estimation using
multiple microphones with a quasi-Newton method for computational
efficiency. The estimated speed is based on time-delay-of-arrival
estimates, obtained using generalized cross correlation method, under
assumptions A and B.

In this paper, we provide a power based algorithm for vehicle
speed estimation using a single microphone. We describe the spectral
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and spatial content of vehicle signals and recast the speed estimation
problem as a spatial acoustic pattern recognition problem. We calcu-
late the received signal’s power envelope and approximate it using
three envelope shape (ES) components. The ES components spatially
decompose the total vehicle noise into parts that also account for
tire interference effects, tire horn effects, and air turbulence effects,
which are not considered in the current literature. For estimation,
we introduce a vehicle profile vector that characterizes the ES
components and also includes classifying vehicle information such as
engine revolutions per minute (RPM) and the number of cylinders.
The vehicle profile vector can be regarded as a fingerprint of the
vehicle.

A motivation for the vehicle profile vector is the following acous-
tic correspondence problem: given recorded measurements of two
vehicles (calibration recordings), we would like to determine, with
high confidence, the label of the vehicle when it drives by another
control microphone. This problem has applications in distributed
sensor networks [8], [9]. The problem becomes complicated when 1)
the control microphone has a different distance to the closest point
of approach (CPA) of the vehicle, 2) the vehicle is moving with
a different speed or moving on a different medium (e.g., gravel as
opposed to asphalt), 3) whether or not it is raining (has rained), 4)
the vehicle is or was significantly loaded. In this paper, we comment
on how we can tackle the correspondence problem using the vehicle
profile vector.

The organization of the paper is as follows. Section II elaborates
on the spectral and spatial content of the vehicle acoustic signals.
Section III casts the acoustic speed estimation problem as a spatio-
temporal sampling problem and discusses the scaling ambiguity issue.
The signal interference phenomenon of the vehicle tires is introduced
in Sect. IV. Then, Sects. V and VI detail the ES components and the
method used for vehicle profile vector estimation. Finally, the field
experiment results are given in Sect. VII.

II. VEHICLE SIGNAL’S SPECTRAL AND SPATIAL CONTENT

A vehicle’s acoustic signal consists of a combination of various
noise signals generated by the engine, the tires, the exhaust system,
aerodynamic effects, and mechanical effects (e.g., axle rotation, brake
pads, and suspension). Hence, the spectral content of a vehicle’s
signal includes wideband processes as well as harmonic components.
It also has a spatial distribution because the noise sources are at
different locations on the vehicle. The mixture weighting of these
spectral components at any given location is dependent on the
vehicle’s speed, whether the vehicle is accelerating, decelerating,
turning, and whether the vehicle is in good mechanical condition.
In general, one can approximate a well maintained vehicle’s signal
as consisting of four noise components:

a) Engine Noise: The noise from an internal combustion engine
contains a deterministic harmonic train and a stochastic component so
it can be modeled by the same methods used for human speech [10],
[11]. The stochastic component of the engine noise is largely due
to the turbulent air flow in the air intake (or intercooler), the engine
cooling systems, and the alternator fans. This stochastic component
is wideband in nature. The deterministic component is caused by the
fuel combustion in the engine cylinders and has more power than



the stochastic component. The lowest deterministic tone is called the
cylinder fire rate f0, defined as the firing rate of any one cylinder
in the engine. Since each cylinder fires once every two engine
revolutions in a four-stroke engine, there is a simple relationship
between f0 and the RPM χ of a vehicle:

f0 =
χ

60 × 2
Hz. (1)

The strongest tone in the engine noise is called the engine fire
rate F0, and it is related to f0 in a simple manner: F0 = f0 × p,
where p is the number of cylinders in the engine. One can think of
F0 and its integer multiples as analogous to the formant frequencies
in human speech. The expressions for f0 and F0 model reality
quite well; however, small deviations do occur. For example, in
modern cars, each cylinder is individually controlled by an engine
management system, which might fluctuate f0 and F0 to optimize
fuel consumption or torque. Hence, in some cases, the locations of
the f0- and F0-harmonics might provide a fingerprint for the specific
engine [10].

Car manufacturers try to suppress the engine noise as much as
possible for the passengers’ comfort inside the vehicle cabin in
frequency ranges where human ears are most sensitive to (1kHz
to 4kHz) [11]. In addition, the manufacturers try to suppress the
noise levels outside the car as mandated by the federal standards for
highway noise (e.g., in the US, see [12], [13]). They design quieter
engines and also exploit the body of the vehicle to filter the engine
noise. To achieve this, the interior of the engine compartment is
usually treated with material for acoustical attenuation (the metallic
shell also acts as a filter). Hence, in some cases, the engine noise
might be stronger on the side and at the very front of the car than
other directions, because sound propagation through the axle, the
front grill, and the bottom of the engine block cannot be filtered
effectively.

b) Tire Noise: The term tire noise is defined as the noise emitted
from a rolling tire as a result of its interaction with the road surface.
The tire noise is the main source of a vehicle’s total noise at speeds
higher than 50km/h [14]. It consists of two components: vibrational
noise and air noise [15], [16]. The vibrational component is caused
by the contact between the tire threads and the pavement texture. Its
spectrum is most dominant between 100 − 1000Hz. The air noise
is generated by the air being sucked-in or forced out of the rubber
blocks of a tire and is dominant in the frequency ranges between
1000 and 3000Hz. The actual frequency calculations are complicated
by the tread geometry [17].

In the driving direction of the car, the road and the tire forms a
geometrical structure that amplifies the noise generated by the tire-
road interaction [16], [18], [19]. This effect is called the horn effect
and has a directional pattern [18]. This amplification results in a
strong vehicle tire noise component in the frequency range 600 −
2000Hz ( [16]: Chapter 7.1.25). The directivity of the horn effect
depends on the tire width and radius, the tire shoulders, the tire tread
geometry as well as the weight and torque on the tire. Analytical
calculations based on these factors are rather difficult, and hence,
numerical approaches such as boundary element methods are used
to simulate the horn effect for a given tire configuration [18], [19].
Notably, most of the total tire noise power including the horn effect
lies in the frequency range 700 − 1300Hz with a multi coincidence
peak around 1000Hz [16].

c) Exhaust Noise: The exhaust system consists of the exhaust
manifold, catalytic converter, resonator, exhaust pipe, muffler, and the
tail pipe. The system goes from the engine compartment to the back
of the car generating the exhaust noise. Due to the system’s spatial
distribution, this noise is less prominent in the front of a vehicle.

Unlike the engine block noise, the exhaust system noise increases
significantly with the engine load. The exhaust noise is also affected
by engine turbo/super chargers and after-coolers [20], [21].

Manufacturers use a combination of reactive and absorptive si-
lencers to keep the exhaust noise level down. The exhaust noise has
broadband characteristics with most of its power concentrated around
low frequencies. It has the same harmonic frequency structure as
the engine and has additional tail pipe resonances that occur at the
fundamental frequency fe = c/(2l), where l is the tail pipe length
and c is the speed of sound [20], [21].

d) Air Turbulence Noise: Vehicle induced turbulence can be-
come an important factor in the overall perceived loudness of a
vehicle as the vehicle speed increases. This noise is due to air flow
generated by the boundary layer of the vehicle and is prominent
immediately after the vehicle passes by the sensor (as a distinctive
whoosh sound). The turbulence noise depends on the aerodynamics of
the vehicle as well as the ambient wind speed and its orientation [22],
[23]. In our problem, we only consider the case when the wind
speed is much less than the vehicle speed. For this case, perturbation
analysis methods can yield analytical expressions for the mean
and the variance of the turbulent velocity components [24]. These
expressions may be used to further improve the results presented in
this paper.

III. SPEED ESTIMATION AS A SPATIO-TEMPORAL SAMPLING

PROBLEM

To understand the speed estimation problem, it is instructive to
consider a monopole source moving with speed v at a constant
heading, as illustrated in Fig. 1. Let z(t) = z(um, t) be the
continuous acoustic signal observed at the microphone position um =
(xm, ym) in the 2D plane. In this geometry, ym is defined as
the microphone distance to the CPA, and is assumed known. The
speed estimation problem then reduces to recovering v/ym and the
time at CPA tcpa, using the microphone signal samples z[n]1, where
the sampling frequency is appropriately chosen to avoid frequency
aliasing. Because the monopole signal is not known a priori, the
information needed to determine the speed v is extracted from the
physics of the acoustic wave propagation.

A. Information in Acoustic Wave Phase and Power

Let s(t) be a zero-mean stationary random process that models
the acoustic signal emitted by the monopole source. To simplify the
results in this section, we concentrate on the following case, where the
Fourier transform of the source signal is assumed to be bandlimited
as follows:

|S(Ω)| =

{
S, Ω1 ≤ Ω ≤ Ω2, 2W � Ω2 − Ω1;
0, otherwise.

(2)

The model (2) is quite general because superpositions of signals
represented by (2) can be used to model the tire noise and the engine
harmonics with proper choices of Ω1, Ω2, and S [25].

The source signal at the microphone is related to the monopole
signal as follows. When the acoustic propagation speed is much larger
than the source speed (c� v), the omnidirectional microphone signal
at time t = n/Fs can be written as [26]:

z[n] ≈ 1

ra(t)
s

(
β(t)t− r(t)

c

) ∣∣∣∣∣
t= n

Fs

=
1

ra[n]
s

(
β[n]

n

Fs
− r[n]

c

)
,

(3)

1The bracket signal notation indicates sampled versions of continuous
signals, e.g., x[n] = x(t)

∣∣
t=n/Fs

, as defined in [25]. In this paper, a constant
sampling frequency Fs is used for time signals unless stated otherwise.
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Fig. 1. (Left) Geometry of the speed estimation problem. Our objective is
to estimate the monopole speed v given the acoustic signal measurements
z(um, t) at the stationary microphone M situated at um = (xm, ym). As
the source moves, the microphone samples the acoustic wave pattern between
times t1 and tn. (Right) For a constant amplitude monopole source, the
envelope of the received signal E consists of the amplitude samples of the
wave pattern generated by the monopole. In this case, the monopole time-
frequency bandwidth is modulated by a function β(t), called the Doppler
shift factor, due to the vehicle movement. As the source approaches and moves
away from the microphone, β(t) decreases from greater than one to less than
one.

where r(t) is the microphone distance to the target, a is the acoustic
attenuation constant, β(t) = 1+v cos (φ(t))/c is called the Doppler
shift factor, and φ(t) is the microphone bearing in the moving
monopole frame with respect to the monopole heading as shown in
Fig. 1. For acoustic sources, the attenuation factor a is equal to 1 or
1/2 for spherical or cylindrical wave propagation, respectively [6].
From now on, we assume spherical propagation and use a = 1.

The frequency modulation effect of the Doppler factor on the
observed signal z(t) in (3) carries information about the monopole
motion (see Fig. 1) [1], [2]. To show the effect, we first derive
the τ -sample discrete Fourier transform (DFT) coefficients Zn[k]
of the signal z[m] (m = n, . . . , n + τ − 1) below (Fs >
2β[n]W for all n) [25]:

Zn[k] = FsZn(Ω)|Ω= 2πk
τ Fs

, (4)

where Zn(Ω) is the Fourier transform of the continuous signal as
modeled in (3). Assume that the observation period τ is small enough
that the target is approximately stationary: τ/Fs � 1/v. Then, we
obtain

Zn(Ω) =
e
−j r[n]

β[n]c Ω

β[n]r[n]
S

(
Ω

β[n]

)
. (5)

Since the bandwidth of the source signal S(Ω) is constant W , the
bandwidth of the observed signal is modulated by β[n] as illustrated
in Fig. 1.

Apart from the bandwidth modulation, the wave propagation also
affects the received signal power. For an observation period of τ
samples much larger than the inverse bandwidth of the source signal
s(t) (τ/Fs × W/π � 1)2 but short enough so that the target is
approximately stationary, the signal power can be determined using
Parseval’s relation [25]:

Pz[n] =
1

τ

n+τ−1∑
m=n

|z[m]|2 =
1

τ 2

τ−1∑
k=0

|Zn[k]|2 . (6)

2If this asymptotic condition is satisfied, the discrete Fourier coefficients,
and hence, Pz [n] and Pz [n + τ ] as defined in (6), are also statistically
uncorrelated [27].
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Fig. 2. Dipole geometry. When the dipole sources are correlated, the resulting
wave propagation effect on the received signal power is not a superposition
of individual monopole effects.

Applying the Euler-MacLaurin summation formula3 and using (2)
and (3), one can approximate (6) as follows (Fs > 2β[n]W, ∀n):

Pz[n] ≈ Fs
2πτ

∫ β[n]Ω2

β[n]Ω1

∣∣Zn(Ω′)
∣∣2 dΩ′

=
Fs
2πτ

∫ β[n]Ω2

β[n]Ω1

∣∣∣∣∣∣
e
−j r[n]

β[n]c Ω′

β[n]r[n]
S

(
Ω′

β[n]

)∣∣∣∣∣∣
2

dΩ′

=
Fs
2πτ

∫ Ω2

Ω1

S2

β2[n]r2[n]
β[n]dΩ =

S2FsW
πτ

× 1

β[n]r2[n]
.

(7)

B. Scaling Ambiguity

The monopole speed estimation using the power modulation of
the received signal is prone to a global scaling ambiguity when the
Doppler shift factor is approximately 1, β(t) ≈ 1: if the monopole
signal amplitude, range, and speed are scaled by the same constant η,
the wave propagation effects on the power of the received signal (7)
do not change. This approximation holds typically up to moderate
vehicle speeds, e.g., v ≤ 20m/s. For higher vehicle speeds, for
example, typical highway speeds v = 20 − 40m/s, the scaling
ambiguity is local around the true speed because the variation of the
Doppler shift factor due to the scaling is bounded by 2 |η − 1| v/c�
1. Hence, to determine the absolute speed of the vehicle using a
single microphone, a reference distance to the target is needed to
resolve the ambiguity. This issue is similar to the world scaling issue
commonly encountered in structure from motion algorithms using a
single camera [29].

IV. INTERFERENCE PHENOMENA

When the source signal has a spatial extent, it is crucial to consider
the interference effects while estimating the speed. To demonstrate
the interference effects, consider a dipole source (e.g., the two front
tires of a vehicle) moving along the x-axis as illustrated in Fig. 2. In
this case, the source signal at the microphone is the sum of the two
source signals that are assumed to be coherent:

z[n] =
∑
i=1,2

1

ri[n]
s

(
βi[n]

n

Fs
− ri[n]

c

)
, (8)

where βi(t) (i = 1, 2) is the Doppler shift factor of each monopole
source in the dipole. It is possible to show that if the following

3Euler-MacLaurin formula:
∑M−1
m=1 f [m] ≈ ∫M

0 f(x)dx −
1
2

(f(0) + f(M)). This rule is the dual of the trapezoidal rule of the
Newton-Cotes formulas, which is extremely accurate for periodic functions
integrated over their periods [28].



condition holds

r � W

2

(√
1 + sin2 φ+ |sinφ|

)
, (9)

then one can approximate ri ≈ r and βi ≈ β as defined in the
monopole source case (Fig. 2). Derivation of (9) uses the Taylor
series expansion of the range terms and is the dual of the problem
in [30] for determining the near field of an array for a point source.
The condition (9) defines an approximate boundary of the near field
of the dipole source, after which the individual monopole ranges and
Doppler shift factors can be approximated.

In the far-field, with the same assumptions for the monopole
source, the Fourier transform Z(Ω) of the signal z(t) can be written
as

Z(Ω) ≈ 1

β[n]r[n]
S

(
Ω

β[n]

)
e
−j Ω

β[n]c r1[n]
[
1 + e

−j Ω
β[n]c (r2[n]−r1[n])

]
.

(10)
Hence, the received signal bandwidth is modulated as in the
monopole case. However, note that the additional term in the brackets
in (10) plays a crucial role when we look at the average received
signal power:

Pz[n] =
S2FsW
πτ

× 1

β[n]r2[n]
× ρ[n], (11)

where ρ[n] is called the interference term:

ρ[n] = 2 +
c

W(r2[n] − r1[n])

∑
i=1,2

(−1)i sin

(
Ωi
c

(r2[n] − r1[n])

)

= 2 + 2sinc

(W
c

(r2[n] − r1[n])

)
×

cos

(
(Ω1 + Ω2)

2c
(r2[n] − r1[n])

)
.

(12)

In this example, the interference term for the dipole has a maximum
value of 4 because the summation of two coherent sources results
in four times the power as the monopole considered in the previous
section. When the dipole source signal is baseband, i.e, Ω1 = −Ω2

and W = Ω2, the interference term has the following simpler form:

ρ[n] = 2 + 2sinc

(W
c

(r2[n] − r1[n])

)
. (13)

The interference terms in (12) and (13) have a special hyperbolic
pattern (Fig. 3). In the far field of the dipole, the interference term
is constant along the asymptotes of the hyperbolas defined as r2 −
r1 = 2α for α = W

2
sinφ. Moreover, it is well-known that the local

extremes of the sinc function correspond to its intersections with the
cosine function. Hence, a minima and a maxima of the sinc function
are on the average half the cosine period away from each other. Thus,
for a baseband source, the consecutive local maxima and minima
of ρ[n] with respect to its asymptotic angles can be approximately
related by

φmax ≈ sin−1
[ πc

WW
+ sinφmin

]
. (14)

V. JOINT ESTIMATION OF SPEED AND SPATIAL ACOUSTIC

PATTERNS

A. Envelope Shape Components

To determine a vehicle’s speed using acoustic observations from a
single microphone, we jointly estimate the vehicle’s spatial acoustic
pattern. In the previous section, we introduced an interference effect
that contributes to the total spatial acoustic pattern, e.g., due to the
front tires. We denote any such component that makes up a vehicle’s
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Fig. 3. Interference patterns ((a), (b), (d), (e)) and power functions ((c), (f))
along the x and y directions for a dipole source at the origin with the following
parameters: v = 20m/s, Ω1 = −2π × 1200, and Ω2 = 2π × 1200. For (a)-
(c), the main axis of the dipole is the y-axis, where W = 1.5m, whereas
for (d)-(f), the main axis of the dipole is oriented along the x-axis, where
W = 3m. The geometrical configuration of the dipoles are also shown in (a)
and (d) along with the path of the target where ym = 5m. In (b) and (d), the
interference term ρ (13) is plotted with respect to the distance corresponding
to the samples taken along the dots in (a) and (d), respectively. In (c) and (f),
the power functions are plotted with (dashed line) and without (solid line) the
interference term, corresponding to the samples taken along the dots in (a)
and (c), respectively. The power functions are normalized so that their value
at x = 0m is 1.

spatial acoustic pattern as an envelope shape (ES) component. Earlier,
we derived the interference effect on the observed acoustic power of
the microphone signal with respect to the source position. However, in
this section, we use the reciprocity theorem and change the reference
frame from the moving vehicle to the microphone to derive the ES
components [31]. For simplicity, we model the ES components using
three piecewise constant functions in dB scale with respect to the
microphone bearing ϕ as illustrated in Fig. 4. More components
may be used but are likely to lead to overfitting [32]. We make the
connection between the ES components and the received signal power
in the next subsection.

The first ES component ργ(ϕ) in Fig. 4 models the signal in-
terference due to the front and rear tires as dipole sources (also
refer to Fig. 5). This component explains the perturbation in the
envelope function of the vehicle acoustic drive-by signals between
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the microphone bearings of ϕ = 19◦−26◦ in Fig. 3(b), where the
horn effect amplifications are present. At the microphone bearings
less than ϕ = 19◦, the microphone noise dominates the interference
effects to the increase in target distance. For example, at ϕ = 13◦,
the distance of the vehicle to the microphone is almost 1.5 times the
distance at ϕ = 19◦. Hence, the vehicle noise power at ϕ = 13◦ is
less than half the vehicle noise power at ϕ = 19◦ (see Fig. 3(c)).
After ϕ = 26◦, the horn effect amplifications also begin to diminish
in addition to the decreased swing amplitude in the interference.

In this ES component, the tire interference decreases between the
bearings γ1 and γ2, increasing the first component to δγ,1. The angles
γi are related to the width of the car (dipole separation W ) through
the interference term as derived in (12) or approximately via (14).
After the drive-by, the tire interference increases between the bearings
γ′
2 and γ′1, decreasing the first ES component to δγ,2. The parameter
δγ,2 is usually close to zero. We note that the component ργ(ϕ)
varies in a nonsymmetric fashion with respect to ϕ. The asymmetry

is due to the movement of the car: because of the reference frame
change, any angle defined in the vehicle reference frame, denoted as
φ, is related to the angles in the microphone frame, denoted as ϕ,
through an aberration relation [33]:

tan
ϕ

2
=

√
1 + v/c

1 − v/c
tan

φ

2
, (15)

where the sign of the speed terms flip after the CPA. Hence, by
assuming a symmetric interference pattern for the front and rear tires
of the car based on constant car width, one can relate the following
angle parameters:

tan

(
π − κ′

2

)
=

(
1 − v/c

1 + v/c

)
tan

κ

2
, (16)

where κ = γ1 and γ2.
Sometimes, one observes a spike in the acoustic signature in

the middle of the interference term very close to the CPA as
illustrated in Fig. 3(d)-(f). This spike is caused by the tire interference,
which is mostly vibrational in nature (Fig. 3(d)). Hence, it can be
approximated by a delta function. In Fig. 4, we plot this effect into the
signal interference component ργ(ϕ) at the CPA; however, this delta
function was not used in our estimation stage even if it is sometimes
present in drive-by recordings (Sect. VII).

The second ES component ρθ(ϕ) is due to the horn effect,
which was explained in Sect. II and illustrated in Fig. 5. In the
observed signal envelope, at the microphone bearing θ1 the horn
effect amplification of the farthest front tire from the microphone
starts to go down until the bearing θ2 to δθ,1, when the horn effect
of the closest rear tire to the microphone also drops. The differential
angle θ2−θ1 is a very good indicator of the vehicle wheelbase length
L, which can be used to compare the relative sizes of vehicles. The
L estimates are not precise because the tire interference also starts
to drop between ϕ = 27◦−31◦, which gets combined with the drop
of the horn effect. To convert the angle difference into actual size,
we use the following approximate relationship using the geometry in
Fig. 5

ym
tan θ1

− L =
ym

tan θ2
. (17)

Geometrically, θ2 is the microphone bearing of the front of the car
after the car fully passes the line defined by the bearing θ1.

After the CPA, the horn effect amplifies the tire noise between
bearings θ′2 and θ′1, which are related to θ1 and θ2 also by the
abberation relation (16) (i.e., κ = θi). The final level of the tire
noise component δθ,2 is usually different from 0dB, because the rear
tire curvature is different from the front tire curvature due to the
torque on the tire. Any imbalance of the weight ratio on the front
and rear tires also causes δθ,2 to deviate from 0dB.

Finally, the third ES component ρψ(ϕ) is a composite component
that incorporates (i) engine noise, (ii) exhaust system noise, (iii)
interference pattern of the tires on the side of the car, and (iv)
the noise caused by the air turbulence. This component is hard
to associate with any particular effect because many effects are
happening simultaneously. A possible scenario is illustrated on ρψ(ϕ)
in Fig. 4. To keep the number of ES components manageable
and to avoid over-parameterization, we approximate the composite
interference pattern as a step function that rises from 0dB to δψ
between bearings ψ1 and ψ2. This approximation works well in our
field test cases.

The third ES component explains the variations when the vehicle is
closest to the microphone. It should be modified for tracked vehicles
since the vibrational tire noise effects or the engine noise effects
coming from the side of the tracked vehicles might vary significantly,
when compared to wheeled vehicles. When this approximation of the



third ES component becomes poor, δθ,2 of the second ES component
ρθ(ϕ) compensates. We found that the angle difference ψ2 − ψ1 is
also an indicator of the vehicle length. Hence, (17) is also used to
relate the angles in the third interference component to the vehicle
wheelbase length L.

B. Vehicle Profile Vector

To jointly determine the speed and the vehicle’s spatial acoustic
pattern, we use the vehicle profile vector λ, which is defined as
follows:

λ =
[

λv λϕ λδ λf
]
, where (18)

λv =
[
σ2
s v W L

]
, λϕ =

[
ϕ0 γ1 θ1 ψ1

]
,

λδ =
[
δγ,1 δγ,2 δθ,1 δθ,2 δψ

]
, and λf =

[
χ p

]
,

(19)

where σ2
s = S2FsW

2πτ
with W assumed known. The vector λv consists

of the physical parameters of the vehicle including loudness σ2
s , speed

v, vehicle tire track length W , and the wheelbase length L. The vector
λϕ has the initial vehicle bearing ϕ0 and the angles that define the ES
components along with λδ , which contains the amplitude attenuations
and amplifications for the ES components. Lastly, the vector λf has
the RPM χ and the number of cylinders p of the vehicle. The profile
vector λ can be viewed as a fingerprint of the vehicle and can be
used for appearance-based tracking and classification.

C. Amplitude Observations

In this section, we derive a relationship between the vehicle
profile vector λ and the square-root of the average signal power,
which we denote as the power envelope. This relationship is used
to determine the vehicle profile vector using standard maximum
likelihood estimation techniques. In the derivation, we assume that
there are no multipath effects. When there are multipath effects,
a parametric form of the source signal must be known. Without
these assumptions, range estimation using a single microphone is
not possible [34].

The power envelope function E is calculated using τ -discrete
samples of the microphone output z[n] as follows:

E [nτ ] = E(t)
∣∣∣
t=

nτ τ
F s

=
√
Pz[nτ ] =

√√√√ 1

τ

τ−1∑
k=0

z2[nτ τ + k], (20)

where subscript τ under the sample index n implies that the samples
of the power envelope function are calculated at every τ/Fs second.
Given the drive-by acoustic recording of the target, the microphone
output signal is divided into Nτ -segments, each of which has τ
samples. Then, each of these segments are used to calculate one E [nτ ]
using (20). During the calculation of each E [nτ ], we assume local
stationarity so that the complete motion of the target is parameterized
as follows:

β[nτ ] = 1 +
v

c
cosϕ[nτ ], r[0] = ym cscϕ0

r[nτ ] =

√
(vτ/Fs)

2 + r2[nτ − 1] − 2 (vτ/Fs) r[nτ − 1] cosϕ[nτ − 1],

ϕ[nτ ] = ϕ[nτ − 1] + sin−1

(
vτ

Fsr[nτ ]
sinϕ[nτ − 1]

)
.

(21)

The choice of the parameter τ was discussed in Sect. III. Because
of our particular choice of τ , the DFT coefficients used to calculate
the power function at τ -samples apart are statistically uncorrelated,
and hence, each sample of E [nτ ] (nτ = 0, 1, . . . , Nτ − 1) is also
statistically uncorrelated of the others. In the remaining parts of this
section, we drop the bracket notation here for brevity as we emphasize
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Fig. 6. (Top) A short segment of a Ford F150 truck drive-by noise is shown
where Fs = 48kHz. A total of τ = 480 samples are divided into K = 4
segments, where each segment indexed by ti (i = 1, . . . , 4) has 120 samples.
As illustrated by the top plot, the observed signal at each segment looks
like a noisy sinusoid, whose dominant frequency is approximately 1000Hz.
(Bottom) Real (solid) and imaginary (circles) parts of the complex envelope
are illustrated.

here that we are determining a pdf for E [nτ ], where the time indexes
belong to a particular segment of the acoustic recording.

Note that the vehicle signals contain strong harmonics due to the
engine noise and a strong multi coincidence peak at 1000Hz due
to the tire noise [14]. Hence, the observed signal at the microphone
appears as a noisy periodic signal over short time intervals. Define
the complex envelope of the observed target signal at the microphone
plus noise as y(t), sampled at times t = (t1, . . . , tK). The absolute
value of each complex envelope sample represents approximately the
RMS power of a signal segment that is τ/K in length. Then, we
have the following narrow-band observation model, which has been
extensively used in the literature (e.g., for bearing estimation [6],
[35]–[38]):

y(t) = ε(t)e−j
2πf0R

βc + u(t), (22)

where f0 is the dominant instantaneous source frequency at time t,
u(t) is an i.i.d., zero mean, complex circularly symmetric Gaussian
random variable CN (

0, σ2
u

)
with variance σ2

u, and the source signal
complex envelope samples ε(t) are also assumed i.i.d. with the
following form:

ε(t) ∼ CN (
0,Aλ(t)

)
, Aλ(t) =

σ2
se

2mτ

β(t)r2(t)

∏
i=γ,θ,ψ

10ρi(ϕ(t))/10.

(23)
In order for ε(ti)’s to be uncorrelated for moderate or small K
values (e.g., K ≥ 3), τ (and Fs) must be high enough to include
more than a few cycles of the noisy signal. In (23), Aλ(t) is the
source signal power, which has directional variation, and emτ is an
i.i.d. multiplicative noise on the signal amplitude (m ∼ N (

0, σ2
m

)
)

to account for (i) any additional complex tire interference effects
that appear multiplicative in the received signal power in (11) (e.g.,
Fig. 3), (ii) air turbulence noise, and (iii) the directional filtering of the
engine and exhaust noises by the vehicle body. The power envelope
Aλ is written as a function of the full vehicle profile vector λ for
brevity even though it does not depend on λf of the vehicle profile
vector. This choice eliminates the cumbersome notation of writing
the envelope specifically as a function of λv , λϕ, and λδ . Figure 6
illustrates the elements of the observation model (22) for a truck
signal, where τ = 480 samples.

Based on our signal and noise assumptions, it is straightforward to
prove that the sensor output complex envelope y(t) also has an i.i.d.
zero mean circularly complex Gaussian distribution with variance
σ2
y = Aλ(t) + σ2

u. Due to the local stationarity assumption of the
target motion during each τ -length data segment, Aλ(ti) = Aλ for
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Fig. 7. Drive-by test by a 6-cylinder Chevy Impala moving with 18.7m/s at
an approximate distance of 5.8m. (a). The acoustic signal was sampled at
Fs = 48kHz. The power envelope E is calculated with τ = 480. In the
figure,

√
τE is plotted to emphasize the variation. There is an asymmetry in

the envelope estimates that can be explained by the ES components. (b). The
spectral content of the acoustic signal. Note the strong interference at 60Hz.
The tire air-noise spectrum, which is concentrated around 700 − 1300Hz,
does not exhibit the frequency modulation pattern illustrated in Fig.1.

i = 1, . . . ,K. Then, we write the power envelope as follows:

E =

√√√√ 1

K

K∑
i=1

|y(ti)|2 =
σy√
2K

√√√√ K∑
i=1

(
y2real(ti)

σ2
y/2

+
y2imag(ti)

σ2
y/2

)
=

σy√
2K

ν,

(24)
where ν has a Chi distribution pν(ν) with 2K degrees-of-freedom
[39]. It is well-known that Chi distribution reaches normality rather
quickly [40]–[42]. In [42], we provide normal approximations of the
Chi distribution based on the Laplacian method [43] and moment
matching. These approximations are highly accurate even for small
sample sizes.

A normal approximation based on moment matching of ν results
in the following expression for the pdf of ν [42]:

pν(ν) = N
(√

2K − 1/2,
1

2

)
. (25)

Then, using (24), an approximate pdf for E is given by

E ∼ N
(√

2K − 1/2

2K
σy ,

σ2
y

4K

)
. (26)

Note that when 2K � 1, by using (26) and ex ≈ 1+x for x� 1,
we can write

E ∼ σy +
σy√
4K

N (0, 1) ≈ σye
N(0,1)√

4K . (27)

At this point, further simplification is possible. When the target SNR
is also high, we typically have Aλ � σ2

u (see Sect. VI). Then, (27)
becomes (denoted as E ∼ p1(E)):

E ∼ A1/2

λ
e

N(0,1)√
4K =

σse

{
mτ +

N(0,1)√
4K

}
√
βr

∏
i=γ,θ,ψ

10ρi(ϕ)/20. (28)

Aside from the ES components, the approximation (28) is somewhat
different than the commonly used additive noise model in the
literature [44] (denoted as E ∼ p2(E)):

E ∼ σs√
βr

+ σwN (0, 1) , (29)

where σw is assumed independent of σs. In this paper, we use p1(E)
in (28) for estimation. We compare the range estimation performance
of both models in [42] when the data is generated by (22).

D. Frequency Observations

The spectral content of a vehicle exhibits directional variation,
making it difficult to use the frequency modulation effects of the

vehicle motion to determine speed. We emphasize that this directional
variation is not due to the motion of the vehicle but it is due
to tire noise effects, which are stochastic in nature as discussed
in Sect. II. The useable frequency tracks for speed estimation are
generated by the engine because the frequency modulation effects
can be observed in the deterministic component of the engine noise.
These deterministic engine frequencies span the 0 − 250Hz range
at nominal RPM’s (e.g., Fig. 7(b)). At moderate vehicle speeds
(30 − 50mph), the full Doppler shift swings F0 approximately by
6%. This change in F0 can also be achieved by an RPM change,
e.g., Δχ ≈ 150@(χ = 2500) results in a 6% swing of F0. Hence,
if a driver changes the car’s RPM by 50 during the vehicle drive-by,
there will be a 33% error in the expected Doppler frequency change
in F0 based on the constant frequency source assumption C. We
emphasize that this RPM change is unnoticeable on the dashboard of
the vehicle and is likely to happen. On the other hand, the effect of
the same RPM change on the total car loudness is negligible.

Therefore, determining the vehicle speed by fitting a Doppler shift
function to the engine and tire frequency tracks is an unreliable
approach. For example, in [2], the speed estimation was performed
using an autoregressive modeling of the acoustic signals under a
point source assumption. It was concluded that the Doppler-based
speed estimation on the source frequencies does not perform well
with field-data [2]. It was also concluded that, with the same source
assumptions, the envelope measurements yield improved speed esti-
mates than the frequency measurements; however the speed estimates
are nonetheless biased. Later on, we comment on the possible reasons
of this bias mentioned in [2].

On the other hand, the spectral harmonic content can be used to
determine λf of the vehicle profile vector since the ratio of the
engine harmonic frequencies is independent of the vehicle RPM.
Moreover, conditioned on λv estimate, it possible to further refine
λf by compensating for the Doppler shifts if we are simultaneously
tracking the frequencies. The number of cylinders p is usually the
most elusive to estimate because the body of a vehicle may also act
as a filter to directionally suppress the frequency at the engine fire
rate F0 (Fig. 8). Hence, it is rather easy to incorrectly estimate the
number of cylinders of a vehicle because the strongest frequency
is not necessarily F0. If a characterization can be done4, which is
applicable to the vehicles of interest, the number of cylinders can
also be estimated robustly. Estimation of χ can be done accurately
using harmonic analysis methods [45]. In our estimation, we use the
power spectral density of the acoustic signal to determine λf . Further
details can be found in [45].

VI. PRACTICAL ASPECTS OF ESTIMATION

A. Detector

With a gross simplification of the problem, we assume that we
have an estimate of the variance σ2

u, which is the noise variance
of an additive Gaussian noise on the microphone acoustic signal. A
much simpler detector can be formulated with this assumption, and
consequently, an approximate data-likelihood formula can be used for
estimating the vehicle profile vector as shown in the next subsection.
We write our hypotheses as follows (n = 0, . . . , τ − 1):

H0 : y[n] = u[n], H1 : y[n] = u[n] + z[n], (30)

where u ∼ N (
0, σ2

u

)
and z[n] is an unknown waveform that

characterizes any non-noise like quantity. Given these simplifications,

4This also includes a characterization of the microphone itself. If the
microphone has an uneven frequency response, it must be accounted for while
estimating p.
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Fig. 8. (a) Our stationary BMW 325i sound measurement set up is illustrated.
In the measurements, all microphones, except the engine microphone, were
situated 1m away from the vehicle. The engine measurements were taken with
a microphone approximately 25cm away from the center of the engine without
the car hood. During the test, the engine RPM kept at approximately 3000,
then measurements were taken with the same microphone, at the locations
shown in the picture. (b) The strongest peak in the Fourier transform of the
engine microphone data between t = 1s and t = 2s (Fs = 22050Hz) is
152Hz corresponding to F0. Harmonic components are approximately 25.3Hz
apart because the vehicle has 6 cylinders, however their amplitudes vary
greatly with no apparent regularity. There is an additional peak around 139Hz,
which is likely to be caused by the engine management. (c) Time-frequency
plot of the sound collected at the engine microphone. (d) Time-frequency
plot of the sound collected at the microphone situated at position d in (a).
Note that the strongest frequency is now 75Hz, corresponding to a 3-cylinder
vehicle. (e-h) The estimated engine fire rate may be confused as the direction
varies, leading to incorrect cylinder estimates.

the generalized likelihood ratio test is a square-law detector [6]:

τ−1∑
n=0

y2[n]

H1

≷
H0

Υ, (31)

for some threshold Υ. This threshold can be determined by using a
false alarm probability PF :

PF = Pr

(
χ2
τ >

Υ

σ2
u

)
= Pr

(
E >

(
Υ

τ

) 1/2
)
, (32)

where χ2
τ is the Chi-squared distribution with τ degrees-of-freedom.

The vehicle CPA can be approximately determined by windowing
the short-time power estimates and finding the time of the maximum
received power. This threshold can then be used to segment the
desired vehicle signal [3], [9], [46].

B. Approximate Cost Function and Its Solution

In our detector, if we threshold the amplitude measurements E by
a positive constant �σu, then the false alarm probability is given by
PF = Pr

(
χ2
τ > �2τ

)
. When �2 is chosen much greater than 1,

e.g., �2 = 3, the false alarm probability becomes quite small.5 This
assumption is also satisfied for acoustic vehicle detectors discussed
in [9], [46]. In this case, the maximum likelihood (ML) estimator can
be found by minimizing the following cost function, which does not
depend on the multiplicative noise variance:

λML = arg min
λ

J(λ), J(λ) =

Nτ−1∑
nτ =0

(
log E [nτ ] − 1

2
logAλ[nτ ]

)2

.

(33)
To find the minimum of J in (33), we can use iterative optimization
algorithms to avoid calculating the entire ML surface for numerical
efficiency.

Constraint Set and Solution: Most optimization algorithms use a
cost function, its first and second order derivatives, and a constraint
set. In our problem, the constraint set is crucial because it prevents
the confusion among the individual interference components and
provides robustness to the numerical solution. The constraints that
we use in our solution are shown in Table I. We use the MATLAB’s
constrained optimization toolbox (fmincon) for the solution6, which
is summarized in Table II.

The constraints of the speed estimation problem are tied to the
nature of the vehicles. The specific angle of the horn effect depends
on the vehicle tire profile. According to [14], [16], [18], 25◦ < θ1 <
45◦ is typical. The amplification factor is also empirically between
.5-4dB [14], [16], [18]. The dynamic range of the tire interference
component is difficult to predict due to the horn effect; however it
is typically less than 4dB and we constrain δγ,1 to be greater than
some small number, i.e., 0.1dB. We assume that the tire interference
effects are more or less symmetric, hence |δγ,2| < 0.1dB is used to
enforce this assumption. The third ES component is used to model
the vehicle effects when it is closest to the microphone after the horn
effects, hence we constrain θ1 < ψ1 < 120◦.

Finally, even with the recursive solution, the solution of the ES
components is computationally demanding since it searches in a high
dimensional state space. In this paper, we focus on demonstrating
the importance and the use of the ES components and are not
concerned with the computational issues. However, we note that the
final solution is usually not sensitive to the initialization. Moreover,
we note that in [47], Searle explains an efficient solution of a similar
computational exercise, where bank of template signals are used to
determine the vehicle speed. A similar approach may be taken in our
problem, since the ES components have well-defined characteristics.

TABLE I
THE CONSTRAINT SET

Name Constraints

Bearings γ, θ, ψ γ1 < θ1 < ψ1, 10◦ < γ1 < 20◦, ψ1 < 120◦
δγ 0.1dB < δγ,1 < 4dB, |δγ,2| < 0.1dB
δθ −4dB < δθ,1 < −0.5dB,

∣∣δθ,2∣∣ < 1dB
δψ 0.1dB < δψ < 2dB

C. Microphone Directionality and Frequency Response

Our derivations assumed an omnidirectional microphone with a
flat spectral response. If this is not the case, the equations for the
ES components can be modified to incorporate the spatio-spectral

5Also, note that to be able to calculate all the ES components using (28),
the target SNR must be high enough.

6For the computational complexity of fmincon algorithm, please refer to
MATLAB documentation.



TABLE II
VEHICLE PROFILING USING THE ES COMPONENTS

Given λv ,λϕ, and λδ , calculate the cost function J(λ) in the following
order:
1. Determine γ2 by using γ1, W , W , and (14). A typical value W is

2π × 2400 for compact vehicles.
2. Determine θ2 by using θ1, L and (17).
3. Determine ψ2 by using ψ1, L and (17) (replace θ with ψ in the

equation).
4. Determine the primed bearings γ′i and θ′i by using v and the

abberation relationship (16).
5. Use (23) and (21) and the ES components to calculate Aλ. Then,

use (33), where E is calculated from the data.

microphone response:

log E [nτ ] ∼ N
(

1

2
log
∑
k

Aλ[nτ , k], σ
2
E

)
,

Aλ[nτ , k] = |Hmic[k, ϕ[nτ ]]|2 × σ2
s [k]

β[nτ ]r2[nτ ]

∏
i=γ,θ,ψ

10ρi(ϕ[nτ ])/10,

(34)

where k is the frequency index used in the τ -sample DFT coeffi-
cients, and |Hmic[k, ϕ[nτ ]]|2 is the microphone response function at
the frequency bin k and the direction ϕ. In this formulation, the
microphone orientation must be supplied or calibrated. It cannot be
treated as an unknown. Moreover, due to the directionality, we can
now determine the absolute travel direction of the vehicles.

VII. EXPERIMENTS

To demonstrate the ideas, data was collected with Fs = 48KHz
at a two-way street with an omnidirectional microphone, emplaced
1.5m off the ground on a pole at the sidewalk. The distance of the
bottom of the microphone pole to the center of the street is 7.4m. A
video camera is used to establish the ground truth and identify the
vehicles in the test [48].

A. Vehicle Profiling

Table III and Figs. 9-11 show the results of the vehicle speed
estimates obtained by three different methods using τ = 480 samples:
M1) This method uses full vehicle profile vector with (28). The cost
function is given by (33), where the target motion is defined by (21)
and Aλ[nτ ] is defined by (23).
M2) This method uses only σ2

s and v with (28) where the product of
the ES components is set to 1 in (28). Hence, this method does not
take into account the directional nature of the vehicle noise pattern
and hence does not estimate the other parameters of the vehicle profile
vector. The cost function is

JM2(σ
2
s , v) =

Nτ −1∑
nτ =0

(
log E [nτ ] − log

{
σs√

β[nτ ]r[nτ ]

})2

, (35)

where the target motion is defined by (21).
M3) This method uses only σ2

s and v with the constant velocity
motion model (21). This method is the same as the one used in [2]
to estimate the speed of point sources. Hence, this method does not
take into account the directional nature of the vehicle noise pattern
as M2 and also does not estimate the other parameters of the vehicle
profile vector. In addition, it does not use a multiplicative noise model

as discussed in Sect. V-C. The cost function is

JM3(σ
2
s , v) =

Nτ−1∑
nτ =0

(
E [nτ ] − σs√

β[nτ ]r[nτ ]

)2

. (36)

To initialize M1, we use the results of M2 to initialize σ2
s and v. We

then use L = 3m and W = 1.5m as our initial dimension estimates.
Also, we use γ1 = 17◦, θ1 = 27◦, and ψ1 = 109◦, and λδ = 0.

It is seen that the estimates of [2] are improved by incorporating
the multiplicative noise model on the signal envelope. However, esti-
mation using the ES components yields the best estimates. In Figs. 9-
10(c), we also plot the log-likelihood surface variation with respect to
the parameters W and L, where we treat the rest of the vehicle profile
vector parameters as known by substituting their ML estimates. The
Hessian inverse of the second order Taylor series expansion of the
cost function (33) with respect (W,L) around the mode of the log-
likelihood surface is used to estimate the variance of (W,L), which
are displayed in Table III and illustrated in Fig. 9(c) and Fig. 10(c).
In the figures, the maximum of the log-likelihood surfaces are set to
0 by addition of appropriate constants.

We also estimated the number of cylinders and the RPM of the
vehicles by using the methods in [45]. The number of cylinders p are
estimated by compensating for the microphone spectral characteris-
tics. However, there was no compensation for any vehicle directional
variation.
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Fig. 9. Ford F150. (a) Estimated envelope by the interference components is
shown with the solid line (M1). The dotted and the dashed lines belong to M2
and M3 noise models, respectively. (b) Estimated ES components are shown.
According to the ES components, the vehicle is louder in the rear than front.
(c) The log-likelihood surface of the vehicle dimensions.
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Fig. 10. Chevy Impala. (a) Observed envelope exhibits significant variations.
The interference components (solid line) adequately explains the variations
(also see Fig. 12). (b) Estimated ES components are shown. Parameter δψ is
relatively larger than the other components indicating significant air noise. (c)
The log-likelihood surface of the vehicle dimensions.

B. Noise Models

In Appendix I.A, we show that when an additive noise model is
used to solve for a multiplicative noise model using the assumptions
of our speed estimation problem, the speed estimates always have an
expected negative bias. This is intuitive: because the power envelope
samples around the CPA of the target has larger variance than the
tails of the power envelope, a minimum cost solution would result
in a wider envelope fit by minimizing the error around the higher
variance region. A wider envelope fit implies slower speed estimates.
This type of negative biases estimates was also noted by [2] as they



TABLE III
FIELD TEST RESULTS

Ground Truth M1 M2 M3

Vehicle ym vcamera L W v σ2
s L(μ ± σ) W‡(μ ± σ) χ p� v σ2

s v σ2
s

Ford F150 6.3 17.54m/s 3.20m 1.70m 17.86m/s 12.60 5.38 ±.55m 1.30±.09m 3038 8 28.00m/s 24.08 21.39m/s 21.27
Chevy Impala 5.8 18.68m/s 2.80m 1.58m 18.60m/s 9.23 2.58±.31m 1.75±.17m 3300 6 18.29m/s 11.55 15.05m/s 10.90
Honda Accord 4.3 16.74m/s 2.71m 1.55m 14.44m/s 6.86 3.28±.29m 1.40±.17m 3074 6 17.34m/s 10.17 14.49m/s 9.67
Nissan Maxima∗ 4.6 13.32m/s 2.70m 1.53m 13.20m/s 12.45 3.28±.38m 1.50±.18m 3825 6 ′ 14.23m/s 14.86 14.27m/s 14.49
Nissan Maxima∗ 4.1 4.14m/s 2.70m 1.53m 4.49m/s 6.34 2.58±.19m 1.50±.09m 3150 4 4.75m/s 9.90 3.46m/s 9.20
Isuzu Rodeo 8.1 13.44m/s 2.70m 1.51m 13.89m/s 7.87 5.20±.53m 1.35±.25m 3450 6 11.32m/s 7.97 11.79m/s 7.95
Mercedes E 8.1 13.94m/s 2.83m 1.54m 13.80m/s 7.68 2.93±.96m 1.50±.41m 3075 6 15.51m/s 10.47 11.78m/s 9.93
Volvo 850 SW 8.1 14.11m/s 2.66m 1.51m 14.69m/s 9.60 3.10±.27m 1.40±.27m 2250 10 ′ 12.93m/s 9.01 11.22m/s 8.63
Nissan Frontier 4.3 17.56m/s 3.20m 1.56m 17.84m/s 9.31 4.85±.63m 1.40±.25m 2625 6 17.02m/s 9.92 17.56m/s 9.74
VW Passat 5.1 11.66m/s 2.70m 1.50m 11.58m/s 6.06 2.75±.66m 1.80±.26m 1950 6 8.58m/s 6.06 8.66m/s 6.11

Error STD 0.8246m/s 3.7203m/s 2.2627m/s

Error STD¶ 0.2777m/s 1.5154m/s 1.5126m/s
Bias -0.0735m/s 0.6845m/s -1.1458m/s

Bias¶ 0.1737m/s -0.4017m/s -1.7013m/s

‡
A fixed bandwidth of W = 2π × 2400 (Ω2 = 2π × 1200) is used to determine the car widths using (14). Hence, the width estimates of the F150 and Nissan Frontier are biased because they have a significantly

different tire profile than the sedan vehicles. When W = 2π × 3200 is used, the width estimates of F150 and Nissan Frontier become 1.60m and 1.80m, respectively. In turn, their wheelbase length estimates also
change to 4.20m and 3.98m.

�
Estimated by finding the frequency F0 with the maximum power spectral density between frequencies 85-210Hz and then dividing F0 by the CFR f0 estimate [45].′
Incorrectly estimated. The actual values are 4 (Maxima) and 5 (Volvo).

* Same vehicle.¶
Leave-one-out estimates with the minimum variance.
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Fig. 11. Estimated envelopes by the different models. The solid, the dotted,
and the dashed lines belong to M1, M2, and M3 noise models, respectively.

use the additive model. From Table III, we see that the estimation
results of M3 using only σ2

s and v with the additive Gaussian model
as in [2] on the power-envelope observations exhibit the predicted
expected bias on the average. This bias decreases when we change
the additive noise model (M3) to the multiplicative noise model
(M2). Hence, our results suggests that a multiplicative model on the
envelope measurements might be a better model for estimation.

Figure 12 suggests another reason for the bias. Note that the speed
estimates for vehicles 1, 4, and 9 in Table III are actually higher than
the true speed values for M3. This is caused by the directional nature
of the vehicle noise. We can think of the ES components as a time-
varying mean shift acting on the logarithm of the envelope estimates
using (20) (Fig. 12(b)). In this case, when the speed estimates are
calculated without the ES components using the logarithm of the
envelope (M2), then the speed estimates are also expected to have a
bias (see Appendix I.B). When we estimate the speed using the ES
components along with the multiplicative noise model, we further
decrease the bias and also decrease the variance of the estimates.

Figures 12(c) and (f) show that the noise residual7 of the logarithm
of the envelope estimates has indeed a flat spectrum as assumed by
our data model (20). Finally, other reasons for the possible bias are
the ignorance of inherent estimator biases, multipath propagation,
vertical dimension of the vehicles, and atmospheric turbulence [5],
[7], [49].

C. Vehicle Classification Results

The vehicle profile vector provides a natural feature vector for
classifying vehicles. Figures 14(a) and (b) show that the vehicles
can be separated into two classes based on their length and size.
Note that the estimated vehicle lengths are not exact vehicle lengths;
however, they can separate compact cars from SUV’s or trucks.
However, Fig. 13 illustrates a case where the vehicle profile ML
estimate for (L,W ) is (5.20, 1.35) m, plus a second mode around
(L,W ) = (2.93± .38, 1.5± .23)m, which is only fractionally lower
in the dynamic scale of the log-likelihood function. The true values
for Isuzu Rodeo are (L,W ) = (2.70, 1.51)m. Hence, this vehicle is
misclassified. Figure 14(c) also illustrates that it is possible to identify
loud vehicles such as vehicles with mechanical problems or heavily
loaded SUV’s or pick-up trucks, which are expected to be louder than
usual. This classification is based on the fact that the loudness of the
vehicle has a certain functional distribution as indicated in [15], [16].
Hence, given two similar vehicles, it may be possible to identify if
one of them is heavily loaded or has mechanical problems even if
they move at different speeds.

7The noise residuals for each methods are mτ = log E[nτ ] −
1
2

logAλ[nτ ] (M1), mτ = log E[nτ ] − log

{
σs√

β[nτ ]r[nτ ]

}
(M2), and

uτ = E[nτ ] − σs√
β[nτ ]r[nτ ]

(M3).
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Fig. 12. Chevy Impala noise residuals from (a) the envelope estimates when
the additive Gaussian model is used [2] (dashed line in Fig. 10), (b) the
logarithm of the envelope estimates when the multiplicative noise model
introduced here is used without the ES components (dotted line in Fig. 10),
and (c) the logarithm of the envelope estimates when the multiplicative noise
model is used along with the ES components (solid line in Fig. 10). (d-f)
The noise spectra are plotted with respect to the normalized frequency. The
spectra in (d-f) correspond to the noise residuals in (a-c), respectively. The
noise residual in (c) is white as demonstrated by the flat spectrum in (f).
Note that the interference components remove the time-varying mean from
the noise residual of the multiplicative noise model in (b) while at the same
time extracting useful information such as vehicle dimensions.
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Fig. 14. (a) Estimated vehicle lengths are compared. There is a clear separation
between compact cars and large vehicles. (b) Estimated vehicle sizes are
compared. (c) Logarithm of the vehicle signal amplitudes are plotted with
respect to their speed. There is a linear trend in the plot as also indicated
by [15], [16]. The solid line represents a least squares fit to the data without
the Nissan Maxima. The dotted lines are one standard deviation away from the
mean. The Nissan Maxima is louder than the other cars because the vehicle
has mechanical problems.

D. Scaling Ambiguity

We also investigated the sensitivity of the vehicle profile vector
estimates to the scaling ambiguity issue. Figure 15 illustrates the
estimation results for different ym values for the Chevy Impala and
Honda Accord. The true values of the parameter ym are shown in
Table III. The speed estimates are proportional to the assumed ym
(Fig. 15(a) and (d)), because the vehicle speed is entangled with ym as
discussed in Sect. III. The width estimates are somewhat insensitive
to the assumed ym (Fig. 15(b) and (e)) because they only depend on

the asymptotic interference angles, which do not depend on ym. The
length estimates increase as ym is increased; however, they are not
proportional to ym. The cost function shows a flat response around
the true ym value for the Chevy Impala whereas the cost function is
at a local optimum for the Honda Accord around the true value of
ym.
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Fig. 15. (a) Chevy Impala speed estimates are proportional to the assumed
ym values. Dashed line corresponds to the vehicle profile vector estimates
whereas the dotted line is a linear fit that shows that the speed estimates are
approximately proportional to ym. The estimate at the true ym is marked with
a star. (b) Vehicle width and length estimates are shown. The length estimates
increase with ym whereas the width estimates are somewhat insensitive to the
changes in ym. (c) The cost function (33) exhibits a flat response around the
true value. Hence, the cost function is likely to be at the global stationary
point. (d) Honda Accord speed estimates are also proportional to the assumed
ym values. (e) Vehicle width and length estimates follow a similar pattern as
in Chevy Impala. (f) The cost function (33) for the Honda Accord at the true
ym value is at a local optimum because the optimization algorithm yields a
lower cost value when ym = 5.35m is used as opposed to the true value
ym = 4.3m.

VIII. CONCLUSIONS

We presented a method to determine a vehicle’s speed via its
acoustic drive-by sounds recorded at a microphone, by formulating
the problem as a joint speed and acoustic pattern estimation problem.
We achieve this estimation using a vector that profiles the directional
variation of the vehicle acoustic pattern. The vehicle profile vector en-
ables a signal processor to better address the vehicle correspondence
problem since the vehicle profile vector reduces the bias in speed and
loudness estimates as well as vehicle dimensions. It also generates
better discriminative features that can be compactly represented by a
15-dimensional space. Parameters λv and λf of the vehicle profile
vector can improve the confidence of the correspondence matches,
also allowing minimal communication between a calibration micro-
phone and a control microphone. However, given the difficulty of the
correspondence problem, one should not expect perfect performance
for all cases even with the vehicle profile vector.

While determining the vehicle speed, we relied on the signal
power calculations and argued that the signal frequency information
(Doppler) was not useful when only a single microphone is used.
On the other hand, when an array of microphones is available, one
can also obtain information from the phase of the received acoustic
data across the array. In this case, we expect that the performance
should improve more than what is gained from multiple independent
amplitude observations. We envision that when multiple vehicles are
present, the array can provide the acoustic beam steering necessary
to remove the cocktail party effect on the ES components. Hence,



the approaches in the literature can be improved to reduce the biased
speed estimates when an array is used. As future work, we plan to
investigate how our proposed framework performs when the vehicle
CPA’s are relatively large.
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APPENDIX I
BIAS ANALYSIS

A. Multiplicative Noise vs. Additive Noise

We use the following example to argue that a multiplicative noise
model on the signal envelope should be used to estimate the speed in
our problem. Let fk(v) denote monotonically decreasing functions
of v for all k, e.g., the envelope observations indexed by k. Define
two generative models as follows

Model I: Ek = fk(v) + nk, Model II: Ek = fk(v)e
mk , (37)

where nk and mk are i.i.d. zero mean Gaussian random variables
with variances σ2

n and σ2
m. Let v∗ be the true speed and v be the

maximum likelihood estimate assuming observation noise Model I:

v = arg min
v
J(v), J(v) =

∑
k

(Ek − fk(v))
2 , (38)

Given sufficient number of Ek measurements, we expect the ML
solution to be around the true value of v∗. Hence, we can assume
v = v∗+ε, where ε is small enough so that fk(v) ≈ fk(v

∗)+ḟk(v∗)ε
for all k.

The ML estimate of v is found by taking the derivative of J(v)
with respect to v and then equating to zero. Now, let us assume that
the measurements are actually generated by Model II:

J(v) =
∑
k

(fk(v
∗)emk − fk(v))

2

≈
∑
k

(
fk(v

∗)emk − fk(v
∗) − ḟk(v

∗)ε
)2

,
(39)

which only depends on ε. By taking the derivative and equating to
zero, we solve the bias and take its expected value:

ε =

∑
k ḟk(v

∗)fk(v∗) (emk − 1)∑
k

[
ḟk(v∗)

]2 ,

⇒ ε =

∑
k ḟk(v

∗)fk(v∗)
(
e

σ2
m
2 − 1

)
∑
k

[
ḟk(v∗)

]2 ,

(40)

which is always negative since fk(v) > 0 is a monotonically
decreasing function of v, i.e., ḟk(v∗) < 0. Hence, given v∗, the
expected value of the ML estimate of Model I will always have a
negative bias when the data is actually generated by Model II. That
is, E {v|v∗} − v∗ = ε < 0.

B. Bias due to Directional Variation

From the ML cost function (33) and the expression for the
directional power variation function Aλ[nτ ] in (28), we can see that
the ES components account for a time-varying mean of the logarithm
of the power envelope. Hence, method M2 solves for the vehicle

speed without taking into account of this mean shift. To understand
the effect of this ignorance, we follow the same strategy as above
and consider the following generative models

Model I: log Ek = log fk(v) + nk,

Model II: log Ek = log fk(v) + ρk +mk,
(41)

where mk is i.i.d. noise independent of ρk, whereas ρk is the
time-varying mean shift that is proportional to the sum of the ES
components, where the proportionality constant is positive.

With the same assumptions as in Appendix I.A, we expect the ML
solution to be around the true value of v∗ for small mean shifts ρk.
When the mean shifts are large, the analysis here is not valid. Hence,
we can again assume v = v∗ + ε, where ε is small enough so that
fk(v) ≈ fk(v

∗) + ḟk(v
∗)ε for all k. Then, it is straightforward to

show that if Model I is used to solve for the speed parameter when
Model II is true, the expected bias is given by

ε =

∑
k ρk∑

k

(
ḟk(v∗)
fk(v∗)

) . (42)

Hence, the expected bias is negative if
∑
k ρk is positive (and vice

versa) since fk(v) > 0 and ḟk(v
∗) < 0. If we look at the results

in Figs. 9-11, we see that
∑
k ρk > 0 for our test cases. Therefore,

this result gives an empirical reason why the method M2 results in
negatively biased speed estimates.
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