
Algorithmica (2011) 61:75–93
DOI 10.1007/s00453-010-9431-z

Approximability of Sparse Integer Programs

David Pritchard · Deeparnab Chakrabarty

Received: 9 February 2010 / Accepted: 6 July 2010 / Published online: 21 July 2010
© Springer Science+Business Media, LLC 2010

Abstract The main focus of this paper is a pair of new approximation algorithms for
certain integer programs. First, for covering integer programs {min cx : Ax ≥ b,0 ≤
x ≤ d} where A has at most k nonzeroes per row, we give a k-approximation algo-
rithm. (We assume A,b, c, d are nonnegative.) For any k ≥ 2 and ε > 0, if P �= NP
this ratio cannot be improved to k−1−ε, and under the unique games conjecture this
ratio cannot be improved to k − ε. One key idea is to replace individual constraints
by others that have better rounding properties but the same nonnegative integral solu-
tions; another critical ingredient is knapsack-cover inequalities. Second, for packing
integer programs {max cx : Ax ≤ b,0 ≤ x ≤ d} where A has at most k nonzeroes per
column, we give a (2k2 +2)-approximation algorithm. Our approach builds on the it-
erated LP relaxation framework. In addition, we obtain improved approximations for
the second problem when k = 2, and for both problems when every Aij is small com-
pared to bi . Finally, we demonstrate a 17/16-inapproximability for covering integer
programs with at most two nonzeroes per column.

Keywords Integer programming · Approximation algorithms · LP rounding

1 Introduction

We investigate the following problem: what is the best possible approximation ratio
for integer programs where the constraint matrix is sparse? To put this in context we

The first author is partially supported by an NSERC post-doctoral fellowship.

D. Pritchard (�)
Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
e-mail: david.pritchard@epfl.ch

D. Chakrabarty
Department of Computer and Information Science, University of Pennsylvania, Philadelphia, USA
e-mail: deepc@seas.upenn.edu

mailto:david.pritchard@epfl.ch
mailto:deepc@seas.upenn.edu

76 Algorithmica (2011) 61:75–93

recall a famous result of Lenstra [31]: integer programs with a constant number of
variables or a constant number of constraints can be solved in polynomial time. Our
investigations analogously ask what is possible if each constraint involves at most k

variables, or if each variable appears in at most k constraints.
Rather than consider all integer programs, we consider only packing and covering

problems. Such programs have only positive quantities in their parameters. One rea-
son for this is that every integer program can be rewritten (possibly with additional
variables) in such a way that each constraint contains at most 3 variables and each
variable appears in at most 3 constraints, if both positive and negative coefficients are
allowed. Aside from this, packing programs and covering programs capture a sub-
stantial number of combinatorial optimization problems and are interesting in their
own right.

A covering (resp. packing) integer program, shorthanded as CIP (resp. PIP)
henceforth, is an integer program of the form {min cx : Ax ≥ b,0 ≤ x ≤ d} (resp.
{max cx : Ax ≤ b,0 ≤ x ≤ d}) with A,b, c, d nonnegative and rational. Note that
CIPs are sometimes called multiset multicover when A and b are integral. We call
constraints x ≤ d multiplicity constraints (also known as capacity constraints). We
allow for entries of d to be infinite, and without loss of generality, all finite entries of
d are integral. An integer program with constraint matrix A is k-row-sparse, or k-RS,
if each row of A has at most k entries; we define k-column-sparse (k-CS) similarly.
As a rule of thumb we ignore the case k = 1, since such problems trivially admit
fully polynomial-time approximation schemes (FPTAS’s) or poly-time algorithms.
The symbol 0 denotes the all-zero vector, and similarly 1 denotes the all-ones vector.
For covering problems an α-approximation algorithm returns a feasible solution with
objective value at most α times optimal; for packing, the algorithm returns a feasible
solution with objective value is at least 1/α times optimal. We use n to denote the
number of variables and m the number of constraints (i.e. the number of columns and
rows of A, respectively). Throughout the paper, A will be used as a matrix. We let Aj

denote the j th column of A, and let ai denote the ith row of A.

1.1 k-Row-Sparse Covering IPs

The special case of 2-RS CIP where A,b, c, d are 0-1 is the same as Min Vertex
Cover, which is APX-hard. More generally, 0-1 k-RS CIP is the same as k-Bounded
Hypergraph Min Vertex Cover (a.k.a. Set Cover with maximum frequency k) which
is not approximable to k − 1 − ε for any fixed ε > 0 unless P = NP [9] (k − ε under
the unique games conjecture [24]). This special case is known to admit a matching
positive result: set cover with maximum frequency k can be k-approximated by direct
rounding of the naive LP [17] or local ratio/primal-dual methods [2].

The following results are known for other special cases of k-RS CIP with multi-
plicity constraints: Hochbaum [14] gave a k-approximation in the special case that A

is 0-1; Hochbaum et al. [19] and Bar-Yehuda & Rawitz [3] gave pseudopolynomial
2-approximation algorithms for the case that k = 2 and d is finite. For the special
case d = 1, Carr et al. [5, §2.6] gave a k-approximation, and Fujito & Yabuta [10]
gave a primal-dual k-approximation. Moreover [5, 10] claim a k-approximation for

Algorithmica (2011) 61:75–93 77

general d , however, the papers do not give a proof and we do not see a straightfor-
ward method of extending their techniques to the general d case. Our first main result,
given in Sect. 2, is a simple proof of the same claim.

Theorem 1 There is a polynomial time k-approximation algorithm for k-RS CIPs
with multiplicity constraints.

Our approach is to first consider the special case that there are no multiplicity con-
straints (i.e. dj = +∞ for all j); we then extend to the case of finite d via knapsack-
cover inequalities, using linear programming (LP) techniques from Carr et al. [5].
A (k + 1)-approximation algorithm is relatively easy to obtain using LP rounding;
in order to get the tighter ratio k, we replace constraints by other “Z+-equivalent”
constraints (see Definition 8) with better rounding properties. We require use of the
ellipsoid algorithm, so the degree of the polynomial time complexity is a large con-
stant.

Independent simultaneous work of Koufogiannakis & Young [28–30] also gives a
full and correct proof of Theorem 1. Their approach works for a broad generalization
of k-RS CIPs and runs in strongly polynomial (near-linear) time. Our approach has
the generic advantage of giving new ideas that can be used in conjunction with other
LP-based methods, and the specific advantage of giving integrality gap bounds (see
Sect. 2.2).

1.2 k-Column-Sparse Packing IPs

Before 2009, no constant-factor approximation was known for k-CS PIPs, except in
special cases. If every entry of b is �(logm) then randomized rounding provides
a constant-factor approximation. Demand matching is the special case of 2-CS PIP
where (i) in each column of A all nonzero values in that column are equal to one
another and (ii) no two columns have their nonzeroes in the same two rows. Shep-
herd & Vetta [36] showed demand matching is APX-hard but admits a (11

2 − √
5)-

approximation algorithm when d = 1; their approach also gives a 7
2 -approximation

for 2-CS PIP instances satisfying (i). Results of Chekuri et al. [7] yield a 11.542k-
approximation algorithm for k-CS PIP instances satisfying (i) and such that the max-
imum entry of A is less than the minimum entry of b.

The special case of k-CS PIP where A,b are 0-1 is the same as min-weight k-set
packing, hypergraph matching with edges of size ≤ k, and strong independent sets in
hypergraphs with degree at most k. The best approximation ratio known for this prob-
lem is (k + 1)/2 + ε [4] for general weights, and k/2 + ε when c = 1 [20]. The best
lower bound is due to Hazan et al. [16], who showed �(k/ lnk)-inapproximability
unless P = NP, even for c = 1.

Our second main result, given in Sect. 3, is the following result.

Theorem 2 There is a polynomial time (2k2 + 2)-approximation algorithm for k-CS
PIPs with multiplicity constraints.

We use the iterated LP relaxation [37] technique to find an integral solution whose
objective value is larger than the optimum, but violates some constraints. However

78 Algorithmica (2011) 61:75–93

the violation can be bounded. Then we use a colouring argument to decompose the
violating solution into O(k2) feasible solutions giving us the O(k2)-factor algorithm.
We require a linear programming subroutine, so the degree of the polynomial time
complexity is a large constant.

The original arXiv eprint and conference version [34] of this work gave a O(k22k)-
approximation for k-CS PIP using iterated relaxation plus a randomized decomposi-
tion approach; that was the first approximation algorithm for this problem with ratio
that depends only on k. Subsequently in April 2009, C. Chekuri, A. Ene and N. Korula
(personal communication) obtained an O(k2k) algorithm using randomized round-
ing, and an O(k2)-approximation in May 2009. The latter method was independently
re-derived by the authors, which appears in this version. Finally, Bansal et al. [1],
in August 2009, gave a simple and elegant O(k)-approximation algorithm based on
randomized rounding with a careful alteration argument. A special case of this result,
for “column-restricted” programs (where all nonzeroes in each column are equal)
appeared in Chekuri et al. [8]. They also give a simple greedy k-approximation for
column-restricted unit-profit (c = 1) k-CS PIPs.

1.3 k-Column-Sparse Covering IPs

Srinivasan [38, 39] showed that k-CS CIPs admit a O(logk)-approximation. Kol-
liopoulos and Young [26] extended this result to handle multiplicity constraints.
There is a matching hardness result: it is NP-hard to approximate k-Set Cover,
which is the special case where A,b, c are 0-1, better than lnk − O(ln lnk) for any
k ≥ 3 [40]. Hence for k-CS CIP the best possible approximation ratio is �(log k).
A (k + ε)-approximation algorithm can be obtained by separately applying an ap-
proximation scheme to the knapsack problem corresponding to each constraint. Al-
though 0-1 2-CS CIP is Edge Cover which lies in P, general 2-CS CIP is NP-hard
due to Hochbaum [18], who also gave a bicriteria approximation algorithm. Here, we
give a stronger inapproximability result.

Theorem 3 For every ε > 0 it is NP-hard to approximate 2-CS CIPs of the form
{min c · x | Ax ≥ b, x is 0-1} and {min c · x | Ax ≥ b, x ≥ 0, x integral} within ratio
17/16 − ε even if the nonzeroes of every column of A are equal and A is of the block
form

[A1
A2

]
where each Ai is 1-CS.

Our proof modifies a construction of [6]; we also note a construction of [36] can
be modified to prove APX-hardness for the problem.

1.4 Other Work

The special case of 2-RS PIP where A,b, c are 0-1 is the same as Max Independent
Set, which is not approximable within n/2log3/4+ε n unless NP ⊂ BPTIME(2logO(1) n)

[23]. On the other hand, n-approximation of any packing problem is easy to ac-
complish by looking at the best singleton-support solution. A slightly better n/t-
approximation, for any fixed t , can be accomplished by exhaustively guessing the
t most profitable variables in the optimal solution, and then solving the resulting t-
dimensional integer program to optimality via Lenstra’s result [31].

Algorithmica (2011) 61:75–93 79

Table 1 The landscape of approximability of sparse integer programs. Our main results are in boldface

k-Column-Sparse k-Row-Sparse

lower bound upper bound lower bound upper bound

Packing �(k/ ln k) 2k2 + 2,O(k) n1−o(1) εn

Covering lnk − O(ln lnk) O(lnk) k − ε k

A closely related problem is k-Dimensional Knapsack, which are PIPs or CIPs
with at most k constraints (in addition to nonnegativity and multiplicity constraints).
For fixed k, such problems admit a PTAS and pseudo-polynomial time algorithms,
but are weakly NP-hard; see [22] and [35, Chap. 9] for detailed references.

When d = 1, a natural way to generalize CIP/PIPs is to allow the objective func-
tion to be submodular (rather than linear). For minimizing a nondecreasing nonneg-
ative submodular objective subject to k-row sparse covering constraints, the frame-
work of Koufogiannakis & Young [28–30] gives a k-approximation; we show at the
end of Sect. 2.1 that our Theorem 1 also extends to this case, based on helpful referee
feedback. If also A,b are 0-1 (i.e. submodular set cover) Iwata and Nagano [21] give
a k-approximation for all k and Goel et al. [12] give a 2-approximation for k = 2. For
maximizing a monotone submodular function subject to k-column sparse packing
constraints, the algorithm of Bansal et al. [1] gives a O(k)-approximation.

1.5 Summary

We summarize our results and the best others in Table 1. Note that in all four cases,
the strongest known lower bounds are obtained even in the special case that A,b, c, d

are 0-1.

2 k-Approximation for k-Row-Sparse CIPs

By scaling rows suitably and clipping coefficients that are too high (i.e. setting Aij =
min{1,Aij }), we may make the following assumption without loss of generality.

Definition 4 A k-RS CIP is an integer program {min c ·x : Ax ≥ 1,0 ≤ x ≤ d, x ∈ Z}
where A is k-RS and all entries of A are at most 1.

To begin with, we focus on the case dj = +∞ for all j , which we call the un-
bounded k-RS CIP, since it illustrates the essence of our new technique. Let x be a
n-dimensional vector of variables and α is a vector of real coefficients. Throughout,
we assume coefficients are nonnegative. When we apply 	·
 to vectors we mean the
component-wise floor. That is, the j th coordinate of 	α
 is 	αj
.

Definition 5 A constraint α · x ≥ 1 is ρ-roundable for some ρ > 1 if for all nonneg-
ative real x, (α · x ≥ 1) implies (α · 	ρx
 ≥ 1).

80 Algorithmica (2011) 61:75–93

Note that ρ-roundability implies ρ′-roundability for ρ′ > ρ. The relevance of this
property is explained by the following proposition.

Proposition 6 If every constraint in an unbounded covering integer program is ρ-
roundable, then there is a ρ-approximation algorithm for the program.

Proof Let x∗ be an optimal solution to the program’s linear relaxation. Then c · x∗ is
a lower bound on the cost of any optimal solution. Thus, 	ρx∗
 is a feasible integral
solution with cost at most ρ times optimal. �

We make another simple observation.

Proposition 7 The constraint α · x ≥ 1 is (1 + ∑
i αi)-roundable.

Proof Let ρ = (1 + ∑
i αi). Since 	t
 > t − 1 for any t , if α · x ≥ 1 for a nonnega-

tive x, then

α · 	ρx
 ≥
∑

i

αi(ρxi − 1) = ρ
∑

i

αixi −
∑

i

αi ≥ ρ − (ρ − 1) = 1,

as needed. �

Now consider an unbounded k-RS CIP. Since each constraint has at most k coef-
ficients, each less than 1, it follows from Proposition 7 that every constraint in these
programs is (k + 1)-roundable, and so such programs admit a (k + 1)-approximation
algorithm by Proposition 6. It is also clear that we can tighten the approximation ra-
tio to k for programs where the sum of the coefficients in every constraint (row) is at
most k − 1. We now show that rows with sum in (k − 1, k] can be replaced by other
rows which are k-roundable.

Definition 8 Two constraints α · x ≥ 1 and α′ · x ≥ 1 are Z+-equivalent if for all
nonnegative integral x, (α · x ≥ 1) ⇔ (α′ · x ≥ 1).

In other words, replacing a constraint by an Z+-equivalent constraint doesn’t af-
fect the value of the CIP.

Proposition 9 Every constraint α · x ≥ 1 with at most k nonzero coefficients is Z+-
equivalent to a k-roundable constraint.

Before proving Proposition 9, let us illustrate its use.

Theorem 10 There is a polynomial time k-approximation algorithm for unbounded
k-RS CIPs.

Proof Using Proposition 9 we replace each constraint with a Z+-equivalent k-
roundable one. The resulting IP has the same set of feasible solutions and the same

Algorithmica (2011) 61:75–93 81

objective function. Therefore, Proposition 6 yields a k-approximately optimal solu-
tion. �

With the framework set up, we begin the technical part: a lemma, then the proof
of Proposition 9.

Lemma 11 For any positive integers k and v, the constraint
∑k−1

i=1 xi + 1
v
xk ≥ 1 is

k-roundable.

Proof Let α · x ≥ 1 denote the constraint, i.e. αk = 1
v

, αi = 1 for 1 ≤ i < k. If x

satisfies the constraint, then the maximum of x1, x2, . . . , xk−1 and 1
v
xk must be at

least 1/k. If xi ≥ 1/k for some i �= k then 	kxi
 ≥ 1 and so α · 	kx
 ≥ 1 as needed.
Otherwise xk must be at least v/k and so 	kxk
 ≥ v which implies α · 	kx
 ≥ 1 as
needed. �

Proof of Proposition 9 If the sum of coefficients in the constraint is k − 1 or less, we
are done by Proposition 7, hence we assume the sum is strictly greater than k − 1.
Without loss of generality (by renaming) such a constraint is of the form

k∑

i=1

xiαi ≥ 1 (1)

where 0 < α ≤ 1, k − 1 <
∑

i αi ≤ k, and the αi ’s are nonincreasing in i.
Define the support of x to be supp(x) := {i | xi > 0}. We claim that for any two

distinct j, �, αj + α� > 1. Otherwise, the
∑

i αi ≤ (k − 2) + 1 = k − 1. Thus, for any
feasible integral x with |supp(x)| ≥ 2, we have α · x ≥ 1. To express the set of all
feasible integral solutions, let t be the maximum i for which αi = 1 (or t = 0 if no
such i exists), let ei denote the ith unit basis vector, and let v = �1/αk�. Then it is not
hard to see that the nonnegative integral solution set to constraint (1) is the disjoint
union

{x | x ≥ 0, |supp(x)| ≥ 2} � {zei | 1 ≤ i ≤ t, z ≥ 1, z ∈ Z}
� {zei | t < i < k, z ≥ 2, z ∈ Z} � {zek | z ≥ v, z ∈ Z}. (2)

The special case t = k (i.e. α1 = α2 = · · · = αk = 1) is already k-roundable by
Lemma 11, so assume t < k. Consider the constraint

t∑

i=1

xi +
k−1∑

i=t+1

v − 1

v
xi + 1

v
xk ≥ 1. (3)

Every integral x ≥ 0 with |supp(x)| ≥ 2 satisfies constraint (3). By also considering
the cases |supp(x)| ∈ {0,1}, it is easy to check that constraint (3) has precisely (2) as
its set of feasible solutions, i.e. constraint (3) is Z+-equivalent to αx ≥ 1. If t < k−1,
the sum of the coefficients of constraint (3) is k − 1 or less, so it is k-roundable by
Proposition 7. If t = k −1, constraint (3) is k-roundable by Lemma 11. Thus in either
case we have what we wanted. �

82 Algorithmica (2011) 61:75–93

2.1 Multiplicity Constraints

We next obtain approximation guarantee k even with multiplicity constraints x ≤ d.

For this we use knapsack-cover inequalities. These inequalities represent residual
covering problems when a set of variables is taken at maximum multiplicity. Wolsey
[41] studied inequalities like this for 0-1 problems to get a primal-dual approximation
algorithm for submodular set cover. The LP we use is similar to what appears in Carr
et al. [5] and Kolliopoulos & Young [26], but we first replace each row with a k-
roundable one.

Specifically, given a CIP {min c · x | Ax ≥ 1,0 ≤ x ≤ d, x ∈ Z} with A,d non-
negative, we now define the knapsack cover LP. Note that we allow d to contain
some entries equal to +∞; if dj = +∞ and some i has Aij = 0 our conven-
tion is that Aijdj = 0. Recall, ai is the ith row of A and supp(ai) denotes the
set {j : Aij > 0}. For a subset F of supp(ai) such that

∑
j∈F Aij dj < 1, define

A
(F)
ij = min{Aij ,1 − ∑

j∈F Aij dj }. Following [5, 26] we define the knapsack cover
LP for our problem to be

KC-LP =
{

min c · x : 0 ≤ x ≤ d;

∀i,∀F ⊂ supp(ai) s.t.
∑

j∈F

Aij dj < 1:
∑

j �∈F

A
(F)
ij xj ≥ 1 −

∑

j∈F

Aij dj

}
.

It is not too hard to check that any integral solution to the CIP satisfies the con-
straints of KC-LP, and thus the solution to the latter is a lower bound on the value of
the CIP.

Theorem 1 There is a polynomial time k-approximation algorithm for k-RS CIPs.

Proof Using Proposition 9, we assume all rows of A are k-roundable. Let x∗ be
the optimal solution to KC-LP. Define x̂ = min{d, 	kx∗
}, where min denotes the
component-wise minimum. We claim that x̂ is a feasible solution to the CIP, which
will complete the proof since the objective value of x̂ is at most k times the objective
value of KC-LP. In other words, we want to show for each row i that ai · x̂ ≥ 1.

Fix any row i and define F = {j ∈ supp(ai) | x∗
j ≥ dj/k}, i.e. F is those variables

in the constraint that were rounded to their maximum multiplicity. If F = ∅ then,
by the k-roundability of ai · x ≥ 1, we have that ai · x̂ = ai · 	kx∗
 ≥ 1 as needed.
So assume F �= ∅. Note that for j ∈ F , we have x̂j = dj and for j /∈ F , we have
x̂j = 	kx∗

j
.
If

∑
j∈F Aij dj ≥ 1 then the constraint ai · x̂ ≥ 1 is satisfied; consider otherwise.

Since 	kx∗
j
 > kx∗

j − 1 for j �∈ F , since x∗ satisfies the knapsack cover constraint for

i and F , and since A
(F)
ij ≤ 1 − ∑

j∈F Aij dj for each j , we have

∑

j �∈F

A
(F)
ij x̂j =

∑

j �∈F

A
(F)
ij 	kx∗

j

≥ k
∑

j �∈F

A
(F)
ij x∗

j −
∑

j �∈F

A
(F)
ij

Algorithmica (2011) 61:75–93 83

≥ k
(

1 −
∑

j∈F

Aij dj

)
−

∣∣
∣{j : j ∈ supp(ai)\F }

∣∣
∣
(

1 −
∑

j∈F

Aij dj

)

= k
(

1 −
∑

j∈F

Aij x̂j

)
−

∣
∣∣{j : j ∈ supp(ai)\F }

∣
∣∣
(

1 −
∑

j∈F

Aij x̂j

)
.

Since F �= ∅ and |supp(ai)| ≤ k, this gives
∑

j �∈F A
(F)
ij x̂j ≥ 1 − ∑

j∈F Aij x̂j .

Rearranging, and using the fact (∀j : Aij ≥ A
(F)
ij), we deduce ai · x̂ ≥ 1, as needed.

For fixed k, we may solve KC-LP explicitly, since it has polynomially many con-
straints. For general k, no method is currently known to solve KC-LP in polynomial
time. However, one can use the ellipsoid method to find a solution x∗ whose objec-
tive is lower than that of KC-LP, and which satisfies the knapsack-cover constraints
corresponding to the set F = {j : x∗

j ≥ dj /k}. Note that this is all we need for the
above analysis. Details of how the ellipsoid method finds such a solution are given in
[5, 26]. �

Submodular Optimization Theorem 1 can be generalized to non-decreasing non-
negative submodular objective functions when d = 1. The Koufogiannakis-Young
approach [30] gives a much faster result of the same approximation quality, and thus
we only sketch the details. Let f (x) denote the objective function, then the key is
to use the Lovász extension [32] of f , which is a convex piecewise linear function
f̃ : [0,1]n → R that agrees with f at integral inputs. The ellipsoid algorithm-based
approach may again be applied for this objective function [13, Thm. 6.5.19]. Our
new algorithm minimizes f̃ (x) subject to knapsack-cover constraints generated like
before. We round the optimal fractional point x to an integral x̂ by rounding coordi-
nates at least 1/k to 1 and others to 0, as before. The analysis revolves around the fact
f (x̂) ≤ kf̃ (x) which is straightforward from the definition of the Lovász extension.

2.2 Integrality Gap Bounds

In discussing integrality gaps for k-RS CIP problems, we say that the naive LP re-
laxation of {min c · x | Ax ≥ b,0 ≤ x ≤ d, x ∈ Z} is the LP obtained by removing the
restriction of integrality. Earlier, we made the assumption that Aij ≤ bi for all i, j ;
let us call this the clipping assumption. The clipping assumption is without loss of
generality for the purposes of approximation guarantees, however, it affects the inte-
grality gap of the naive LP for unbounded k-RS CIP, as we now illustrate. Without
the clipping assumption, the integrality gap of k-RS CIP problems can be unbounded
as a function of k; indeed for any integer M ≥ 1 the well-known covering problem
{minx1 | [M]x1 ≥ 1,0 ≤ x1} has integrality gap M . In instances with the clipping
assumption and without multiplicity constraints, the previous methods in this section
establish that the integrality gap of the naive LP is at most k + 1.

Even under the clipping assumption, it is well-known that k-RS CIPs with multi-
plicity constraints can have large integrality gaps—e.g. {minx2 | [M

M
]x ≥ M +1, 0 ≤

x, x1 ≤ 1} has integrality gap M . For bounded instances, the knapsack-cover in-
equalities represent a natural generalization of the clipping assumption, namely, we
perform a sort of clipping even considering that any subset of the variables are chosen
to their maximum extent.

84 Algorithmica (2011) 61:75–93

We have seen that KC-LP has integrality gap at most k +1 on k-RS CIP instances.
Our methods also show that if we replace each row with a k-roundable one (Proposi-
tion 9), then the corresponding KC-LP has integrality gap at most k. We are actually
unaware of any k-RS CIP instance with k > 1 where the integrality gap of KC-LP
(without applying Proposition 9) is greater than k; resolving whether such an instance
exists would be interesting. Some special cases are understood, e.g. Koufogiannakis
and Young [29] give a primal-dual k-approximation for k-CS PIP in the case A is
0-1, also known as hypergraph b-matching.

3 Column-Sparse Packing Integer Programs

In this section we give an approximation algorithm for k-column-sparse packing in-
teger programs with approximation ratio 2k2 + 2. We better results for k = 2, and
for programs with high width (we defer the definition to a later subsection). The re-
sults hold even in the presence of multiplicity constraints x ≤ d. Broadly speaking,
our approach is rooted in the demand matching algorithm of Shepherd & Vetta [36];
their path-augmenting algorithm can be viewed as a restricted form of iterated re-
laxation, which is the main tool in our new approach. Iterated relaxation yields a
solution whose objective value is larger than the optimum, however, the solution vio-
lates some constraints. We then decompose this infeasible solution to a collection of
feasible solutions while retaining at least a constant fraction of the objective value.

For a k-CS PIP P let L(P) denote its linear relaxation {max c · x | Ax ≤ b,0 ≤
x ≤ d}. We use the set I to index the constraints and J to index the variables in
our program. We note a simple assumption that is without loss of generality for the
purposes of obtaining an approximation algorithm: Aij ≤ bi for all i, j . To see this,
note that if Aij > bi , then every feasible solution has xj = 0 and we can simply delete
xj from the instance.

Now we give our iterated rounding method. Let the term entry mean a pair (i, j) ∈
I × J such that Aij > 0. Our iterated rounding algorithm computes a set S of special
entries; for such a set we let AS→0 denote the matrix obtained from A by zeroing out
the special entries.

Lemma 12 Given a k-CS PIP P , we can, in polynomial time, find S and nonnegative
integral vectors x0, x1 with x0 + x1 ≤ d and x1 ≤ 1 such that

(a) c · (x0 + x1) ≥ OPT(L(P))

(b) ∀i ∈ I , we have |{j : (i, j) ∈ S}| ≤ k

(c) Ax0 + AS→0x
1 ≤ b.

In particular, since x1 is 0-1, (x0 + x1) is a solution such that for each row i, we
have ai · (x0 + x1) ≤ bi + k maxj Aij . We now give the proof of the above lemma.

Proof of Lemma 12 First, we give a sketch. Recall that Aj denote the j th column of
A and ai denotes the ith row of A. Let supp(Aj) := {i ∈ I | Aij > 0}, which has
size at most k, and similarly supp(ai) := {j ∈ J | Aij > 0}. Let x∗ be an extreme

Algorithmica (2011) 61:75–93 85

ITERATEDSOLVER(A,b, c, d)

1: Let x∗ be an extreme optimum of {max cx | x ∈ RJ ;0 ≤ x ≤ d;Ax ≤ b}
2: Let x0 = 	x∗
, x1 = 0, J ′ = {j ∈ J | x∗

j �∈ Z}, I ′ = I , S = ∅.
3: loop
4: Let x∗ be an extreme optimum of {max cx | x ∈ [0,1]J ′ ;Ax0 + AS→0(x +

x1) ≤ b}
5: For each j ∈ J ′ with x∗

j = 0, delete j from J ′

6: For each j ∈ J ′ with x∗
j = 1, set x1

j = 1 and delete j from J ′

7: If J ′ = ∅, terminate and return S,x0, x1

8: for each i ∈ I ′ with |supp(ai) ∩ J ′| ≤ k do
9: Mark each entry {(i, j) | j ∈ supp(ai) ∩ J ′} special and add it in S and

delete i from I ′
10: end for
11: end loop

Fig. 1 Algorithm for k-CS PIP

optimal solution to L(P). The crux of our approach is as follows: if x∗ has integral
values we have made progress. If not, x∗ is a basic feasible solution so there is a set
of supp(x∗) = |J | linearly independent tight constraints for x∗, so the total number
of constraints |I | satisfies |I | ≥ |J |. By double-counting there is some i ∈ I with
|supp(ai)| ≤ k, which is what permits iterated relaxation: we discard the constraint
for i and go back to the start.

Figure 1 contains pseudocode for our iterated rounding algorithm, ITERATED-
SOLVER.

Now we explain the pseudocode. The x0 term can be thought of as a preprocessing
step which effectively reduces the general case to the special case that d = 1. The
term x1 ∈ {0,1}J grows over time. The set J ′ represents all j that could be added to
x1 in the future, but have not been added yet. The set I ′ keeps track of constraints
that have not been dropped from the linear program so far.

Since x∗ is a basic feasible solution we have |I ′| ≥ |J ′| in Step 8. Being k-
CS, each set |supp(Aj) ∩ I ′| for j ∈ J ′ has size at most k. By double-counting,∑

i∈I ′ |supp(ai) ∩ J ′| ≤ k|J ′| ≤ k|I ′| and so some i ∈ I ′ has |supp(ai) ∩ J ′| ≤ k.
Thus |I ′| decreases in each iteration, and the algorithm has polynomial running time.
(In fact, it is not hard to show that there are at most O(k log |I |) iterations.)

The algorithm has the property that c · (x0 + x1 + x∗) does not decrease from one
iteration to the next, which implies property (a). Properties (b) and (c) can be seen
immediately from the definition of the algorithm. �

Now we give the proof of the main result in this section. Here and later we abuse
notation and identify vectors in {0,1}J with subsets of J , with 1 representing con-
tainment. That is, if we have two 0,1 vectors y and x we let y ⊂ x denote the fact
that yi = 1 implies xi = 1.

Theorem 2 There is a polynomial time (2k2 + 2)-approximation algorithm for k-CS
PIPs with multiplicity constraints.

86 Algorithmica (2011) 61:75–93

Proof We use Lemma 12 to obtain x0 and x1. The main idea in the proof is to par-

tition the set x1 into 2k2 + 1 sets which are all feasible (i.e., we get x1 = ∑2k2+1
j=1 yj

for 0-1 vectors yj each with Ayj ≤ b). If we can establish the existence of such a
partition, then we are done as follows: the total profit of the 2k2 + 2 feasible solu-
tions x0, y1, . . . , y2k2+1 is c · (x0 + x1) ≥ OPT, so the most profitable is a (2k2 + 2)-
approximately optimal solution.

Call j, j ′ ∈ x1 in conflict at i if Aij > 0,Aij ′ > 0 and at least one of (i, j) or (i, j ′)
is special. We claim that if y ⊂ x1 and no two elements of y are in conflict, then y is
feasible; this follows from Lemma 12(c) together with the fact that Aij ≤ bi for all
i, j . (Explicitly, for each constraint we either just load it with a single special entry, or
all non-special entries, both of which are feasible.) In the remainder of the proof, we
find a (2k2 + 1)-colouring of the set x1 such that similarly-coloured items are never
in conflict; then the colour classes give the needed sets yj and we are done.

To find our desired colouring, we create a conflict digraph which has node set
x1 and an arc (directed edge) from j to j ′ whenever j, j ′ are in conflict at i and
(i, j) is special. Rewording, there is an arc (j, j ′) iff some (i, j) ∈ S and Aij ′ > 0.
(If (i, j ′) is also special, this also implies an arc (j ′, j).) The key observation is that
each node j ∈ x1 has indegree bounded by k2, i.e. there are at most k2 choices of j

such that (j, j ′) is an arc: to see this note #{i | Aij ′ > 0} ≤ k, and each i in this set has
#{j | (i, j) ∈ S} ≤ k. Now we use the following lemma, which completes the proof.

Lemma 13 A digraph with maximum indegree d has a 2d + 1-colouring.

Proof We use induction on the number of nodes in the graph, with the base case
being the empty graph. Now suppose the graph is nonempty. The average indegree is
at most d , and the average indegree equals the average outdegree. Hence some node
n has outdegree at most the average, which is d . In total, this node has at most 2d

neighbours. By induction there is a (2d +1)-colouring when we delete n, then we can
extend it to the whole digraph by assigning n any colour not used by its neighbours. �

(We remark that Lemma 13 is tight, e.g. arrange 2d + 1 vertices on a circle and
include an arc from each vertex to its d clockwise-next neighbours; this directed
K2d+1 cannot be 2d-coloured.) This ends the proof of Theorem 2. �

3.1 Improvements for k = 2

We give some small improvements for the case k = 2, using some insights due to
Shepherd & Vetta [36]. A 2-CS PIP is non-simple if there exist distinct j, j ′ with
supp(Aj) = supp(Aj ′) and |supp(Aj)| = 2. Otherwise, it is simple. Shepherd
and Vetta consider the case when all non-zero entries of a column are equal. Under
this assumption, they get a 3.5 approximation for 2-CS PIPs, and a 11

2 − √
5 ≈ 3.26

approximation for simple 2-CS PIPs, when d = 1. We extend their theorem as fol-
lows.

Theorem 14 There is a deterministic 4-approximation algorithm for 2-CS PIPs.
There is also a randomized 6−√

5 ≈ 3.764-approximation algorithm for simple 2-CS
PIPs with d = 1.

Algorithmica (2011) 61:75–93 87

(Sketch) Since we are dealing with a 2-CS PIP, each supp(Aj) is an edge or a loop
on vertex set I ; we abuse notation and directly associate j with an edge/loop. Con-
sider the initial value of J ′, i.e. after executing Step 2. Then we claim that the graph
(I, J ′) has at most one cycle per connected component; to see this, note that any
connected component with two cycles would have more edges than vertices, which
contradicts the linear independence of the tight constraints for the initial basic solu-
tion x∗.

We modify ITERATEDSOLVER slightly. Immediately after Step 2, let M ⊂ J ′ con-
sist of one edge from each cycle in (I, J ′), and set J ′ := J ′\M . Then M is a matching
(hence a feasible 0-1 solution) and the new J ′ is acyclic. Modify the cardinality condi-
tion in Step 8 to |supp(ai)∩J ′| ≤ 1 (instead of ≤ 2); since J ′ is acyclic, it is not hard
to show the algorithm will still terminate, and ∀i ∈ I , we have |{j : (i, j) ∈ S}| ≤ 1.

To get the first result, we use a colouring argument from [36, Thm. 4.1] which
shows that x1 can be decomposed into two feasible solutions x1 = y1 + y2. We find
that the most profitable of x0,M,y1, y2 is a 4-approximately optimal solution.

For the second result, we instead apply a probabilistic technique from [36, §4.3].
They define a distribution over subsets of the forest x1; let z be the random variable
indicating the subset. Let p = 1

20 (5+√
5). Say that an edge ii′ is compatible with z if

z neither contains an edge with a special endpoint at i, nor at i′. The distribution has
the properties that z is always feasible for the PIP, Pr[j ∈ z] = p for all j ∈ x1, and
Pr[supp(Aj) compatible with z] ≥ p for all j ∈ x0. (Simplicity implies that x0 and
x1 have no edge in common, except possibly loops, which is needed here.) Finally,
let w denote the subset of x0 compatible with z. Then z + w is a feasible solution,
and E[c(z + w)] ≥ pc(x1 + x0). Hence the better solution of z + w and M is a
1 + 1/p = (6 − √

5)-approximately optimal solution. �

3.2 Improvements for High Width

The width W of an integer program is minij bi/Aij , taking the inner term to be +∞
when Aij = 0. Note that without loss of generality, W ≥ 1. From now on let us
normalize each constraint so that bi = 1; then a program has width ≥ W iff every
entry of A is at most 1/W .

In many settings better approximation can be obtained as W increases. For exam-
ple in k-RS CIPs with b = 1, the sum of each row of A is at most k/W , so Proposi-
tions 6 and 7 give a (1 + k/W)-approximation algorithm. Srinivasan [38, 39] gave a
(1+ ln(1+k)/W)-approximation algorithm for unbounded k-CS CIPs. Using group-
ing and scaling techniques introduced by Kolliopoulos and Stein [25], Chekuri et al.
[7] showed that no-bottleneck demand multicommodity flow in a tree, and certain
other problems, admit approximation ratio 1 + O(1/

√
W). Multicommodity flow in

a tree (without demands) admits approximation ratio 1 + O(1/W) [27]. Motivated
by these results, we will prove the following theorem.

Theorem 15 There is a polynomial time 1 + 2k
W−k

-approximation algorithm to solve
k-column-sparse PIPs with W > k.

For W ≥ 2k, Theorem 15 implies a 1 + O(k/W)-approximation. For fixed k ≥ 4
and large W this is asymptotically tight since 1 + o(1/W)-approximation is NP-

88 Algorithmica (2011) 61:75–93

hard, by results from [11, 27] on multicommodity flows in trees. After the initial
publication of Theorem 15 [34], Bansal et al. [1] gave an algorithm with ratio 16e ·
k1/	W
, where e = 2.718 Note that Theorem 15 is still the best ratio known for
some choices of k and W , for example when W ≥ 3k, or when W ≥ 1.1 · k and k ≥ 8.

Proof of Theorem 15 Run ITERATEDSOLVER. From Lemma 12 we see that c · (x0 +
x1) ≥ OPT and, using the width bound,

A(x0 + x1) ≤ (1 + k/W)1. (4)

Define V (x) by V (x) := {i ∈ I | ai · x > 1}, e.g. the set of violated constraints in
Ax ≤ 1.

We want to reduce (x0 + x1) so that no constraints are violated. In order to do this
we employ a linear program. Let χ(·) denote the characteristic vector. Our LP, which
takes a parameter x̂, is

R(x̂) : max

{
cx | 0 ≤ x ≤ x̂,Ax ≤ 1 − k

W
χ(V (x̂))

}
. (5)

We can utilize this LP in an iterated rounding approach, described by the following
pseudocode.

ITERATEDREDUCER

1: Let x̂ := x0 + x1

2: while V (x̂) �= ∅ do
3: Let x∗ be an extreme optimum of R(x̂)

4: Let x̂ = �x∗�
5: end while

We claim that this algorithm terminates, and that the value of cx̂ upon termination
is at least

1 − k/W

1 + k/W
c · (x0 + x1) ≥ 1 − k/W

1 + k/W
OPT.

Once we show these facts, we are done, since the for the final x̂, V (x̂) = ∅ implies
x̂ is feasible. As an initial remark, note that each coordinate of x̂ is monotonically
nonincreasing, and so V (x̂) is also monotonically nonincreasing.

Observe that R in the first iteration has 1−k/W
1+k/W

(x0 + x1) as a feasible solution, by
(4). Next, note that x which is feasible for R in one iteration is also feasible for R
in the next iteration since V (x̂) is monotonically nonincreasing; hence the value of
c · x∗ does not decrease between iterations.

To show the algorithm terminates, we will show that V (x̂) becomes strictly
smaller in each iteration. Note first that if i �∈ V (x̂), the constraint ai ·x ≤ 1 is already
implied by the constraint x ≤ x̂. Hence R(x̂) may be viewed as having only |V (x̂)|
many constraints other than the box constraints 0 ≤ x ≤ x̂. Then x, a basic feasible
solution to R(x̂), must have at most |V (x̂)| non-integral variables. In particular, us-
ing the fact that the program is k-CS, by double counting, there exists some i ∈ V (x̂)

such that #{j | x∗
j �∈ Z,Aij > 0} ≤ k. Thus (using the fact that all entries of A are at

Algorithmica (2011) 61:75–93 89

most 1/W) we have ai · �x∗� < ai · x∗ + k(1/W) ≤ 1: so i �∈ V (�x∗�), and V (x̂) is
strictly smaller in the next iteration, as needed. �

4 Hardness of Column-Restricted 2-CS CIP

Theorem 3 It is NP-hard to approximate 2-CS CIPs of the form {min cx | Ax ≥
b, x is 0-1} and {min cx | Ax ≥ b, x ≥ 0, x integral} within ratio 17/16 − ε even if
the nonzeroes of every column of A are equal and A is of the block form

[A1
A2

]
where

each Ai is 1-CS.

Proof Our proof is a modification of a hardness proof from [6] for a budgeted allo-
cation problem. We focus on the version where x is 0-1; the other version follows
similarly with only minor modifications to the proof. The specific problem described
in the statement of the theorem is easily seen equivalent to the following problem,
which we call demand edge cover in bipartite multigraphs: given a bipartite multi-
graph (V ,E) where each vertex v has a demand bv and each edge e has a cost ce and
value de, find a minimum-cost set E′ of edges so that for each vertex v its demand
is satisfied, meaning that

∑
e∈E′∩δ(v) de ≥ bv . Our construction also has the property

that ce = de for each edge—so from now on we denote both de.
The proof uses a reduction from Max-3-Lin(2), which is the following optimiza-

tion problem: given a collection {xi}i of 0-1 variables and a family of three-variable
modulo-2 equalities called clauses (for example, x1 + x2 + x3 ≡ 1 (mod 2)), find an
assignment of values to the variables which satisfies the maximum number of clauses.
Håstad [15] showed that for any ε > 0, it is NP-hard to distinguish between the two
cases that (1) a (1 − ε) fraction of clauses can be satisfied and (2) at most a (1/2 + ε)

fraction of clauses can be satisfied.
Given an instance of Max-3-Lin(2) we construct an instance of demand edge cover

as follows. For each variable xi there are three vertices “xi”, “xi = 0” and “xi = 1”;
these vertices have b-value 4 deg(xi) where deg(xi) denotes the number of clauses
containing xi . For each clause there are four vertices labelled by the four assignments
to its variables that do not satisfy it; for example for the clause x1 + x2 + x3 ≡ 1
(mod 2) we would introduce four vertices, one of which would be named “x1 =
0, x2 = 0, x3 = 0.” These vertices have b-value equal to 3. Each vertex “xi = C”
is connected to “xi” by an edge with d-value 4 deg(xi); each vertex v of the form
“xi1 = C1, xi2 = C2, xi3 = C3” is incident to a total of nine edges each with d-value
1: three of these edges go to “xij = Cj ” for each j = 1,2,3. The construction is
illustrated in Fig. 2.

Let m denote the total number of clauses; so
∑

i deg(xi) = 3m. We claim that
the optimal solution to this demand edge cover instance has cost 24m + 3t where t

is the least possible number of unsatisfied clauses for the underlying Max-3-Lin(2)
instance. If we can show this then we are done since Håstad’s result shows we cannot
distinguish whether the optimal cost is ≥ 24m + 3m(1/2 − ε) or ≤ 24m + 3(εm);
this gives an inapproximability ratio of 24+3/2−3ε

24+3ε
= 17/16 − ε′ for some ε′ > 0 such

that ε′ → 0 as ε → 0, which will complete the proof.
Let x∗ denote a solution to the Max-3-Lin(2) instance with t unsatisfied clauses;

we show how to obtain a demand edge cover E′ of cost 24m+3t . We include in E′ the

90 Algorithmica (2011) 61:75–93

Fig. 2 Left: the gadget constructed for each variable xi . The vertices shown as rectangles have b-value
4 deg(xi); the thick edges have d-value and cost 4 deg(xi). Right: the gadget constructed for the clause
xi + xj + xk ≡ 0 (mod 2). The vertices shown as rounded boxes have b-value 3; the thin edges each have
unit d-value and cost

edge between “xi” and “xi = x∗
i ” for each i; this has total cost

∑
i 4 deg(xi) = 12m.

For each satisfied clause xi + xj + xk ≡ C (mod 2), we include in E′ all three edges
between “xi = 1−x∗

i ” and “xi = 1−x∗
i , xj = x∗

j , xk = x∗
k ” and similarly for j, k, and

one of each of the parallel triples incident to “xi = 1−x∗
i , xj = 1−x∗

j , xk = 1−x∗
k ”;

this has cost 12 for that clause. For each unsatisfied clause xi +xj +xk ≡ C (mod 2),
we include in E′ any three unit-cost edges incident to “xi = x∗

i , xj = x∗
j , xk = x∗

k ,”
as well as twelve more unit-cost edges: namely in the six nodes consisting of “xi =
1 − x∗

i ,” “xi = 1 − x∗
i , xj = 1 − x∗

j , xk = x∗
k ” and their images under swapping i

with j and k, the induced subgraph is a 6-cycle of parallel triples, and we take two
edges out of each triple. Thus the chosen edges have total cost 15 for that clause. It is
not hard to see that this solution is feasible—e.g. vertices of the form “xi = 1 − x∗

i ”
are covered by 4 edges for each clause containing them. The total cost is c(E′) =
12m + 12(m − t) + 15t = 24m + 3t .

To finish the proof we show the following.

Claim 16 Given a feasible demand edge cover E′, we can find a solution x∗ such
that t , the number of unsatisfied clauses for x∗, satisfies 24m + 3t ≤ c(E′).

Algorithmica (2011) 61:75–93 91

Proof First we claim it is without loss of generality that for each i, E′ contains ex-
actly one of the edges incident to “xi”. Clearly at least one of these two edges lies
in E′; if both do, then remove one (say, the edge between “xi” and “xi = 0”) and add
to E′ any subset of the other 6 deg(xi) edges incident to “xi = 0” so that the total
number of edges incident on “xi = 0” in E′ becomes at least 4 deg(xi). The removed
edge has d-value 4 deg(xi) and all other incident edges have d-value 1, so clearly the
solution is still feasible and the cost has not increased.

Define x∗ so that for each i, E′ contains the edge between “xi” and “xi = x∗
i .”

Let E′′ denote the edges of E′ incident on clause vertices (i.e. the edges of E′ with
unit d-value). For F ⊂ E′′ their left-contribution, denoted �(F), is the number of
them incident on vertices of the form “xi = 1 − x∗

i .” Note that �(F) ≤ |F | for any
F . Furthermore for each unsatisfied clause, all edges incident on its vertex “xi =
x∗
i , xj = x∗

j , xk = x∗
k ” have zero left-contribution, but E′ contains at least three of

these edges. Thus the edges of E′′ incident on that clause’s vertices have �(F) ≤
|F | − 3. Finally, consider �(E′′). Each edge of E′′ is in the gadget for a particular
clause, and it follows that �(E′′) ≤ |E′′| − 3t where t is the number of unsatisfied
clauses for x∗. However, E′′ needs to have 4 deg(xi) edges incident on each “xi =
1 − x∗

i ” so �(E′′) ≥ ∑
i 4 deg(xi) = 12m. Thus |E′′| ≥ 12m + 3t and considering the

edges incident on the vertices “xi” we see that c(E′) ≥ 24m + 3t . �

This completes the proof of the reduction. �

5 Open Problems

It is natural to conjecture that k-CS CIP with a submodular objective admits an
approximation ratio depending only on k, perhaps O(ln k) matching the best ratio
known for linear objectives.

Although 2-RS IPs are very hard to optimize (at least as hard as Max Indepen-
dent Set), the problem of finding a feasible solution to a 2-RS IP is still interesting.
Hochbaum et al. [19] gave a pseudopolynomial-time 2-SAT-based feasibility algo-
rithm for 2-RS IPs with finite upper and lower bounds on variables. They asked if
there is a pseudopolynomial-time feasibility algorithm when the bounds are replaced
by just the requirement of nonnegativity, which is still open as far as we know. It is
strongly NP-hard to determine if IPs of the form {x ≥ 0 | Ax = b} are feasible when
A is 2-CS [18], e.g. by a reduction from 3-Partition; but for IPs where each variable
appears at most twice including in upper/lower bounds, it appears all that is known is
weak NP-hardness (for example, via the unbounded knapsack problem [33]).

Theorem 15 shows that we can (1 + ε)-approximate a k-CS PIP when W ≥
k(2/ε + 1). It is an interesting open problem to find what other k-W regimes allow
approximation ratio very close to 1.

Acknowledgement We would like to thank Glencora Borradaile, Christina Boucher, Stephane Durocher,
Jochen Könemann and Christos Koufogiannakis for helpful discussions, and the ESA and Algorithmica
referees for useful feedback.

92 Algorithmica (2011) 61:75–93

References

1. Bansal, N., Korula, N., Nagarajan, V., Srinivasan, A.: On k-column sparse packing programs. In: Proc.
14th IPCO, pp. 369–382 (2010). Preliminary version at arXiv:0908.2256

2. Bar-Yehuda, R., Even, S.: A linear time approximation algorithm for the weighted vertex cover prob-
lem. J. Algorithms 2, 198–203 (1981)

3. Bar-Yehuda, R., Rawitz, D.: Efficient algorithms for integer programs with two variables per con-
straint. Algorithmica 29(4), 595–609 (2001)

4. Berman, P.: A d /2 approximation for maximum weight independent set in d-claw free graphs. Nord.
J. Comput. 7(3), 178–184 (2000). Preliminary version in Proc. 7th SWAT, pp. 214–219 (2000)

5. Carr, R.D., Fleischer, L., Leung, V.J., Phillips, C.A.: Strengthening integrality gaps for capacitated
network design and covering problems. In: Proc. 11th SODA, pp. 106–115 (2000)

6. Chakrabarty, D., Goel, G.: On the approximability of budgeted allocations and improved lower bounds
for submodular welfare maximization and GAP. In: Proc. 49th FOCS, pp. 687–696 (2008)

7. Chekuri, C., Mydlarz, M., Shepherd, F.B.: Multicommodity demand flow in a tree and packing integer
programs. ACM Trans. Algorithms 3(3), 27 (2007). Preliminary version in Proc. 30th ICALP, pp. 410–
425 (2003)

8. Chekuri, C., Ene, A., Korula, N.: Unsplittable flow in paths and trees and column-restricted packing
integer programs. In: Proc. 12th APPROX, pp. 42–55 (2009)

9. Dinur, I., Guruswami, V., Khot, S., Regev, O.: A new multilayered PCP and the hardness of hyper-
graph vertex cover. SIAM J. Comput. 34(5), 1129–1146 (2005). Preliminary version in Proc. 35th
STOC, pp. 595–601 (2003)

10. Fujito, T., Yabuta, T.: Submodular integer cover and its application to production planning. In: Proc.
2nd WAOA, pp. 154–166 (2004)

11. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and
multicut in trees. Algorithmica 18(1), 3–20 (1997). Preliminary version in Proc. 20th ICALP, pp. 64–
75 (1993)

12. Goel, G., Karande, C., Tripathi, P., Wang, L.: Approximability of combinatorial problems with multi-
agent submodular cost functions. In: Proc. 50th FOCS, pp. 755–764 (2009)

13. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization.
Springer, Berlin (1988)

14. Hall, N.G., Hochbaum, D.S.: A fast approximation algorithm for the multicovering problem. Discrete
Appl. Math. 15(1), 35–40 (1986)

15. Håstad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)
16. Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating k-set packing. Comput. Com-

plex. 15(1), 20–39 (2006). Preliminary versions in Proc. 6th APPROX, pp. 83–97 (2003)
17. Hochbaum, D.S.: Approximation algorithms for set covering and vertex cover problems. SIAM J.

Comput. 11, 555–556 (1982)
18. Hochbaum, D.S.: Monotonizing linear programs with up to two nonzeroes per column. Oper. Res.

Lett. 32(1), 49–58 (2004)
19. Hochbaum, D.S., Megiddo, N., Naor, J.S., Tamir, A.: Tight bounds and 2-approximation algorithms

for integer programs with two variables per inequality. Math. Program. 62(1), 69–83 (1993)
20. Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which have an SDR, with an

application to the worst-case ratio of heuristics for packing problems. SIAM J. Discrete Math. 2(1),
68–72 (1989)

21. Iwata, S., Nagano, K.: Submodular function minimization under covering constraints. In: Proc. 50th
FOCS, pp. 671–680 (2009)

22. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)
23. Khot, S., Ponnuswami, A.K.: Better inapproximability results for MaxClique, Chromatic Number and

Min-3Lin-Deletion. In: Proc. 33rd ICALP, pp. 226–237 (2006)
24. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε. J. Comput. Syst. Sci.

74(3), 335–349 (2008). Preliminary version in Proc. 18th CCC, pp. 379–386 (2003)
25. Kolliopoulos, S.G., Stein, C.: Improved approximation algorithms for unsplittable flow problems. In:

Proc. 38th FOCS, pp. 426–436 (1997)
26. Kolliopoulos, S.G., Young, N.E.: Approximation algorithms for covering/packing integer programs.

J. Comput. Syst. Sci. 71(4), 495–505 (2005)
27. Könemann, J., Parekh, O., Pritchard, D.: Max-weight integral multicommodity flow in spiders and

high-capacity trees. In: Proc. 6th WAOA, pp. 1–14 (2008)

http://arxiv.org/abs/arXiv:0908.2256

Algorithmica (2011) 61:75–93 93

28. Koufogiannakis, C., Young, N.E.: Distributed and parallel algorithms for weighted vertex cover and
other covering problems. In: Proc. 28th PODC, pp. 171–179 (2009)

29. Koufogiannakis, C., Young, N.E.: Distributed fractional packing and maximum weighted b-matching
via tail-recursive duality. In: Proc. 23rd DISC, pp. 221–238 (2009)

30. Koufogiannakis, C., Young, N.E.: Greedy δ-approximation algorithm for covering with arbitrary con-
straints and submodular cost. In: Proc. 36th ICALP, pp. 634–652 (2009)

31. Lenstra, H.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548
(1983)

32. Lovász, L.: Submodular functions and convexity. In: Mathematical Programming: The State of the
Art, pp. 235–257. Springer, Berlin (1983)

33. Lueker, G.S.: Two NP-complete problems in nonnegative integer programming. Tech. Rep. 178, Com-
puter Science Laboratory, Princeton University (1975)

34. Pritchard, D.: Approximability of sparse integer programs. In: Proc. 17th ESA, pp. 83–94 (2009).
Preliminary version at arXiv:0904.0859

35. Pritchard, D.: Linear programming tools & approximation algorithms for combinatorial optimization.
Ph.D. thesis, University of Waterloo (2009)

36. Shepherd, F.B., Vetta, A.: The demand-matching problem. Math. Oper. Res. 32(3), 563–578 (2007).
Preliminary version in Proc. 9th IPCO, pp. 457–474 (2002)

37. Singh, M.: Iterative methods in combinatorial optimization. Ph.D. thesis, Carnegie Mellon University
(2008)

38. Srinivasan, A.: Improved approximation guarantees for packing and covering integer programs. SIAM
J. Comput. 29(2), 648–670 (1999). Preliminary version in Proc. 27th STOC, pp. 268–276 (1995)

39. Srinivasan, A.: An extension of the Lovász Local Lemma, and its applications to integer programming.
SIAM J. Comput. 36(3), 609–634 (2006). Preliminary version in Proc. 7th SODA, pp. 6–15 (1996)

40. Trevisan, L.: Non-approximability results for optimization problems on bounded degree instances. In:
Proc. 33rd STOC, pp. 453–461 (2001)

41. Wolsey, L.: An analysis of the greedy algorithm for the submodular set covering problem. Combina-
torica 2(4), 385–393 (1982)

http://arxiv.org/abs/arXiv:0904.0859

	Approximability of Sparse Integer Programs
	Abstract
	Introduction
	k-Row-Sparse Covering IPs
	k-Column-Sparse Packing IPs
	k-Column-Sparse Covering IPs
	Other Work
	Summary

	k-Approximation for k-Row-Sparse CIPs
	Multiplicity Constraints
	Submodular Optimization

	Integrality Gap Bounds

	Column-Sparse Packing Integer Programs
	Improvements for k=2
	Improvements for High Width

	Hardness of Column-Restricted 2-CS CIP
	Open Problems
	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

