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Abstract

Acoustic nodes, each containing an array of microphones, can track targets inx-y space from their

received acoustic signals, if the node positions and orientations are known exactly. However, it is not

always possible to deploy the nodes precisely, so a calibration phase is needed to estimate the position

and the orientation of each node before doing any tracking orlocalization. An acoustic node can be

calibrated from sources of opportunity such as beacons or a moving source. In this paper, we derive

and compare several calibration methods for the case where the node can hear a moving source whose

position can be reported back to the node. Since calibrationfrom a moving source is, in effect, the

dual of a tracking problem, methods derived for acoustic target trackers are used to obtain robust and

high resolution acoustic calibration processes. For example, two direction-of-arrival-based calibration

methods can be formulated based on combining angle estimates, geometry, and the motion dynamics of

the moving source. In addition, a maximum-likelihood (ML) solution is presented using a narrow-band

acoustic observation model, along with a Newton-based search algorithm that speeds up the calculation

the likelihood surface. The ML estimate serves as a basis forcomparison, so the Cramér-Rao lower

bound on the node position estimates is also derived to show that the effect of position errors for the

moving source on the estimated node position is much less severe than the variance in angle estimates

from the microphone array. The performance of the calibration algorithms is demonstrated on synthetic

and field data.

I. INTRODUCTION

Acoustic arrays with directionally sensitive or omnidirectional microphones can be used to

localize and track targets using direction-of-arrival (DOA) estimates, derived from the measure-

ments of their sounds [1]–[3]. If an acoustic node is defined to be an array of omnidirectional
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microphones, whose relative positions are known with respect to each other, then the node

calibration problem consists of determining the array center position (geometrical centroid) and

the array orientation. Note that this problem differs from the problem of calibrating the individual

microphone positions previously considered in the literature [4], [5]. In [4], accurate localization

of individual microphone positions is done by considering the effects of the calibration on the

array manifold matrix that affects the DOA estimate. On the other hand, the objective of this

paper is to calibrate one or more nodes, in which the individual microphones have fixed relative

positions. Multiple nodes would then be used to estimate target position via triangularization as

shown in Fig. 1.
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Fig. 1. Black dots represent the acoustic node array centersand the solid arrows through these nodes represent their reference
orientations for the local DOA estimates. The DOAs are measured counterclockwise from the reference orientation. If the node
positions and orientations are known, then it is possible todetermine the target position(xt, yt) via, for example, triangulation.

There has been some previous work in calibrating acoustic nodes using beacons or moving

sources [6]–[8]. The calibration scenario considered in [7], [8] employs a maximum-likelihood

solution, using the time-of-arrival and direction-of-arrival of known point calibration sources

deployed in the scene, to determine the array position and orientation. The scenario considered

in this paper is similar to one considered in [6], where a moving calibration source is available.

The multi-path effects are ignored, while deriving these calibration methods. Moreover, in this

paper, it is assumed that the calibration source can report its position, e.g., acquired via the

global positioning system (GPS). The acoustic nodes themselves are assumed to not have GPS

capability due to battery limitations or jamming susceptibility (justifications can be found in [7].)

The imperfect GPS position estimates of the moving source ismodelled as noisy, and the effects
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of the GPS noise on the estimation performance of the node positions are treated in Section IV-A.

Several calibration methods are proposed in this paper, including a Maximum Likelihood (ML)

solution that works directly with the acoustic microphone array output signals, and two DOA-

based algorithms that first process the microphone outputs to estimate the angle to the moving

source, and then calibrate from that angle information using simple geometry. The DOA-based

algorithms include a Synthetic Aperture Calibration Method and a Metropolis-Hastings (MH)

Calibration Method. We give the Cramér-Rao performance bounds for the calibration problem

for these different estimation methods and also consider the sufficiency of the DOA estimates

for the DOA-based algorithms.

The acoustic propagation delays significantly degrade the acoustic calibration accuracy, if not

incorporated in the solution. A time-synchronization stepis required to align the received acoustic

data with the reported calibration target GPS points, a time-warp functionτ(t) is introduced that

is determined by using the time that the acoustic data, transmitted at timet, takes to arrive

at the acoustic node. It is a function of the distance of the calibration target and the speed

of soundc. For the tractability of the ML and the synthetic aperture calibration methods, we

approximate the time-warp function and use an iterative technique to refine the position estimates.

The Metropolis-Hastings method has a built-in time-warp strategy that avoids approximations.

The relative sensitivity of the ML and the synthetic aperture algorithms to the approximations

of the time-warp function is also discussed.

The maximum-likelihood estimator of the node-center location is derived by using a narrow-

band acoustic array data model [9]. This algorithm is relatively insensitive to the approximations

done on the time-warp function. To reduce the computationalcomplexity, a Newton search

algorithm is employed to avoid calculating the whole likelihood surface. To further speed up

the algorithm, line search algorithms are used [10]. The line search algorithms can be derived

based on at least one of the two Wolfe conditions: (i) the sufficient decrease condition and (ii)

the curvature condition [10], [11]. For our problem, abacktrackingline search algorithm is used

to identify the largest acceptable step size, based on the first Wolfe condition.

The Synthetic Aperture calibration algorithm is asufficient statisticsalgorithm that is based

on the synthetic aperture idea used in the radar problems [12]. The algorithm creates virtual

acoustic arrays along the calibration target track to triangulate back the node position. It is a

sufficient statistics algorithm, because it is based on the DOAs calculated at these synthetic
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arrays, as opposed to the acoustic signals directly [13]. The synthetic aperture DOAs are used to

determine the position in two ways: least squares estimation or maximum-likelihood estimation.

The least squares solution assumes that the errors are Gaussian around the node position, whereas

the maximum-likelihood solution assumes that the errors are normal in the temporal DOA track.

Computer simulations demonstrate that the latter assumption is more accurate for calibration.

Although computationally very attractive, the synthetic aperture calibration algorithm is very

sensitive to the approximations on the time-warp function.In addition, it is found by simulations

that the synthetic aperture method is biased estimator of the node position.

The Metropolis-Hastings (MH) calibration method is based on the mode-hungry accelerated

version of the Metropolis-Hastings sampling algorithm [14]–[17]. It is also a sufficient statistics

algorithm, because auxiliary DOA estimates are used to estimate the node position. The algorithm

proposes a number of node positions in the 2D plane. Then, these node positions are perturbed

until the discrete node positions are distributed according to the data-likelihood. To calculate the

data-likelihood, the observed acoustic data is first used tocalculate a set of motion compensated

DOAs by using the time-warp function and the target doppler shift that are determined by the

target GPS and the proposed node position. Then, the consistency of these motion compensated

DOAs with the DOAs that are based on the geometry of the node position and the GPS, is used

to determine the likelihood. The MH calibration method doesnot require any approximations of

the time-warp function. Moreover, because of the unimodal nature of the node position density,

the mode-hungry modification is used to decrease the number of Monté-Carlo iterations [14].

The organization of the paper is as follows. Section II formulates the problem and presents the

ML solution along with performance bounds, and the Newton search algorithm. Section III de-

scribes the DOA-based calibration algorithms that use auxiliary DOA estimates and geometrical

arguments. Computer simulations of typical scenarios are provided in Sect. IV.

II. M AXIMUM -L IKELIHOOD SOLUTION FOR THE CALIBRATION PROBLEM

In this section, we present the ML solution for the node position and orientation, given a

moving calibration source and the local measurements of itssound at the node microphones.

It is assumed that the calibration source has a narrow-band time-frequency signature and its

position estimates at each time are supplied by a GPS device.The GPS errors are modelled as

i.i.d. Gaussian. Their effects on the calibration performance areconsidered in a later subsection.
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An example calibration source is a helicopter, which also has the capability to deploy the

nodes in the field. The speed of such a calibration source introduces non-stationarity problems

not often treated in the standard array model for beamforming [1]. The ML solution, as well

as the DOA-based calibration methods given in Sect. III, canhandle this non-stationarity by

assuming constant velocity target movement between GPS measurements. Finally, we note that

our solution is also applicable, when using stationary calibration sources such as beacons.

A. ML Solution

We defineξ as the vector consisting of the unknown node-center position (x, y) and the

unknown node orientationϕ in the 2D plane:

ξ = [x, y, ϕ]T . (1)

The known (noisy) track of the moving source supplied by the GPS isχt = [xT (t), yT (t)]T .

Using ξ and χt, the node-to-source bearing angleθt (measured counterclockwise with respect

to the node orientation) and the node-to-target rangeRt are given by

θt(ξ,χt) , −ϕ+ tan−1

(

y − yT (t)

x− xT (t)

)

,

Rt , ‖ξx,y − χt‖.
(2)

If the node estimateξ is known, there is a one-to-one correspondence betweenχt and (θt, Rt).

The acoustic signals at the node microphones are modelled according to the narrow-band

acoustic observation model discussed in [4], [5], [9], [18], because the calibration source is

assumed narrow-band. This is a reasonable assumption for many targets such as helicopters

(see Fig. 10). For a node withP microphones, the narrow-band observation model relates the

complex envelope of the node microphone outputs to that of the target signal, respectively called

y(t) ∈ CP×1 ands(t) ∈ C1. The observation model is

y(t) = a(θt)s(t) + na(t), (3)

wherea(θt) ∈ CP×1 is the narrow-band steering vector for a target at DOAθt, andna(t) ∈ CP×1

is additive noise. For a narrow-band calibration source, whose center frequency isf0, the pth
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element (p = 1, 2, . . . , P ) of the vectora(θt) is given by

[a(t)]p , [a(θt(ξ,χt))]p = exp

[

j
2πf0ρp

c
sin(θt(ξ,χt) + φp)

]

, (4)

where c is the speed of sound, and(ρp, φp) is the pth microphone position given in polar

coordinates.

When the target reports its GPS positionχt electronically, the GPS information arrives at the

node with the speed of light. However, the acoustic data corresponding to GPS-reported position

arrives at the node with the speed of sound, which is six orders of magnitude slower. Hence,

time-synchronization is required to match the acoustic data to proper GPS points. Denoteτ(t) as

the arrival time at the node for a sound emitted from the “source” at timet. Then, the following

time-warping needs to be applied to synchronize the acoustic data and the GPS estimates:

τ(t) = t+ ||ξx,y − χt||/c. (5)

Assuming i.i.d. Gaussian array noisena(t), the probability density function (pdf) of the

observed data with the appropriate time-warping is given by

p(YK |ξ,χ0, . . . ,χt) =

K−1
∏

t=0

1

πPσ2P
exp

[

− 1

σ2
‖y(τ(t)) − a(t)s(t)‖2

]

, (6)

whereσ2 is the array noise variance,K is the total number of observations at the sampling

frequencyFs, a(t) is defined in (4), andYK is the aggregate data vector formed by stacking all

the observed data:

YK =















y(t)

y(t+ κ)
...

y(t+ (K − 1)κ)















, whereκ =
1

Fs

. (7)

To calculate (6), note that the source’s GPS values should beinterpolated up to the acoustic

sampling frequency, because the GPS points are usually reported less frequently (e.g., every

other second). We use a constant velocity assumption to perform the GPS interpolation.

The data-likelihood (6) is maximized w.r.t.ξ to find the ML solution. However, the likelihood

function is very complex due to the time-warping defined in (5). To simplify the solution, if
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an initial guess for the parameter vectorξ0 is available, then one can assume thatτ0(t) ≈
t + ||ξ0 − χt||/c. It is the author’s observation that as long asξ0 is within c/4 meters of the

true positionξ, the ML solution is robust. However, the DOA-solutions presented next section

are sensitive to the time-warp function and require that theinitial guessξ0 be within c/20

meters of the true position. Once an estimate ofξ is available usingξ0, it can be further used to

refine the time-warping function. Hence, this procedure is iterated to determine the node position

estimates. In the rest of the paper, we ignore the time-warping issue, except when discussing

the Metropolis-Hastings method that can automatically handle it.

To calibrate the array, we first obtain the negative log-likelihood function:

L− .
= KP log(πσ2) +

1

σ2

K−1
∑

t=0

‖y(t) − at(ξ)s(t)‖2 (8)

where
.
= denotes equality up to a constant, anda(t) is written asat(ξ) to emphasize the

dependence on the parameter vector. Because of this dependence, the optimal solution forξ

(node-center position and orientation) is the one that bestaligns the microphone output signals

y(t) with shifted versions of the common source signals(t), given the source GPS track and

the relative microphone positions.

The ML estimate (maximizing the log-likelihood function) is equivalent to the minimum of

L−. First of all, we fix ξ and s(t) and minimizeL− with respect toσ2 to find the ML noise

variance. Next, the signal estimate is found by taking the variation of (8) with respect tos(t),

and setting it equal to zero. The results are:

σ2
ML =

1

KP

K−1
∑

t=0

‖y(t) − at(ξ)s(t)‖2,

sML(t) = 1
P

aH
t (ξ)y(t).

(9)

Substituting these ML estimates intoL− and noting that the log operator is monotonic, we can

rewrite the fist term in (8) as an ML cost function that dependson ξ alone:

J(ξ) =
K−1
∑

t=0

trace
{

PtR̂t

}

=
K−1
∑

t=0

trace
{

(I − 1
P

at(ξ)aH
t (ξ))R̂t

}

=
K−1
∑

t=0

Jt(ξ), (10)

wherePt = I− 1
P

at(ξ)aH
t (ξ) is the projection onto the null space ofaH

t (ξ), andR̂t = y(t)yH(t)

is the one-sample autocorrelation estimate. Finally, the ML estimate would be obtained by
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minimizing the cost function

ξML = arg min
ξ
J(ξ). (11)

B. Newton Search Algorithm

The solution to (11) requires the evaluation of the cost function J(ξ) over the entire domain

of the parameter vectorξ to obtain the global minimum, becauseJ(ξ) may have multiple local

minima. However, this would be computationally expensive and unnecessary in most cases. If

an initial estimate can be found that is reasonably close to the global minimum, then the cost

function can be approximated via the expansion:

J(ξ + δξ) ≈ J(ξ) + gT (ξ)δξ + 1
2
δξTH(ξ)δξ, (12)

whereg andH are the gradient and the Hessian ofJ(ξ), respectively. This leads to Newton’s

method, which is known to exhibit quadratic convergence when starting sufficiently close to the

optimum point [10].

The necessary gradient of the cost function (10) can be calculated via the chain rule:

g ,
∂J(t)

∂ξ
=

1

M

M−1
∑

t=0

V (t)diag(∇θJt), (13)

where

V (t) ,
∂θt

∂ξ
, (14)

and

∇θJt = −2ℜ
{

a
†
tR̂tPt

∂at

∂θt

}

. (15)

The HessianH ,
∂2J(t)

∂ξ∂ξH
is then given by

H =
1

M

M−1
∑

t=0

{

[∇2
θθJt ⊗ 1] ⊙ [V (t)HV (t)] + [diag(∇θJt) ⊗ I] ⊙ Υ(t)

}

, (16)

whereΥ(t) is the Hessian ofθt with respect toξ, and1 denotes a3× 3 matrix of all ones, and

I is the identity matrix of the same dimensions. Symbols⊗ and⊙ denote the Kronecker and

Schur products, respectively. The operator diag(x) denotes a matrix whose diagonal elements

consists of the vectorx. To guarantee the positive definiteness ofH, the term containingΥ(t)
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in (16) should be ignored while calculating the Hessian. Thefollowing derivative also needs to

be approximated while calculating∇2
θθJt:

∂2Jt

∂θ(t)∂θ(t)
≃ 2ℜ{γH(t)γ(t)}, (17)

where we defineγ(t) =
∂Pty(t)

∂θt

.

TABLE I

NEWTON ALGORITHM WITH BACKTRACKING STEP SIZE SELECTION

At the kth iteration of Newton-Raphson algorithm:

• Calculate the descent directionpk = −H−1
k gk. Then,

– Setµ0 = 1;
– While J(ξk + µmpk) > J(ξk) + 10−4µmgT

k pk (sufficient decrease condition), do

∗ Choose the contraction factorρ ∈ [0.1, 0.5],
∗ µm = ρµm−1.

– Setµk = µm.

• ξk = ξk−1 + µkpk.
• Continue until the stopping condition.

Netwon’s method is used to find the minimum of (11). Table I describes the algorithm with

the variable step size selection modification [10], [11]. Lastly, it is also crucial for the Newton

algorithm to use a good stopping condition for terminating the search. Among various choices

outlined in [11], we use the relative change in the cost function to stop the algorithm. At this

point, it is important to recall that the ML solution above does not include the effects of errors

in the GPS track (χt) on the estimation performance of findingξ. This is addressed in the next

subsection, where it is shown that such errors are usually negligible.

C. Effects of the GPS Errors on the Estimation Performance

In the 2D problem under consideration, the GPS outputsχt have components in thex and

y directions. If we model errors in the GPS estimates as zero mean i.i.d. Gaussian noise,

nχ ∼ N (0, σ2
χI), then we can compare the relative effects of GPS noise and microphone noise

on the final calibrated node-position estimate. In many practical scenarios, the size of the GPS
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errors is generally on the order of 1–5 meters, when differential GPS data is jointly used with the

GPS system [19]. Rather than finding the variance of the final calibrated node-position estimates

directly, we develop a formula for the array outputy(t) that includes a perturbation due to

GPS noise. Then, the size of this perturbation term is compared to the array noise to derive the

condition, under which GPS noise is negligible.

The array outputy(t) depends on the angle to the sourceθt, which, in turn, depends on the

source location. With GPS noise, there is uncertainty in thesource location, which translates into

a perturbation of the estimated DOA angle and finally into additive noise in the array output. The

first step is to find the effect of GPS noise on the auxiliary variableθt defined in (2). Expanding

in a Taylor series, the first-order perturbation can be modelled as follows:

θt(ξ,χt + nχ(t)) ≈ θt(ξ,χt) + nx
χ(t)

∂θt

∂nx
χ(t)

∣

∣

∣

∣

∣

nx
χ(t)=0

+ ny
χ(t)

∂θt

∂ny
χ(t)

∣

∣

∣

∣

∣

n
y
χ(t)=0

. (18)

By taking the derivatives of (2), and noting that the noisenχ(t) is independent in thex andy

directions, and the second-order terms are very small, we can approximate the DOAθt with a

Gaussian density:

θt(ξ,χt + nχ(t)) ∼ N
(

θt(ξ,χt),
1

R2
t

σ2
χ

)

(19)

with the correct meanθt(ξ,χt). This leads to an intuitive result: when the GPS errors are very

small compared to the range, the position errors will translate into an approximate angle error

of tan−1(σχ/Rt) ≈ σχ/Rt, which is tiny.

The next step is to derive the effect of GPS noise on the steering vector. Once again, a

first-order approximation can be used:

a(ξ,χt + nχ(t)) ≈ a(ξ,χt) +
∂a

∂θ
nθ, (20)

where the steering vector is as defined in (4). The derivativeof (4) becomes

∂a

∂θ
=
j2πf0

c
a(ξ,χt)λ(θ),

whereλ(θ) = diag{[ρ1 cos(θ+φ1), . . . , ρP cos(θ+φP )]}. If we defineΛ(θ) = λ(θ)⊙λ(θ), then

the array outputs for a source signal with constant envelopemagnitude of one can be shown to
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obey the following Gaussian distribution

y(t) ∼ N (a(ξ,χt),Σ(ξ,χt)) , (21)

where the autocorrelation matrixΣ is a function of the array noise as well as the GPS noise:

Σ(ξ,χt) = σ2I +

(

2πf0σχ

cRt

)2

a(θt)Λ(θt)a
H(θt). (22)

The second term in (22) is the perturbation due to GPS errors.If σ ≫ 2πf0σχ

cRt

, then it can be

argued that GPS errors have a very small impact on the estimation performance because the data

likelihood (6) is not affected. For most cases of interest inour work, this is reasonable because

the narrow-band frequencies of the source are usually less than100 Hz, the GPS error standard

deviationσχ is on the order of a few meters, while the rangeRt is a kilometer or more.

D. Craḿer-Rao Lower Bound for the Estimate ofξ

The Cramér-Rao lower bound (CRLB) is an information theoretic inequality that provides a

lower bound for the variances of the unbiased estimators. Ifan estimator achieves the CRLB, then

it also maximizes the likelihood equation. However, it is not always true that the ML solution

achieves the CRLB (at least, for finite sample sizes) or that it will be unbiased [13]. The CRLB

is still a useful metric with which to compare the performance of the algorithm, and is derived

for the calibration problem in this section.

First, we derive an expression for the Fisher information matrix (FIM). Assume that the noise

varianceσ2 is known. Ignoring the time-warping issue, the log-likelihood function (6) for the

parameter vectorξ simplifies to the following relation:

L(ξ)
.
= − 1

σ2

K−1
∑

t=0

‖y(t) − ats(t)‖2 (23)

whereat = at(θt(ξ,χ)) is the steering vector from the node position to the calibration source.

The (i, j)th element of the FIM is given by partial derivatives of (23) with respect to theith and

jth parameters of the vectorξ

Fi,j = Ey

{

∂2Lχ(ξ)

∂ξi∂ξj

}

= − 2

σ2

∑

t

ℜ
{

(

∂at

∂ξi

)H
∂at

∂ξj

}

(24)
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whereξi = [ξ]i andEy{·} denotes the expected value with respect to the data distribution (see

[4] for a similar derivation). The Cramér-Rao lower bound is the inverse of this expression [13].

Interestingly, the CRLB depends on the source’s narrow-band frequency: the higher the frequency,

the lower the localization bound. In the simulations section, Fig. 6 shows this dependence for a

specific scenario.

III. DOA-B ASED CALIBRATION ALGORITHMS

In the previous section, the calibration problem was introduced and the maximum-likelihood

solution presented. The remainder of the paper treats another set of methods calledDOA-Based

calibration algorithmsthat exploit the geometry of the problem defined by the GPS (carried by

the source) along with estimated DOAs (at the node). These methods rely on the fact that the

DOA is a sufficient statistic, from which it is possible to determine the node-center position and

orientation. We first explain the angle matching idea used bythe DOA-based calibration methods.

Then, two DOA-based calibration methods are studied: the first uses the synthetic aperture

concept from radar, and the second, a Metropolis-Hastings type of Monté-Carlo algorithm. For

both DOA calibration algorithms, performance bounds are derived and examples are included.

A. Angle Matching

The DOA-based calibration algorithms use a simple angle matching idea derived from the

geometry of the problem, illustrated in Fig. 2. As the sourcemoves, the node estimates a DOA

track θ(t) with respect to its orientation by using the received acoustic data, independent of the

node position. The node can also calculate a node-to-GPS angle trackψ(t) as a function of the

node position(x, y) and the GPS track(xT (t), yT (t)) transmitted by the source (Fig. 2):

ψ(x, y, t) = tan−1

(

y − yT (t)

x− xT (t)

)

= θ(t) + ϕ. (25)

Then, by assuming that the DOA estimation errors are zero mean Gaussian random variables, a

maximum-likelihood solution can be found forξ by minimizing the following cost function:

ξML = arg min
ξ

∑

t

(ψ(x, y, t) − θ(t) − ϕ)2

σ2
θt

, (26)

where σ2
θt

is the DOA estimation variance, which is discussed later in this section. Another

Newton-type algorithm can be formulated for the solution ofthe above equation. This solution
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will not be discussed here, because the algorithm is similarto the ML solution considered in

the previous section.

ϕ

ψ

θ

β

(x, y)

(xT , yT )

R

Fig. 2. The node position is shown with a circle at the position (x, y). As the calibration source moves (dashed line), the node
can calculate two anglesθ(t) andψ(t) that should be matched to determine the unknown parameter vector ξ. The parameterβ
is called the synthetic aperture radar (SAR) angle to be explained in the next section.

In reality, the above solution calibrates the array only moderately well, because it does not

consider the acoustic data propagation time from the calibration source to the node. The angle

matching equation (25) as well its ML solution should be modified using the time-warp relation

in (5):

ψ(x, y, τ(t)) = θ(t) + ϕ, (27)

ξML = arg min
ξ

∑

t

(ψ(x, y, τ(t)) − θ(t) − ϕ)2

σ2
θt

. (28)

The Metropolis-Hastings calibration method uses a data-likelihood function based on this cost

function.

B. Synthetic Aperture Calibration Method

The synthetic aperture concept is the idea of creating a large aperture size from a small

moving physical aperture to obtain better angular resolution. In the node calibration problem, if
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the problem is reformulated by time-reversing the events such that the fixed node is considered

to be the sound source and the moving calibration source the receiver(s), then it is possible to

apply the synthetic aperture concept. That is, we create a moving pseudo-receiver defined by

the calibration source’s GPS track and assume that the signals are coming from the acoustic

node (Fig. 3). The moving pseudo-receiver can be grouped into synthetic subarrays, from which

we can estimate the DOAs to the fixed node, and then calibrate the node position by doing

triangulation.

Synthetic Array 1

Synthetic Array 2

Source Track

β1

β2

β1

β2

Acoustic Node

Fig. 3. The moving calibration source can be interpreted as amoving pseudo-receiver that creates a synthetic aperture.Pseudo-
receiver positions can then be grouped into subarrays and used to estimate DOAs assuming the signals are coming from the
fixed sensor node. This does not require additional transmission of the recorded sound data from the node, since this estimation
can be done at the node.

A single synthetic receiverposition consists of a fixed number of signal samplesM and is

assigned a fixed position, even though thereal receiveris actually moving, while theM samples

are acquired. The number of samplesM determines the intersensor spacing for the synthetic

array, so spatial aliasing of the acoustic signals must be taken into account. The distance traveled

by the calibration source moving at a velocityv duringM samples (sampled atFs) is Mv/Fs.

In conventional array processing, it is well-known that if the sensor spacing is less than half the

wavelength of the signal of interest, then spatial aliasingcan be avoided [9]. Hence, an upper

bound onM is:

M <
cFs

2f0v
(29)
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where f0 is the narrow-band center frequency, andc is the speed of sound. For reasonable

beamforming, at least one cycle of the signal must be observed; hence,M > f0. As a rule of

thumb, we recommend using the largestM that satisfies (29).

The total number of synthetic receiver positions used in forming a subarray (Q)is subject to

the following trade-off: longer subarrays would give better DOAs, but provide fewer DOAs for

triangulation. Surprisingly, it appears that the node position estimation accuracy is not affected

much by this trade-off when tested on synthetic data.

We now describe the details of the synthetic aperture calibration method. The acoustic data

recorded at each microphone of the acoustic node is temporally partitioned intoM-sample data

sets, and the midpoint time is used to define the position for each synthetic receiver along the

path of the moving calibration source,χt. Two issues arise from this definition of the synthetic

receiver. First, each sample in the block ofM data samples comes from the neighborhood of

the defined receiver position, through which the source was moving. We can model this as a

non-stationary effect in the received data. Second, since the GPS positions are usually supplied at

a much lower rate than the acoustic data sampling rate, the synthetic receiver positions must be

estimated by using a straight-line interpolation between the given GPS data points. For example,

if Fs = 1024 Hz, andM = 64, then the synthetic receiver positions must be determined 16

times per second.

A subarray is formed by grouping togetherQ synthetic receiver positions. The intrasensor

spacing isMv/Fs meters, assumingv is constant. Simple beamforming such as MUSIC (Multiple

Signal Classification) or MVDR (Minimum Variance Distortionless Response) results in biased

DOA estimates if the calibration source is moving fast (e.g., a helicopter). This bias is caused

by the non-stationarity of the synthetic array data mentioned above, but previous work in [1] has

addressed this same issue and shown how to calculate the biasvalues theoretically. Therefore,

we propose the following ML cost function, derived similarly to (10), for obtaining unbiased

synthetic DOA estimatesβ:

J(β) =
M
∑

t=1

tr

{[

I − 1

Q
at(β)aH

t (β)

]

R̂z(t)

}

, (30)

where at(β) is the steering vector corresponding to aperture points andβ is defined as the

synthetic aperture radar angle (Fig. 2). The time dependence in at(β) is caused by the data
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samples at each synthetic sensor being from a neighborhood of the synthetic sensor position.

The angleβ is calculated with respect to the center of the synthetic aperture of sizeMQ

samples, and̂Rz(t) is the one-sample (outer product) autocorrelation estimate of the synthetic

array. Equation (30) differs from (10) in the time dependence of the steering vectors. In (10),

the microphone positions are fixed with respect tot; whereas, in (30), the SAR angleβ is fixed,

and the position where the data is collected is changing along the aperture.

Equation (30) can be used to determine the position of each individual microphone within the

node. Since there areP microphones in the node, it is possible to obtainP independent estimates

of the node position using the individual microphone outputs, assuming that the additive noise is

spatially white at the acoustic node. Then, theP estimated microphone positions can be averaged

to obtain an estimate of the node-center position. The node orientation would then be estimated

from the acoustic node DOA estimates along with the node-center position estimate. Once again,

it is important to recognize the array non-stationarity issue caused by rapid source movement.

The ML cost function to be minimized at the acoustic node in this case is

J(θ) =

M
∑

t=1

tr

{[

I − 1

P
a(θt)a

H(θt)

]

R̂y(t)

}

, (31)

where

θt = tan−1

{

Fs sin θ + qt cosφ

Fs cos θ + qt sinφ

}

, (32)

where θ is the DOA at the beginning of the batch,q = v/R, and φ is the approximate

source heading during the estimation batch. Equation (32) can be derived by a straight-line

approximation for the calibration source during a batch period. Given the node-center position

estimate, if the DOAs are estimated using (31), one can estimate the node orientation by simply

calculating the bearings from the node position and GPS estimates, and then finding the difference

between the mean values of these estimates.

When (30) is used for the SAR angles, the cost function will display two minima corresponding

to two different candidate SAR angles. This is attributed tothe cone of ambiguity problem for

microphone arrays and is applicable to our problem due to theconstant velocity interpolation of

the GPS points. Even when there is no spatial aliasing, the estimator (30) results in two DOA
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estimates that are symmetric with respect to the array axis (calibration source orientation angle)1.

This issue has been addressed for uniform linear arrays in [9]. The solution to this problem is

to also track the DOA estimates and impose a constraint that the DOA estimates not change too

much from one aperture to another. This fact also helps reduce the computational load while

finding the minimum of the cost function in (31), since previous estimates are usually close to

the sought minima. In turn, two node positions can be triangulated using the two DOA tracks,

one corresponding to the node and the other corresponding toa shadow. The real node can easily

be determined by picking the node position with the least minimum-mean squared error, since

it actually corresponds to a physical position.

Once the SAR angles (βi’s i = 1, . . . , L) are calculated for each synthetic array with respect

to the array centers(x(i)
T , y

(i)
T ), determination of the node position requires one more step.Figure

3 suggests an intuitive solution based on determining the intersection of the lines created by the

aperture positions and the SAR angles. This leads to the following overdetermined system of

equations to determine the node position:










sin (π − β1) − cos (π − β1)
...

...

sin (π − βL) − cos (π − βL)















x

y



 =











sin (π − β1)x
(1)
T − y

(1)
T cos (π − β1)

...

sin (π − βL)x
(L)
T − y

(L)
T cos (π − βL)











(33)

This equation is based on the following geometrical relationship between the node DOAθi, its

orientationϕ, and the SAR angleβi, as illustrated by Fig. 2:

βi = ±π + θi + ϕ = ±π + tan−1

(

y − y
(i)
T

x− x
(i)
T

)

(34)

Equation (34) defines an under-determined system forξ for one indexi, hence making it

analytically intractable to derive a joint probability density functionp(x, y), since the required

Jacobians for the coordinate transformation fromβ to (x, y) are not defined2. Equation (33)

provides the least-squares solution for the node position.However, the estimated DOAs become

approximately Gaussian distributed as the sampling frequency of the data increases. Based on this

observation, similar to the ML solution using the node-to-GPS anglesψ shown in the previous

1The average of these two DOA candidates can be used to check the consistency of the source heading angle.
2That is because the coordinate transformation defined by (34) is not one-to-one.
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section, we propose the following

ξx,y = arg min
ξ

x,y

J

J =

L
∑

i=1

(

βi − tan−1

(

y−y
(i)
T

x−x
(i)
T

)

± π

)2

σ2
βi

,

(35)

where the sign in front ofπ must be determined from the geometry and the SAR angle error

varianceσ2
βi

should be calculated from the data. A possible expression will be given in the later

sections. This estimator can be refined by weighting the terms in the summation by the estimated

noise variances per index. The following sections give analytical equations for these variance

estimates. Equations (33) (SAR-LS solution) and (35) (SAR-ML solution) are biased estimators

(shown by simulations); however, the bias is difficult to analyze.

A Newton based search can again be employed to solve (35). TheNewton algorithm is

useful for estimating the angles, since the SAR anglesβi are very close to each other. Hence,

the previous estimateβi−1 can be refined using the Newton recursion to estimateβi. This is

conditioned on the fact that the calibration source is not maneuvering too much, because the

Newton search can become trapped at a local minimum. We recommend calculatingJ in (35)

first on a rough grid near toβi−1 (e.g., a grid of anglesβ ∈ [βi−1 − 15◦, βi−1 + 15◦] with 1◦

spacing), then using the minima over that rough grid and the Newton algorithm to refine the

estimateβi.

C. Metropolis-Hastings Calibration Method

The objective of the Metropolis-Hastings (MH) algorithm isto distribute particles (discrete

state samplesξi) according to a target distributionπ(·). Hence, at each iterationk, the algorithm

recursively redistributes its states so that, asymptotically, the resulting Markov chain is distributed

according to the target distribution. The MH scheme [15] is depicted in Fig.4. In the figure, the

Markov chain at iterationk is represented byξ(k). The new chain candidatesγ are generated

by the proposal functionq(ξ,γ), which is usually the spherically symmetric random walk:

q(ξ,γ) = q(|ξ − γ|) ∝ exp

{

−(ξ − γ)2

2σ2
q

}

(36)
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π(ξ)

ξ(k)

γ

1

0

q(ξ,γ)

α(ξ,γ)

ξ(k+1)

Fig. 4. The Metropolis-Hastings scheme is demonstrated. Each circle represents a sample from the chain in the respective state
space. The algorithm uses its current state to generate new candidates for its next state using a candidate generating function q.
The new candidates are accepted or rejected in a way that the Markov chain asymptotically converges to the target posterior π.

Once the new candidates are generated, the algorithm accepts the moves or keeps the current state

according to the acceptance ratioα(ξ,γ) derived from the stochastic reversibility condition [15]:

α(ξ,γ) = min

{

π(γ)q(γ, ξ)

π(ξ)q(ξ,γ)
, 1

}

(37)

In Fig. 4, the acceptance ratios are represented by the height of the boxes for each candidate.

To accept or reject the new candidate, a random number generator is used to generate uniform

random numbers in(0, 1), u ∼ U(0, 1), represented by the black dots in Fig. 4. Ifu is less than

the acceptance ratio for the specific particle, the move is accepted, otherwise, it is rejected. Also,

the acceptance rateat iterationk is defined to be the number of accepted moves divided by the

chain size. Visually, it is the number of arrows in the last stage in Fig. 4 divided by the number

of particles. Finally, the chain moves toξ(k+1) and the scheme is repeated.

For the calibration problem, the target function is actually the exponential of the negative ML
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cost function defined earlier in (27):

π(ξ) ∝ exp

{

−
∑

t

(ψ(x, y, τ(t)) − θ(t) − ϕ)2

2σ2
θt

}

, (38)

whereψ is the node-to-GPS angle,θt is the DOA estimate from the acoustic data using (31),

andϕ is the node orientation angle. The time-synchronization iseasily incorporated into this

solution because it is possible to calculateτ(t) given a proposed node position and the GPS of

the calibration source.

Moreover, it is easy to see that (38) peaks at the correct nodeposition when there is no

noise. Intuitively, this is the complement of the syntheticaperture solution, where the angles are

calculated on the node side, however it performs more robustly than the estimator proposed in

(35). As for the candidate generating functionq, we employ the symmetric random walk, where

the walk variances should be picked subjectively. For example, a few meters works well for the

walk variances onξx,y, and we use a few degrees for the orientationϕ.

The MH scheme, as presented here, takes a notoriously long time to converge. Hence, it

is necessary to speed it up for a real-time application. Pseudo code is given in Table II for

the classical MH algorithm for the calibration problem. In Table III, we outline the generic

Mode-Hungry MH algorithm for accelerated convergence of the chainξi. The initialization is

usually the uninformed uniform density in the calibration space. A grid based initialization of

this algorithm is also possible [20], when prior information is available.

D. Performance of the DOA Calibration Algorithms

The DOA calibration algorithms use a sequence of estimated DOAs corresponding to a batch

size ofM samples, together with geometrical arguments, to estimateξ. In other words, the DOA

at indexi is estimated usingM array samples corresponding to theith synthetic receiver, sampled

at Fs. To evaluate the performance of the DOA calibration algorithms, the DOA estimation

performance should first be related to the node array signal-to-noise (SNR) ratio. Note that

the DOAs need to be estimated using (31) if the calibration source is moving relatively fast.

Classical DOA estimators such as MUSIC and MVDR result in biased estimates due to the

non-stationarity of the data caused by rapid motion of the calibration source [1], [3]. Using the

likelihood function in (23), we write the Fisher information for the DOA at the beginning of the
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TABLE II

PSEUDOCODE FOR THEMH CALIBRATION

• At time k, for each particlei (i = 1, . . . , N ) , ξ
(k)
i :

i. generate a candidateγi using a candidate generating functionq(ξi, γi), which is usually a random walk
ii. estimate the time-reference frame for data synchronization using the proposed position, the source GPS

track, and the speed of soundc
iii. calculate the DOAs,θ(t), using the motion compensated beamformer (31)
iv. calculate the acceptance ratio, where the target distribution π(·) is as given in (38)

α(ξi, γi) = min

(

π(γi)

π(ξi)
, 1

)

v. sampleu ∼ U(0, 1)

vi. if u ≤ α(ξi, γi), setξ(k+1)
i = γi, else,ξ(k+1)

i = ξ
(k)
i .

• Repeat until convergence is detected.

batch as

Fθ1 = E

{

(

∂L(θ1)

∂θ1

)2
}

= − 2

σ2
a

M
∑

t=1

ℜ
[

(

∂at

∂θt

∂θt

∂θ1

)H (
∂at

∂θt

∂θt

∂θ1

)

]

,

(39)

where ∂θt

∂θ1
is calculated from (32). The inverse ofFθ bounds the best achievable performance

by an unbiased estimator, but in most cases, DOA estimation performance will be close to this

bound for largeM . Hence, it is reasonable to approximate the noise variance on the estimated

DOAs as

σ2
θ ≈ −σ

2
a

2

{

M
∑

t=1

ℜ
[

(

∂at

∂θt

∂θt

∂θ1

)H (
∂at

∂θt

∂θt

∂θ1

)

]}−1

. (40)

This estimated noise variance (40) can be also used in the solution (35) to weight the SAR angles.

Similarly, most beamformers can calculate their estimation accuracy by checking to see how well

the observations conform to the underlying data model. The curvature of the beamformer output

at the peak location can be converted into an angle variance estimate. In this case, the array

noise can be calculated in various ways, for example, using eigenvalue analysis on the array auto-

covariance matrix [9], [18]. Another measurement noise model for narrow-band target signals
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TABLE III

MHMH SAMPLING ALGORITHM

• For each particleξi, i = 1, 2, . . . , NMHMH, use the Mode-Hungry scheme everyLjump = 2 iterations:

– determine a subpartition of sizeMl < NMHMH, (e.g.,Ml = NMHMH/2),
– order the current particles according to their probabilities in descending order:ξi → ξ∗

j , whereξ∗ is
the ordered particle set,

– generate candidatesy∗(1) for ξ∗(1) = {ξ∗

j |j : j = 1, 2, . . . , NMHMH − Ml}, usingq(·, ·),
– calculate the acceptance ratioα(ξ∗(1), y∗(1)), and setξ(l+1)

j to ξ∗

j (1) or y∗

j (1), accordingly for
j = 1, 2, . . . , NMHMH − Ml,

– distributeMl candidatesy∗(2) from ξ
∗(1) uniformly,

– setξ(l+1)
j to y∗(2) for j = NMHMH − Ml + 1, . . . , NMHMH.

can be determined from the following relation [21]:

σθ =
λ0

AC
√

2SNR
, (41)

whereλ0 is the monotone signal wavelength,SNRis the signal-to-noise ratio,A is the aperture

size of the array, andC is a constant depending on circular or plane-wave illumination of the

aperture. As a rule of thumb, one can useσ2
θt
∝ Rtσ

2
θ

/

∑

tRt for the field examples, whereσ2
θ

is proportional to the largest expected DOA error.

Now, if we assume the DOA noise is independent from batch to batch and is Gaussian with

zero mean and with variance of (40), then the DOA likelihood from (38) becomes

L(θ|ξ)
.
= −1

2

L
∑

i=1

1

σ2
θi

{

θi + ϕ− tan−1

(

y − y
(i)
T

x− x
(i)
T

)}2

, (42)

with θ = [ θ1 , . . . , θi , . . . , θL ], wherei is the estimation batch index andσ2
θi

is estimated

using (40). Then, the estimation bound on the parameterξ becomes

CRBξ =

(

L
∑

i=1

γiγ
T
i

)−1

(43)

where

γi = − 1

σ2
θi

[

1,
y − y

(i)
T

R2
i

, −x− x
(i)
T

R2
i

]T

(44)
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In the simulations section, we show that the above CRLB (43) is quite close to the bound that is

calculated directly from the data likelihood. This, in turn, raises the question of the sufficiency

of the DOA estimates in the calibration problem, which is covered in the next subsection.

E. Sufficiency of the Auxiliary DOA Estimates in the Calibration Problem

The parameter vectorξ affects the distribution of the observationsYM defined by (7) through

the distributionp(YM |ξ,χ0, . . . ,χt) given in (6). Therefore, in the calibration problem, the

statistical behavior of the acoustic data constitutes the only information about the parameterξ

when there is a lack of a prior distribution onξ. Hence, if knowingβi removes any dependence

onξ from the data distribution (6), then it can be said thatβi contains all the relevant information

in the data needed to estimate the parameterξ [13]. Hence, the objective is to prove the following

equality:

p(YM |ξ, β0, . . . , βL,χ0, . . . ,χt) = p(YM |β0, . . . , βL,χ0, . . . ,χt) (45)

At this point, some assumptions should be reiterated. The SAR anglesβi are only given once

per block ofMQ data samples (a total ofL blocks), whereas the data likelihood depends on

the parameter at every sample. This is not a problem if the assumption of straight-line motion

(32) is true between GPS data points. Thus, the data likelihood can be written as

p(YM |ξ, β0, . . . , βL,χ0, . . . ,χt) =

K−1
∏

t=0

1

πPσ2P
exp

[

− 1

σ2

∥

∥y(t) − a(π + β(t) − ϕ)s(t)
∥

∥

2
]

,
(46)

where

β(t) + π − ϕ = tan−1

{

Fs sin θt−1 + q∗(t− 1) cosφ∗

Fs cos θt−1 + q∗(t− 1) sinφ∗

}

,

with θt−1 = β(t−1) + π − ϕ.

(47)

Parameterφ∗ is the approximate heading direction of the calibration source at timet and is

calculated from the GPS data. Parameterq∗ is the only parameter that depends on the node

position(x, y) and can be approximated by

q∗ ≈
∣

∣

∣

∣

Fs sin(βi − βi−1)

(MQ− 1) sin(βt − φ∗)

∣

∣

∣

∣

. (48)
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Hence, given the synthetic DOAsβi, it is possible to remove the dependence of the data on the

node position, but not on the node orientation. That is,

p(YM |ξ, β0, . . . , βL,χ0, . . . ,χt) = p(YM |ϕ, β0, . . . , βL,χ0, . . . ,χt) (49)

Equation (49) implies that the estimated synthetic DOAs approximately form sufficient statistics

for the acoustic node position. This is quite intuitive because two anchor points and two DOAs

is sufficient to triangulate the node position. In addition,to remove the dependence on the

orientation angleϕ, at least one local estimate ofθt is required from the node.

IV. SIMULATIONS

Using computer simulations, our objectives are to (i) show the effects of the GPS errors on

the estimation performance of the various algorithms, and (ii) demonstrate the ML and DOA

calibration algorithms and compare their performance. Thesynthetic simulation examples use two

calibration source tracks. The first track has a calibrationsource circling the origin at a range of

600m with a constant speed of75 mph. The second calibration source starts at(2000, 500)m and

moves in the negativex-direction with the same speed. The acoustic node is a uniform circular

array withP = 6 omnidirectional microphones with a radius of1.22m. The total estimation time

for the calibration is120s and the GPS error standard deviation isσχ = 1m, sampled at 1Hz.

A. Effects of the GPS Errors on the Estimation Performance

Figure 5 demonstrates that the effects of the GPS errors on the likelihood surface is negligible.

Moreover, the estimated positions, with and without GPS errors, differ by less than a centimeter.

The smooth convex shape of the surface justifies the argumentthat a Newton or gradient-descent

type of search algorithm can be used to estimate the node parameters, instead of calculating

the whole surface. In Fig. 5, we try to determine the positionof the acoustic node placed at

[ 100, 50 ]m. The target narrow-band frequency used for the calibration is f0 = 20 Hz, the node

sampling rate isFs = 128 Hz, and the acoustic nodeSNRis 7 dB. TheSNRis defined as

SNR = 10 log

(

1√
2σ2

a

)

. (50)

The ellipse in Fig. 5 represents the CRLB. The ellipse axes are determined by the square root

of the diagonal elements of the CRLB. The ellipse orientation is determined by the correlation
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Fig. 5. (a). The likelihood surfaceJ with GPS errors. The GPS error standard deviation isσχ = 1m and it is circularly symmetric
in the x and y directions. The star indicates the true node position at[ 100, 50 ]m , whereas the dot is the estimated position
[ 100.5899, 50.0289 ]m using the Newton algorithm. The ellipse is the Cramér-Raobound on the position estimates. (b). The
likelihood surfaceJ without any GPS errors. The Newton method estimates the nodeposition as[ 100.5811, 50.0360 ]m . The
solutions are almost identical.

terms in the CRLB.

B. Performance Comparisons

In this section, we first compare the two CRLBs, one derived directly from the array model

(inverse of the FIM (24)) and the other through DOA estimation methods (43). Figure 6 shows

that both bounds are identical even at different frequencies. Intuitively, this may suggest similar

performance for the ML calibration algorithm and the DOA calibration algorithms. However,

Figs. 7 and 8 show that this is not the case.

Figure 7 shows the results of a Monté-Carlo run for the calibration algorithms. The ML and

SAR calibration methods are given the correct time-warpingfunction. When approximate time-

warping is used, the author’s observed that the ML calibration algorithm is much less sensitive

than the SAR calibration algorithm. In Fig. 7, the SAR methodis first run with the least squares

solution (SAR-LS solid line with circle markers in the figure) that has higher estimation errors.

The output of this algorithm is then used to initialize the SAR-ML solution as well as the

ML calibration method. The MH calibration method performs similar to the ML and SAR-ML
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methods even though it is uninformed of the correct time-warping function.

Figure 8 compares the performance of each algorithm with theCRLB. Figure 8(a) uses the

circular track, whereas Fig. 8(b) is simulated with the straight line track. The position estimation

bounds for the circular track is much lower, because the nodeobserves a much larger angular

span. The ML and the MH calibration methods follow the CRLB closely. The performance of

the algorithms flattens at highSNR’s, because of the GPS errors.

In Fig. 8(a) and (b), the SAR-ML and LS methods have a constantvariance over the entire

SNR range with increased estimation bias. At someSNR ranges, the SAR-ML method beats

the CRLB. Such estimators do exist but are hard to find [13]. Note that an efficient unbiased

estimator has a performance bound defined by the CRLB. It is also known that if an estimator

achieves the CRLB, then it is the ML estimator. In our problem, the ML estimation algorithm

achieves the CRLB as the number of data points are increased.

V. FIELD DATA RESULTS

We applied the MH calibration scheme on field data from a smallacoustic array (also appeared

in [22]). A helicopter flew sorties around the acoustic node for the calibration purposes (Fig. 9).

For the experiment, the array was hand-emplaced so that the true location and orientation would

be known. The acoustic node has six omnidirectional microphones placed uniformly on a circle

with a radius of1.219m, which also corresponds to the inter-microphone distance. The spatial

aliasing frequency is approximately135Hz corresponding to the case where the radius of the

array is equal to a half-wavelength. For the MVDR beamforming results, we tracked the ten

highest peaks using the short-time Fourier transform (Fig.10), and averaged the estimated DOA’s

accordingly. For the time-synchronization, third-order b-splines were used to interpolate the

irregular time-grid for the algorithm’s proposed positions for each particle.

The GPS track of the helicopter used for the calibration is shown in Fig. 9. Figure 11

demonstrates the results of the Metropolis-Hastings scheme with the Mode-Hungry modification.

Figure 11 also demonstrates that the MH calibration resultsare significantly worse without the

time-synchronization step. Interestingly, for this test run, the “true position” of the acoustic

node was determined with a low-cost GPS system that is only accurate to within 7 meters,

implying that the MH scheme performed within this variance.The ML calibration method with

the approximate time-warping (ξ0 = [ 0, 0 ]m) results in an estimate ofξ = [ −5.76, 6.98 ]m at
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(d) f0 = 160 Hz

Fig. 6. The Cramér Rao lower bound dependency on the calibration source’s center frequency. The calculated CRLB from the
ML formulation is shown with the solid line; the CRLB from theDOA calibration formulations is shown with the diamonds.
The bounds are exceptionally close, even though they are derived from different formulations, as indicated earlier.

f0 = 60Hz. Whenξ0 = [ 10, 10 ]m, the ML solution results in a position of[ 22.14, 24.58 ]m.

To establish a baseline, we also determine the CRLB to approximate the lower bounds for the

variances for the parameter vector as[σx, σy, σθ] = [1.3931m, 1.3597m, 0.13296◦].

Note that the CRLB assumes a single sinusoid signal model forthe observations, but this

assumption is not satisfied for the helicopter signal. In Fig. 11, the field data betweent = 50s

and t = 120s also violate the multi-path assumption. Hence, the DOAs inthis region are not

normally distributed around their true mean. Without post-processing of the data, it is difficult to

detect this incorrect mean, since the orientation estimates can also bias the DOA distribution. The
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Fig. 7. The node is situated at[ 100, 50 ]m. The calibration is repeated 100 times with independent noise realizations atSNR= 8
dB, using the circular calibration track. The performance of the synthetic aperture method is shown with diamonds, where (35)
is used to solve for the position. The solid line marked with circles is also the synthetic aperture method, except the least squares
(33) approach is used for the solution. Full ML estimates using the acoustic data are shown with the dashed line, whereas the
Metropolis-Hastings calibration method is shown with stars.

algorithm still managed to do well because the source distribution weights the calculated DOAs

according to their estimated range. When the source is far away from the node, the estimates are

expected to get worse. Hence, the MH calibration algorithm puts less importance on the DOA

estimates corresponding to large ranges.

Unfortunately, the SAR calibration methods diverged for the field data example. The authors

believe that this is because they are very sensitive to errors in the time-warp function, as observed

in the synthetic simulations. Another likely reason is the relatively low GPS sampling period: 2

seconds might introduce interpolation errors. In addition, the field data and the GPS observations

are block synchronized (every minute) and each block has a different global time clock shift.

This poses additional difficulties for automatically handling the synchronization problem through

the time-warp function.

VI. CONCLUSIONS

Various node calibration algorithms were demonstrated given a calibration target that carries

a GPS system. The maximum-likelihood solution was demonstrated and compared to the biased
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Fig. 8. (a) Calibration comparison using the circular track. The synthetic aperture method with the least squares solution has
approximately 15m estimation error (out of the graph area).(b) Calibration comparison using the straight line track. Note that
all the methods except the MH method are simulated with the correct time-warp function.

synthetic aperture method, which has a lower minimum mean squared error. The DOA calibration

algorithms were formulated to compensate for array non-stationarity problems using array models

for moving sources. Among the calibration methods, the Metropolis-Hastings (MH) calibration

algorithm is the most flexible and suitable for field data processing because it can incorporate

time synchronization as well as motion compensation directly into the calibration. In addition

to processing some field data, the performance of the proposed algorithms was compared with

simulation examples.
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