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SUMMARY

Although the Notch signaling pathway is one of the
most intensely studied intracellular signaling path-
ways, the mechanisms by which Notch signaling
regulates transcription remain incompletely under-
stood. Here, we report that B cell leukemia/lym-
phoma 6 (BCL6), a transcriptional repressor, is a
Notch-associated factor. BCL6 is necessary to main-
tain the expression of Pitx2 in the left lateral plate
mesoderm during the patterning of left-right asym-
metry in Xenopus embryos. For this process, BCL6
forms a complex with BCL6 corepressor (BCoR)
on the promoters of selected Notch target genes
such as enhancer of split related 1. BCL6 also inhibits
the transcription of these genes by competing for the
Notch1 intracellular domain, preventing the coactiva-
tor Mastermind-like1 (MAM1) from binding. These
results define a mechanism restricting Notch-acti-
vated transcription to cell-type-appropriate subsets
of target genes, and elucidate its relevance in vivo
during left-right asymmetric development.

INTRODUCTION

Vertebrates show conserved anatomical left-right (LR) asymme-

try of the internal organs such as the orientation of the cardiovas-

cular system, visceral organs, and the number of lung lobes,

whereas their external bodies are bilaterally symmetrical (Levin,

2005; Palmer, 2004). Although many of the mechanisms involved

in breaking LR symmetry during early development may not be

conserved, the universal hallmark of vertebrate LR asymmetric

development is left-side-specific expression of genes such as

Nodal, Lefty, and Pitx2 in the lateral plate mesoderm (LPM)

(Boorman and Shimeld, 2002; Raya and Belmonte, 2006; Speder

et al., 2007). Indeed, these genes play crucial roles during the

patterning of LR asymmetry (Capdevila et al., 2000; Hamada

et al., 2002).

The Notch signaling pathway is a well conserved signaling

pathway in animals (Borggrefe and Oswald, 2009). After an inter-

action between the Delta/Serrate/Lag-2 (DSL) ligand and the

Notch receptor, the Notch receptor intracellular domain (NICD)

is released from the membrane by two sequential proteolytic
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cleavages. NICD subsequently translocates into the nucleus

and forms a complex with nuclear proteins, including the

C-promoter-binding factor 1/Suppressor of Hairless/Lag-1

(CSL) transcriptional factor and the transcriptional coactivator,

Mastermind-like (MAM), to activate the transcription of target

genes. Notch signaling has been demonstrated to affect LR

asymmetry in mice (Krebs et al., 2003; Raya et al., 2003), chick

(Raya et al., 2004), and zebrafish (Kawakami et al., 2005; Raya

et al., 2003). Previous studies in mice demonstrated that Notch

signaling directly regulates early symmetric expression of Nodal

through a node-specific enhancer (Adachi et al., 1999; Brennan

et al., 2002; Norris and Robertson, 1999), which contains two

functional binding sites for CSL (Krebs et al., 2003; Raya et al.,

2003). Interestingly, although the expression of Pitx2 in the left

LPM is initiated by Nodal (Shiratori et al., 2001), it can also be

induced by downregulation of Notch signaling even in the

absence of Nodal function (Krebs et al., 2003; Raya et al.,

2003), suggesting that the expression of Pitx2 is regulated by

both Nodal-dependent and -independent mechanisms. Thus far,

the regulatory mechanism governing Pitx2 expression remains

incompletely understood.

B cell leukemia/lymphoma 6 (BCL6) is a sequence-specific

transcriptional repressor that recruits a wide variety of corepres-

sors, including BCL6 corepressor (BCoR) (Huynh et al., 2000).

BCL6 was originally identified via chromosomal translocations

affecting band 3q27, which are common in B cell non-Hodgkin

lymphoma (Baron et al., 1993; Kerckaert et al., 1993; Ye et al.,

1993). In fact, deregulated BCL6 expression is commonly

observed in diffuse large B cell lymphomas and follicular

lymphomas (Ohno, 2004; Pasqualucci et al., 2003). During

normal B cell development, BCL6 is required for the formation

of germinal centers (GC) (Dent et al., 1997; Ye et al., 1997) and

maintains the expression of GC-specific genes by suppressing

genes involved in B cell activation in response to DNA damage,

cell cycle regulation, and plasma cell differentiation (Li et al.,

2005; Niu et al., 2003; Phan and Dalla-Favera, 2004; Ranuncolo

et al., 2007; Shaffer et al., 2001; Tunyaplin et al., 2004; Vasan-

wala et al., 2002). Whereas the function of BCL6 in the formation

of lymphoma and normal B cell development has been well

studied, its roles during embryogenesis are poorly understood.

Here, we report that BCL6 is a transcriptional repressor asso-

ciated with Notch signaling during Xenopus LR patterning. By

binding NICD, preventing MAM1 recruitment, and associating

instead with BCoR, BCL6 inhibits certain Notch-induced target

genes such as enhancer of split related 1 (ESR1). Target gene

specificity is achieved by direct binding of BCL6 to relevant
Inc.
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Figure 1. BCL6 Interacts with the ANK

Domain of Notch1

(A) Lane 1, GST/embryonic protein extract; lane 2,

GST-ANK; and lane 3, GST-ANK/embryonic pro-

tein extract. a, BCL6; c, b-actin. GST-ANK is indi-

cated by an asterisk.

(B) Protein extracts from stage-25 embryos were

incubated with a-Notch1 or a-BCL6 antibody.

Mouse IgG was used for a mock immunoprecipita-

tion.

(C) GST-BCL6 constructs. The numbers on the top

indicate the positions of amino acids.

(D) The top panel shows the expression of GST

constructs, and the bottom panel shows the inter-

actions between Flag-tagged NICD (Flag-NICD)

and GST-BCL6 constructs. Each arrowhead indi-

cates an intact GST fusion protein.
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enhancer elements. This function helps maintain the expression

of Pitx2 and thus LR asymmetry. Our studies elucidate crosstalk

between Notch signaling and the BCL6/BCoR complex, and

further show that BCL6 functions as a repressor of Notch

signaling during LR patterning.

RESULTS

Isolation of Notch-Associated Proteins
In studies to understand how Notch signaling regulates transcrip-

tion during embryogenesis, we sought novel transcriptional

regulators that can interact with NICD. A GST fusion protein

containing the ankyrin-like repeats domain of NICD protein

(GST-ANK) was used to isolate interacting proteins by immuno-

precipitation. The ANK domain was utilized because it is an

important domain required for the transcriptional activation of

Notch signaling and for interaction with the CSL transcriptional

factor (Kato et al., 1997), MAM (Kurooka et al., 1998), the histone

acetyltransferase complex (Tani et al., 2001), and Deltex (Dieder-

ich et al., 1994; Matsuno et al., 1995). Precipitation was per-

formed with GST-ANK and protein extracts from 100 embryos

at stages 15, 20, and 25. The coprecipitated proteins were sepa-

rated by one-dimensional (1D) gel electrophoresis, followed by

silver staining (Figure 1A). Three bands in lane 3 (GST-ANK +

protein extract) were specific when compared with lane 1

(GST + protein extract), which shows GST-associated bacterial

and embryonic proteins, and lane 2 (GST-ANK alone), which

shows GST-ANK-associated bacterial proteins. Via mass spec-

trometry analysis, we identified one of these bands, indicated

by ‘‘a’’ in Figure 1A, as BCL6. Deltex1, which is a regulator of

Notch signaling (Diederich et al., 1994; Matsuno et al., 1995,

1998), was also identified from the same protein band, although

the MASCOT score was not high (data not shown). To determine

if BCL6 endogenously interacts with Notch1, we performed

coimmunoprecipitation studies with a-Notch antibody, which
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recognizes the intracellular domain of

Notch1, or a-BCL6 antibody. Using pro-

tein extracts from Xenopus embryos,

a specific endogenous association

between Notch1 and BCL6 was observed

(Figure 1B). In addition, Suppressor of
Hairless (Su(H)), a Xenopus ortholog of CSL, was also coprecipi-

tated by a-BCL6 antibody (Figure 1B).

To delineate the domain of BCL6 responsible for the interac-

tion with Notch1, binding assays were performed. As the known

functional domains of BCL6 are the POZ/BTB domain (POZ) at

the N terminus, the repression domain II (RDII) in the middle,

and the C2H2-type zinc finger (ZF) domain at the C terminus

(Albagli-Curiel, 2003; Chang et al., 1996), eight GST-BCL6 fusion

constructs harboring the individual domains were generated

(Figure 1C). Immunoprecipitation studies between in vitro-trans-

lated Flag-tagged NICD protein and purified GST-fused BCL6

fragments were performed. The Notch-binding domain of

BCL6 was localized to the region of BCL6 that harbored the

RDII region (M2 in Figure 1C) and the M3 region (Figure 1D).

These regions also interacted with the ANK domain alone (see

Figure S1A available online). In addition, interaction studies

with in vitro-translated proteins demonstrate that BCL6 appears

to directly interact with NICD, but not Su(H) (Figure S1B).

BCL6 Is Required for the Patterning of the LR Axis
in Xenopus

To determine functional roles for BCL6 in Notch signaling, the

role of BCL6 during embryogenesis was first examined. BCL6

was expressed in ectodermal and mesodermal tissues through

early embryogenesis (Figures S2A and S2B). The injection of

the highest dose (2 ng) of BCL6 RNA into one blastomere of

2-cell-stage embryos or a single dorsal or ventral blastomere

of 4-cell-stage embryos did not elicit any morphological changes

in the injected embryos (data not shown). We employed a Mor-

pholino Antisense Oligo (MO) against BCL6 (BCL6 MO), which

binds sequences encompassing the ATG site of directed tran-

scripts and inhibits protein translation, thus depleting the endog-

enous protein (Heasman et al., 2000). The injection of BCL6 MO

significantly reduced endogenous BCL6 protein (Figure S2C).

BCL6 MO or a control MO (Control MO), which targets human
2, March 16, 2010 ª2010 Elsevier Inc. 451



Figure 2. Related Functions of BCL6 and Notch Signaling during LR

Patterning

(A) 40 ng BCL6 MO, 40 ng Control MO, or/and 2 ng mBCL6-GR was injected

for each experiment. An arrow or a spiral indicates the orientation of the heart

or the gut coiling, respectively. Ventral views are shown.

(B) The normal left-specific expression of Xnr1 or Pitx2 is indicated by an arrow

in the nucb-gal-injected embryo.

(C) 80 ng Notch1 MO or 80 ng Control MO was injected for each experiment.

An arrow or a spiral indicates the orientation of the heart or the gut coiling,

respectively. Ventral views are shown.

(D and E) 150 ng Notch1 MO, 150 ng Control MO, or/and 1 ng GR-NICD RNA

was injected for each experiment. The dotted line indicates the embryonic

midline. The injected side is indicated by ‘‘L’’ (left) or ‘‘R’’ (right) beside the

names of the injected samples. L, left; R, right; a, anterior; p, posterior.
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beta-globin pre-mRNA and does not recognize BCL6 mRNA,

was injected into a dorsal blastomere of 4-cell-stage embryos.

Green fluorescent protein (GFP) RNA was coinjected as a tracer

(data not shown). When 40 ng BCL6 MO was injected into a left

dorsal blastomere of 4-cell-stage embryos, striking abnormali-

ties in the orientation of gut origin, gut coiling, and the heart

were observed (Figure 2A; Table 1). The gut origin occurred at

the left (27.8%, n = 115) and gut coiling was clockwise (34%,

n = 115), whereas the normal gut origin occurs at the right and
452 Developmental Cell 18, 450–462, March 16, 2010 ª2010 Elsevier
normal gut coiling is counterclockwise. The orientation of the

heart was also inverted in a number of these BCL6 MO-injected

embryos (24.4%, n = 115). Phenotypes were scored according

to Branford et al. (2000). In contrast, there is no significant effect

in the Control MO-injected or right-side BCL6 MO-injected

embryos. In addition, the defects of gut extension were observed

in�30% of the BCL6 MO-injected embryos, and these embryos

were not included when phenotypes were scored (data not

shown). To show the specificity of the BCL6 MO effect, we

coinjected BCL6 MO and a hormone-inducible mutant BCL6

(mBCL6-GR) RNA, whose translation initiation site was replaced

by the Myc tag and which is no longer recognized by BCL6 MO,

and examined gut and heart phenotypes. Except where noted

otherwise, we consistently added dexamethasone (DEX) to the

medium at stage 20, to activate a GR-fused protein. Thus acti-

vated, mBCL6-GR rescued gut origin (27.8% to 4.3%), gut coil-

ing (34% to 7.5%), and the heart (24.4% to 3.3%) phenotypes to

normal (Figure 2A; Table 1). As the failure of LR asymmetric

patterning causes the disorientation of gut origin, gut coiling,

and the heart (Branford et al., 2000), these results suggest that

the expression of BCL6 in the left side of embryos is necessary

for LR patterning.

To further study the role of BCL6 in the patterning of LR asym-

metry, we first characterized the role of BCL6 in the conserved

Nodal-Pitx2 cascade that governs LR patterning. The expression

of left-side-specific genes, Xnr1 (a Nodal paralog) and Pitx2 (Lohr

et al., 1997; Ohi and Wright, 2007; Schweickert et al., 2000; Von-

ica and Brivanlou, 2007), were tested in the BCL6-depleted

embryos. BCL6 MO or Control MO was injected into a left dorsal

blastomere of 4-cell-stage embryos, and the expression of Xnr1

at stage 22 and Pitx2 at stage 25 in the left LPM was examined.

Interestingly, the injection of BCL6 MO suppressed the expres-

sion of Pitx2 (100%, n = 28), but not Xnr1 (0%, n = 28) (Fig-

ure 2B; see RT-PCR in Figures S2D and S2E). As with the general

embryonic LR defects, these gene expression patterns were also

rescued by coinjection of mBCL6-GR (0% to 97%) (Figure 2B).

Although we were unable to detect BCL6 in the left LPM at stage

25 by whole-mount in situ hybridization (Figure S2A), RT-PCR

clearly revealed LR symmetric BCL6 expression in the LPM at

this stage (Figure S2F). Thus, BCL6 is required for the expression

of Pitx2, but not Xnr1, in the left LPM.

Dual Roles of Notch Signaling during LR Patterning
Are Conserved in Xenopus

Previous studies in mice showed that Notch signaling initiates

the symmetric expression of Nodal perinodally, whereas the

downregulation of Notch signaling acts independently of Nodal

at later stages, to allow the expression of Pitx2 in the LPM (Krebs

et al., 2003; Raya et al., 2003). This suggests that Notch signaling

is involved in the regulation of both Nodal and Pitx2 expression at

different developmental stages. In particular, Notch activity at

the later stage, which could suppress the expression of Pitx2,

may be a possible target of BCL6 during LR patterning. We

therefore sought to confirm that Notch signaling has a conserved

function in these aspects of LR patterning in Xenopus.

At stage 18, Xenopus Notch1 and Notch ligands, Delta1 and

Serrate1, were expressed on the gastrocoel roof plate (GRP),

which is analogous to the amniote node (Schweickert et al.,

2007) (Figure S2G); this is where the expression of Xnr1 is
Inc.



Table 1. Laterality Scoring in BCL6 MO, NBD-S, or Notch1 MO Injection

Injection Injection Side

Cardiac Orientation, Forward Cardiac Orientation, Reverse

n

Gut Origin Right Gut Origin Left Gut Origin Right Gut Origin Left

CCWa CWb CCW CW CCW CW CCW CW

Uninjected 95.4 2.3 0.8 1.5 0.0 0.0 0.0 0.0 130

BCL6 MO

40 ng Control MO Left 96.1 1.3 2.6 0.0 0.0 0.0 0.0 0.0 76

20 ng Control MO Left 97.8 1.1 1.1 0.0 0.0 0.0 0.0 0.0 89

40 ng BCL6 MO Right 90.5 1.9 1.9 1.0 1.0 0.0 1.9 1.9 105

20 ng BCL6 MO Right 90.7 1.9 3.7 0.9 0.9 0.0 0.9 0.9 108

40 ng BCL6 MO Left 47.0 11.3 7.8 9.6 7.0 7.0 4.3 6.1 115

20 ng BCL6 MO Left 59.5 20.2 6.0 9.5 1.2 2.4 0.0 1.2 84

40 ng BCL6 MO/2 ng mBCL6-GR Left 89.4 4.3 1.1 2.1 1.1 1.1 1.1 0.0 94

20 ng BCL6 MO/2 ng mBCL6-GR Left 85.7 3.1 2.0 1.0 1.0 2.0 2.0 3.1 98

NBD-S

1 ng NBD-S-GR Left 70.0 7.0 6.0 3.0 5.0 2.0 4.0 3.0 100

2 ng NBD-S-GR Left 55.0 11.0 9.0 4.0 4.0 3.0 8.0 4.0 98

Notch1 MO

150 ng Control MO Left 83.7 2.4 8.1 2.4 0.8 0.8 0.8 0.8 123

80 ng Control MO Left 91.3 3.6 2.2 2.9 0.0 0.0 0.0 0.0 138

150 ng Notch1 MO Left 38.7 33.1 8.9 6.5 2.4 4.0 3.2 3.2 124

80 ng Notch1 MO Left 57.1 22.7 4.2 1.7 3.4 3.4 4.2 3.4 119

Lateral scoring is according to Branford et al. (2000). Numbers indicate the percentage of embryos displaying the phenotype (total embryos as n).
a CCW, counterclockwise.
b CW, clockwise.

Developmental Cell

BCL6 Blocks Select Notch-Dependent Transcription
initiated (Jones et al., 1995; Lustig et al., 1996) early during the

acquisition of LR asymmetry. Notch1 and Serrate1were also

expressed in the LPM at stage 25, similar to BCL6 (Figure S2F),

but Delta1 was hardly detected by RT-PCR (data not shown).

The injection of Notch1 MO significantly reduced endogenous

Notch1 protein (Figure S2C) and the expression of Notch target

genes (Figure S2H). When 80 ng Notch1 MO or Control MO was

injected into a left dorsal blastomere of 4-cell-stage embryos,

the orientation of gut origin (13.5%, n = 119), gut coiling

(31.2%, n = 119), and heart looping (14.4%, n = 119) was often

inverted (Figure 2C; Table 1). And, again, as seen in the BCL6

MO experiments, defects in gut extension were observed in

�25% of the Notch1 MO-injected embryos, and these embryos

were not included when phenotypes were scored (data not

shown). Unlike BCL6 MO, however, the Notch1 MO suppressed

the expression of Xnr1 on both sides of the GRP at stage 18 (left:

93%, n = 30; right: 89%, n = 28) (Figure 2D; Figure S2I) and in the

left LPM at stage 22 (100%, n = 30) (Figure 2D). Although Xnr1

expression in the GRP was not decreased in all cases, its expres-

sion completely disappeared from the LPM at stage 22. The

effects of the Notch1 MO were rescued by a hormone-inducible

NICD (GR-NICD) RNA. When GR-NICD was activated by DEX at

stage 12, Xnr1 expression in the GRP at stage 18 (left: 7% to

92%; right: 11% to 86%) and the left LPM at stage 22 (0% to

60%) was restored to normal levels (Figure 2D; Figure S2I).

These data indicate that Xenopus Notch signaling promotes

the expression of Xnr1 in the GRP during LR patterning.

The expression of Pitx2 in the Notch1 MO-injected embryos

was next examined. As Xnr1 expression in the stage-22 LPM
Develo
was not observed in the Notch1 MO-injected embryos and the

expression of Pitx2 is initiated by Xnr1 (Ohi and Wright, 2007),

we predicted that Pitx2 expression would be completely abol-

ished in the Notch1 MO-injected embryos. However, Pitx2

expression was affected in only some of these embryos (65%,

n = 31) (Figure 2E). Interestingly, when Notch1 MO and GR-NICD

RNA were coinjected for the rescue study, the expression of

Pitx2 was not rescued, and the number of embryos with sup-

pressed Pitx2 increased (65% to 100%, data not shown).

Accordingly, LR asymmetry defects induced by Notch1 MO

were not rescued by coinjection of GR-NICD (data not shown).

These findings suggest that, as in mice (Krebs et al., 2003;

Raya et al., 2003), the expression of Xenopus Pitx2 could occur

when Notch signaling was downregulated in the absence of Xnr1

function, and Notch signaling could suppress the expression of

Pitx2. We therefore decided to test this hypothesis in more detail.

Indeed, when GR-NICD RNA was injected into a left dorsal

blastomere of 4-cell-stage embryos and GR-NICD was activated

by DEX treatment at stage 20, Pitx2 expression was suppressed

(90%, n = 30) (Figure 3A). However, even when GR-NICD was

activated at stage 12, the expression of Xnr1 remained

unchanged (Figure 3A). Although an increase in Xnr1 expression

might have been expected, this result is consistent with the fact

that overexpression of GR-NICD on the right side rarely induced

the expression of Xnr1 (6%, n = 32) or Pitx2 (0%, n = 31) on the

injected side (data not shown). It is unclear why NICD is insuffi-

cient to induce Xnr1 or Pitx2 in Xenopus, but is sufficient to

do so in zebrafish (Raya et al., 2003); however, it is easy to

imagine that other factors required for Xnr1 expression are not
pmental Cell 18, 450–462, March 16, 2010 ª2010 Elsevier Inc. 453



Figure 3. BCL6 Maintains Pitx2 Expression

by Inhibiting Notch Signaling

(A–D) 50 pg GR-NICD, 100 pg GR-at-Su(H), 100 pg

MAM1-GR, 2 ng GR-dn-Su(H), 2 ng dn-MAM1-

GR, or/and 2 ng mBCL6-GR was injected for

each experiment.

(E and F) The expression of Pitx2 at stage 25 was

tested by whole-mount in situ hybridization, and

the ratios of the Pitx2-expressing embryo number

versus the total tested embryo number are shown.

The total numbers of each injection are shown as

‘‘n’’ on the top of each bar.

(G) 2 ng NBD-S-GR or/and mBCL6-GR was

injected for each experiment. The injected side is

indicated by ‘‘L’’ (left) beside the names of the

injected samples. L, left; R, right; a, anterior; p,

posterior.
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adequately expressed on the right side in Xenopus, and, con-

versely, that NICD overexpression in zebrafish may only exert

early effects (on Nodal paralog expression), but may not last

long enough to inhibit Pitx2. In any case, taken together, these

findings suggest the possibility that BCL6 selectively antago-

nizes Notch-mediated inhibition of Pitx2 expression in Xenopus,

and that this antagonism forms the basis for BCL6 requirements

during LR asymmetric development.

BCL6 Inhibits Notch and Maintains Pitx2 Expression
by Interfering with MAM1
To test the possibility that BCL6 is necessary to suppress Notch

activity and maintain Pitx2 expression, GR-NICD and mBCL6-

GR RNA were coinjected into a left dorsal blastomere of 4-cell-

stage embryos, and the expression of Pitx2 was tested. BCL6

restored the expression of Pitx2 to normal levels (10% to 58%)

(Figure 3A), indicating that Notch signaling is indeed a likely

target of BCL6 during LR patterning.

We next examined whether the suppression of Pitx2 by Notch

signaling is mediated by Su(H) or MAM1. A hormone-inducible

active type of Su(H) fused to the VP16 activator domain (GR-

at-Su(H)) (Rones et al., 2000), or a hormone-inducible MAM1

(MAM1-GR) RNA, was injected into a left dorsal blastomere of
454 Developmental Cell 18, 450–462, March 16, 2010 ª2010 Elsevier Inc.
4-cell-stage embryos, and the expression

of Pitx2 was examined. Both at-Su(H)

(90%, n = 31) and MAM1 (91%, n = 32)

suppressed the expression of Pitx2

(Figures 3B and 3C). To test whether the

suppression of Pitx2 by Su(H) or MAM1

is inhibited by BCL6, GR-at-Su(H) or

MAM1-GR RNA was coinjected with

mBCL6-GR. BCL6 rescued MAM1

effects on Pitx2 (9% to 61%) (Fig-

ure 3C), but not at-Su(H) effects on Pitx2

(10% to 13%) (Figure 3B), suggesting

that BCL6 may interfere with specific

aspects of transcriptional activation by

the NICD/Su(H) complex. As at-Su(H)

can activate transcription of Notch target

genes without NICD, this result further

suggests that BCL6 does not compete
with Su(H) to bind to the CSL-binding sites in the promoters of

target genes. To confirm the idea that BCL6’s principal function

in this context is to block Notch-dependent transcription, we

used a hormone-inducible dominant-negative form of Su(H)

(GR-dn-Su(H)), which has a mutation in the DNA-binding domain

and can still interact with NICD (Rones et al., 2000; Wettstein

et al., 1997), and a hormone-inducible dominant-negative form

of MAM1 (dn-MAM1-GR), which has only the Notch-binding

domain (Kiyota and Kinoshita, 2002). Coinjection of GR-dn-

Su(H) or dn-MAM1-GR RNA with BCL6 MO restored Pitx2

expression to normal levels (8% to 75% with GR-dn-Su(H),

n = 24; 8% to 84% with dn-MAM1-GR, n = 25) (Figure 3D), indi-

cating that blocking transcriptional outputs of Notch signaling

can rescue BCL6 MO phenotypes.

To further confirm endogenous crosstalk between Notch

signaling and BCL6, the following studies were performed. The

maximum amounts of GR-NICD RNA (10 pg) and BCL6 MO

(5 ng), which alone cannot sufficiently suppress the expression

of Pitx2, showed a synthetic interaction, suppressing Pitx2 (Fig-

ure 3E) and suggesting that endogenous BCL6 inhibits Notch

activity. Moreover, the Notch1 MO was epistatic to the BCL6

MO (Figure 3F), indicating that Notch signaling is an in vivo target

of BCL6 for the expression of Pitx2 (Figure S3A).
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In order to design a reagent that would selectively block BCL6/

Notch interactions, without affecting other BCL6 or Notch func-

tions, a hormone-inducible mutant BCL6 construct (NBD-S-GR),

which contains only the M3 domain, was generated (Figure 1C).

To our knowledge, the M3 domain has not been reported to be

required for the interaction between BCL6 and any other factors

thus far, yet we find it is sufficient to interfere with the interaction

between Notch1 and BCL6, while leaving the NICD transcrip-

tional complex (Figure S3B) and Notch activity (Figures S3C

and S3D) intact. NBD-S-GR RNA was injected into the left dorsal

blastomere of 4-cell-stage embryos, and the expression of Pitx2

was examined. The expression of Pitx2 was inhibited by NBD-S

(87%, n = 31), and this inhibition was rescued by the coinjection

of mBCL6-GR RNA (13% to 76%) (Figure 3G). Note that the

defects of LR asymmetry were also observed in the NBD-S-

injected embryos (Table 1). To verify whether NBD-S enhances

the ability of Notch to suppress Pitx2, the maximum amounts

of GR-NICD (10 pg) and NBD-S-GR (100 pg), which alone cannot

sufficiently suppress the expression of Pitx2, were coinjected,

and, again, a synthetic interaction was observed (Figure S3E).

These findings together support the proposal that BCL6 main-

tains LR asymmetry by rendering Pitx2 expression resistant to

the effects of Notch signaling.

In order to determine the molecular mechanism of this BCL6

effect, we sought BCL6-dependent changes in the composition

of Notch transcriptional complexes. BCL6 was overexpressed in

embryos, and coimmunoprecipitation with a-Notch1 antibody

was performed. MAM1, but not Su(H), was replaced by the over-

expressed BCL6 protein (Figure 4A). Interaction studies with

in vitro-translated proteins demonstrate that this interference

by BCL6 was dose dependent (Figure 4B). Conversely, the over-

expression of MAM1 and dn-MAM1 displaced BCL6 from the

transcriptional complex of Notch signaling (lanes 2 and 4 in Fig-

ure 4C). Note that NBD-S and MAM1 (Figure S3B) or dn-MAM1

(Figure 4D) did not exclude each other from the transcriptional

complex. It is possible that the NBD-S-binding site in the ANK

domain of NICD may not overlap with the MAM1-binding site

or/and NBD-S may interact with NICD more strongly than full-

length BCL6 because the truncation of other domains may

lead to conformation change. These data together demonstrate

that BCL6 competes with MAM1 for the ANK domain of NICD to

inhibit the transcriptional activity of Notch.

BCL6 Forms a Complex with BCoR
As a previous study in Xenopus showed that BCoR is required for

the expression of Pitx2 and LR patterning (Hilton et al., 2007) and

BCoR was expressed in the LPM at stage 25 (Figure 2C), we

examined whether BCoR is present in the Notch/BCL6 complex.

When immunoprecipitation with a-Notch1 antibody was per-

formed, BCoR was precipitated with the Notch/BCL6 complex

(Figure 4E). When BCL6 was knocked down by BCL6 MO, the

amount of BCoR precipitated by a-Notch1 antibody was

reduced (Figure 4F), suggesting that BCL6 recruits BCoR into

the transcriptional complex of Notch signaling. To examine

whether BCoR is functionally involved in the suppression of

Notch signaling, the enhancement of BCL6 effect by BCoR in

Pitx2 expression was tested. The number of Pitx2-expressing

embryos in the coinjection of GR-NICD and mBCL6-GR was

increased by the coinjection of BCoR (lanes 3 and 5 in Fig-
Develo
ure 4G). Indeed, the overexpression of BCoR itself was sufficient

to attenuate NICD’s effects on Pitx2 (lane 4 in Figure 4G), and this

BCoR activity was dependent on endogenous BCL6 (lane 6 in

Figure 4G). Collectively, our data indicate that BCL6 inhibits

Notch-dependent transcription by blocking NICD/Su(H) interac-

tions with the coactivator MAM1 and recruiting the corepressor

BCoR instead.

ESR1 Is a Notch Target Gene Suppressed by BCL6
during LR Patterning
In an effort to refine our model for BCL6 action, we looked for

direct target genes shared by BCL6 and Notch, where we might

test the mechanistic model discussed above. The expression of

Notch-activated genes in the LPM was therefore examined by

RT-PCR. Interestingly, the expression of ESR1 (Lamar and Kint-

ner, 2005; Wettstein et al., 1997) was barely detected, whereas

Hairy2 (Davis et al., 2001) was expressed (Figure S4A). To test

whether BCL6 differentially regulates the transcription of

selected Notch target genes, the expression of ESR1 and Hairy2

in the BCL6-depleted left LPM was tested by quantitative

RT-PCR. The expression of ESR1, but not Hairy2, was increased

in the BCL6-depleted LPM (Figure 5A) and in the nervous system

at stage 14 (Figure 5B). This increase of ESR1 expression by

BCL6 MO was decreased by the coinjection of Notch1 MO,

suggesting that BCL6 directly regulates the transcriptional

output of Notch signaling on ESR1 (Figure 5C). In addition, an

increase of ESR1 expression by NICD in the left LPM was

reduced by the coinjection of BCL6 (Figure S4B).

Next, the possibility that ESR1 mediates Notch signaling to

suppress the expression of Pitx2 was examined. A hormone-

inducible ESR1 (ESR1-GR) or Hairy2 (Hairy2-GR) RNA was

injected into a left dorsal blastomere of 4-cell-stage embryos,

and the expression of Pitx2 was tested. ESR1 (74%, n = 34),

but not Hairy2 (4%, n = 28), suppressed Pitx2 expression (Fig-

ure 5D; Figure S4C). To examine whether ESR1 is the primary

mediator of Notch effects on Pitx2, ESR1 was knocked down

with an MO (ESR1 MO) (Figure S4D). However, the ESR1 MO

was not able to rescue Pitx2 expression in BCL6 MO coinjected

embryos, indicating that other Notch target genes that converge

on Pitx2 are also suppressed by BCL6 in the left LPM (Figure 5E;

Figure S4E).

Chromatin immunoprecipitation (ChIP) assays with nuclear

extracts isolated from stage-25 embryos confirmed that Notch1

is associated with the known CSL-binding sites at the ESR1 and

Hairy2 genomic loci; however, BCL6 bound only the ESR1 CSL-

binding element (Figure 6A). We next examined whether BCL6

recruitment is dependent on the NICD. dn-Su(H) was used for

this study, because overexpressed dn-Su(H) dominantly inter-

acts with NICD but cannot bind the CSL-binding site (Wettstein

et al., 1997). dn-Su(H) overexpression prevented both Notch1

(lanes 7 and 8 in Figure 6B) and BCL6 (lanes 5 and 6 in

Figure 6B) from binding the ESR1 CSL-binding site. However,

BCL6 MO increases MAM1 occupancy of ESR1 CSL-binding

site (lanes 5 and 6 in Figure 6C) without affecting NICD (lanes 7

and 8 in Figure 6C). These data strongly suggest that BCL6

binds to the transcriptional complex present at the CSL-binding

site of ESR1 through NICD and competes with MAM1. However,

it still remains possible that BCL6 interacts directly with the ESR1

gene, at elements other than the CSL-binding site tested above.
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Figure 4. The Mechanisms by Which the BCL6/BCoR Complex Blocks Notch-Dependent Transcription
(A) HA-tagged Su(H), Flag-tagged MAM1, or/and BCL6 was expressed in embryos, and protein extracts were isolated from 50 embryos at stage 10. Coimmu-

noprecipitation with a-Notch antibody was performed.

(B) Coimmunoprecipitation with in vitro-synthesized proteins.

(C and D) Flag-tagged MAM1, Flag-tagged dn-MAM1, BCL6, or/and Myc-tagged NBD-S was expressed in embryos, and protein extracts were isolated from

50 embryos at stage 10 for each experiment.
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Figure 5. ESR1 Is a Target of BCL6 during

LR Patterning and Neural Development

(A) BCL6 MO was injected into the left side of

embryos, and left LPM tissues were dissected

from 20 embryos at stage 25 for quantitative

RT-PCR. The injection side was traced by the

coinjection of GFP (data not shown). *p < 0.05,

n = 3.

(B) BCL6 MO was injected into a dorsal blasto-

mere of four-cell-stage embryos, and embryos

were fixed at stage 14. Increased ESR1 expres-

sion and decreased N-tubulin expressions are

indicated by white and black arrows, respectively.

(C) BCL6 MO or/and Notch1 MO was injected

into the left side of embryos, and left LPM tissues

were dissected from 20 embryos at stage 25 for

quantitative RT-PCR. *p < 0.01, n = 3; **p < 0.01,

n = 3; ***p < 0.01, n = 3.

(D) 1 ng ESR1-GR or Hairy2-GR was injected for

each experiment.

(E) 40 ng ESR1 MO or/and BCL6 MO was injected

for each experiment. The injected side is indicated

by ‘‘L’’ (left) beside the names of the injected

samples. L, left; R, right; a, anterior; p, posterior.

All error bars shown are standard deviation (SD)

from the mean of triplicates.
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To search for a BCL6-response element, 2367 bp of the

Xenopus tropicalis ESR1 genomic locus was amplified by PCR

with primers designed with X. tropicalis genome sequences

(University of California Santa Cruz Genome Bioinformatics;

http://genome.ucsc.edu/) and linked to the luciferase reporter

(pGL3-ESR1P-2367). After this construct was coinjected with

NICD or/and BCL6/BCoR RNA into Xenopus embryos, the lucif-

erase activity was measured. Increased luciferase activity by

NICD was decreased by the coinjection of BCL6 and BCoR, sug-

gesting that this fragment of the ESR1 gene includes the BCL6-

response element (Figure 6D; Figure S5A). A deletion analysis of

this genomic fragment revealed that the BCL6-response element

was present between �1072 and �740 (Figure 6D; Figure S5A);

however, consensus BCL6-binding sequences as published

previously (Chang et al., 1996) were not found between �1072

and �740. Electrophoretic mobility shift assays (EMSA) were

therefore performed with full-length or the C2H2-type zinc finger

domain of BCL6 recombinant protein (GST-BCL6 or GST-ZF) to

identify the BCL6-response element in this region of ESR1.

Several probes for EMSA were designed in the candidate region

of ESR1 (�1072/�740) and were radiolabeled by PCR. The

�1030/�897 probe resulted in a BCL6-retarded band (lane 3:

GST-BCL6; lane 4: GST-ZF in Figure 6E). Because BCL6 directly

interacts with this probe, we will refer to the corresponding

region of ESR1 as the BCL6-response element (see Figure 6D).

Indeed, the overexpression of the zinc finger domain of BCL6

(BCL6-ZF) could inhibit the expression of Pitx2, indicating that

BCL6-ZF competes with endogenous BCL6 for the BCL6-
(E and F) Myc-tagged BCoR was expressed in embryos (E) without or (F) with th

Coimmunoprecipitation with a-Notch antibody was performed. a-vimentin antibo

(G) The expression of Pitx2 at stage 25 was tested by whole-mount in situ hybrid

tested embryo number are shown. Total numbers of each injection are shown as
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binding site and inhibits the function of BCL6 by displacing

endogenous BCL6 from the ESR1 locus (Figure 6F). Because

two nonoverlapping fragments (50 response element and 30

response element) of the BCL6-response element (Figure S5B)

could each interact with GST-ZF, there is likely more than one

BCL6-binding site in the BCL6-response element (Figure S5C).

These results indicate that direct binding of BCL6 to both the

target locus and the NICD is required for its ability to shut

down Notch target gene expression. These findings, in turn,

suggest a mechanism by which selective inhibition of specific

Notch-activated target genes is achieved.

DISCUSSION

We have uncovered that BCL6 recruits BCoR and blocks the

transcription of selected Notch target genes to maintain Pitx2

expression and LR asymmetry in Xenopus (Figure 7A). It should

be noted that mutations of human BCoR result in the Oculofacio-

cardiodental (OFCD) syndrome, which is characterized by

defective lateralization, including dextrocardia, asplenia, and

intestinal malrotation (Hilton et al., 2007; Ng et al., 2004). These

findings indicate that the dysfunction of BCL6 in mammals can

likely lead to defects of LR asymmetry. However, the defects

of LR asymmetry in BCL6-deficient mice have not been reported.

BCL6-deficient mice displayed defective GC development

and a selective defect in T cell-dependent antibody responses

(Ye et al., 1997), and also developed myocarditis and pulmonary

vasculitis (Dent et al., 1997; Ye et al., 1997; Yoshida et al., 1999).
e BCL6 MO, and protein extracts were isolated from 50 embryos at stage 10.

dy was used for a mock immunoprecipitation.

ization, and the ratios of the Pitx2-expressing embryo number versus the total

‘‘n’’ on the top of each bar.
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Figure 6. The Mechanisms by Which BCL6 Shuts Down the Expression of Selected Notch Target Genes

(A) ChIP assays were performed with nuclear extracts from stage-25 embryos by using a-BCL6 antibody, a-Notch1 antibody, or mouse IgG. Mouse IgG was used

for a mock ChIP assay.

(B) 2 ng dn-Su(H) was injected into two-cell-stage embryos, and nuclear extracts were isolated at stage 10 for ChIP assays.

(C) BCL6 MO or/and 1 ng Flag-MAM1 was injected into two-cell-stage embryos, and nuclear extracts were isolated at stage 10 for ChIP assays. The levels of input

proteins were confirmed by immunoblotting.

(D) Deleted fragments of the X. tropicalis ESR1 gene were linked to the luciferase reporter. Numbers indicate the position of nucleotides from the initiation site.

(E) Incubation of GST-BCL6 or GST-ZF with a probe corresponding to a 134 bp (�1030/�897) element yielded one distinct retarded band indicated by an arrow.

(F) 2 ng BCL6 ZF-GR or/and mBCL6-GR was injected for each experiment. The injected side is indicated by ‘‘L’’ (left) beside the names of the injected samples. L,

left; R, right; a, anterior; p, posterior.
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Based on our findings and the observation in human syndrome,

it remains possible that defects of LR asymmetry in BCL6-defi-

cient mice may have been overlooked because defects of LR

asymmetry are not lethal (Peeters and Devriendt, 2006). The

reexamination of BCL6-deficient mice will be required to

address this important question.

In mice, distinct asymmetric expression of Delta-like 1 (Dll1),

Notch1, and Notch2 around the node (Bettenhausen et al.,

1995; Krebs et al., 2003; Raya et al., 2003; Williams et al.,

1995) and asymmetric Notch activation have not been reported.

In Dll1 knockout or Notch1 and Notch2 double-knockout mice,

the symmetric expression of Nodal in the perinodal region is

completely abolished, and these mice show defects of LR asym-

metry (Krebs et al., 2003; Raya et al., 2003). Similar to the studies

in mice, any LR asymmetry in the expression of Delta1, Serrate1,

and Notch1 around the Xenopus GRP was not observed
458 Developmental Cell 18, 450–462, March 16, 2010 ª2010 Elsevier
(Figure S2G), and the symmetric expression of Xnr1 on the

GRP was inhibited by the depletion of Xenopus Notch1 (Fig-

ure 2D; Figure S2I). These findings indicate that Xenopus Notch1

initiates symmetric Xnr1 expression around the GRP required for

LR patterning, and these mechanisms are conserved between

mice and Xenopus. However, it still remains unclear whether

asymmetric Notch activity exists around the GRP. It is possible

that other signals, including the generation of a leftward fluid

flow in or close to the GRP by the rotation of cilia (Schweickert

et al., 2007), together could break the bilateral symmetry and

induce the left-specific Xnr1 expression in the LPM. In contrast,

studies in chick have shown that the expression of Dll1 around

the left side of Hensen’s node is stronger than the right, and

that asymmetric activity of Notch signaling on the left side of

the node regulates the left-side expression of Nodal (Raya

et al., 2004). It remains very likely that the precise role of Notch
Inc.



Figure 7. A Model for the Regulation of Notch Signaling by the BCL6/

BCoR Complex during LR Patterning

(A) At stage 25, the BCL6/BCoR complex inhibits Notch’s ability to suppress

Pitx2 expression initiated by Xnr1-dependent and -independent signals and

maintains LR asymmetry.

(B) Sequence-specific targeting of BCL6 to a subset of Notch-activated genes

occurs by an unknown mechanism. Once recruited, however, BCL6 both

competes MAM1 away from the locus and recruits BCoR, effectively blocking

Notch-dependent transcription.
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signaling in the patterning of LR asymmetry may be slightly

different among species.

We have shown that the expression of Pitx2 on the left LPM is

dually regulated in Nodal (Xnr1)-dependent and -independent

manners. The expression of Pitx2 in the absence of Nodal func-

tion has been reported in Notch1 and Notch2 knockout mice

(Krebs et al., 2003; Raya et al., 2003), mutations of mouse

PDK2 (Pennekamp et al., 2002), and FURIN-deficient mice (Con-

stam and Robertson, 2000). These findings suggest that Pitx2

expression is regulated in part by Nodal-independent mecha-

nisms. As we have found that Pitx2 expression is significantly

suppressed by loss of BCL6 or by the overexpression of NICD

or ESR1 in Xenopus embryos, this indicates that a Notch-ESR1

signal could simultaneously inhibit Nodal-dependent and -inde-

pendent signals to suppress the expression of Pitx2 (Figure S3A).

However, how the Notch-ESR1 signal inhibits these signals still

remains unknown. Interestingly, the Nodal-dependent expres-

sion of mouse Pitx2 is controlled by a two-step mechanism

during the patterning of LR asymmetry (Shiratori et al., 2001).

Nodal signal acting in cooperation with the transcription factor

FAST-1 is required to initiate left-side-specific expression of

mouse Pitx2; however, the relevant left-side-specific enhancer

is also dependent on Nkx2.5 to maintain activation. All of these

enhancer sequences are conserved at the Xenopus Pitx2 locus

(Shiratori et al., 2001), suggesting that the left-specific expres-

sion of Xenopus Pitx2 is regulated by the same two-step mech-

anism. ESR1 may directly bind this left-side-specific enhancer of

Pitx2 and shut down Pitx2 expression, although an indirect inhi-

bition cannot be excluded. It will therefore be important to inves-

tigate in future studies which regulatory step of Pitx2 induction is

inhibited by the Notch-ESR1 cascade and how ESR1 inhibits

Pitx2 expression.

How does Notch signaling activate only the correct target

genes in the LPM? One may posit that distinct repressors

expressed in the LPM may play a crucial role in inhibiting the

transcription of unnecessary target genes during LPM develop-

ment, and that BCL6 must be such a factor. Indeed, our studies
Develo
show that the expression of ESR1, but not Hairy2, was selec-

tively inhibited by BCL6, and that ESR1, but not Hairy2, inhibited

the expression of Pitx2 (Figure 5). BCL6 directly interacts with the

ESR1 cis-regulatory element (Figure 6) and competes with

MAM1 for the ANK domain of Notch1 to shut down the transcrip-

tion of ESR1 when Notch signaling is activated (Figure 7B).

Although 134 bp of the BCL6-response element at the ESR1

locus was identified, consensus BCL6-binding sequences

(Chang et al., 1996) were not found in this element (Figure 6D).

It is possible that BCL6 may interact with the ESR1 element

through slightly different binding sequences. Our study suggests

that there are multiple BCL6-binding sites in the BCL6-response

element of ESR1 (Figure S5C). Therefore, a further analysis of

this element remains necessary to identify the BCL6-binding

site(s) and address how BCL6 is recruited to the ESR1 locus.

Our data define an important mechanism by which BCL6 con-

strains Notch signaling to provide cell-type-appropriate outputs.

Because the expression of Notch1 overlaps with that of BCL6 in

diverse ectodermal and mesodermal tissues, including the eye,

the nervous system, and the somites (Figure S2A)—and, indeed,

both Notch signaling and BCL6 abnormalities have been impli-

cated in leukemias—this regulatory mechanism may be impor-

tant for other developmental, homeostatic, or pathophysiolog-

ical processes.

EXPERIMENTAL PROCEDURES

Embryo Manipulations

Eggs were artificially fertilized by using testis homogenate and cultivated in

0.13 Marc’s Modified Ringer’s solution (MMR) (Peng, 1991). Embryos were

staged according to Nieuwkoop and Faber (1967).

GST Pull-Down and Protein Identification by Mass Spectrometry

GST fusion proteins were produced in E. coli strain BL21. The bacterial cells

were disrupted by sonication in Phosphate Buffered Saline (PBS) with

protease inhibitor cocktail (EDTA-free Complete Mini, Roche Applied

Science). To purify the GST fusion proteins, glutathione-conjugated agarose

beads (Sigma) were added to those samples and incubated at 4�C for 1 hr.

The beads were washed three times with 1% Triton-X in PBS buffer. For our

screen, GST fusion protein was additionally washed with lysate buffer

(20 mM Tris-HCl [pH 8.0], 5 mM MgCl2, 1 mM EDTA, 50 mM KCl, 0.1% Triton

X-100, 10% glycerol, and 1 mM dithiothreitol). Stage-15 to -25 embryos were

homogenized in lysate buffer containing protease inhibitors to isolate embry-

onic protein extracts. The beads with GST or GST-ANK protein were incubated

with embryonic protein extracts at 4�C for 4 hr. The samples were washed five

times with lysate buffer without glycerol. After the washes, the proteins asso-

ciated with GST or GST-ANK were eluted with elution buffer (200 mM Tris-HCl

[pH 8.0], 4 mM MgCl2, 0.8 mM EDTA, 40 mM KCl, 0.08% Triton X-100, 0.8 mM

dithiothreitol, 10 mM glutathione, and protease inhibitors) at 4�C for 1 hr.

The eluted samples were separated by sodium dodecyl sulfate polyacryl-

amide gel electrophoresis (SDS-PAGE). The gel was stained with the Silver

Stain Plus kit (Bio-Rad). The candidate protein bands were excised from the

gel, digested with trypsin, and analyzed with matrix-assisted laser desorp-

tion/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The identi-

fication of candidate proteins was determined by the MASCOT search algo-

rithm (http://www.matrixscience.com). The monoisotopic peptide masses

were used to search the SwissProt database within a mass tolerance of

±0.2 Da for Xenopus laevis protein, and one missed cleavage was allowed.

Immunoprecipitation and Immunoblotting

Embryos were homogenized in lysate buffer, and embryonic protein extracts

were used for immunoprecipitation. The embryonic protein extracts were

incubated with an antibody at 4�C overnight. a-Notch (Developmental

Studies Hybridoma Bank [DSHB]), a-BCL6 (R&D Systems, Inc.), a-RBP-Jk
pmental Cell 18, 450–462, March 16, 2010 ª2010 Elsevier Inc. 459
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(for Su(H): Santa Cruz Biotechnology, Inc.), a-Flag (Sigma), a-HA (Santa Cruz

Biotechnology, Inc.), a-Myc (Santa Cruz Biotechnology, Inc.), and a-vimentin

(DSHB) antibodies were used for immunoprecipitation or immunoblotting.

All in vitro-translated proteins were synthesized by the TNT Coupled Reticulo-

cyte Lysate System (Promega) for immunoprecipitation studies.

Microinjection of Synthetic RNA and Morpholino Antisense Oligo

Capped synthetic mRNAs were generated by in vitro transcription with SP6

polymerase, using the mMessage mMachine kit (Ambion, Inc.). Morpholino

Antisense Oligos (MO) were designed and produced by Gene Tools, LLC.

For microinjections, embryos were transferred to 3% Ficoll 400 in 0.13

MMR, and injected embryos were cultured in 0.13 MMR until the desired

stage. In all injection studies, 100 pg GFP RNA for observing phenotypes or

250 pg nucb-gal RNA (red color) for whole-mount in situ hybridization was

injected for a tracer of injection. For the activation of GR-fused protein, dexa-

methasone (DEX: final concentration 10 mM) was added to the medium. Details

of plasmid construction and sequences of MOs are presented in the Supple-

mental Experimental Procedures.

b-Galactosidase Staining and Whole-Mount In Situ Hybridization

Embryos were fixed with gal fix solution (2% formaldehyde, 0.2% glutaralde-

hyde, 0.02% Triton-X, 0.01% sodium deoxycholate in PBS) on ice for 30 min.

Galactosidase activity was visualized with the RedGal substrate (Research

Organics) in staining buffer (5 mM K3[Fe(CN)6], 5 mM K4[Fe(CN)6], 2 mM

MgCl2 in PBS). After staining, embryos were refixed with MEMFA (0.1 M

MOPS, 2 mM EGTA [pH 8.0], 1 mM MgSO4, and 3.7% formaldehyde) for

30 min. Whole-mount in situ hybridization was performed essentially as

described previously (Harland, 1991; Takada et al., 2005) by using Digoxigenin

(Roche Applied Science)-labeled antisense RNA probes and BM purple

(Roche Applied Science) for the chromogenic reaction. Information on probes

is presented in the Supplemental Experimental Procedures.

RT-PCR Analysis

Total RNA was isolated by the method with 200 mg/ml Proteinase K described

previously (Hilz et al., 1975). Reverse transcriptase (RT) reaction for the

synthesis of cDNA was performed with Superscript II (Invitrogen) according

to the manufacturer’s instructions. Specimens were analyzed for gene expres-

sion levels using regular PCR with Taq DNA polymerase (New England Biolabs)

or the iQ5 Real-Time PCR Detection System (Bio-Rad) with the QuantiTect

SYBR Green PCR kit (QIAGEN). Information on primers is presented in the

Supplemental Experimental Procedures. All error bars shown are the standard

deviation (SD) from the mean of triplicates.

Chromatin Immunoprecipitation

Chromatin immunoprecipitation (ChIP) assays were performed with a kit from

Millipore (Kato et al., 2002; Sachs and Shi, 2000). Nuclei were isolated as

described previously (Almouzni et al., 1994). The isolated nuclei were resus-

pended in 360 ml nucleus isolation buffer (0.25 M sucrose, 10 mM Tris-HCl

[pH 7.5], 3 mM CaCl2, and protease inhibitor cocktail). Proteins were cross-

linked to DNA by adding formaldehyde (final concentration: 1%) and incubated

on ice for 10 min and at room temperature for 20 min. After centrifuging

samples, the nuclei were resuspended in 200 ml lysis buffer (1% SDS,

50 mM Tris-HCl [pH 8.1], 10 mM EDTA, protease inhibitor cocktail) on ice for

10 min. The lysate was sonicated ten times with 10 s pulses by using a sonica-

tor (Branson Sonifier 450, VWR) set to 50% of maximum power to reduce DNA

length to between 200 and �1,000 bp. After debris was removed, DNA was

quantified and adjusted to equal concentration for PCR. Information of primers

is presented in the Supplemental Experimental Procedures. One milliliter of

chromatin solution was used for each ChIP assay with a-BCL6, a-Notch1, or

a-Flag antibody. One percentage of chromatin solution was stored for the

input DNA.

Luciferase Reporter Assay

Luciferase reporter constructs of the ESR1 gene were generated by subclon-

ing different lengths of genomic fragments, between�1 and�2367, into pGL3

basic vector (Promega), and pRL-CMV (Promega) was used for the internal

control. Luciferase activity was measured by using the Dual Luciferase
460 Developmental Cell 18, 450–462, March 16, 2010 ª2010 Elsevier
Reporter Assay System (Promega). All error bars shown are the SD from the

mean of triplicates. X. tropicalis genomic DNA was gifted by Dr. K. Tamai.

Electrophoretic Mobility Shift Assay

The electrophoretic mobility shift assay was performed as described (Huang

et al., 1995). Recombinant proteins, which were eluted from glutathione-conju-

gated agarose beads by prereaction buffer (50 mM Tris-HCl [pH 8.0], 50 mM

KCl, 1 mM EDTA, 1 mM EGTA, 5 mM dithiothreitol, 20% glycerol, 10 mM gluta-

thione, and protease inhibitors), were incubated for 10 min on ice in a 15 ml

reaction volume containing 50 mM Tris-HCl (pH 8.0), 50 mM KCl, 7.5 mM

Mg2Cl, 1 mM EDTA, 1 mM EGTA, 5 mM dithiothreitol, 20% glycerol, 50 mg/ml

poly (dI-dC), and protease inhibitors. A 32P-labeled probe was added, and

incubation continued for 15 min on ice. The protein-DNA complex was sepa-

rated by electrophoresis through a 6% native polyacrylamide gel.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures and Supplemental Experi-

mental Procedures and are available with this article online at doi:10.1016/

j.devcel.2009.12.023.

ACKNOWLEDGMENTS

We thank C. Kintner, M. Mercola, C.V.E. Wright, D.L. Turner, M. Levin,

N. Ueno, T. Kinoshita, H. Sive, K. Tamai, R. Habas, and the National Institute

for Basic Biology (NIBB) for plasmids, and the Developmental Studies

Hybridoma Bank (DSHB) for antibodies. We also thank J. Horabin and

R. Habas for critical suggestions on the manuscript. This work was supported

by the Bankhead-Coley Cancer Research Program, Florida State University

Council on Research and Creativity (CRC) planning grant, and the National

Institute of Child Health and Human Development (NICHD) (HD052526).

Received: December 19, 2008

Revised: October 15, 2009

Accepted: December 22, 2009

Published: March 15, 2010

REFERENCES

Adachi, H., Saijoh, Y., Mochida, K., Ohishi, S., Hashiguchi, H., Hirao, A., and

Hamada, H. (1999). Determination of left/right asymmetric expression of nodal

by a left side-specific enhancer with sequence similarity to a lefty-2 enhancer.

Genes Dev. 13, 1589–1600.

Albagli-Curiel, O. (2003). Ambivalent role of BCL6 in cell survival and transfor-

mation. Oncogene 22, 507–516.

Almouzni, G., Khochbin, S., Dimitrov, S., and Wolffe, A.P. (1994). Histone acet-

ylation influences both gene expression and development of Xenopus laevis.

Dev. Biol. 165, 654–669.

Baron, B.W., Nucifora, G., McCabe, N., Espinosa, R., 3rd, Le Beau, M.M., and

McKeithan, T.W. (1993). Identification of the gene associated with the recur-

ring chromosomal translocations t(3;14)(q27;q32) and t(3;22)(q27;q11) in

B-cell lymphomas. Proc. Natl. Acad. Sci. USA 90, 5262–5266.

Bettenhausen, B., Hrabe de Angelis, M., Simon, D., Guenet, J.L., and Gossler,

A. (1995). Transient and restricted expression during mouse embryogenesis of

Dll1, a murine gene closely related to Drosophila Delta. Development 121,

2407–2418.

Boorman, C.J., and Shimeld, S.M. (2002). The evolution of left-right asymmetry

in chordates. Bioessays 24, 1004–1011.

Borggrefe, T., and Oswald, F. (2009). The Notch signaling pathway: transcrip-

tional regulation at Notch target genes. Cell. Mol. Life Sci. 66, 1631–1646.

Branford, W.W., Essner, J.J., and Yost, H.J. (2000). Regulation of gut and heart

left-right asymmetry by context-dependent interactions between Xenopus

lefty and BMP4 signaling. Dev. Biol. 223, 291–306.

Brennan, J., Norris, D.P., and Robertson, E.J. (2002). Nodal activity in the node

governs left-right asymmetry. Genes Dev. 16, 2339–2344.
Inc.

http://dx.doi.org/doi:10.1016/j.devcel.2009.12.023
http://dx.doi.org/doi:10.1016/j.devcel.2009.12.023


Developmental Cell

BCL6 Blocks Select Notch-Dependent Transcription
Capdevila, J., Vogan, K.J., Tabin, C.J., and Izpisua Belmonte, J.C. (2000).

Mechanisms of left-right determination in vertebrates. Cell 101, 9–21.

Chang, C.C., Ye, B.H., Chaganti, R.S., and Dalla-Favera, R. (1996). BCL-6,

a POZ/zinc-finger protein, is a sequence-specific transcriptional repressor.

Proc. Natl. Acad. Sci. USA 93, 6947–6952.

Constam, D.B., and Robertson, E.J. (2000). Tissue-specific requirements for

the proprotein convertase furin/SPC1 during embryonic turning and heart

looping. Development 127, 245–254.

Davis, R.L., Turner, D.L., Evans, L.M., and Kirschner, M.W. (2001). Molecular

targets of vertebrate segmentation: two mechanisms control segmental

expression of Xenopus hairy2 during somite formation. Dev. Cell 1, 553–565.

Dent, A.L., Shaffer, A.L., Yu, X., Allman, D., and Staudt, L.M. (1997). Control of

inflammation, cytokine expression, and germinal center formation by BCL-6.

Science 276, 589–592.

Diederich, R.J., Matsuno, K., Hing, H., and Artavanis-Tsakonas, S. (1994).

Cytosolic interaction between deltex and Notch ankyrin repeats implicates

deltex in the Notch signaling pathway. Development 120, 473–481.

Hamada, H., Meno, C., Watanabe, D., and Saijoh, Y. (2002). Establishment of

vertebrate left-right asymmetry. Nat. Rev. Genet. 3, 103–113.

Harland, R.M. (1991). In situ hybridization: an improved whole-mount method

for Xenopus embryos. Methods Cell Biol. 36, 685–695.

Heasman, J., Kofron, M., and Wylie, C. (2000). b-catenin signaling activity

dissected in the early Xenopus embryo: a novel antisense approach. Dev.

Biol. 222, 124–134.

Hilton, E.N., Manson, F.D., Urquhart, J.E., Johnston, J.J., Slavotinek, A.M.,

Hedera, P., Stattin, E.L., Nordgren, A., Biesecker, L.G., and Black, G.C.

(2007). Left-sided embryonic expression of the BCL-6 corepressor, BCOR,

is required for vertebrate laterality determination. Hum. Mol. Genet. 16,

1773–1782.

Hilz, H., Wiegers, U., and Adamietz, P. (1975). Stimulation of proteinase K

action by denaturing agents: application to the isolation of nucleic acids and

the degradation of ‘masked’ proteins. Eur. J. Biochem. 56, 103–108.

Huang, H.C., Murtaugh, L.C., Vize, P.D., and Whitman, M. (1995). Identification

of a potential regulator of early transcriptional responses to mesoderm

inducers in the frog embryo. EMBO J. 14, 5965–5973.

Huynh, K.D., Fischle, W., Verdin, E., and Bardwell, V.J. (2000). BCoR, a novel

corepressor involved in BCL-6 repression. Genes Dev. 14, 1810–1823.

Jones, C.M., Kuehn, M.R., Hogan, B.L., Smith, J.C., and Wright, C.V. (1995).

Nodal-related signals induce axial mesoderm and dorsalize mesoderm during

gastrulation. Development 121, 3651–3662.

Kato, H., Taniguchi, Y., Kurooka, H., Minoguchi, S., Sakai, T., Nomura-

Okazaki, S., Tamura, K., and Honjo, T. (1997). Involvement of RBP-J in biolog-

ical functions of mouse Notch1 and its derivatives. Development 124, 4133–

4141.

Kato, Y., Habas, R., Katsuyama, Y., Naar, A.M., and He, X. (2002). A compo-

nent of the ARC/Mediator complex required for TGF b/Nodal signalling. Nature

418, 641–646.

Kawakami, Y., Raya, A., Raya, R.M., Rodriguez-Esteban, C., and Belmonte,

J.C. (2005). Retinoic acid signalling links left-right asymmetric patterning and

bilaterally symmetric somitogenesis in the zebrafish embryo. Nature 435,

165–171.

Kerckaert, J.P., Deweindt, C., Tilly, H., Quief, S., Lecocq, G., and Bastard, C.

(1993). LAZ3, a novel zinc-finger encoding gene, is disrupted by recurring

chromosome 3q27 translocations in human lymphomas. Nat. Genet. 5, 66–70.

Kiyota, T., and Kinoshita, T. (2002). Cysteine-rich region of X-Serrate-1 is

required for activation of Notch signaling in Xenopus primary neurogenesis.

Int. J. Dev. Biol. 46, 1057–1060.

Krebs, L.T., Iwai, N., Nonaka, S., Welsh, I.C., Lan, Y., Jiang, R., Saijoh, Y.,

O’Brien, T.P., Hamada, H., and Gridley, T. (2003). Notch signaling regulates

left-right asymmetry determination by inducing Nodal expression. Genes

Dev. 17, 1207–1212.

Kurooka, H., Kuroda, K., and Honjo, T. (1998). Roles of the ankyrin repeats and

C-terminal region of the mouse notch1 intracellular region. Nucleic Acids Res.

26, 5448–5455.
Develo
Lamar, E., and Kintner, C. (2005). The Notch targets Esr1 and Esr10 are

differentially regulated in Xenopus neural precursors. Development 132,

3619–3630.

Levin, M. (2005). Left-right asymmetry in embryonic development: a compre-

hensive review. Mech. Dev. 122, 3–25.

Li, Z., Wang, X., Yu, R.Y., Ding, B.B., Yu, J.J., Dai, X.M., Naganuma, A., Stan-

ley, E.R., and Ye, B.H. (2005). BCL-6 negatively regulates expression of the

NF-kB1 p105/p50 subunit. J. Immunol. 174, 205–214.

Lohr, J.L., Danos, M.C., and Yost, H.J. (1997). Left-right asymmetry of a nodal-

related gene is regulated by dorsoanterior midline structures during Xenopus

development. Development 124, 1465–1472.

Lustig, K.D., Kroll, K., Sun, E., Ramos, R., Elmendorf, H., and Kirschner, M.W.

(1996). A Xenopus nodal-related gene that acts in synergy with noggin to

induce complete secondary axis and notochord formation. Development

122, 3275–3282.

Matsuno, K., Diederich, R.J., Go, M.J., Blaumueller, C.M., and Artavanis-Tsa-

konas, S. (1995). Deltex acts as a positive regulator of Notch signaling through

interactions with the Notch ankyrin repeats. Development 121, 2633–2644.

Matsuno, K., Eastman, D., Mitsiades, T., Quinn, A.M., Carcanciu, M.L., Orden-

tlich, P., Kadesch, T., and Artavanis-Tsakonas, S. (1998). Human deltex is

a conserved regulator of Notch signalling. Nat. Genet. 19, 74–78.

Ng, D., Thakker, N., Corcoran, C.M., Donnai, D., Perveen, R., Schneider, A.,

Hadley, D.W., Tifft, C., Zhang, L., Wilkie, A.O., et al. (2004). Oculofaciocardio-

dental and Lenz microphthalmia syndromes result from distinct classes of

mutations in BCOR. Nat. Genet. 36, 411–416.

Nieuwkoop, P.D., and Faber, J. (1967). Normal Table of Xenopus laevis (Dau-

din) (Amsterdam, The Netherlands: North-Holland Publishing Co).

Niu, H., Cattoretti, G., and Dalla-Favera, R. (2003). BCL6 controls the expres-

sion of the B7-1/CD80 costimulatory receptor in germinal center B cells.

J. Exp. Med. 198, 211–221.

Norris, D.P., and Robertson, E.J. (1999). Asymmetric and node-specific nodal

expression patterns are controlled by two distinct cis-acting regulatory

elements. Genes Dev. 13, 1575–1588.

Ohi, Y., and Wright, C.V. (2007). Anteriorward shifting of asymmetric Xnr1

expression and contralateral communication in left-right specification in Xen-

opus. Dev. Biol. 301, 447–463.

Ohno, H. (2004). Pathogenetic role of BCL6 translocation in B-cell non-Hodg-

kin’s lymphoma. Histol. Histopathol. 19, 637–650.

Palmer, A.R. (2004). Symmetry breaking and the evolution of development.

Science 306, 828–833.

Pasqualucci, L., Bereschenko, O., Niu, H., Klein, U., Basso, K., Guglielmino,

R., Cattoretti, G., and Dalla-Favera, R. (2003). Molecular pathogenesis of

non-Hodgkin’s lymphoma: the role of Bcl-6. Leuk. Lymphoma 44 (Suppl 3),

S5–S12.

Peeters, H., and Devriendt, K. (2006). Human laterality disorders. Eur. J. Med.

Genet. 49, 349–362.

Peng, H.B. (1991). Xenopus laevis: practical uses in cell and molecular biology.

Solutions and protocols. Methods Cell Biol. 36, 657–662.

Pennekamp, P., Karcher, C., Fischer, A., Schweickert, A., Skryabin, B., Horst,

J., Blum, M., and Dworniczak, B. (2002). The ion channel polycystin-2 is

required for left-right axis determination in mice. Curr. Biol. 12, 938–943.

Phan, R.T., and Dalla-Favera, R. (2004). The BCL6 proto-oncogene

suppresses p53 expression in germinal-centre B cells. Nature 432, 635–639.

Ranuncolo, S.M., Polo, J.M., Dierov, J., Singer, M., Kuo, T., Greally, J., Green,

R., Carroll, M., and Melnick, A. (2007). Bcl-6 mediates the germinal center B

cell phenotype and lymphomagenesis through transcriptional repression of

the DNA-damage sensor ATR. Nat. Immunol. 8, 705–714.

Raya, A., and Belmonte, J.C. (2006). Left-right asymmetry in the vertebrate

embryo: from early information to higher-level integration. Nat. Rev. Genet.

7, 283–293.

Raya, A., Kawakami, Y., Rodriguez-Esteban, C., Buscher, D., Koth, C.M., Itoh,

T., Morita, M., Raya, R.M., Dubova, I., Bessa, J.G., et al. (2003). Notch activity
pmental Cell 18, 450–462, March 16, 2010 ª2010 Elsevier Inc. 461



Developmental Cell

BCL6 Blocks Select Notch-Dependent Transcription
induces Nodal expression and mediates the establishment of left-right asym-

metry in vertebrate embryos. Genes Dev. 17, 1213–1218.

Raya, A., Kawakami, Y., Rodriguez-Esteban, C., Ibanes, M., Rasskin-Gutman,

D., Rodriguez-Leon, J., Buscher, D., Feijo, J.A., and Izpisua Belmonte, J.C.

(2004). Notch activity acts as a sensor for extracellular calcium during verte-

brate left-right determination. Nature 427, 121–128.

Rones, M.S., McLaughlin, K.A., Raffin, M., and Mercola, M. (2000). Serrate and

Notch specify cell fates in the heart field by suppressing cardiomyogenesis.

Development 127, 3865–3876.

Sachs, L.M., and Shi, Y.B. (2000). Targeted chromatin binding and histone

acetylation in vivo by thyroid hormone receptor during amphibian develop-

ment. Proc. Natl. Acad. Sci. USA 97, 13138–13143.

Schweickert, A., Campione, M., Steinbeisser, H., and Blum, M. (2000). Pitx2

isoforms: involvement of Pitx2c but not Pitx2a or Pitx2b in vertebrate left-right

asymmetry. Mech. Dev. 90, 41–51.

Schweickert, A., Weber, T., Beyer, T., Vick, P., Bogusch, S., Feistel, K., and

Blum, M. (2007). Cilia-driven leftward flow determines laterality in Xenopus.

Curr. Biol. 17, 60–66.

Shaffer, A.L., Rosenwald, A., Hurt, E.M., Giltnane, J.M., Lam, L.T., Pickeral,

O.K., and Staudt, L.M. (2001). Signatures of the immune response. Immunity

15, 375–385.

Shiratori, H., Sakuma, R., Watanabe, M., Hashiguchi, H., Mochida, K., Sakai,

Y., Nishino, J., Saijoh, Y., Whitman, M., and Hamada, H. (2001). Two-step

regulation of left-right asymmetric expression of Pitx2: initiation by nodal

signaling and maintenance by Nkx2. Mol. Cell 7, 137–149.

Speder, P., Petzoldt, A., Suzanne, M., and Noselli, S. (2007). Strategies to

establish left/right asymmetry in vertebrates and invertebrates. Curr. Opin.

Genet. Dev. 17, 351–358.

Takada, H., Hattori, D., Kitayama, A., Ueno, N., and Taira, M. (2005). Identifi-

cation of target genes for the Xenopus Hes-related protein XHR1, a prepattern

factor specifying the midbrain-hindbrain boundary. Dev. Biol. 283, 253–267.
462 Developmental Cell 18, 450–462, March 16, 2010 ª2010 Elsevier
Tani, S., Kurooka, H., Aoki, T., Hashimoto, N., and Honjo, T. (2001). The N- and

C-terminal regions of RBP-J interact with the ankyrin repeats of Notch1 RAMIC

to activate transcription. Nucleic Acids Res. 29, 1373–1380.

Tunyaplin, C., Shaffer, A.L., Angelin-Duclos, C.D., Yu, X., Staudt, L.M., and

Calame, K.L. (2004). Direct repression of prdm1 by Bcl-6 inhibits plasmacytic

differentiation. J. Immunol. 173, 1158–1165.

Vasanwala, F.H., Kusam, S., Toney, L.M., and Dent, A.L. (2002). Repression of

AP-1 function: a mechanism for the regulation of Blimp-1 expression and B

lymphocyte differentiation by the B cell lymphoma-6 protooncogene. J. Immu-

nol. 169, 1922–1929.

Vonica, A., and Brivanlou, A.H. (2007). The left-right axis is regulated by the

interplay of Coco, Xnr1 and derriere in Xenopus embryos. Dev. Biol. 303,

281–294.

Wettstein, D.A., Turner, D.L., and Kintner, C. (1997). The Xenopus homolog of

Drosophila Suppressor of Hairless mediates Notch signaling during primary

neurogenesis. Development 124, 693–702.

Williams, R., Lendahl, U., and Lardelli, M. (1995). Complementary and combi-

natorial patterns of Notch gene family expression during early mouse develop-

ment. Mech. Dev. 53, 357–368.

Ye, B.H., Lista, F., Lo Coco, F., Knowles, D.M., Offit, K., Chaganti, R.S., and

Dalla-Favera, R. (1993). Alterations of a zinc finger-encoding gene, BCL-6, in

diffuse large-cell lymphoma. Science 262, 747–750.

Ye, B.H., Cattoretti, G., Shen, Q., Zhang, J., Hawe, N., de Waard, R., Leung, C.,

Nouri-Shirazi, M., Orazi, A., Chaganti, R.S., et al. (1997). The BCL-6 proto-

oncogene controls germinal-centre formation and Th2-type inflammation.

Nat. Genet. 16, 161–170.

Yoshida, T., Fukuda, T., Hatano, M., Koseki, H., Okabe, S., Ishibashi, K.,

Kojima, S., Arima, M., Komuro, I., Ishii, G., et al. (1999). The role of Bcl6 in

mature cardiac myocytes. Cardiovasc. Res. 42, 670–679.
Inc.


	BCL6 Canalizes Notch-Dependent Transcription, Excluding Mastermind-like1 from Selected Target Genes during Left-Right Patterning
	Introduction
	Results
	Isolation of Notch-Associated Proteins
	BCL6 Is Required for the Patterning of the LR Axis in Xenopus
	Dual Roles of Notch Signaling during LR Patterning Are Conserved in Xenopus
	BCL6 Inhibits Notch and Maintains Pitx2 Expression by Interfering with MAM1
	BCL6 Forms a Complex with BCoR
	ESR1 Is a Notch Target Gene Suppressed by BCL6 during LR Patterning

	Discussion
	Experimental Procedures
	Embryo Manipulations
	GST Pull-Down and Protein Identification by Mass Spectrometry
	Immunoprecipitation and Immunoblotting
	Microinjection of Synthetic RNA and Morpholino Antisense Oligo
	beta-Galactosidase Staining and Whole-Mount In Situ Hybridization
	RT-PCR Analysis
	Chromatin Immunoprecipitation
	Luciferase Reporter Assay
	Electrophoretic Mobility Shift Assay

	Supplemental Information
	Acknowledgments
	References


