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Abstract

Acoustic nodes, each containing an array of microphonestreak targets in:-y space from their
received acoustic signals, if the node positions and atants are known exactly. However, it is not
always possible to deploy the nodes precisely, so a caliorghase is needed to estimate the position
and the orientation of each node before doing any trackintpealization. An acoustic node can be
calibrated from sources of opportunity such as beacons oowdng source. In this paper, we derive
and compare several calibration methods for the case wheredde can hear a moving source whose
position can be reported back to the node. Since calibrdtimm a moving source is, in effect, the
dual of a tracking problem, methods derived for acoustigdatrackers are used to obtain robust and
high resolution acoustic calibration processes. For exanpo direction-of-arrival-based calibration
methods can be formulated based on combining angle esspggemetry, and the motion dynamics of
the moving source. In addition, a maximum-likelihood (Mlogjtion is presented using a narrow-band
acoustic observation model, along with a Newton-basedtkeggorithm that speeds up the calculation
the likelihood surface. The ML estimate serves as a basisdarparison, so the Cramér-Rao lower
bound on the node position estimates is also derived to shawthe effect of position errors for the
moving source on the estimated node position is much lesyeelhian the variance in angle estimates
from the microphone array. The performance of the calibratilgorithms is demonstrated on synthetic
and field data.

. INTRODUCTION
Acoustic arrays with directionally sensitive or omniditieaal microphones can be used to
localize and track targets using direction-of-arrival (®estimates, derived from the measure-
ments of their sounds [1]-[3]. If an acoustic node is defiredbe¢ an array of omnidirectional
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microphones, whose relative positions are known with reisp@ each other, then the node
calibration problem consists of determining the array eepbsition (geometrical centroid) and
the array orientation. Note that this problem differs frdma problem of calibrating the individual

microphone positions previously considered in the litg@{4], [5]. In [4], accurate localization

of individual microphone positions is done by considerihg effects of the calibration on the
array manifold matrix that affects the DOA estimate. On thieeo hand, the objective of this
paper is to calibrate one or more nodes, in which the indadisicrophones have fixed relative
positions. Multiple nodes would then be used to estimatgetgposition via triangularization as

shown in Fig. 1.

Target track
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Fig. 1. Black dots represent the acoustic node array ceatetghe solid arrows through these nodes represent theirerefe
orientations for the local DOA estimates. The DOAs are mesbuounterclockwise from the reference orientation. & tiode
positions and orientations are known, then it is possibldet@rmine the target positidi::, ;) via, for example, triangulation.

There has been some previous work in calibrating acoustiesasing beacons or moving
sources [6]-[8]. The calibration scenario considered in [B] employs a maximume-likelihood
solution, using the time-of-arrival and direction-ofieal of known point calibration sources
deployed in the scene, to determine the array position aleetation. The scenario considered
in this paper is similar to one considered in [6], where a mg\walibration source is available.
The multi-path effects are ignored, while deriving theskbcation methods. Moreover, in this
paper, it is assumed that the calibration source can refgogasition, e.g., acquired via the
global positioning system (GPS). The acoustic nodes thieesare assumed to not have GPS
capability due to battery limitations or jamming susceifitip(justifications can be found in [7].)

The imperfect GPS position estimates of the moving sourceodelled as noisy, and the effects



of the GPS noise on the estimation performance of the nodéqgrsare treated in Section IV-A.
Several calibration methods are proposed in this papdudimg a Maximum Likelihood (ML)
solution that works directly with the acoustic microphomeag output signals, and two DOA-
based algorithms that first process the microphone outpuéstimate the angle to the moving
source, and then calibrate from that angle informationgisimple geometry. The DOA-based
algorithms include a Synthetic Aperture Calibration Metremd a Metropolis-Hastings (MH)
Calibration Method. We give the Cramér-Rao performancenis for the calibration problem
for these different estimation methods and also considersttificiency of the DOA estimates

for the DOA-based algorithms.

The acoustic propagation delays significantly degrade ¢besic calibration accuracy, if not
incorporated in the solution. A time-synchronization sgegequired to align the received acoustic
data with the reported calibration target GPS points, a-tirag functionr(¢) is introduced that
is determined by using the time that the acoustic data, nndtexd at timet, takes to arrive
at the acoustic node. It is a function of the distance of thiérdion target and the speed
of soundc. For the tractability of the ML and the synthetic aperturdibzation methods, we
approximate the time-warp function and use an iterativieriegie to refine the position estimates.
The Metropolis-Hastings method has a built-in time-wamatsgy that avoids approximations.
The relative sensitivity of the ML and the synthetic apestatgorithms to the approximations
of the time-warp function is also discussed.

The maximum-likelihood estimator of the node-center lmrats derived by using a narrow-
band acoustic array data model [9]. This algorithm is re¢dyi insensitive to the approximations
done on the time-warp function. To reduce the computati@aahplexity, a Newton search
algorithm is employed to avoid calculating the whole likelod surface. To further speed up
the algorithm, line search algorithms are used [10]. The Bearch algorithms can be derived
based on at least one of the two Wolfe conditions: (i) the cefiit decrease condition and (i)
the curvature condition [10], [11]. For our problembacktrackingline search algorithm is used
to identify the largest acceptable step size, based on tteVolfe condition.

The Synthetic Aperture calibration algorithm issafficient statisticalgorithm that is based
on the synthetic aperture idea used in the radar problenis T2 algorithm creates virtual
acoustic arrays along the calibration target track to ¢udate back the node position. It is a

sufficient statistics algorithm, because it is based on tA® calculated at these synthetic



arrays, as opposed to the acoustic signals directly [13. Shimthetic aperture DOAs are used to
determine the position in two ways: least squares estimatianaximume-likelihood estimation.
The least squares solution assumes that the errors arei@aassund the node position, whereas
the maximum-likelihood solution assumes that the erroesnarmal in the temporal DOA track.
Computer simulations demonstrate that the latter assomgi more accurate for calibration.
Although computationally very attractive, the synthetjedure calibration algorithm is very
sensitive to the approximations on the time-warp functlaraddition, it is found by simulations
that the synthetic aperture method is biased estimatoreohtite position.

The Metropolis-Hastings (MH) calibration method is basedtiee mode-hungry accelerated
version of the Metropolis-Hastings sampling algorithm]47]. It is also a sufficient statistics
algorithm, because auxiliary DOA estimates are used tmesti the node position. The algorithm
proposes a number of node positions in the 2D plane. These thede positions are perturbed
until the discrete node positions are distributed accgréiinthe data-likelihood. To calculate the
data-likelihood, the observed acoustic data is first usemhkoulate a set of motion compensated
DOAs by using the time-warp function and the target doppleft shat are determined by the
target GPS and the proposed node position. Then, the censysof these motion compensated
DOAs with the DOAs that are based on the geometry of the nodgipo and the GPS, is used
to determine the likelihood. The MH calibration method daes require any approximations of
the time-warp function. Moreover, because of the unimodalire of the node position density,
the mode-hungry modification is used to decrease the nuniddooté-Carlo iterations [14].

The organization of the paper is as follows. Section Il folaites the problem and presents the
ML solution along with performance bounds, and the Newtarae algorithm. Section Il de-
scribes the DOA-based calibration algorithms that uselianxiDOA estimates and geometrical

arguments. Computer simulations of typical scenarios avgiged in Sect. V.

[1. MAXIMUM -LIKELIHOOD SOLUTION FOR THE CALIBRATION PROBLEM

In this section, we present the ML solution for the node pasiand orientation, given a
moving calibration source and the local measurements afdtsxd at the node microphones.
It is assumed that the calibration source has a narrow-bame-ftequency signature and its
position estimates at each time are supplied by a GPS deMee GPS errors are modelled as

i.i.d. Gaussian. Their effects on the calibration performancecansidered in a later subsection.



An example calibration source is a helicopter, which alse tiee capability to deploy the
nodes in the field. The speed of such a calibration sourcedaties non-stationarity problems
not often treated in the standard array model for beamfaynilj. The ML solution, as well
as the DOA-based calibration methods given in Sect. Ill, bandle this non-stationarity by
assuming constant velocity target movement between GPSurezaents. Finally, we note that

our solution is also applicable, when using stationarybecation sources such as beacons.

A. ML Solution

We define¢ as the vector consisting of the unknown node-center positioy) and the

unknown node orientatiop in the 2D plane:

&=lz,y, 0" (1)

The known (noisy) track of the moving source supplied by tHeSGs x, = [z1(t), yr(t)]".
Using £ and x,, the node-to-source bearing andgle(measured counterclockwise with respect
to the node orientation) and the node-to-target raRgare given by

0:(&, x1) £ —p+ tan ™" (x “ar(t)

(2)
Rt £ ||€x,y - Xt”

If the node estimaté& is known, there is a one-to-one correspondence betweemd (6;, R;).

The acoustic signals at the node microphones are modellenlding to the narrow-band
acoustic observation model discussed in [4], [5], [9], [1Bgcause the calibration source is
assumed narrow-band. This is a reasonable assumption foy taegets such as helicopters
(see Fig. 10). For a node witR microphones, the narrow-band observation model relates th
complex envelope of the node microphone outputs to thateofalget signal, respectively called

y(t) € CP** and s(t) € C. The observation model is

y(t) = a(0;)s(t) + na(t), ®3)

wherea(§;) € C*! is the narrow-band steering vector for a target at DpAandn, (t) € CF*?

is additive noise. For a narrow-band calibration sourcegpsehcenter frequency i), the p'*



element p =1,2,..., P) of the vectora(6;) is given by

[a(t)], = [a(0:(& x))], = exp |

2T 016 x0) + 6] @

where ¢ is the speed of sound, ang,, #,) is the p'" microphone position given in polar

coordinates.

When the target reports its GPS positignelectronically, the GPS information arrives at the
node with the speed of light. However, the acoustic dateesponding to GPS-reported position
arrives at the node with the speed of sound, which is six srdémagnitude slower. Hence,
time-synchronization is required to match the acoustia @aiproper GPS points. Denotét) as
the arrival time at the node for a sound emitted from the “setat timet. Then, the following

time-warping needs to be applied to synchronize the aaodstia and the GPS estimates:
T(t) =t + 1€, — xll/c (5)

Assumingi.i.d. Gaussian array noise,(t), the probability density function (pdf) of the
observed data with the appropriate time-warping is given by

K-1

POYlExor ) = [T =z exp | Iv(rlo) — a)s(0F] ©)
t=0

where o2 is the array noise variancdy is the total number of observations at the sampling
frequencyFy, a(t) is defined in (4), andY k is the aggregate data vector formed by stacking all

the observed data:

y(t)

t+ kK 1
Yi = y( . ) , wherex = ok (7

s

| y(t+ (K = 1)k) |

To calculate (6), note that the source’s GPS values shoulohteepolated up to the acoustic
sampling frequency, because the GPS points are usuallyteeptess frequently (e.g., every

other second). We use a constant velocity assumption tonperthe GPS interpolation.

The data-likelihood (6) is maximized w.rg.to find the ML solution. However, the likelihood

function is very complex due to the time-warping defined il (Bo simplify the solution, if



an initial guess for the parameter vecty is available, then one can assume thgt) ~

t + 1€ — x.l|/c. It is the author’'s observation that as long &sis within ¢/4 meters of the
true position&, the ML solution is robust. However, the DOA-solutions ne®d next section
are sensitive to the time-warp function and require thatitligal guess¢, be within ¢/20
meters of the true position. Once an estimat€ o available using, it can be further used to
refine the time-warping function. Hence, this procedurégsated to determine the node position
estimates. In the rest of the paper, we ignore the time-wgrggsue, except when discussing

the Metropolis-Hastings method that can automaticallydheuit.

To calibrate the array, we first obtain the negative loghiiiad function:

K—
L~ = KPlog(ro? Z — a,(€)s(t)|]? (8)

t=0

where = denotes equality up to a constant, aa@) is written asa;(§) to emphasize the
dependence on the parameter vector. Because of this demendbde optimal solution fog
(node-center position and orientation) is the one that akghs the microphone output signals
y(t) with shifted versions of the common source sigsél), given the source GPS track and
the relative microphone positions.

The ML estimate (maximizing the log-likelihood functiorg equivalent to the minimum of
L~. First of all, we fix¢ and s(t) and minimize L~ with respect tos? to find the ML noise
variance. Next, the signal estimate is found by taking theatian of (8) with respect ta(t),

and setting it equal to zero. The results are:

i = PZny — 2@

sur(t) = 5af (€)y(t).

Substituting these ML estimates info- and noting that the log operator is monotonic, we can

9)

rewrite the fist term in (8) as an ML cost function that depeadg alone:

J(&) = KZ_ltrace {Ptf{t} = I(Z_ltrace {(I — %at(ﬁ)af(f))f{t} = KZ_I Ji(€), (20)

whereP, = I—1 a,(¢)al’ () is the projection onto the null spaceaff (¢), andR, = y(t)y" (t)

is the one-sample autocorrelation estimate. Finally, the @dtimate would be obtained by



minimizing the cost function
Enp = arg mﬁin J (&) (11)

B. Newton Search Algorithm

The solution to (11) requires the evaluation of the cost fionc/ (&) over the entire domain
of the parameter vect@ to obtain the global minimum, becaudé¢) may have multiple local
minima. However, this would be computationally expensiue annecessary in most cases. If
an initial estimate can be found that is reasonably closé&¢oglobal minimum, then the cost

function can be approximated via the expansion:

J(&+08) = J(€) + 8" (£)d€ + 5 06 H(€)JE, (12)

whereg andH are the gradient and the Hessian i), respectively. This leads to Newton’s
method, which is known to exhibit quadratic convergencemstarting sufficiently close to the
optimum point [10].

The necessary gradient of the cost function (10) can be led¢clvia the chain rule:

L 0J() 1R ,
85 ¢ = a1 2 VOdiag(Vd), (13)
where
N
V(£ Ge. (14)
and
Vo, = —2R aIRtPt% . (15)
00,
2
The HessiarH = 0 J(t; is then given by
0€0&
1 M-1
H=—> (Vi@ 1] o V)TV ()] + [diag(Voe) © 1] © T(1)}, (16)
t=0

whereY (¢) is the Hessian of; with respect tcg, and1 denotes & x 3 matrix of all ones, and
I is the identity matrix of the same dimensions. Symbelaind © denote the Kronecker and
Schur products, respectively. The operator didg{enotes a matrix whose diagonal elements

consists of the vectax. To guarantee the positive definitenesstbfthe term containingl’ (¢)



in (16) should be ignored while calculating the Hessian. fdlewing derivative also needs to

be approximated while calculatingz,J;:

S = R 010} a7)

oP,y(t)

where we definey(t) = 50
t

TABLE |
NEWTONALGORITHM WITH BACKTRACKING STEP SIZE SELECTION

At the k" iteration of Newton-Raphson algorithm:
« Calculate the descent directipn = —H,:lgk. Then,
— Setu’ =1;
— While J(&, + u™px) > J(&;,) + 10~*umglp,, (sufficient decrease conditipndo
« Choose the contraction factpre [0.1,0.5],
* o™= ppml
— Setur =p™m.

o & =& 1+ MkDk-
« Continue until the stopping condition.

Netwon’s method is used to find the minimum of (11). Table lcdées the algorithm with
the variable step size selection modification [10], [11]stly it is also crucial for the Newton
algorithm to use a good stopping condition for terminating search. Among various choices
outlined in [11], we use the relative change in the cost fimncto stop the algorithm. At this
point, it is important to recall that the ML solution aboveedonot include the effects of errors
in the GPS trackx,) on the estimation performance of findigg This is addressed in the next

subsection, where it is shown that such errors are usuadjiigitee.

C. Effects of the GPS Errors on the Estimation Performance

In the 2D problem under consideration, the GPS outpythiave components in the and
y directions. If we model errors in the GPS estimates as zeranmeé.d. Gaussian noise,
n, ~ N(0,0:1), then we can compare the relative effects of GPS noise anbpfione noise

on the final calibrated node-position estimate. In many tpralcscenarios, the size of the GPS
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errors is generally on the order of 1-5 meters, when difteab@PS data is jointly used with the
GPS system [19]. Rather than finding the variance of the fial#br@ated node-position estimates
directly, we develop a formula for the array outpuft) that includes a perturbation due to
GPS noise. Then, the size of this perturbation term is coetp#r the array noise to derive the

condition, under which GPS noise is negligible.

The array outpuy (t) depends on the angle to the soufgewhich, in turn, depends on the
source location. With GPS noise, there is uncertainty insth&ce location, which translates into
a perturbation of the estimated DOA angle and finally intoitadginoise in the array output. The
first step is to find the effect of GPS noise on the auxiliaryalae 6, defined in (2). Expanding

in a Taylor series, the first-order perturbation can be medes follows:

00,

on3(t) (18)

0:(&, x; +1,(1)) = 0:(&, x,) + 1y (1) +ni(t)

ng (£)=0 n (£)=0

By taking the derivatives of (2), and noting that the naiggt) is independent in the andy
directions, and the second-order terms are very small, weapgroximate the DOAJ, with a
Gaussian density:

B+ 1y (0) ~ N (81630, 7002 ) (19)

with the correct mea#; (&, x,). This leads to an intuitive result: when the GPS errors arg ve
small compared to the range, the position errors will traesinto an approximate angle error
of tan~!(o,/R;) =~ o,/ R;, which is tiny.

The next step is to derive the effect of GPS noise on the sigparector. Once again, a

first-order approximation can be used:

Oa

a(€7 Xt + l’lX(t)) ~ a(sv Xt) + % n97 (20)

where the steering vector is as defined in (4). The derivativ@) becomes

da _ j2mfo
o0

a(€7 Xt)A(e)v

where(6) = diag{[p; cos(0+¢1), ..., ppcos(0+¢p)|}. If we defineA(8) = X(0) © A(6), then
the array outputs for a source signal with constant envetoggnitude of one can be shown to
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obey the following Gaussian distribution

y(t) ~ N (a(sv Xt)? E(Ev Xt)) ) (21)

where the autocorrelation matr is a function of the array noise as well as the GPS noise:

2
2(6,30) = o'+ (T ) a(6)A 00" (0) @2)

The second term in (22) is the perturbation due to GPS ertors.> WTSUX, then it can be
argued that GPS errors have a very small impact on the emmmrformcantce because the data
likelihood (6) is not affected. For most cases of interesbum work, this is reasonable because
the narrow-band frequencies of the source are usually tessl00 Hz, the GPS error standard

deviationo, is on the order of a few meters, while the rangeis a kilometer or more.

D. Cramer-Rao Lower Bound for the Estimate §f

The Cramér-Rao lower bound (CRLB) is an information théormequality that provides a
lower bound for the variances of the unbiased estimatoes #stimator achieves the CRLB, then
it also maximizes the likelihood equation. However, it ig atways true that the ML solution
achieves the CRLB (at least, for finite sample sizes) or thatlli be unbiased [13]. The CRLB
is still a useful metric with which to compare the performaruf the algorithm, and is derived
for the calibration problem in this section.

First, we derive an expression for the Fisher informationrix&FIM). Assume that the noise
varianceco? is known. Ignoring the time-warping issue, the log-likekiu function (6) for the

parameter vectog simplifies to the following relation:

1

LE) = 5 D y(t) — aus(o)? 23

wherea, = a,(0;(&, x)) is the steering vector from the node position to the calibrasource.
The (i, 7)™ element of the FIM is given by partial derivatives of (23) hiespect to thé'" and

7" parameters of the vectdr

L [PL(&) 2 da,\ " 0a,
= { OE LV, }‘_?;%K&a) %} &9
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whereg, = [£]; and E,{-} denotes the expected value with respect to the data distib(see

[4] for a similar derivation). The Cramér-Rao lower bousdhe inverse of this expression [13].
Interestingly, the CRLB depends on the source’s narrondlfis@guency: the higher the frequency,
the lower the localization bound. In the simulations settieig. 6 shows this dependence for a

specific scenario.

IIl. DOA-BASED CALIBRATION ALGORITHMS

In the previous section, the calibration problem was intictl and the maximum-likelihood
solution presented. The remainder of the paper treats ansét of methods calleBOA-Based
calibration algorithmsthat exploit the geometry of the problem defined by the GP8&iéthby
the source) along with estimated DOAs (at the node). Thegbads rely on the fact that the
DOA is a sufficient statistic, from which it is possible to éehine the node-center position and
orientation. We first explain the angle matching idea usethbyDOA-based calibration methods.
Then, two DOA-based calibration methods are studied: tre fises the synthetic aperture
concept from radar, and the second, a Metropolis-Hastiyygs 6¢f Monté-Carlo algorithm. For

both DOA calibration algorithms, performance bounds anmvdd and examples are included.

A. Angle Matching

The DOA-based calibration algorithms use a simple anglechirag idea derived from the
geometry of the problem, illustrated in Fig. 2. As the souragves, the node estimates a DOA
track 6(¢) with respect to its orientation by using the received adowsta, independent of the
node position. The node can also calculate a node-to-GPI® &agk () as a function of the
node positionx, y) and the GPS trackzr(t), yr(t)) transmitted by the source (Fig. 2):

Y(z,y,t) = tan ™ (%) =0(t) + . (25)
Then, by assuming that the DOA estimation errors are zerarsgaissian random variables, a

maximume-likelihood solution can be found fgrby minimizing the following cost function:

" _ )2
EJ\/[L = arg rnénz (¢( 7y7t) 8<t) 4,0) 7 (26)

op
where o is the DOA estimation variance, which is discussed laterhis section. Another

Newton-type algorithm can be formulated for the solutiorthed above equation. This solution
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will not be discussed here, because the algorithm is sindlahe ML solution considered in

the previous section.

A

-

Fig. 2. The node position is shown with a circle at the posiiio, y). As the calibration source moves (dashed line), the node
can calculate two angleit) and(t) that should be matched to determine the unknown parametéong The parametef
is called the synthetic aperture radar (SAR) angle to beagx@ll in the next section.

In reality, the above solution calibrates the array only srately well, because it does not
consider the acoustic data propagation time from the @dldor source to the node. The angle
matching equation (25) as well its ML solution should be rfiediusing the time-warp relation
in (5):

Y(z,y,7(t)) = 0(1) + ¢, (27)
o - 2
€ = manis T W) -0~ o) 08
t Ot

The Metropolis-Hastings calibration method uses a d&tHiood function based on this cost

function.

B. Synthetic Aperture Calibration Method

The synthetic aperture concept is the idea of creating e lagerture size from a small

moving physical aperture to obtain better angular resmutin the node calibration problem, if
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the problem is reformulated by time-reversing the eventh ghat the fixed node is considered
to be the sound source and the moving calibration sourceeitwiver(s), then it is possible to
apply the synthetic aperture concept. That is, we create d@ng@seudo-receiver defined by
the calibration source’s GPS track and assume that thelsigma coming from the acoustic
node (Fig. 3). The moving pseudo-receiver can be groupedsyrithetic subarrays, from which
we can estimate the DOAs to the fixed node, and then calibhetendde position by doing

triangulation.

"~ Source Track

Synthetic Array 1\
Synthetic Array 2\

f
2

7

Acoustic Node

Fig. 3. The moving calibration source can be interpreted amwang pseudo-receiver that creates a synthetic apefs@udo-
receiver positions can then be grouped into subarrays aed tesestimate DOAs assuming the signals are coming from the
fixed sensor node. This does not require additional trarssomsof the recorded sound data from the node, since thimastin

can be done at the node.

A single synthetic receiveposition consists of a fixed number of signal samplésand is
assigned a fixed position, even though teal receiveris actually moving, while thé/ samples
are acquired. The number of samplés determines the intersensor spacing for the synthetic
array, so spatial aliasing of the acoustic signals must kentanto account. The distance traveled
by the calibration source moving at a velocityduring M samples (sampled &t,) is Mv/F.

In conventional array processing, it is well-known thathétsensor spacing is less than half the
wavelength of the signal of interest, then spatial aliagsiag be avoided [9]. Hence, an upper

bound onM is:
cF

M <
Qf(ﬂ)

(29)
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where f, is the narrow-band center frequency, ands the speed of sound. For reasonable
beamforming, at least one cycle of the signal must be obdehence, M > f,. As a rule of

thumb, we recommend using the larg@gtthat satisfies (29).

The total number of synthetic receiver positions used imfog a subarray)is subject to
the following trade-off: longer subarrays would give betOAs, but provide fewer DOAs for
triangulation. Surprisingly, it appears that the node fpmsiestimation accuracy is not affected

much by this trade-off when tested on synthetic data.

We now describe the details of the synthetic aperture edldom method. The acoustic data
recorded at each microphone of the acoustic node is tentp@atitioned into)M-sample data
sets, and the midpoint time is used to define the position &h esynthetic receiver along the
path of the moving calibration sourcg,. Two issues arise from this definition of the synthetic
receiver. First, each sample in the block /af data samples comes from the neighborhood of
the defined receiver position, through which the source wasimy. We can model this as a
non-stationary effect in the received data. Second, sime&PS positions are usually supplied at
a much lower rate than the acoustic data sampling rate, th@etyc receiver positions must be
estimated by using a straight-line interpolation betwdengiven GPS data points. For example,
if Fy, = 1024 Hz, and M = 64, then the synthetic receiver positions must be determiréd 1

times per second.

A subarray is formed by grouping togeth€r synthetic receiver positions. The intrasensor
spacing isMv/ F; meters, assumingis constant. Simple beamforming such as MUSIC (Multiple
Signal Classification) or MVDR (Minimum Variance Distontiless Response) results in biased
DOA estimates if the calibration source is moving fast (eaghelicopter). This bias is caused
by the non-stationarity of the synthetic array data memtibabove, but previous work in [1] has
addressed this same issue and shown how to calculate thedbises theoretically. Therefore,
we propose the following ML cost function, derived simijatb (10), for obtaining unbiased

synthetic DOA estimates:

7(5) = it {f1i- Guwnio] o, (30)

where a,(3) is the steering vector corresponding to aperture points @ans defined as the

synthetic aperture radar angle (Fig. 2). The time deperedéme, (/) is caused by the data
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samples at each synthetic sensor being from a neighborhiotite ssynthetic sensor position.
The angle( is calculated with respect to the center of the synthetiatape of size M(Q
samples, antfiz(t) is the one-sample (outer product) autocorrelation esémétthe synthetic
array. Equation (30) differs from (10) in the time dependent the steering vectors. In (10),
the microphone positions are fixed with respect;twhereas, in (30), the SAR anglgis fixed,

and the position where the data is collected is changinggalbe aperture.

Equation (30) can be used to determine the position of ealitiidual microphone within the
node. Since there ar@ microphones in the node, it is possible to obt&iimdependent estimates
of the node position using the individual microphone ouspassuming that the additive noise is
spatially white at the acoustic node. Then, thestimated microphone positions can be averaged
to obtain an estimate of the node-center position. The no@atation would then be estimated
from the acoustic node DOA estimates along with the nodéecgosition estimate. Once again,
it is important to recognize the array non-stationarityuesgaused by rapid source movement.

The ML cost function to be minimized at the acoustic node is tdase is

M
_ 1 H »
10)=3 {1- pawaro0| R0, (31)
where
1 [ Fssiné€ + gt cos ¢
_ 1
b, = tan {Fs cosf + qt singb} ’ (32)

where ¢ is the DOA at the beginning of the batch, = v/R, and ¢ is the approximate

source heading during the estimation batch. Equation (aR) lme derived by a straight-line
approximation for the calibration source during a batchiqeerGiven the node-center position
estimate, if the DOAs are estimated using (31), one can estithe node orientation by simply
calculating the bearings from the node position and GP#&astis, and then finding the difference

between the mean values of these estimates.

When (30) is used for the SAR angles, the cost function walptly two minima corresponding
to two different candidate SAR angles. This is attributedh® cone of ambiguity problem for
microphone arrays and is applicable to our problem due t@émstant velocity interpolation of
the GPS points. Even when there is no spatial aliasing, thea&®r (30) results in two DOA
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estimates that are symmetric with respect to the array aalib(ation source orientation angle)
This issue has been addressed for uniform linear arrays]inTf@& solution to this problem is
to also track the DOA estimates and impose a constraint tieaDOA estimates not change too
much from one aperture to another. This fact also helps eedoue computational load while
finding the minimum of the cost function in (31), since praxscestimates are usually close to
the sought minima. In turn, two node positions can be tritatgd using the two DOA tracks,
one corresponding to the node and the other correspondmgti@dow. The real node can easily
be determined by picking the node position with the leastimTirm-mean squared error, since
it actually corresponds to a physical position.

Once the SAR anglesi(s i = 1,..., L) are calculated for each synthetic array with respect
to the array centergr!), %), determination of the node position requires one more $tigpire
3 suggests an intuitive solution based on determining ttexgaction of the lines created by the
aperture positions and the SAR angles. This leads to thewly overdetermined system of

equations to determine the node position:

sin(m— 1) —cos(m— () sin (ﬁ—ﬁl)x(Tl) —yr}l) cos (m — [3y)
' ' T = 5 (33)
sin (m — ) —cos(m— fr) Y sin (7 — ﬁL)xgpL) — yf(FL) cos (m — (Or)

This equation is based on the following geometrical retetiop between the node DOA, its

orientationy, and the SAR anglg;, as illustrated by Fig. 2:

y =y
Bi =41+ 0; +p==4r+tan"! :é;.) (34)

Equation (34) defines an under-determined system¢féor one index:, hence making it
analytically intractable to derive a joint probability dgty functionp(z,y), since the required
Jacobians for the coordinate transformation frémo (z,y) are not definel Equation (33)
provides the least-squares solution for the node posidomvever, the estimated DOAs become
approximately Gaussian distributed as the sampling frecpuef the data increases. Based on this

observation, similar to the ML solution using the node-tBS5angles) shown in the previous

1The average of these two DOA candidates can be used to chedotisistency of the source heading angle.

That is because the coordinate transformation defined byig3dot one-to-one.
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section, we propose the following

§,, =argminJ

€z,y
(3) 2 35
L (ﬁi — tan™! (y_y{i)) + 7r) (35)
.'L'—xT
J — Z 0_2 9
Z:1 Bz

where the sign in front ofr must be determined from the geometry and the SAR angle error
varianceo—gi should be calculated from the data. A possible expressitirbeiigiven in the later
sections. This estimator can be refined by weighting thegenthe summation by the estimated
noise variances per index. The following sections give ydital equations for these variance
estimates. Equations (33) (SAR-LS solution) and (35) (YARsolution) are biased estimators

(shown by simulations); however, the bias is difficult to lgme.

A Newton based search can again be employed to solve (35).NEwgon algorithm is
useful for estimating the angles, since the SAR angleare very close to each other. Hence,
the previous estimatg;_; can be refined using the Newton recursion to estintaterhis is
conditioned on the fact that the calibration source is noheoaering too much, because the
Newton search can become trapped at a local minimum. We meemah calculating/ in (35)
first on a rough grid near t@;_; (e.g., a grid of angleg < [3;_1 — 15°, 5;_; + 15°] with 1°
spacing), then using the minima over that rough grid and teasthin algorithm to refine the

estimates;.

C. Metropolis-Hastings Calibration Method

The objective of the Metropolis-Hastings (MH) algorithmtes distribute particles (discrete
state sample§,) according to a target distributian(-). Hence, at each iteratiaky the algorithm
recursively redistributes its states so that, asymptibjcae resulting Markov chain is distributed
according to the target distribution. The MH scheme [15]@epidted in Fig.4. In the figure, the
Markov chain at iteratiork is represented bg®). The new chain candidates are generated

by the proposal function(€&,~), which is usually the spherically symmetric random walk:

2(€7) = a([€ — 7)) o exp {—u} (36)

2
20q



19

- O O NN N o farvav.w. VN ) 2
- OO TTO N\ ST o
\ / j W \ \ H \ h
- e e o N IV O o Y
N AN o< o9 o D

N v o WaVa A~y gD

/AR /A
i N N NN N\ NS AUS.Y A A /

Fig. 4. The Metropolis-Hastings scheme is demonstratedh Eacle represents a sample from the chain in the respgestate
space. The algorithm uses its current state to generate aegidates for its next state using a candidate generatimgfifun g.
The new candidates are accepted or rejected in a way that déinkol chain asymptotically converges to the target pasteri

Once the new candidates are generated, the algorithm adbephoves or keeps the current state

according to the acceptance rati¢€, «) derived from the stochastic reversibility condition [15]:

m(¥)q(7, §)
T(©)a(&q) 1}

In Fig. 4, the acceptance ratios are represented by thethaighe boxes for each candidate.

a(€,v) = min { (37)

To accept or reject the new candidate, a random number genéaused to generate uniform
random numbers if0, 1), u ~ U(0, 1), represented by the black dots in Fig. 4ulfs less than

the acceptance ratio for the specific particle, the moveds@ed, otherwise, it is rejected. Also,
the acceptance ratat iterationk is defined to be the number of accepted moves divided by the
chain size. Visually, it is the number of arrows in the lasigst in Fig. 4 divided by the number
of particles. Finally, the chain moves &"™" and the scheme is repeated.

For the calibration problem, the target function is actu#iie exponential of the negative ML
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cost function defined earlier in (27):

£(€) o exp {_ 5 (W, y,7(8)) — 0(t) — )’ } | (38)

- 20(1
where ) is the node-to-GPS anglé, is the DOA estimate from the acoustic data using (31),
and ¢ is the node orientation angle. The time-synchronizatioeasily incorporated into this
solution because it is possible to calculate) given a proposed node position and the GPS of
the calibration source.

Moreover, it is easy to see that (38) peaks at the correct pod@ion when there is no
noise. Intuitively, this is the complement of the synthetperture solution, where the angles are
calculated on the node side, however it performs more rgbtisin the estimator proposed in
(35). As for the candidate generating functignwve employ the symmetric random walk, where
the walk variances should be picked subjectively. For exangpfew meters works well for the

walk variances org, ., and we use a few degrees for the orientation

oy
The MH scheme, as presented here, takes a notoriously lomg th converge. Hence, it
is necessary to speed it up for a real-time application. dRsexode is given in Table Il for
the classical MH algorithm for the calibration problem. lable Ill, we outline the generic
Mode-Hungry MH algorithm for accelerated convergence @f thaing,. The initialization is
usually the uninformed uniform density in the calibratiqgrase. A grid based initialization of

this algorithm is also possible [20], when prior informatis available.

D. Performance of the DOA Calibration Algorithms

The DOA calibration algorithms use a sequence of estima@d®corresponding to a batch
size of M samples, together with geometrical arguments, to estifidteother words, the DOA
at index; is estimated using/ array samples corresponding to tHesynthetic receiver, sampled
at F,. To evaluate the performance of the DOA calibration al¢pon$, the DOA estimation
performance should first be related to the node array sigrabise SNR ratio. Note that
the DOAs need to be estimated using (31) if the calibratiomra® is moving relatively fast.
Classical DOA estimators such as MUSIC and MVDR result inrséthestimates due to the
non-stationarity of the data caused by rapid motion of tHédion source [1], [3]. Using the
likelihood function in (23), we write the Fisher informatidor the DOA at the beginning of the



21

TABLE Il
PSEUDOCODE FOR THEMH CALIBRATION

« Attime k, for each particle (i =1,...,N) , £*):
i. generate a candidatg, using a candidate generating functi@ft;, v,), which is usually a random walk
ii. estimate the time-reference frame for data synchrdinnausing the proposed position, the source GPS
track, and the speed of sound
ii. calculate the DOAsf(t), using the motion compensated beamformer (31)
iv. calculate the acceptance ratio, where the target digtan = (-) is as given in (38)

o) = min (10.1)

v. sampleu ~ U(0, 1)
vi. if u<a;,y,) sete™ ) = . else,eF T = ¢M),
« Repeat until convergence is detected.

batch as

u " (39)
S | (2200 (D2 O

O'g 89t 891 86t 881 '

whereg—gi is calculated from (32). The inverse &} bounds the best achievable performance

by an unbiased estimator, but in most cases, DOA estimagoiogmnance will be close to this

bound for largeM. Hence, it is reasonable to approximate the noise variandde estimated

DOAs as 1
2 (M H .
R Oa, 00\ ™ (02, 00
R {Z%[(ﬁet ael) <aet o6, | (40)

t=1
This estimated noise variance (40) can be also used in thé@o(35) to weight the SAR angles.
Similarly, most beamformers can calculate their estinmagiocuracy by checking to see how well
the observations conform to the underlying data model. Timeature of the beamformer output
at the peak location can be converted into an angle variasiimade. In this case, the array
noise can be calculated in various ways, for example, usgenealue analysis on the array auto-

covariance matrix [9], [18]. Another measurement noise ehddr narrow-band target signals
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TABLE 1l
MHMH SAMPLING ALGORITHM

o For each particl&;, i = 1,2,..., Nyauu, use the Mode-Hungry scheme evely,,,, = 2 iterations:

— determine a subpartition of sizZ&/; < Nyumu, (€.9-M; = Nvuwvu/2),

— order the current particles according to their probab#itin descending ordeg; — 5;, where¢” is
the ordered particle set,

— generate candidateg (1) for £*(1) = {&;|j : j = 1,2,..., Nmuumu — M}, usingq(-, -),

— calculate the acceptance ratig¢*(1),y*(1)), and sengl“) to &5(1) or y;(1), accordingly for
J=12,..., Nuumu — M,

— distribute M, candidateg/*(2) from £*(1) uniformly,

— set£§l+1) to y*(2) for ] = NMHMH — Ml + 1, ceey NMHMH-

can be determined from the following relation [21]:

Ao
7% = AC/2SNR

where )\ is the monotone signal waveleng®NRIis the signal-to-noise ratiod is the aperture

(41)

size of the array, and’ is a constant depending on circular or plane-wave illunnomaof the
aperture. As a rule of thumb, one can uge x Rto—g/ >, R, for the field examples, where;
is proportional to the largest expected DOA error.

Now, if we assume the DOA noise is independent from batch tohband is Gaussian with

zero mean and with variance of (40), then the DOA likelihoamhf (38) becomes

1 L 1 1 y—yr}i) ’
L(9)¢) = §ZE 0; + ¢ — tan 0 , (42)
=1 i T
with 0 =1[6,, ... ,0;, ..., 6], wherei is the estimation batch index amgi is estimated

using (40). Then, the estimation bound on the paramgtaecomes

L -1
cm%=<zhwﬂ (43)

where

1 (i) _ 17
%:——{Ly o —xxT} (44)
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In the simulations section, we show that the above CRLB (d8juite close to the bound that is
calculated directly from the data likelihood. This, in turaises the question of the sufficiency

of the DOA estimates in the calibration problem, which ise®d in the next subsection.

E. Sufficiency of the Auxiliary DOA Estimates in the CalilmatProblem

The parameter vect@ affects the distribution of the observatiols, defined by (7) through
the distributionp(Y u/|€, x0, - - -, X;) given in (6). Therefore, in the calibration problem, the
statistical behavior of the acoustic data constitutes tilg mformation about the parametér
when there is a lack of a prior distribution gnHence, if knowings; removes any dependence
on & from the data distribution (6), then it can be said thatontains all the relevant information
in the data needed to estimate the parang{&B]. Hence, the objective is to prove the following
equality:

p(Yml& Bos -, Brs Xos - Xe) = P(YumlBo, -+, Brs Xos - -+ Xa) (45)

At this point, some assumptions should be reiterated. The 8Agless; are only given once
per block of M) data samples (a total df blocks), whereas the data likelihood depends on
the parameter at every sample. This is not a problem if thenagson of straight-line motion
(32) is true between GPS data points. Thus, the data liketitcan be written as

p(YJ\/[|€7/607"'7ﬂL7X07"'7Xt) =

T 1 o 2 (46)
TT —ozr o0 [~ Iy6) —at+ 59 = 910
t=0
where
1 [ Fssin®_y + ¢*(t — 1) cos ¢*
() = 1 t—1
FF =g =tan {Fs cos b1 + q*(t — 1) sin ¢* (47)

with 60,_, = %Y + 7 — 0.

Parametery* is the approximate heading direction of the calibrationreewat timet and is
calculated from the GPS data. Parameteris the only parameter that depends on the node
position (x,y) and can be approximated by

g~ F Siﬂ(ﬁi - ﬁi—l)
(MQ —1)sin(B; — ¢*) |

(48)
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Hence, given the synthetic DOAS, it is possible to remove the dependence of the data on the

node position, but not on the node orientation. That is,

p<Y1\/f|€7/607 cee 7ﬁL7X07 .. '7Xt) :p(YM‘%ﬁOa cee 7ﬁL7X07 e '7Xt) (49)

Equation (49) implies that the estimated synthetic DOAs@xmately form sufficient statistics
for the acoustic node position. This is quite intuitive be&szatwo anchor points and two DOAs
is sufficient to triangulate the node position. In additito,remove the dependence on the

orientation anglep, at least one local estimate 6f is required from the node.

IV. SIMULATIONS

Using computer simulations, our objectives are to (i) shbe effects of the GPS errors on
the estimation performance of the various algorithms, andlémonstrate the ML and DOA
calibration algorithms and compare their performance. Symghetic simulation examples use two
calibration source tracks. The first track has a calibrasiource circling the origin at a range of
600m with a constant speed @6 mph. The second calibration source start&2800, 500)m and
moves in the negative-direction with the same speed. The acoustic node is a unitorcular
array with P = 6 omnidirectional microphones with a radius b22m. The total estimation time

for the calibration isl20s and the GPS error standard deviatiomjs= 1m, sampled at 1Hz.

A. Effects of the GPS Errors on the Estimation Performance

Figure 5 demonstrates that the effects of the GPS errorseolikdlihood surface is negligible.
Moreover, the estimated positions, with and without GP8rerrdiffer by less than a centimeter.
The smooth convex shape of the surface justifies the argutina@ingd Newton or gradient-descent
type of search algorithm can be used to estimate the nodenptees, instead of calculating
the whole surface. In Fig. 5, we try to determine the positibrihe acoustic node placed at
[100, 50 ]m. The target narrow-band frequency used for the calibmasqg, = 20 Hz, the node
sampling rate isF, = 128 Hz, and the acoustic nod&NRis 7 dB. The SNRis defined as

SNR = 10log (\/% 2) . (50)
Ua

The ellipse in Fig. 5 represents the CRLB. The ellipse axeslatermined by the square root

of the diagonal elements of the CRLB. The ellipse orientat®odetermined by the correlation
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Fig. 5. (a). The likelihood surfacé with GPS errors. The GPS error standard deviationis= 1m and it is circularly symmetric
in the z andy directions. The star indicates the true node positioplaf, 50 Jm , whereas the dot is the estimated position
[100.5899, 50.0289 |m using the Newton algorithm. The ellipse is the Cramér-Raond on the position estimates. (b). The
likelihood surfaceJ without any GPS errors. The Newton method estimates the posiéion as| 100.5811, 50.0360 |m . The
solutions are almost identical.

terms in the CRLB.

B. Performance Comparisons

In this section, we first compare the two CRLBs, one derivedatlly from the array model
(inverse of the FIM (24)) and the other through DOA estinmatioethods (43). Figure 6 shows
that both bounds are identical even at different frequendreuitively, this may suggest similar
performance for the ML calibration algorithm and the DOAileadtion algorithms. However,
Figs. 7 and 8 show that this is not the case.

Figure 7 shows the results of a Monté-Carlo run for the catibn algorithms. The ML and
SAR calibration methods are given the correct time-warginmgtion. When approximate time-
warping is used, the author’s observed that the ML calibrasilgorithm is much less sensitive
than the SAR calibration algorithm. In Fig. 7, the SAR meti®#rst run with the least squares
solution (SAR-LS solid line with circle markers in the figiitbat has higher estimation errors.
The output of this algorithm is then used to initialize the FEML solution as well as the
ML calibration method. The MH calibration method performsitar to the ML and SAR-ML
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methods even though it is uninformed of the correct timepivay function.

Figure 8 compares the performance of each algorithm withQR&B. Figure 8(a) uses the
circular track, whereas Fig. 8(b) is simulated with theigtraline track. The position estimation
bounds for the circular track is much lower, because the mixerves a much larger angular
span. The ML and the MH calibration methods follow the CRLBsgly. The performance of
the algorithms flattens at higBNRs, because of the GPS errors.

In Fig. 8(a) and (b), the SAR-ML and LS methods have a constanénce over the entire
SNRrange with increased estimation bias. At soBMRranges, the SAR-ML method beats
the CRLB. Such estimators do exist but are hard to find [13JteNbat an efficient unbiased
estimator has a performance bound defined by the CRLB. Itsis lahown that if an estimator
achieves the CRLB, then it is the ML estimator. In our prohléhe ML estimation algorithm

achieves the CRLB as the number of data points are increased.

V. FIELD DATA RESULTS

We applied the MH calibration scheme on field data from a sawustic array (also appeared
in [22]). A helicopter flew sorties around the acoustic nodiethe calibration purposes (Fig. 9).
For the experiment, the array was hand-emplaced so thatubddcation and orientation would
be known. The acoustic node has six omnidirectional miaoopl placed uniformly on a circle
with a radius of1.219m, which also corresponds to the inter-microphone distambe spatial
aliasing frequency is approximately35Hz corresponding to the case where the radius of the
array is equal to a half-wavelength. For the MVDR beamfogniasults, we tracked the ten
highest peaks using the short-time Fourier transform (F0y, and averaged the estimated DOA's
accordingly. For the time-synchronization, third-ordes@ines were used to interpolate the
irregular time-grid for the algorithm’s proposed positdior each particle.

The GPS track of the helicopter used for the calibration iewshin Fig. 9. Figure 11
demonstrates the results of the Metropolis-Hastings seheitihh the Mode-Hungry modification.
Figure 11 also demonstrates that the MH calibration resulssignificantly worse without the
time-synchronization step. Interestingly, for this tesh,rthe “true position” of the acoustic
node was determined with a low-cost GPS system that is ordyrate to within 7 meters,
implying that the MH scheme performed within this variadde ML calibration method with

the approximate time-warping(= [ 0, 0 Jm) results in an estimate gf= | —5.76, 6.98 |m at
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Fig. 6. The Cramér Rao lower bound dependency on the cabhraource’s center frequency. The calculated CRLB from th
ML formulation is shown with the solid line; the CRLB from tH2OA calibration formulations is shown with the diamonds.
The bounds are exceptionally close, even though they areedeirom different formulations, as indicated earlier.

fo =60Hz. When¢, = [ 10, 10 |m, the ML solution results in a position §f22.14, 24.58 |m.
To establish a baseline, we also determine the CRLB to appedg the lower bounds for the

variances for the parameter vector|as, o, 0p] = [1.3931m, 1.3597m, 0.13296°].

Note that the CRLB assumes a single sinusoid signal modethi®robservations, but this
assumption is not satisfied for the helicopter signal. In Eit, the field data between= 50s
andt = 120s also violate the multi-path assumption. Hence, the DOA#i® region are not
normally distributed around their true mean. Without pmsieessing of the data, it is difficult to

detect this incorrect mean, since the orientation estisnzda also bias the DOA distribution. The
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Fig. 7. The node is situated gt00, 50 Jm. The calibration is repeated 100 times with independeisen@alizations aBNR= 8

dB, using the circular calibration track. The performané¢he synthetic aperture method is shown with diamonds, &/(8%)

is used to solve for the position. The solid line marked witkles is also the synthetic aperture method, except thst sspiares
(33) approach is used for the solution. Full ML estimatesigishe acoustic data are shown with the dashed line, wheheas t
Metropolis-Hastings calibration method is shown with star

algorithm still managed to do well because the source Higion weights the calculated DOAs
according to their estimated range. When the source is fay #wwm the node, the estimates are
expected to get worse. Hence, the MH calibration algorithuts pess importance on the DOA
estimates corresponding to large ranges.

Unfortunately, the SAR calibration methods diverged fa field data example. The authors
believe that this is because they are very sensitive to®mdhe time-warp function, as observed
in the synthetic simulations. Another likely reason is tetively low GPS sampling period: 2
seconds might introduce interpolation errors. In addijtibe field data and the GPS observations
are block synchronized (every minute) and each block hadfereht global time clock shift.
This poses additional difficulties for automatically handlthe synchronization problem through

the time-warp function.

VI. CONCLUSIONS

Various node calibration algorithms were demonstrateérgia calibration target that carries

a GPS system. The maximum-likelihood solution was dematestrand compared to the biased
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Fig. 8. (a) Calibration comparison using the circular tratke synthetic aperture method with the least squaresicolbgs
approximately 15m estimation error (out of the graph aréa)Calibration comparison using the straight line traclkotéNthat
all the methods except the MH method are simulated with thieecbtime-warp function.

synthetic aperture method, which has a lower minimum meaarsgl error. The DOA calibration
algorithms were formulated to compensate for array notestarity problems using array models
for moving sources. Among the calibration methods, the dfmilis-Hastings (MH) calibration
algorithm is the most flexible and suitable for field data pssing because it can incorporate
time synchronization as well as motion compensation diydnto the calibration. In addition
to processing some field data, the performance of the prdpalgerithms was compared with

simulation examples.
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Fig. 9. The acoustic node (star) is situated at the origire Galibration helicopter completes two sorties around thaenfor
the calibration, corresponding to a four-minute run. Theuachelicopter track as well as its projection on the plane are
shown.
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Fig. 10. The helicopter spectrum displays strong harmdnies| The ten highest peaks in the time-frequency plane iakeg
using the magnitude of the Fourier transform once per secbinelse frequencies as well as their time-frequency angegware
used in determining the DOA estimates.
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Fig. 11. Top figure shows the GPS track coming from the hetmofdashed line), the time-warped GPS track using (5),
and the MVDR beamformer estimates of the field data. The bot&ft plot is the resulting MHMH algorithm distribution
with estimate¢ = [ 6.43, —6.52 Jm using time synchronization, whereas, at the bottom ritite, distribution with estimate

& =[-31.66, 43.77 |m is the MHMH result without time synchronization. The esited orientation for both cases1i$. The
true node location is shown with the diamond.
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