
Low Computation and Low Latency

Algorithms for Distributed Sensor Network

Initialization

M. Borkar, V. Cevher and J.H. McClellan

Abstract

In this paper, we show how an underlying system’s state vector distribution can be determined in a distributed

heterogeneous sensor network with reduced subspace observability at the individual nodes. The presented algorithm

can generate the initial state vector distribution for networks with a variety of sensor types as long as the collective

set of measurements from all the sensors provides full state observability. Hence the network, as a whole, can be

capable of observing the target state vector even if the individual nodes are not capable of observing it locally.

Initialization is accomplished through a novel distributed implementation of the particle filter that involves serial

particle proposal and weighting strategies that can be accomplished without sharing raw data between individual

nodes. If multiple events of interest occur, their individual states can be initialized simultaneously without requiring

explicit data association across nodes. The resulting distributions can be used to initialize a variety of distributed

joint tracking algorithms. We present two variants of our initialization algorithm: a low complexity implementation

and a low latency implementation. To demonstrate the effectiveness of our algorithms we provide simulation results

for initializing the states of multiple maneuvering targets in smart sensor networks consisting of acoustic and radar

sensors.

Keywords: Monte Carlo methods, initialization, distributed processing, sensor networks, heterogeneous sensors,

data fusion.

M. Borkar and J. H. McClellan are with the Center for Signal and Image Processing, School of ECE, Georgia Institute of Technology, Atlanta
GA 30332-0250. V. Cevher is with the Center for Automation Research, University of Maryland, College Park, MD 20742

Prepared through collaborative participation in the Advanced Sensors Consortium sponsored by the U. S. Army Research Laboratory under
the Collaborative Technology Alliance Program, Cooperative Agreement DAAD19-01-02-0008.

2

I. INTRODUCTION

Sensor networks can be classified into two main types based on the processing scheme employed; (i) centralized

sensor networks in which the data recorded at the various sensors is transmitted to a central processing unit that

is responsible for combining the incoming information and producing meaningful estimates, and (ii) distributed

sensor networks in which multiple processing units exist in the network, each of them processing raw data received

from some subset of sensors in the network. The distributed processors produce local estimates and share sufficient

statistics between each other to produce global estimates. In the extreme case, each sensor node may have its own

dedicated processor. This leads to the definition of smart sensors. A smart sensor is a node that not only has the

ability to sense the environment but also has the ability to process incoming data and communicate with neighboring

nodes. In this paper, we will only consider fully decentralized sensor networks consisting of smart sensors. Block

diagrams representing centralized and distributed processing are given in Figure 1.

(a) Centralized (b) Distributed

Fig. 1. Centralized vs. distributed processing. The solid lines represent raw data whereas the dashed lines represent sufficient statistics.

In sensor networks, distributed processing is becoming more popular than centralized approaches [1]. This

is because centralized networks with only one processing node lose their functionality if the central node is

incapacitated. The communication overhead is also significant because when all the sensing nodes try to transmit

raw data to the central processing node, the required bandwidth increases significantly with the number of nodes.

Sometimes, hybrid approaches are used in which some processing occurs in a distributed manner and the rest occurs

in a centralized manner. For example in [2], to reduce the communication load, data at the various nodes is quantized

before it is transmitted to a central fusion center. Such a hybrid method is effective in reducing the number of bits

transmitted between nodes. However, the bulk of the computational load lies with the central processor and the

network can operate only as long as this node survives. To overcome these drawbacks, a distributed processing

approach without any central points of failure is attractive.

Based on the types of sensors present, sensor networks can be classified into two categories; (i) homogeneous

sensor networks in which all sensor nodes are identical to one another and (ii) heterogeneous sensor networks

in which arbitrary sensor nodes observing different modalities of the system are present. Processing data in

heterogeneous sensor networks is significantly more complicated than in the homogeneous case since measurements

3

from different modalities have to be fused together effectively to come up with reliable estimates, a difficult problem

if each sensor node observes a different subspace of the system being monitored. However, heterogeneous sensor

networks have advantages over their homogeneous counterparts [3]. For example, sensor nodes that can individually

observe the state space of the underlying system, referred to as the target state space, may not exist. However,

nodes operating in different modalities may collectively be able to observe the target state space. For surveillance

applications, heterogeneous networks are also more robust than homogeneous networks since a target could disguise

itself and hide from a single sensor modality. As the number of modalities in the network increases, it progressively

becomes more difficult for a target to avoid detection by all sensor modalities. Thus heterogeneous sensor networks

have the ability to overcome the weaknesses of homogeneous sensor networks.

For the sensor nodes in a distributed sensor network to operate together, efficient and accurate initialization

algorithms are vital. This is particularly true in tracking applications. Note that tracking provides a means of

reducing computation by focusing the current search space for the phenomena of interest, or target states, near their

previous values in a recursive structure. However, to get started, tracking requires an initial state distribution or

initialization. These initialization algorithms are faced with the task of collecting local knowledge from individual

nodes, fusing these individual components to generate global knowledge, and dispersing this global knowledge

throughout the network. In [4], this problem is addressed using hidden Markov random field models. The proposed

algorithm can accurately initialize the network locally but the final state estimates may not be globally known. Their

approach also requires a stepwise ascent approach which requires multiple communication cycles throughout the

network for convergence to a potentially local maximum. Therefore this approach fails if the target state distribution

is multimodal, which is the case when multiple targets are present.

The initialization problem can be optimally addressed in a Bayesian framework using belief propagation (BP)

methods [5]. In BP methods, the estimated target posterior distribution can be communicated throughout the network

and it evolves as the various sensor nodes provide input to the algorithm. Using BP methods in the tracking

problem, electrical engineers, computer scientists, and statisticians handle the distributed communication issues by

only passing local messages to neighboring nodes and casting the tracking problem in a Markov random field

(MRF) framework [6]. Since analytical evaluation of complicated integrals in the BP equations may not be feasible

for non-Gaussian potential functions, two almost identical nonparametric methods were independently developed as

solutions to this problem. One method is called nonparametric belief propagation (NBP) [7] and the other is called

particle message passing (PAMPAS) [8]. In these methods, the messages propagated between nodes are represented

by M component mixtures, each component usually being approximated by a Gaussian with a diagonal covariance

matrix. Messages received from neighboring nodes and the local knowledge at the current node are combined by

multiplying them together. Although both methods use particle sets to represent messages, they primarily differ in

4

the way these particles are sampled, and this leads to differences in performance. Whereas PAMPAS is specialized

for graphical models in which the potentials can be expressed as a mixture of Gaussians, NBP allows more general

potential functions. However, the variance estimates generated by NBP tend to be biased upwards of their true

values, while those generated by PAMPAS are unbiased.

When combining the received messages with one another and with local information at a node, the direct

multiplication of d mixtures consisting of M components each results in a mixture consisting of M d components.

Various methods have been proposed to reduce the computational load at the message product stage. In [7], the

Gibbs sampler is used to select a representative sample from the product mixture in order to stop the total number

of components from growing exponentially. Use of the Gibbs sampler reduces the computational load to O(kdM 2)

operations, where k represents the number of iterations required by the Gibbs sampler to generate one sample. In

[9], mixture importance sampling is proposed as a method to reduce computation to O(dM 2) operations. [9] also

proposes the use of K-D trees, the computational cost of which is dependent on the choice of various approximating

parameters. However, the required computational power is not the only issue with these nonparametric approaches.

If the goal is to determine a global state vector distribution, then depending on the network structure, the quality

of the final estimate and the rate of convergence could depend on node scheduling, which is the order in which

nodes provide input to the algorithm [10]. Another drawback is that neither NBP nor PAMPAS are very robust to

missed detections at a subset of nodes in the network. This will be demonstrated through simulation examples.

In this paper, a computationally efficient and robust method for the distributed initializing of the hidden state

vector distribution in heterogeneous smart sensor networks is proposed. The desired distribution is referred to as the

target state vector distribution. Our algorithm addresses issues related to data fusion and observability. A target’s

state is initialized by making a discrete approximation to the target’s, possibly multimodal, state distribution. The

distribution is represented using discrete realizations of the state vector, called particles, and their associated weights.

We use a robust weighting strategy that can accommodate missed detections and false alarms. The output of our

initialization algorithm can be used to initialize various distributed joint tracking (DJT) algorithms such as those

described in [11], [12].

Our algorithm is designed to satisfy certain fundamental constraints to ensure scalability in a distributed network:

(i) raw data is not transmitted between nodes, (ii) the data propagated between nodes is the cumulative state

information, (iii) nodes are only required to be aware of their own positions and orientations and they need not be

aware of the locations or orientations of other nodes, and (iv) the final estimates are unaffected by node scheduling.

For simplicity, we assume a fixed one-hop communication path through the network from the first node to the last

since specific communication protocols are beyond the scope of this paper. Our algorithm is robust and, with minor

modifications, is capable of handling data collisions that may occur when multiple nodes in the network attempt

5

to initialize the same target simultaneously. The only requirement is that the network must be globally connected,

which means that there exists a communication path through the network between any two sensor nodes. The

effectiveness of the algorithm is demonstrated in a surveillance scenario using a sensor network consisting of

direction-of-arrival (DOA) nodes (e.g., acoustic arrays with known microphone positions) and range-Doppler nodes

(e.g., radar sensors). However, the theory behind the algorithm can be extended to arbitrary sensor types.

We first present a computationally efficient version of our algorithm. We refer to this as the low complexity

algorithm. This algorithm requires O(M) operations at each node for network initialization. Full initialization

requires three communication passes through the network; one forward pass to generate a particle support, one

reverse pass to determine particle weights and to disseminate particles throughout the network, and another forward

pass to disseminate the weights. This algorithm was first developed in [13] and later extended in [14] to compensate

for delays entering the system. The derivation of the basic algorithm is repeated in this paper for completeness. The

theoretical novelty in this paper is the development of a modified algorithm that can reduce the communication load

as well as decrease latency while still satisfying the scalability constraints stated above. We refer to this as the low

latency algorithm. This modified algorithm can achieve full initialization with only two communication passes; one

forward pass to generate particles and weights simultaneously, and one reverse pass to disseminate the particles and

weights throughout the network. However, the low latency algorithm comes with a cost of increased computation

(O(M2)) at each node. Note that even with the increased computational cost, the low latency implementation has

similar, if not lower computational cost when compared to the BP methods discussed above. At the same time,

both of our methods are unaffected by node scheduling and demonstrate greater robustness to missed detections

than the BP methods.

The organization of the paper is as follows. Section II gives a brief overview of the overall system design. Section

III introduces the organic sensors and preprocessors. Section IV discusses our low complexity Monte Carlo approach

for the distributed estimation of the target state distribution. Section V focuses on communication between the nodes

in the network and the computations required at each node. Section VI introduces our low latency algorithm for

Monte Carlo based distributed initialization. Section VII demonstrates the effectiveness of the proposed algorithms

on synthetic data and compares performance with BP methods. Conclusions follow in Section VIII.

II. SYSTEM DESIGN

We define the organic state space for a node as the subspace of the target state space that is observable at that

node. In various applications, the organic state space at a node may be a reduced subspace of the target state space.

Hence, a one to many mapping may exist from the organic state space to the target state space. For example, when

using a node equipped with a radar sensor to localize a target, the organic state space for that node may consist of

the target’s range from the sensor and its radial velocity, whereas the target’s true position may not be observable.

6

In heterogeneous sensor networks, the organic state spaces may also be dissimilar at different nodes. It is essential

to fuse organic estimates from multiple nodes to come up with reliable estimates in the target state space. Such

global estimates can be achieved if the network, as a whole, is capable of observing the target state.

Fig. 2. System block diagram of a smart sensor node.

A block diagram for a smart sensor node is given in Figure 2. The sensor acquires raw data from the environment.

This data is fed into the organic pre-processor block which produces state estimates in the organic state space for

that sensor node. Depending on the particular sensor modality, the available processing resources and the desired

target state space, the organic pre-processor could process the sensed data in various ways to produce organic state

estimates for that node. This block could perform beamforming (for sensor arrays), radar pre-processing, and batch

processing of measurements to generate motion estimates. The organic state estimates are used to provide input

to the DJT block that operates in parallel at the different nodes in the network and tracks the system’s varying

state parameters in the target state space. An organic tracker also operates within each node, tracking targets in

the organic state space for that node using estimates from the organic pre-processor. Though the organic tracker

may seem redundant when the DJT is present, it is actually an essential component since it facilitates the detection

of new targets at individual nodes. When a target that does not correspond to existing target tracks in the organic

tracker is detected, the organic state estimates for that target are fed into the distributed initialization block. The

distributed initialization block takes in organic state estimates for new targets from multiple nodes and combines

them to produce the initial state estimates in the target state space used by the DJT. This paper will focus on the

distributed initialization block. Some of the ideas developed for the initialization algorithm can be extended to the

DJT, but such extensions will not be discussed in this document.

III. ORGANIC SENSORS AND PRE-PROCESSORS

We demonstrate our algorithm in a surveillance scenario using a sensor network consisting of DOA nodes and

range-Doppler nodes. The goal is to generate probability distributions for multiple targets’ states in the [x y v x vy]T

space representing the targets’ positions and velocities along the x-y directions. We assume that the organic DOA

7

pre-processors operate in the [θ Q φ]T space, where θ is the target’s bearing, Q is the natural logarithm of the

ratio of the target’s speed to the target’s range, and φ is the target’s heading direction. In the case of acoustic

arrays, which are a type of DOA node, the θ estimate is easily obtained using a beamformer and estimates for

Q and φ are obtained by processing batches of θ estimates. We also assume that the organic range-Doppler pre-

processors operate in the [r vr]T space where r is the range to the target and vr is the target’s radial velocity. For

radar nodes, these estimates can be obtained using radar returns and measuring Doppler shift. Detailed descriptions

about these organic pre-processors can be found in [15]–[18]. Even though these particular organic state spaces are

used for demonstration purposes, our algorithms are capable of producing accurate initializations even if simpler

pre-processors are used. The only condition is that the network, as a whole, should be capable of observing the

target state space. Since the range between the target and the DOA node is in general sufficiently larger than the

size of the node, the signal from the target can be assumed to be traveling in planar wavefront when it is received

at the DOA node. It is also assumed that the radar nodes have hemispherical coverage and are unable to resolve

the target’s bearing. Note that for the particular sensor nodes considered here, the true location and velocity of any

target is not locally observable at any of the individual nodes. Also note that the organic pre-processors operate

in dissimilar state spaces having lower dimensionality than the target state space. Hence there is a many to one

mapping from the various organic state spaces to the target state space. The sensor network is assumed to be

calibrated so that each node is aware of its own location and orientation. However, nodes need not be aware of the

locations or orientations of other nodes in the network.

IV. A LOW COMPLEXITY MONTE CARLO APPROACH FOR THE DISTRIBUTED ESTIMATION OF THE TARGETS’

INITIAL STATE DISTRIBUTION

Our initialization algorithm uses a novel Monte Carlo approach to generate an approximation to the target state

vector distribution using a weighted set of particles. Following the results in [19], one must sample from the true

posterior distribution to generate the optimal particle distribution that minimizes the variance of the weights. Using

Bayes’ rule, the posterior distribution can be expressed as

p(st|zt) =
p(zt|st)p(st)

p(zt)
, (1)

where st represents the target state vector, and zt is the vector of organic state estimates from all M nodes at

time t. Assuming that the measurements at the individual nodes are independent, conditioned on the current state,

the combined data likelihood for all nodes can be factored into the product of the local data likelihoods at the

individual nodes. Since the goal is network initialization, prior knowledge of the target state distribution is not

available. Hence p(st) is non-informative and is dropped from the equation. Note that p(z t) is a proportionality

8

constant independent of the state. Using this knowledge and the Bayes’ rule, (1) can be simplified as

p(st|zt) ∝
M∏

m=1

p(zm,t|st) ∝
M∏

m=1

p(st|zm,t), (2)

where zm,t is the set of organic state estimates from the mth node at time t. To limit the communication bandwidth,

we choose not to communicate raw data between nodes. Thus, determining the posterior distribution analytically

is impossible. Hence we use importance sampling [20] and choose an importance function that can be sampled

sequentially at each node without sharing raw data. A logical choice is

π(st|zt) =
1
M

M∑
m=1

p(st|zm,t), (3)

which is an equally weighted mixture of the local posterior distributions at the different nodes. The importance

function in (3) has certain features that make it suitable for distributed implementation. First of all, particles can

be sampled from this importance function in a distributed manner without sharing raw data between nodes. This

feature allows fixed communication bandwidth regardless of the total number of nodes in the network, as will be

demonstrated in this section. Another feature of this importance function is that since all the components forming

the mixture are equally weighted, the algorithm is unaffected by specific node ordering.

We first show that it is possible to sample particles from the individual posterior distributions at the various nodes

in the network. Assume that the target state vector is n-dimensional. Also, assume that at node m, the organic

estimates are random realizations of s dimensional feature vectors ẑm,t, where 0 < s ≤ n. If any of these features

are not functions of the state vector, they can be discarded since they do not contribute any useful information

about the target state vector. Thus, without loss of generality, we can assume that each feature is a function of the

state vector.

ẑm,t = fm(st) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

fm,1(st)

fm,2(st)
...

fm,s(st)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

Let fm(·) be a continuously differentiable vector valued function. If and only if all features in the feature vector

at a particular node provide complimentary information without redundancy, then ∇f m(st) is nonsingular and

det(∇fm(st)) �= 0. (5)

If ∇fm(st) is in fact singular, it would mean that some of the features provide redundant information. In this case,

the redundant features can be discarded to give a feature space of reduced dimension and no redundancy. Therefore,

without loss of generality, we can assume all features provide complementary information and (5) is satisfied.

9

Consider the case, when s < n. Given ẑm,t, the system in (4) is underdetermined and there exist infinitely many

solutions for st satisfying (4). These solutions form a level set in the target state space. In some cases, the level

set can be represented by explicit equations relating the state variables. However, in most cases this may not be

possible even though the level sets do exist. Let α be any solution of (4). By the implicit function theorem [21],

in the neighborhood of α, the level set Lf(ẑm,t) is an n − s dimensional manifold. Let Λ represent the set of all

such manifolds. Particles can be generated by sampling uniformly from points in Λ since each of these points is a

possible solution to (4).

Now if s = n, then by the inverse function theorem [21], given features ẑm,t, a unique inverse function f −1
m (·)

exists in the neighborhood of ẑm,t and therefore there exists a unique solution to (4) given by

st = f−1
m (ẑm,t). (6)

Thus the target’s true state can be uniquely determined.

Since the organic estimates zm,t are derived by processing noisy sensor data, we can consider them to be random

realizations of the feature vectors. We propose to use the organic estimates at the various nodes as estimates of

the true feature vectors in the implementation of the preceding procedure. To account for estimation errors, the

proposed particles are randomly perturbed based on the variance determined by the measurement model. In this

manner, sets of particles can be sampled locally at each node without sharing raw data.

If node m is a binary detection sensor (i.e., the output is binary based on the probability that a phenomenon of

interest occurred) then the mapping from the target state space to the feature space is not differentiable. However,

this is a special case of the above since the output is a binary function on some f m(·). All points in the domain

of fm(·) that result in a detection are possible target states and can be denoted by a set S d. The same rules for

sampling can be applied to points in Sd and the rest of the procedure remains unchanged.

In this paper, we focus on a surveillance scenario. Our network uses DOA nodes and range-Doppler nodes since

these sensing modalities represent most commonly used sensor nodes in tracking applications. In this case, particles

can be sampled from the individual posterior distributions as given in Table I.

Here (sm,x, sm,y) is the mth node’s position. Estimates of (θm,t, σθm,t), (Qm,t, σQm,t), and (φm,t, σφm,t) are

available from the organic tracker at the mth DOA node. Similarly, estimates of (rm,t, σrm,t) and (vrm,t , σvrm,t
) are

available from the organic tracker at the mth range-Doppler node. Since a target’s range is not observable at DOA

nodes, and a target’s bearing is not observable at range-Doppler nodes, these values are drawn from appropriate

uniform distributions. Here, rmax is the assumed maximum range at which a target is visible to the DOA node for

a given false alarm rate, and vmax is the assumed maximum velocity of a target. Radial velocity is positive if the

target is moving away from the node. Tangential velocity is positive in the counterclockwise direction.

10

DOA Nodes Range-Doppler Nodes

r(i) ∼ U [0, rmax) r(i) ∼ N
(
rm,t, σrm,t

)

θ(i) ∼ N
(
θm,t, σθm,t

)
θ(i) ∼ U [0, 2π)

Step I

Q(i) ∼ N
(
Qm,t, σQm,t

)
v
(i)
r ∼ N

(
vrm,t , σvrm,t

)

φ(i) ∼ N
(
φm,t, σφm,t

)
v
(i)
t ∼ U

(
−
√

v2
max −

(
v
(i)
r

)2

,

√
v2
max −

(
v
(i)
r

)2
)

x
(i)
t = r(i) cos

(
θ(i)
)

+ sm,x x
(i)
t = r(i) cos

(
θ(i)
)

+ sm,x

y
(i)
t = r(i) sin

(
θ(i)
)

+ sm,y y
(i)
t = r(i) sin

(
θ(i)
)

+ sm,y

Step II
v
(i)
xt = eQ(i)

r(i) cos(φ(i)) v
(i)
xt = v

(i)
r cos

(
θ(i)
)

+ v
(i)
t sin

(
θ(i)
)

v
(i)
yt = eQ(i)

r(i) sin
(
φ(i)
)

v
(i)
yt = v

(i)
r sin

(
θ(i)
)− v

(i)
t cos

(
θ(i)
)

TABLE I

SAMPLING PARTICLES IN THE TARGET STATE SPACE FROM LOWER DIMENSIONAL ORGANIC ESTIMATES. STEP I GENERATES PARTICLES IN

THE ORGANIC STATE SPACE AND THE UNOBSERVABLE DIMENSIONS ARE SAMPLED UNIFORMLY OVER THEIR DYNAMIC RANGE. STEP II

MAPS THE PARTICLES GENERATED IN STEP I TO THE TARGET STATE SPACE.

Following the procedure given in Table I, one could sample particles from the individual posteriors. The combined

set of particles must represent (3). Assume that the total number of nodes is M , and D particles are used to generate

a discrete approximation to the target state distribution. A simple sampling technique would be to sample D/M

particles from each individual posterior and combine these particles to generate the final set of D particles. However,

this method has an inherent disadvantage. If one of the nodes does not detect a new target, D/M particles would be

spread uniformly over the natural state space for that node. These particles do not provide any useful information

to the system. It would be more informative to sample only from the posteriors for the nodes that have detections.

Hence, more particles would cover the state space of interest. These disadvantages can be eliminated by using a

weighted sampling operation that ensures that the individual posteriors for nodes with detections are equally weighted

irrespective of the total number of nodes. This weighted sampling operation does not require synchronization of

11

the nodes, and it is described in Appendix I.

If these sampled particles are used to make inferences about the posterior distribution, the estimates would be

biased due to the discrepancy between the importance function and the true target state distribution. Hence, these

particles need to be weighted. Since the data from various nodes is not being shared, the components forming

the weights must be computed at each node. To minimize communication, the weights should be transmitted in

a cumulative manner. This means that only a fixed number of weights should be transmitted between any pair of

sensor nodes and these weights should represent the combined weighting assigned by all preceding nodes in the

communication chain.

Following the results of [19], the weights for the particles are given by

w
(i)
t =

p
(
s(i)
t |zt

)
π
(
s(i)
t |zt

) . (7)

Using (2) and (3), (7) can be simplified as follows:

w
(i)
t ∝

∏M
m=1 p

(
s(i)
t |zm,t

)
∑M

m=1 p
(
s(i)
t |zm,t

) ∝
∏M

m=1 p
(
zm,t|s(i)

t

)
∑M

m=1 p
(
s(i)
t |zm,t

) . (8)

Using the Bayes’ rule, we obtain

p
(
s(i)
t |zm,t

)
=

p
(
zm,t|s(i)

t

)
p
(
s(i)
t

)
p (zm,t)

. (9)

Since no prior information about the state vector is available, p(s t) is assumed uniform and is dropped from the

equation. Thus, (8) simplifies to

w
(i)
t ∝

∏M
m=1 p

(
zm,t|s(i)

t

)
∑M

m=1

p
“
zm,t|s(i)t

”

p(zm,t)

. (10)

Following the given procedure, the particle weights can be calculated, up to a proportionality, by evaluating the ratio

of the product of the data likelihoods from the different nodes to a weighted sum of the same likelihoods. Hence,

the weights can be updated sequentially if the numerators and denominators are both communicated between nodes.

Note that this weighting strategy is unaffected by specific node ordering.

When the final particles are proposed, there is an ambiguity as to which node proposed a particular particle. If a

simple Gaussian likelihood function is used and the likelihood for a particle is zero at one of the nodes, then based

on (10), its overall weight will also be zero. This situation occurs if even one of the nodes does not detect a target.

In such situations, one would not want the overall weight of the particle to be zero since a target may be present

with high probability. To avoid this degeneracy, it is important that a robust likelihood function that accounts for

missed detections and false alarms is used.

12

The approach used here is similar to the one used in [22], [23]. Assume that node m generates K organic state

estimates. Then, given a particle s(i)
t , the estimates zm,k,t , k = 1, ..., K , could have been generated either by a

target or by clutter. The clutter distribution is assumed to be Poisson with spatial density λ. The probability of

missing the target is set equal to a constant q. It is assumed that there is an equal probability for each of the K

organic state estimates to correspond to the true target event, and the organic estimate corresponding to the true

target state is Gaussian distributed about that target state. Thus, as shown in [22], the likelihood function can be

expressed as

p
(
zm,t|s(i)

t

)
∝ 1 +

1 − q√
(2π)s|Σ|qλK

·
K∑

k=1

exp
{
−0.5

(
zm,k,t − fm

(
s(i)
t

))T

Σ−1
m,t

(
zm,k,t − fm

(
s(i)
t

))}
,

(11)

where s is the dimensionality of the organic state vector at node m and Σm,t is the covariance of the Gaussian

distribution.

Pseudocode for updating the weights sequentially is given in Appendix I. The final set of particles along with

their associated weights give a discrete approximation to the target state vector distribution.

V. COMMUNICATION AND COMPUTATION

Using a fixed one hop communication path from the first node to the last node in the network, the low complexity

algorithm given in Section IV requires three passes through the communication chain for network initialization.

In the first forward pass, a varying set of a fixed number of D particles representing the equally weighted mixture

of posteriors from all preceding nodes is transmitted through the communication chain. Since only those nodes that

detect a target are allowed to provide input to the algorithm, a single number n s representing the accumulating

number of nodes with detections is transmitted. At the end of this pass, node M is the only node that has the final

set of D particles representing (3).

In the second pass, the communication path is reversed. The final set of D particles are propagated back

sequentially to node 1. It was shown that the individual components of the particle weights in (10) can be

evaluated independently at each node and the numerator and denominator of the overall weights can be transmitted

cumulatively. Thus the data communicated in this pass consists of the set of D particles, the D numerator

components, and the D denominator components that form the cumulative weights from the preceding nodes.

At the end of the second pass, all nodes in the network have the final set of particles but node 1 is the only node

with the final set of weights.

In the third pass, the final set of D weights are dispersed throughout the network using the forward communication

path. At the end of this pass, all nodes share the same particles and weights representing the network’s global

13

knowledge.

In a real world implementation, the simple one hop communication protocol can be replaced by more efficient

protocols with minor modifications to the proposed algorithms. As long as every node provides its input to the

network at the proposal and weighting stages at most one time, the performance of the proposed algorithm will not

be affected.

VI. LOW LATENCY DISTRIBUTED INITIALIZATION OF A TARGET’S STATE DISTRIBUTION

In certain applications, the latency incurred due to three communication passes through the network may not be

acceptable. For such applications, we propose a low latency version of the initialization algorithm to enable global

initialization with only two communication passes through the network. In the first pass, particles and weights are

both sequentially generated. In the second pass, the final particles and weights are disseminated throughout the

network. The reduction in communication comes at a cost of an increase in computation at each node; O(D 2)

operations at each node for the low latency algorithm compared to O(D) operations at each node for the low

complexity algorithm described in Section IV.

Since the first communication pass is used to sequentially generate the particles and weights, the final set of

particles and weights available at the output of the m th node, m = 1, . . . , M , must represent the posterior distribution

p (st|z1,t, . . . , zm,t) . (12)

For the reasons given in Section IV, (3) is still used as an importance function and the particle support is generated

sequentially at each node. For this choice of importance function, the particle weights are given by (8). To satisfy

these requirements, after processing at node m, the particles must be distributed in accordance with

s(i)
t ∼ 1

m

m∑
m̃=1

p (st|zm̃,t) , (13)

and weights should be assigned according to

w
(i)
t ∝

∏m
m̃=1 p

(
s(i)
t |zm̃,t

)
∑m

m̃=1 p
(
s(i)
t |zm̃,t

) . (14)

Using mathematical induction, we show that it is possible to sequentially generate particles and weights according

to (13) and (14) respectively to represent the cumulative posterior distribution (12).

Assume that D particles and weights are used to represent the target’s state distribution. At node 1, D particles

are sampled according to its posterior distribution by following the procedure given in Section IV. These particles

are distributed according to

s(i)
t ∼ p (st|z1,t) . (15)

14

For this choice of particle support, the weights are all equal.

w
(i)
t =

1
D

∝
p
(
s(i)
t |zm,t

)
p
(
s(i)
t |zm,t

) . (16)

It can be clearly seen that (15) and (16) represent (13) and (14) respectively with m = 1. Hence these particles

and weights together represent the desired posterior distribution (12) with m = 1. This set of particles and weights

is sent to node 2.

Now consider node m. Node m receives a set of particles s (i)
r,t and weights w

(i)
r from node (m − 1). Assume

that these particles are distributed according to

s(i)
r,t ∼

1
m − 1

m−1∑
m̃=1

p (st|zm̃,t) , (17)

and weights are assigned according to

w
(i)
r,t ∝

∏m−1
m̃=1 p

(
s(i)
r,t|zm̃,t

)
∑m−1

m̃=1 p
(
s(i)
r,t|zm̃,t

) . (18)

Thus, the received particles and weights together represent the posterior distribution at node (m − 1)

p (st|z1,t, . . . , zm−1,t) . (19)

Node m must now provide its own input to the global posterior distribution. It generates a new set of D particles

representing its own posterior distribution

s(i)
n,t ∼ p (st|zm,t) . (20)

The final set of particles and weights after processing at node m must obey (13) and (14). Thus, the new set of

particles must be weighted according to

w
(i)
n,t ∝

∏m
m̃=1 p

(
s(i)
n,t|zm̃,t

)
∑m

m̃=1 p
(
s(i)
n,t|zm̃,t

) . (21)

Simplifying, we can determine a set of scaled weights w̃
(i)
n,t as

w̃
(i)
n,t = w

(i)
n,t ·

m∑
m̃=1

p
(
s(i)
n,t|zm̃,t

)
∝ p

(
s(i)
n,t|zm,t

)
·

m−1∏
m̃=1

p
(
s(i)
n,t|zm̃,t

)
, (22)

where each w̃
(i)
n,t needs to be adjusted to account for the particle support. In (22), p (s t|zm,t) is proportional to the

data likelihood at node m, given by (11), and
∏m−1

m̃=1 p
(
s(i)
n,t|zm̃,t

)
can be approximated using the Parzen window

15

density approximation method [24] as follows

m−1∏
m̃=1

p
(
s(i)
n,t|zm̃,t

)
=

D∑
j=1

w
(j)
r,t W

(
s(i)
n,t − s(j)

r,t

)
. (23)

In (23), W (·) is an appropriate stochastic kernel. In this paper, we choose a Gaussian kernel, the size of which is

determined by the particle distribution about the dominant mode.

Using a similar procedure, the particles s(i)
r,t must be weighted according to

ŵ
(i)
r,t ∝

∏m
m̃=1 p

(
s(i)
r,t|zm̃,t

)
∑m

m̃=1 p
(
s(i)
r,t|zm̃,t

) . (24)

Simplifying, we can determine a set of scaled weights w̃
(i)
r,t as

w̃
(i)
r,t = ŵ

(i)
r,t ·

m∑
m̃=1

p
(
s(i)
r,t|zm̃,t

)
∝ p

(
s(i)
r,t|zm,t

)
·

m−1∏
m̃=1

p
(
s(i)
r,t|zm̃,t

)
, (25)

where
∏m−1

m̃=1 p
(
s(i)
r,t|zm̃,t

)
can be approximated using the Parzen window density approximation method as follows

m−1∏
m̃=1

p
(
s(i)
r,t|zm̃,t

)
=

D∑
j=1

w
(j)
r,t W

(
s(i)
r,t − s(j)

r,t

)
. (26)

The current set of 2D particles {s(i)
n,t, s(i)

r,t}D
i=1 does not represent (13) since the mixture distribution from which

these particles are generated is not equally weighted. This discrepancy can be corrected using the weighted sampling

operation given in Appendix II to generate a set of D particles, {s (i)
t }D

i=1, representing (13).

The scaled weights associated with the particles surviving the sampling operation are stored as {w̃ (i)
t }D

i=1. From

(21),(22), (24) and (25), the final set of weights representing (14) can be determined by

w
(i)
t ∝ w̃

(i)
t∑m

m̃=1 p
(
s(i)
t |zm̃,t

) , (27)

where
∑m

m̃=1 p
(
s(i)
t |zm̃,t

)
can be approximated using the Parzen window density approximation method as follows

m∑
m̃=1

p
(
s(i)
t |zm̃,t

)
=

1
D

D∑
j=1

W
(
s(i)
t − s(j)

t

)
. (28)

The final set of particles and weights given by {s(i)
t , w

(i)
t }D

i=1 obeys (13) and (14). Thus, this weighted set of

particles represents the posterior distribution (12).

Pseudocode for implementing the low latency algorithm is given in Appendix II.

16

VII. SIMULATIONS

In this section, we demonstrate the effectiveness of our algorithms by generating the initial probability distributions

for multiple targets in smart sensor networks consisting of DOA sensors and range-Doppler sensors. We show

simulation results for both the low complexity and low latency algorithms described in this paper. Simulations are

repeated for a varying number of targets and varying network configurations. BP methods are also simulated and

compared with our proposed methods.

Assume that two targets appear simultaneously with initial states given by s1 = [−200, −500, 10, 20]T and

s2 = [1600, 0, −14, −14]T . The network consists of four nodes; two DOA sensors located at (500 m, 400 m) and

(800 m, -300 m), and two range-Doppler sensors located at (200 m, -200 m) and (1200 m, 200 m). The sensor and

target positions are displayed in Figure 3.

−500 0 500 1000 1500
−1000

−500

0

500

1000

x (meters)

y
(m

et
er

s)

Fig. 3. Sensor and target positions: � represent range-Doppler sensors, × represent bearing sensors and ∗ represent targets.

In this simulation, D = 2000 particles were used to approximate the target state vector distribution. To simulate

noisy estimates available from the organic trackers (i.e., [θ Q φ]T from the DOA trackers and [r vr]T from the

range-Doppler trackers), the estimates provided to each organic tracker are Gaussian distributed about their true

values with standard deviations given by

σθ = 2◦, σQ = 0.02 s−1, σφ = 8◦, (29)

σr = 6 m, σvr = 0.4 m/s. (30)

The clutter is modelled as a Poisson distributed random variable with parameter λ = 1/7. The probability of a miss

is set equal to 0.1.

17

−1000 0 1000 2000 3000
−2000

−1000

0

1000

2000

x (meters)

y
(m

et
er

s)

(a) Sensor 1

−1000 0 1000 2000 3000
−2000

−1000

0

1000

2000

x (meters)

y
(m

et
er

s)

(b) Sensors 1,2

−1000 0 1000 2000 3000
−2000

−1000

0

1000

2000

x (meters)

y
(m

et
er

s)

(c) Sensors 1,2,3

−1000 0 1000 2000 3000
−2000

−1000

0

1000

2000

x (meters)

y
(m

et
er

s)

(d) Sensors 1,2,3,4

−1000
0

1000
2000

3000

−1000

0

1000

0.05

0.1

0.15

0.2

x (meters)y (meters)

p(
s)

(e) Initial Distribution

Fig. 4. Simulation example for initializing multiple targets using the low complexity algorithm.

18

The Gaussianity assumption is made only to simplify the implementation. This is a standard practice for tracking

algorithms since the algorithms used to estimate the measurement noise (e.g., Newton recursion, LMS, RANSAC,

etc.) assume that the noise is Gaussian. However, it is important to note that even though the assumption of

Gaussianity is local at each node, the particle distributions are not necessarily Gaussian in the target state space.

This will be seen in the simulations. The presented algorithm can handle non-Gaussian noise sources with minor

modifications. The assumption of Gaussian noise affects the initialization algorithm at only two stages. The first

impact is at the particle proposal stage. Here, if the noise is non-Gaussian, particles can still be generated by

importance sampling. The second impact is at the weighting stage. Here, if the PDF of the noise distribution can

be evaluated pointwise, then any arbitrary noise distribution can be used. For simplicity, we will assume that the

noise is Gaussian in these simulations.

Figures 4(a) to 4(d) represent the sequential particle proposal stage of the low complexity algorithm. Although

the state vector is four dimensional, the subfigures in Figure 4 show only the x-y locations of the particles. In

Figure 4(a), node 1, a DOA node, detects the two targets along certain directions and distributes a total of 2000

particles along those directions up to an assumed maximum detection range. These particles are propagated to node

2. Node 2, a range-Doppler node, receives the particles from node 1. These received particles are all assigned a

weight of 1 since they represent information from a single node. Node 2 detects the two targets at certain ranges.

Since the targets’ bearings are not observable, node 2 distributes another 2000 particles about two concentric circles

centered at the node position with radii equal to the detected ranges. Out of the 4000 particles, 2000 particles

are sampled uniformly with replacement. These particles are shown in Figure 4(b), and are propagated to node 3.

Node 3, another DOA node, receives the particles from node 2 and assigns to each of these particles a weight of 2

since they represent the combined knowledge from two nodes. Node 3 distributes another 2000 particles along the

directions in which it detects the two targets. These new particles are assigned a weight of 1 since they represent

information from node 3 only. From the 4000 particles, a weighted sampling with replacement operation is used to

generate 2000 equally weighted particles. These particles are shown in Figure 4(c) and are propagated to node 4.

Node 4, another range-Doppler node, receives the particles from node 3 and assigns to each of them a weight of

3 since they represent the combined information from 3 nodes. Then, node 4 detects the targets at certain ranges

and distributes another 2000 particles along concentric circles with radii equal to the detection ranges and centered

at the node location. These new particles are assigned a weight of 1. From these 4000 particles, 2000 particles are

obtained by weighted sampling with replacement. These final particles are plotted in Figure 4(d) and are propagated

back to all the nodes.

Weights are calculated for the final particles shown in Figure 4(d). Particles along with their weights are used

to generate the PDF of the posterior distribution. The x-y subspace of the posterior distribution is shown in Figure

19

4(e). As expected, the distribution is highly peaked about the true target states. Estimates of the true target states

can be made based on this weighted set of particles. These estimates can be used to initialize any DJT.

The same simulation is repeated using the low latency algorithm. This algorithm propagates the cumulative

posterior distribution from node to node by generating particles and weights sequentially at each node. The sequential

particle proposal strategy is similar to the one used by the low complexity implementation and is described in detail

in the first simulation. Hence, the discussion will not be repeated here.

0
1000

2000

−800
−400

0
400

2

4

6
x 10

−3

x (meters)y (meters)

p(
s)

(a) Node 1

−1000
0

1000
−1000

0
1000

5

10

15

x 10
−3

x (meters)y (meters)

p(
s)

(b) Nodes 1,2

−1000
0

1000
2000

−1000
0

1000

0.02

0.04

0.06

0.08

x (meters)y (meters)

p(
s)

(c) Nodes 1,2,3

−1000
0

1000
2000

−1000
0

1000

0.05

0.1

0.15

x (meters)y (meters)

p(
s)

(d) Nodes 1,2,3,4

Fig. 5. Simulation example for initializing multiple targets using the low latency algorithm.

Figure 5 demonstrates the low latency algorithm in operation. For ease of view, the PDFs representing the

cumulative posterior distributions are generated from the particles and weights and the x-y subspaces of the posterior

distributions are plotted. It can be seen that as more nodes provide input to the algorithm, the posterior distribution

slowly has its weight concentrated in the areas where the targets are located. The final posterior is shown in Figure

5(d). This distribution is very similar to the posterior obtained using the low complexity algorithm in Figure 4(e).

The minor discrepancies are due to the approximations made when the Parzen window density approximation

20

method is used. However, it is important to note that the dominant peaks remain unchanged regardless of which

variation of the algorithm is used.

Next, we simulate NBP and PAMPAS for comparison against our initialization algorithms. The main difference

between NBP and PAMPAS is in the message propagation step. This is the step in which the transmitting node

generates particles representing its belief about the receiving node’s state. In our application, we are interested in

determining the global target state vector which is common at every node. Hence no transformation is required

from the transmitting node’s state to the receiving node’s state. This fact eliminates the primary difference between

NBP and PAMPAS and facilitates a common implementation, which we shall refer to as the BP implementation.

To ensure a fair comparison, the BP implementation was simulated under circumstances that were as close as

possible to those under which our initialization algorithms were simulated. We implemented a sequential schedule

for inter-node communication as discussed in [10]. In the scenario considered here, this schedule is very similar to

the one hop communication protocol used to simulate our algorithms. The presented plots represent the cumulative

knowledge available at the last node in the communication chain at the end of the first iteration through the network.

Although multiple iterations may be required for the BP implementation to converge, we only simulate a single

iteration to make a fair comparison with our algorithm. Following [8], a single outlier particle with zero mean and

large covariance was included with each message. This outlier particle was weighted to account for 10% of the entire

message probability, which is identical to the probability of miss in the simulation of our initialization algorithm.

In practice, Gibbs sampling, mixture importance sampling and K-D trees are used to reduce the computational load

of the BP methods during the message product step. To eliminate the effects of these methods on final estimates,

we explicitly computed the product messages and performed a weighted sampling on the product mixture to limit

the number of transmitted particles.

Figure 6 shows the target state distribution as initialized by the BP implementation. When compared to Figures

4(e) and 5(d), it can be seen that all three distributions have distinct peaks at the true target states. Hence, all three

algorithms show similar performance in this simulation.

The simulations in Figure 7 test the various algorithms’ robustness to missed detections and specific node

scheduling. The same targets and nodes are used, however, in this simulation, the first range-Doppler node only

detects the first target and the second range-Doppler node only detects the second target. The DOA nodes detect

both targets. The simulations are repeated for an alternate node scheduling which is also sequential but with the

communication path reversed.

Figures 7(b) and 7(d) show that in the absence of detections at a subset of the nodes in the network, the BP

implementation can fail to accurately initialize the target state distribution in one iteration. In fact, it can also

be seen that the final estimate of the target state distribution can depend on node scheduling. In Figure 7(b), the

21

−1000
0

1000
2000

3000

−1000

0

1000

0

0.1

0.2

0.3

0.4

x (meters)y (meters)

p(
s)

Fig. 6. Simulation example for initializing multiple targets using the BP implementation.

distribution is peaked at the first target’s state and there is a large uncertainty about the second target’s state. Figure

7(d) shows even worse performance since the one peak that appears in the distribution is not located at either one

of the true target states. On the contrary, Figures 7(a) and 7(c) demonstrate the robustness of our algorithm to

missed detections and node scheduling. The minor discrepancies are due to different random number realizations.

However, two distinct peaks clearly appear at the true target states, indicating the presence of two targets. These

plots clearly show the advantages of our initialization algorithm over a comparable BP implementation. Although the

BP implementation might converge to the true distribution after a larger number of iterations, we did not simulate

additional iterations since the increased expenditure in communication would not justify a fair comparison with our

algorithms.

To test the ability of our algorithms to initialize a larger number of targets, both of our algorithms were used to

initialize the network with 5 targets present. The node positions remain unchanged and are shown in Figure 8 along

with the new target positions. Simulation results are given in Figure 9. For both implementations, the posterior

distribution is peaked at the true target states. The low latency algorithm produces some amount of clutter in the

distribution. This is due to the approximations made by the Parzen window density approximation method. The

final distribution can be further smoothened out by improved kernel selection methods. However, it is clear that

both the low complexity and the low latency algorithms are capable of detecting and initializing all 5 targets.

Both of our initialization algorithms were simulated in a larger network with 10 sensor nodes that were positioned

as shown in Figure 10. The true target states are given by s1 = [50, 250, 14, 14]T and s2 = [1200, −250, 14, 14]T .

22

−10000
100020003000

−1500
−1000

−500
0

500
0

0.05

0.1

x (meters)y (meters)

p(
s)

(a) Our algorithm.

−10000
100020003000

−1500
−1000

−500
0

500
0

0.05

0.1

0.15

x (meters)y (meters)

p(
s)

(b) BP implementation.

−10000
100020003000

−1500
−1000

−500
0

500
0

0.05

0.1

x (meters)y (meters)

p(
s)

(c) Our algorithm. Reverse node ordering.

−10000
100020003000

−1500
−1000

−500
0

500
0

0.1

0.2

0.3

x (meters)y (meters)

p(
s)

(d) BP implementation. Reverse node ordering.

Fig. 7. Testing robustness against missed detections and node scheduling.

0 500 1000 1500

−500

0

500

x (meters)

y
(m

et
er

s)

Fig. 8. Simulation setup for 5 targets: � represent range-Doppler sensors, × represent bearing sensors and ∗ represent targets.

In this simulation, not all nodes are capable of observing both targets; 4 nodes observe both targets while the

remaining 6 nodes are capable of observing only one of the two targets. It can be seen in Figure 11 that the

posterior distribution is multimodal and the dominant peaks occur at the true target states.

23

−10000
100020003000

−1000
0

1000
2000

0.02
0.04
0.06
0.08

0.1
0.12
0.14

x (meters)
y (meters)

p(
s)

(a) Low complexity.

−10000
100020003000

−1000
0

1000
2000

0.01

0.02

0.03

x (meters)
y (meters)

p(
s)

(b) Low latency.

Fig. 9. Simulation example comparing the two initialization algorithms for 5 targets.

0 500 1000 1500

−600

−400

−200

0

200

400

600

x (meters)

y
(m

et
er

s)

Fig. 10. Sensor and target positions in a large network: � represent range-Doppler sensors, × represent bearing sensors and ∗ represent targets.

−1000
0

1000
2000

−1000
0

1000

0.1

0.2

0.3

x (meters)y (meters)

p(
s)

(a) Low complexity.

−1000
0

1000
2000

−1000
0

1000

0.02
0.04
0.06
0.08

0.1
0.12
0.14

x (meters)y (meters)

p(
s)

(b) Low latency.

Fig. 11. Simulation example comparing the two initialization algorithms for a large network with 10 sensor nodes.

24

VIII. CONCLUSIONS

Two algorithms for generating the initial probability distribution are proposed for multiple targets in a distributed

heterogeneous smart sensor network: a low complexity algorithm that requires three passes through the network for

global initialization, and a low latency algorithm that requires only two passes. Our algorithms take into account

missing data and clutter in the measurements available at the various sensor nodes. Monte Carlo methods are used

to sequentially sample the state space to generate particles and robust weighting functions are used to represent

the degree of belief in each particle. The final state vector distribution is represented using this weighted set of

particles. This set of weighted particles can be used to make various inferences about the targets’ states and also

to initialize various distributed tracking algorithms.

The low latency algorithm reduces the communication load at the expense of increased computation at each node:

O(D2) operations at each node for the low latency algorithm compared to O(D) operations for the low complexity

algorithm, where D represents the number of particles used to represent the posterior distribution of interest.

In this paper, we assume a fixed one hop sequential communication path from the first node to the last node

in the network. In a real world implementation, this simplified communication protocol can be replaced by more

efficient protocols with minor modifications to the proposed algorithms. The performance of the algorithms will

not be affected as long as every node provides its input to the network at the proposal and weighting stages at most

one time.

25

REFERENCES

[1] J. Manyika and H. Durrant-Whyte, Data Fusion and Sensor Management: A Decentralized Information-Theoretic Approach, Prentice

Hall, 1994.

[2] J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko, and D. Rus, “Tracking a moving object with a binary sensor network,” in

Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, Los Angeles, California, 5-7 November 2003,

pp. 150–161.

[3] R. Snelick, U. Uludag, A. Mink, M. Indovina, and A. Jain, “Large scale evaluation of multimodal biometric authentication using state-of-

the-art systems,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 3, pp. 450–455, 2005.

[4] A. Dogandzic and B. Zhang, “Distributed estimation and detection for sensor networks using hidden markov random field models,” IEEE

Transactions on Signal Processing, vol. 54, no. 8, pp. 3200–3215, 2006.

[5] J. Yedidia, W.T. Freeman, and Y. Weiss, “Generalized belief propagation,” Advances in Neural Information Processing Systems, vol. 13,

pp. 689–695, 2001.

[6] R. Chellappa and A. Jain, Eds., Markov random fields. Theory and application, Boston: Academic Press, 1993.

[7] E.B. Sudderth, A.T. Ihler, W.T. Freeman, and A.S. Willsky, “Nonparametric belief propagation,” in Proceedings of the 2003 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, 18-20 June 2003, vol. 1, pp. 605–612.

[8] M. Isard, “PAMPAS: real-valued graphical models for computer vision,” in Proceedings of the 2003 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, Madison, Wisconsin, 18-20 June 2003, vol. 1, pp. 613–620.

[9] A.T. Ihler, E.B. Sudderth, W.T. Freeman, and A.S. Willsky, “Efficient multiscale sampling from products of Gaussian mixtures,” in Neural

Information Processing Systems 17, Vancouver, British Columbia, Canada, 9-11 December 2003.

[10] A.T. Ihler, J.W. Fisher, R.L. Moses, and A.S. Willsky, “Nonparametric belief propagation for self-localization of sensor networks,” IEEE

Journal on Selected Areas in Communication, vol. 23, no. 4, pp. 809–819, April 2005.

[11] M.J. Coates, “Distributed particle filtering for sensor networks,” in Third International Symposium on Information Processing in Sensor

Networks, Berkeley, California, 26-27 April 2004, pp. 99–107.

[12] I. Leichter, M. Lindenbaum, and E. Rivlin, “A probabilistic framework for combining tracking algorithms,” in Proceedings of the 2004

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, June 27–July 2 2004, vol. 2, pp.

445–451.

[13] M. Borkar, V. Cevher, and J. H. McClellan, “Estimating target state distributions in a distributed sensor network using a Monte-Carlo

approach,” in 2005 IEEE Workshop on Machine Learning for Signal Processing, Mystic, Connecticut, 28-30 Sept. 2005, pp. 305–310.

[14] M. Borkar, V. Cevher, and J. H. McClellan, “A Monte-Carlo method for initializing distributed tracking algorithms with acous-

tic propagation delay compensation,” to appear in Journal of VLSI Signal Processing Systems, Invited paper, also available at

http://www.umiacs.umd.edu/users/volkan/JVLSIMilind.pdf.

[15] V. Cevher, R. Chellappa, F. Shah, R. Velmurugan, and J. H. McClellan, “An acoustic multi-target tracking system using random sampling

consensus,” to appear in Proceedings of the 2007 IEEE Aerospace Conference, Big Sky, Montana, 3–10 March 2007.

[16] V. Cevher, R. Velmurugan, and J. H. McClellan, “A range-only multiple target particle filter tracker,” in 2006 IEEE International Conference

on Acoustics, Speech and Signal Processing, Toulouse, France, May 2006, vol. 4, pp. 905–908.

[17] E. Brookner, Tracking and Kalman Filtering Made Easy, John Wiley and Sons, 1988.

[18] P. R. Kalata and K. M. Murphy, “α−β target tracking with track rate variations,” in IEEE Proceedings of the Twenty-Ninth Southeastern

Symposium on Systems Theory, Cookeville, Tennessee, 9-11 March 1997, pp. 70–74.

[19] A. Doucet, “On sequential simulation-based methods for Bayesian filtering,” Tech. Rep. CUED/F-INFENG/TR.310, Department of

Engineering, University of Cambridge, 2001.

[20] J.M. Hammersley and D.C. Handscomb, Monte Carlo methods, Methuen, 1964.

[21] J.R. Munkres, Analysis on Manifolds, Perseus Books, 1990.

26

[22] Y. Bar-Shalom and T. Fortmann, Tracking and Data Association, Academic-Press, 1988.

[23] M. Isard and A. Blake, “Condensation – conditional density propagation for visual tracking,” International Journal of Computer Vision,

vol. 29, no. 1, pp. 5–28, 1998.

[24] E. Parzen, “On estimation of a probability density function and mode,” Annals of Mathematical Statistics, vol. 33, no. 3, pp. 1065–1076,

1962.

27

APPENDIX I

LOW COMPLEXITY INITIALIZATION ALGORITHM

• Variables:

s(i)
t = particle i at time t

w
(i)
t = weight of particle s(i)

t

zm,t = the measurement from node m at time t

zt = {z1,t, . . . , zM,t}
D = Number of particles used for initialization

M = the total number of nodes

ns = number of nodes that provided input to the algorithm

w
(i)
num = numerator of the weights

w
(i)
den = denominator of the weights

• Forward Pass: Sequentially Generate Particles

ns = 0

Node 1:

– If there is a detection

∗ Generate D particles:

· s(i)
t ∼ p (st|z1,t) , i = 1, . . . , D

∗ Each particle will have equal weight

∗ ns = 1

– Else

∗ s(i)
t = 0, i = 1, . . . , D

– Send {s(i)
t }D

i=1 and ns to Node 2.

For Node m, m = 2, . . .M :

– Receive {s(i)
t }D

i=1 and ns from Node (m − 1).

– Give each received particle a weight of ns

– If there is a detection

∗ Label the received particles {s(i)
r,t}D

i=1.

∗ Generate D new particles:

· s(i)
n,t ∼ p (st|zm,t) , i = 1, . . . , D

∗ Each new particle will have equal weight

28

· Give each new particle a weight of 1

∗ From the 2D particles, obtain D particles {s(i)
t }D

i=1 by using a weighted sampling with replacement.

∗ Each particle will now have equal weight

∗ ns = ns + 1

– If m < M

∗ Send {s(i)
t }D

i=1 and ns to Node m + 1.

• Reverse Pass: Disseminate Particles and Sequentially Generate Weights

For Node m, m = M, . . . , 1:

– If m < M

∗ Accept {s(i)
t , w

(i)
num, w

(i)
den}D

i=1 from Node (m + 1).

– Else

∗ w
(i)
num = 1, i = 1, . . . , D

∗ w
(i)
den = 0, i = 1, . . . , D

– For i = 1, ..., D

∗ w
(i)
num = w

(i)
num · p(zm,t|s(i)

t)

∗ w
(i)
den = w

(i)
den + p(zm,t|s(i)t)

p(zm,t)

– Send {s(i)
t , w

(i)
num, w

(i)
den}D

i=1 to Node (m − 1).

• Forward Pass: Disseminate Weights

Node 1:

– For i = 1, ..., D

∗ w
(i)
t = w(i)

num

w
(i)
den

– Normalize weights

∗ w
(i)
t = w

(i)
tP

D
i=1 w

(i)
t

, i = 1, . . . , D

– Send {w(i)
t }D

i=1 to Node 2.

For Node m, m = 2, . . .M :

– Accept {w(i)
t }D

i=1 from Node (m − 1).

– If m < M

∗ Send {w(i)
t }D

i=1 to Node (m + 1).

29

APPENDIX II

LOW LATENCY INITIALIZATION ALGORITHM

• Variables:

s(i)
t = particle i at time t

w
(i)
t = weight of particle s(i)

t

zm,t = the measurement from node m at time t

zt = {z1,t, . . . , zM,t}
D = Number of particles used for initialization

M = the total number of nodes

ns = number of nodes that provided input to the algorithm

W (·) = Parzen window kernel

• Forward Pass: Sequentially Generate Particles and Weights

ns = 0

Node 1:

– If there is a detection,

∗ Generate D particles:

· s(i)
t ∼ p (st|z1,t) , i = 1, . . . , D

∗ Assign Weights:

· w
(i)
t = 1

D , i = 1, . . . , D

∗ ns = 1

– Else,

∗ s(i)
t = 0, i = 1, . . . , D

∗ w
(i)
t = 0, i = 1, . . . , D

– Send {s(i)
t , w

(i)
t }D

i=1 and ns to Node 2.

For Node m, m = 2, . . .M :

– Receive {s(i)
t , w

(i)
t }D

i=1 and ns from Node (m − 1).

∗ These particles are distributed according to
∑ns

m̃=1 p (st|zm̃,t).

∗ Particles and weights together represent p (st|z1,t, z2,t, . . . , zns,t) ∝
∏ns

m̃=1 p (st|zm̃,t)

– If there is a detection

∗ Label the received particles and weights {s(i)
r,t, w

(i)
r,t}D

i=1.

∗ Generate D new particles:

30

· s(i)
n,t ∼ p (st|zm,t) , i = 1, . . . , D

∗ For i = 1, . . . , D, determine scaled weights:

· w̃
(i)
n,t = p

(
s(i)
n,t|zm,t

)
·∑D

j=1 w
(j)
r,t W

(
s(i)
n,t − s(j)

r,t

)
· w̃

(i)
r,t = p

(
s(i)
r,t|zm,t

)
·∑D

j=1 w
(j)
r,t W

(
s(i)
r,t − s(j)

r,t

)
∗ From the 2D pairs of particles and scaled weights, sample D pairs as follows:

· Assign weighting ŵ = ns to {s(i)
r,t, w̃

(i)
r,t}D

i=1.

· Assign weighting ŵ = 1 to {s(i)
n,t, w̃

(i)
n,t}D

i=1.

· Perform weighted sampling with replacement according to weights given by ŵ to generate the set

{s(i)
t , w̃

(i)
t }D

i=1

∗ For i = 1, . . . , D, modify the weights to account for the particle support:

· w
(i)
t = w̃

(i)
tP

D
j=1 W

“
s
(i)
t −s

(j)
t

”

∗ Normalize Weights:

· w
(i)
t = w

(i)
tP

D
j=1 w

(j)
t

, i = 1, . . . , D

∗ Final set of particles are distributed according to
∑m

m̃=1 p
(
s(i)
t |zm̃,t

)
.

∗ Final particles and weights together represent p
(
s(i)
t |z1,t, z2,t, . . . , zm,t

)
∝∏m

m̃=1 p
(
s(i)
t |zm̃,t

)
.

∗ ns = ns + 1

– If m < M

∗ Send {s(i)
t , w

(i)
t }D

i=1 and ns to Node m + 1.

• Reverse Pass: Disseminate Particles and Weights

Node M:

– Send {s(i)
t , w

(i)
t }D

i=1 to Node M − 1.

For Node m, m = M − 1, . . . , 1

– Receive {s(i)
t , w

(i)
t }D

i=1 from Node m + 1.

– if m > 1

∗ Send {s(i)
t , w

(i)
t }D

i=1 to Node m − 1.

