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Résumé

Ce travail est consacré à l’étude, au développement, et à l’application d’une nouvelle méth-
ode systématique livrant de manière non-biaisée les corrélations dominantes d’un état quan-
tique à plusieurs corps. Les corrélations dominantes entre une paire arbitraire de blocs
disjoints dans le système sont extraites de la matrice densité de corrélation (MDC) entre
ces mêmes blocs au moyen d’une décomposition en valeurs singulières de celle-ci. Nous
déterminons différentes propriétés mathématiques et caractéristiques de cette méthode, en
particulier les conséquences des symétries du réseau ou de celles intrinsèques à l’état étudié
sur le spectre de valeurs singulières. Nous étudions la relation entre la norme de la MDC –
qui fournit une mesure naturelle de la corrélation totale entre les deux blocs – et la quantité
appelée information mutuelle, originellement utilisée en théorie de l’information quantique.

Cet outil novateur est utilisé dans le but de faire la lumière sur la physique à tempéra-
ture nulle de la chaîne J1–J2 de Heisenberg ferromagnétique frustrée de spin 1/2 plongée
dans un champ magnétique, et la physique de basse énergie de l’antiferroaimant de Heisen-
berg frustré de spin 1/2 sur le réseau bidimensionnel kagomé. Les états sont obtenus par
diagonalisation exacte et par la procédure du groupe de renormalisation par la matrice
densité dans le premier cas, et par diagonalisation exacte uniquement dans le deuxième
cas. Après une introduction de ce travail donnée dans le chapitre 1, le premier de ces mod-
èles est traité dans le chapitre 2. Le chapitre 3 présente la méthode MDC, et le chapitre 4
est consacré à l’étude de l’antiferroaimant sur réseau kagomé.

Dans la chaîne J1–J2, nous faisons état de l’existence d’une phase chirale vectorielle à
bas champ et d’une suite de phases liquides de Luttinger multipolaires à haut champ. Nous
montrons explicitement que ces phases multipolaires sont le fruit de la destabilisation –
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via un mécanisme de blocage – de l’état spiral, qui est état fondamental classique en
l’absence de champ. Cette manière de voir les choses est complètement nouvelle: s’il
était bien connu que les phases multipolaires pouvaient naître de la destabilisation de
phases ferromagnétiques, il était en revanche ignoré qu’elles puissent naître également de
la destabilisation de spirales.

Quant à l’antiferroaimant sur réseau kagomé, nous nous intéressons pour la première
fois à la nature des états singulets qui composent son spectre singulet très dense au-dessus
de son état fondamental. Nous montrons que certains de ces états singulets de basse énergie
ont des corrélations de dimères importantes, qui ne semblent pas decroître significativement
avec la distance; nos résultats MDC confirment par ailleurs que les corrélations dominantes
dans ces états singulets sont du type dimère-dimère. Des calculs d’entropies de bloc de Von
Neumann révèlent une très petite longueur de corrélation d’une part, et des entropies qui
sont plus ou moins indépendantes de l’énergie de l’état considéré d’autre part. Le scénario
d’une phase cristal de dimères est examiné, et l’aptitude de différents types de cristaux
(tirés de la littérature ou ad hoc) à reproduire les corrélations de dimères dans l’échantillon
de 36 sites est analysée.

Mots clefs: matrice densité de corrélation, modèle de Heisenberg, système frustré, liquide
de Luttinger, chaîne de spin frustrée, antiferroaimant sur réseau kagomé, spirale, phase
multipolaire, cristal de liens de valence, entropie de Von Neumann, intrication.
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Abstract

This work is devoted to the study, the development, and the application of a new system-
atic method yielding the dominant correlations that govern a quantum many-body state
in an unbiased way. The dominant correlations between any two disjoint blocks of a sys-
tem are extracted by performing a singular value decomposition of the correlation density
matrix (CDM) between those blocks. We determine several mathematical properties and
features of this method, in particular the consequences of the lattice symmetries or the
symmetries intrinsic to the studied state on the singular values spectrum. We investigate
the relation between the norm of the CDM – providing a natural measure of the total
correlation between the two blocks – and the so-called mutual information, a quantity
originally introduced in quantum information theory.

This novel tool is utilized for sheding new light on the zero temperature physics of the
spin-1/2 frustrated ferromagnetic J1–J2 Heisenberg chain in a magnetic field as well as
on the low-energy physics of the spin-1/2 antiferromagnetic Heisenberg model on the two-
dimensional kagomé lattice. The states are computed using exact diagonalization and the
density matrix renormalization group procedure in the first case, and exact diagonalization
only in the second case. This work is introduced in Chapter 1. The first model is then
presented in Chapter 2. Chapter 3 introduces the CDM method, and Chapter 4 is devoted
to the study of the kagomé antiferromagnet.

In the J1–J2 chain, we reveal a vector chiral phase at low magnetic field and a sequence
of multipolar Luttinger liquid phases at high field. We explicitly show that these multipolar
phases result from the destabilization – driven by a locking mechanism – of the classical
spiral ground state in the absence of magnetic field. This point of view is completely new:
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multipolar phases were known to be a possible destabilization of ferromagnetic phases, but
they have never been reported as a destabilization of spiral states yet.

Regarding the kagomé antiferromagnet, we address for the first time the question of the
nature of the singlet states forming its quite dense singlet spectrum above the ground state.
We show that some of these low-lying singlet states have large dimer correlations which do
not seem to significantly decrease with the distance, moreover our CDM studies confirm
that the dominant correlations in those singlet states are of the dimer-dimer type. Studies
of Von Neumann block entropies reveal a very short correlation length on the one hand,
and entropies that are roughly independent on the energy of the state under consideration
on the other hand. The scenario of a valence bond crystal phase is investigated and the
relevance of different kinds of crystals (from the literature or ad hoc) for reproducing the
dimer correlations in the 36-site sample is probed.

Keywords: correlation density matrix, Heisenberg model, frustrated system, Luttinger
liquid, frustrated spin chain, kagomé antiferromagnet, spiral, multipolar phase, valence
bond crystal phase, Von Neumann entropy, entanglement.
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CHAPTER 1

General introduction

Condensed matter theorists aim to determine the magnetic properties of materials from
mathematical models capturing the dominant interactions between the electronic mag-
netic moments (spins) of the atoms or molecules forming those materials. Descriptions
of macroscopic phenomena based on the understanding of mechanisms occurring at the
microscopic level can thus be provided. Some of these models are analytically and exactly
solvable [1] but in most of the cases the research of approximate analytical solutions is
already a complicated task. Numerical simulation has therefore become a natural and
powerful tool in condensed matter physics as well as in other fields. The results presented
in this thesis are obtained by simulations based on Exact Diagonalization and on the Den-
sity Matrix Renormalization Group algorithm (those algorithms are described in details in
Appendix A).

Let us first explain the origin and the essence of the type of quantum model we consider
in this work. In 1926, Heisenberg and Dirac independently explained the splitting between
the singlet and the triplet levels in the spectrum of helium by an exchange given by the
scalar product between the electronic spins (Heisenberg exchange) [2]. Later on, it was
found that this type of exchange actually describes the magnetism of several insulators
whose physics is governed by the Heisenberg hamiltonian whose most general form reads

H =
∑

(i,j),α=x,y,z

Jα
i,jS

α
i S

α
j , (1.1)



2 General introduction

where the symbol (i, j) means that the sum runs over spin pairs, Si = (Sx
i , S

y
i , S

z
i ) is a

spin operator located at site i, and Jα
i,j are the coupling parameters. Positive values of the

coupling Jα
i,j favor an antiparallel alignment of the spins located at sites i and j in direction

α [antiferromagnetic (AF) case], whereas negative values of Jα
i,j favor a parallel alignment

of the spins located at sites i and j in direction α [ferromagnetic (F) case]. Note that
the Heisenberg hamiltonian Eq. (1.1) implicitly assumes that all the degrees of freedom
different from the electronic spin are frozen, which is justified in plethora of magnetic
insulators. It nevertheless happens that charge, orbital, or lattice degrees of freedom have
to be taken into account as well. If charge degrees of freedom are taken into account
for instance, more complicated types of exchanges appear (like multiple-spin exchange).
Hamiltonian Eq. (1.1) consists of interactions of arbitrary range, in the three directions
α = x, y, z of the spin space, but it is often sufficient to restrict oneself to the isotropic
case with interactions between nearest and next nearest neighbors (nn and nnn) only.

If the energy contributions of the different interactions in hamiltonian Eq. (1.1) can be
independently classically minimized1, the model is said to be non-frustrated. It has been
observed that the S = 1/2 Heisenberg model with non-frustrated nn interactions on any
2D Bravais lattice (e.g. square) has magnetic order at zero temperature. If the energy con-
tributions of the different interactions cannot be independently classically minimized the
model is frustrated. By tuning the frustration (i.e. varying the coupling parameter ratios)
one generally observes that magnetic order survives at low frustration but it is destroyed
around the point of maximal frustration2 often giving rise to intriguing exotic types of
orderings, this is the reason why highly frustrated systems are very good candidates for
displaying exciting and unexpected phases.

In this thesis, we shall mostly focus on the ground state (i.e. zero-temperature) prop-
erties of low-dimensional (1D and 2D) spin S = 1/2 systems. For this value of spin,
quantum fluctuations are very strong, and a large and rich variety of phases may emerge,
each of which breaking specific symmetries and being characterized by a particular behav-
ior of elementary excitations (see Refs. [4; 5] for a good overview). Let us briefly review
and describe some of these types of phases. Among the phases we list below, those break-
ing a continuous symmetry3 are marked with an asterisk (∗); a direct consequence of the

1The classical version of a spin model is obtained by replacing the spin operators by classical vectors
of fixed length S. The physics of a model becomes classical in the limit S → ∞ since the commutator
between two spin components is much smaller than the square of the spin variables in that limit: [Sα, Sβ ] =
iεα,β,γSγ = O(S) � O(S2).

2For instance, if nnn AF J2 = J1/2 interactions are added to the magnetically ordered model with nn
AF J1 interactions on the square lattice, the magnetic order is destroyed [3].

3In 1D at zero temperature, the breaking of a continuous symmetry is prohibited by the Mermin-Wagner
theorem (see Appendix B). Phases breaking a continuous symmetry can therefore not have any finite order
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breaking of a continuous symmetry is the existence of a Goldstone gapless excitation mode
(see Appendix B).

• The magnetically ordered phase we have pointed out above to be stabilized in non-
frustrated models is also called semi-classical Néel ordered phase∗. It sustains
long-range order (LRO) in the spin correlations, i.e. the spin structure factor (which
can be measured by neutron or X-ray diffraction for instance)

S(q) := lim
N→∞

1

N

〈∣∣∣∣∣∑
j

eiq·xjSj

∣∣∣∣∣
2〉

(1.2)

(the sum runs over the N spins of the sample, xj is the location of spin Sj) diverges
with the size of the sample for at least one wave vector, say q̃; the suitable order
parameter is then given by the staggered magnetization

mq̃ := lim
N→∞

1

N

〈∑
j

eiq̃·xjSz
j

〉
.

A Néel phase breaks the SU(2), the space group, and the time reversal t 7→ −t
(resulting in Sj 7→ −Sj ∀j) symmetries4. Its elementary excitations are gapless
magnons (spin waves). For the sake of illustration, Fig. 1.1 displays the wave vector
dependence of the spin wave intensity (yielding the structure factor Eq. (1.2)) as a
function of the wave vector for the high-Tc parent compound La2CuO4 at T = 295K.
The measures are performed by inelastic neutron scattering. The peak at (h, k) =
(1/2, 1/2) (wave vector (π, π)) characterizing an AF ordering is well visible.

• A valence bond crystal phase (VBC) has LRO in the dimer arrangements or
in more complex S = 0 (total spin singlet) plaquettes, and breaks the space group
symmetries. The suitable order parameter for this phase is thus the dimer-dimer
LRO, or S = 0 plaquettes LRO. In a VBC phase, the spin structure factor Eq. (1.2)
never diverges, whatever the wave vector. All excitations are gapped, and elementary
excitations in a VBC can be created by the promotion of a dimer (or a S = 0
plaquette) to a triplet (or excited S = 0, or other total spin) state. The two spins
1/2 forming the triplet state can nevertheless not separate far apart: such a process
would create a string of misaligned dimer bonds, with an energy penalty increasing
with the length of that string, see Fig. 1.2. This is energetically unfavorable, and

parameter in this case. They are characterized by a quasi-long-range order decaying algebraically with the
distance instead of a true long-range order.

4Notice that the space group symmetries live in the real space whereas the others live in the spin space.
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Figure 1.1: Wave vector dependence of the spin wave intensity in La2CuO4 at T = 295K
(obtained by inelastic neutron scattering), from Ref. [6].

these spins 1/2 (spinons) are thus confined. The ground state of the Heisenberg model
with nn AF interactions on the checkerboard lattice (see Fig. F.1) is an example of
VBC [7], and VBC also naturally emerge as typical ground states of quantum dimer
models [8].

��������
�������

Figure 1.2: Confined spinons (blue arrows) in a VBC, the red lines denote dimer bonds.

• A short-range resonating valence bond spin liquid (Anderson, 1973 [9]) (SR-
RVB) denotes a wave function that has the following properties:

1. it is a linear superposition of an exponential number of disordered valence bond
configurations of short-ranged dimers (in contrast to the VBC where only a finite
number of ordered configurations dominate the ground state wave function),

2. it does not break any symmetry, has no local order parameter, and is short-
ranged in any kind of correlation function5.

5(1) does not imply (2). A wave function can satisfy (1) and nonetheless have critical dimer correlations
[10], or even magnetic order [11].
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In a SRRVB, the dimer LRO that was existing in the VBC has been “molten” because
of frustration and quantum resonances. As in the VBC the spin structure factor
Eq. (1.2) never diverges, whatever the wave vector, and as in a VBC, excitations in
a SRRVB can be created by the promotion of a dimer (or a S = 0 plaquette) to a
triplet (or excited S = 0, or other total spin) state. But in contrast to a VBC, two
spins 1/2 (spinons) of a triplet are not confined. They can separate far apart without
any energy cost since any disordered configuration does contribute in a SRRVB, see
Fig. 1.3: excitations in a SRRVB thus appear as continua and not as well separated
modes as in a VBC, and are not necessarily gapped. Note that topological degeneracy
can appear in a SRRVB phase6. This phase is realized for instance in the multi-spin
exchange model on the triangular lattice [13], or in the J1-J2 Heisenberg model on
the hexagonal lattice (J1 < 0, J2 > 0) at J2/J1 ≈ 0.25 [14].

����������
�������

Figure 1.3: Deconfined spinons (blue arrows) in a SRRVB, the red lines denote dimer bonds.

• The definition of a SRRVB excludes any long-range order. However, a state with
broken time reversal symmetry and LRO in the scalar chirality Si · (Sj × Sk) could
accommodate with all the properties of the spin liquid described as SRRVB. Such a
state is called chiral spin liquid (Wen, 1989 [15]) and – as for the SRRVB – has
deconfined spinons as elementary excitations. It breaks two discrete symmetries: the
time reversal and the parity. All its excitations are gapped, and its spin structure
factor Eq. (1.2) never diverges, whatever the wave vector. Finding a parent hamilto-
nian for this phase has long remained an open problem, which was finally solved by
Schroeter and collaborators [16] three years ago.

• Nematic phases∗ (Andreev & Grishchuk, 1984 [17]) break the continuous SU(2)
spin symmetry (the elementary excitations are thus gapless) but in contrast to Néel

6The underlying order of a topological ordered phase cannot be described by any order parameter
(see Ref. [12] for studies of quantum Hall systems). One of the signatures of topological local order is
the dependence of the ground state degeneracy on the topology of the manifold on which the system is
defined. Such a ground state degeneracy is called topological degeneracy to distinguish it from the case of
ordinary spontaneous symmetry breaking with a local order parameter, where the ground state degeneracy
is determined by the pattern of the symmetry breaking and thus does not depend on the topology.
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phases, the time reversal symmetry is preserved and there is no sublattice magneti-
zation. A nematic state is characterized by a LRO in the rank-2 tensor

Sα
i S

β
j = δα,βA(i, j) + εα,β,γBγ(i, j) +Qα,β(i, j),

where A(i, j) is a scalar function, Bγ(i, j) = Si×Sj is an antisymmetric pseudovector,
and

Qα,β(i, j) =
1

2

(
Sα

i S
β
j + Sβ

i S
α
j

)
− δα,β

3
Si · Sj

is a traceless symmetric rank-2 tensor. One usually distinguishes between spin ne-
matics that are long-ranged in B(i, j) (p-type spin nematics) and those that are
long-ranged in Q(i, j) (n-type spin nematics). A simple picture of a spin nematic is
that the spins – albeit disordered – remain correlated within a preferred plane that is
spontaneously selected. This plane is oriented for p-type nematics and nonoriented
for n-type nematics. A spin nematic phase was reported for the first time in the case
of spins S = 1/2 by Läuchli and collaborators five years ago [18], and other examples
have been reported since [19].

It is interesting to draw a parallel with the nematic phase arising in liquid crystals,
and characterized by a directional LRO of the liquid crystal molecules (their long axes
are roughly parallel, like spins selecting a preferred plane) but no positional order as
shown in Fig. 1.4. The properties of liquid crystals in this phase are extremely useful
in liquid crystal displays (LCD).

��

Figure 1.4: Liquid crystal molecules in the nematic phase. They are roughly parallel to the
preferred direction (director) denoted by n̂.

• In case of a LRO in tensors of rank higher than 2, one speaks of multipolar phases∗

[20; 21]. The continuous SU(2) spin symmetry is broken as in the nematic phase,
elementary excitations are therefore gapless as well. The time reversal symmetry is
broken only if the tensor rank of the order parameter is odd.

The enumeration we have done here only aims to familiarize the reader with the main
phases he may encounter in this thesis. It is not an exhaustive list, and does not reflect
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the incredible richness of the physics of low-dimensional systems. The existence of impor-
tant phases like for instance the superconducting, the superfluid, and the supersolid ones
– which are currently at the heart of intense researches – have been omitted. In the super-
solid phase, the particles that must supply the rigidity to form a crystal, at the same time
provide for superfluid nonviscous flow. Such a state of matter was conjectured 40 years
ago [22] and some experimental evidences are searched in solid 4He, but interpretations of
these researches are still under active debate [23]. It combines complicated and fascinating
phenomena, and corresponds to a superfluid phase with a broken translational symmetry.
Supersolid phases may arise in certain antiferromagnets above low-magnetization plateaux:
at low magnetic field, bosonic triplet S = 1 excitations of those antiferromagnets called
triplons appear and are spread uniformly throughout the lattice. They Bose-Einstein con-
dense, leading to a superfluid phase. If the field is increased and the triplon density becomes
commensurate with the lattice periodicity, the triplons crystallize (breaking the translation
symmetry in the lattice space) and form a superstructure; the magnetization plateau is
entered at this stage. If the field is increased further, those triplons which were crystallized
keep a crystallized configuration (the translation symmetry is thus not restored) while ad-
ditional triplons appear, are spread throughout the lattice and Bose-Einstein condense,
restoring the superfluidity. The supersolid phase is then entered. Ref. [24] reviews the
phenomenon in a very nice and pedagogical way.

A phase is characterized by a specific type of dominant correlation displaying LRO (or
quasi-LRO in 1D). In frustrated systems – where exotic and unpredictable types of corre-
lations may dominate – the candidates for displaying LRO can be very difficult to find out,
and necessarily demand an a priori suspicion about the phase that might be stabilized. In
order to overcome this kind of obstacle, Cheong and Henley put forward four years ago
the idea that the dominant correlation between two disjoint blocks of a quantum spin (or
more generally many-body) system can be extracted in an unbiased way from the corre-
lation density matrix (CDM) object, see Ref. [25]. Roughly at the same time, Furukawa,
Misguich, and Oshikawa [26] proposed a very similar method consisting in determining
the order parameter of a symmetry breaking (unknown) phase by comparing the reduced
density matrices of the different nearly degenerate ground states of a finite system. This
thesis is based on the approach by Cheong and Henley. In contrast to the previous one, the
CDM from which the dominant correlation is extracted is computed in one specific state.

This thesis is devoted to the development of a framework for using the CDM tool and
to the determination of the features and properties of this new tool on the one hand, as
well as to the application of this tool in order to solve – or at least to shed some new light –
on the physics of low-dimensional spin S = 1/2 systems on the other hand. The first model
we consider, namely the chain with F interactions between nn and AF interactions between
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nnn, is realized in several compounds like the cuprates LiCuVO4 [27], Li2ZrCuO4 [28], and
Rb2Cu2Mo3O12 [29]. We start with this topic in Chapter 2. Chapter 3 is then devoted to
the CDM tool and its properties, and Chapter 4 utilizes it in order to study the Heisenberg
model on the 2D kagomé lattice. We clarify the low-energy physics of this model which –
although studied since the early nineties – remains theoretically poorly understood. Even
from the experimental side, it is really challenging to find realizations of this second model
in nature. A lot of hopes have been put in the recently synthesized organometallic hybrid
compound Cu(1,3-benzenedicarboxylate) [30] consisting of structurally perfect spin-1/2
copper kagomé planes. Many research groups are currently working on theoretical or ex-
perimental aspects of the spin-1/2 kagomé antiferromagnet. The final conclusion and the
future perspectives are finally given in Chapter 5.



CHAPTER 2

Frustrated ferromagnetic spin-1/2
Heisenberg chain in a magnetic field

2.1 Introduction

The first explanation for spiral states was proposed fifty years ago by Villain, Kaplan,
and Yoshimori [31]. It is based on magnetic frustration, where geometric constraints and
competing interactions make it impossible to select a single lowest-energy configuration of
collinear spins, spiral ordering then emerges as a compromise1. Several materials are suc-
cessfully described by theories based on spiral states [33]. For low spin and dimensionality
however, quantum fluctuations become important and might destabilize the spirals.

A prominent instability of spiral states is their intrinsic twist 〈Si×Sj〉 [34]. It has been
recognized that finite temperature [35] or quantum [36] fluctuations can disorder the spin
moment 〈Si〉 of the spiral, while the twist remains finite. Such a state is called p-type spin
nematic [17]. In the context of quantum fluctuations such a scenario has been confirmed
recently in a ring-exchange model [18], while possible experimental evidence for the thermal
scenario has been presented in Ref. [37]. The twist also gained attention in multiferroics,
since it couples directly to the ferroelectricity [38].

1Later on, Dzyaloshinskii-Moriya interactions were shown to favor non-collinear spins in certain cases
as well [32].
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This chapter is devoted to the study of the ferromagnetic frustrated spin-1/2 Heisenberg
chain in a magnetic field in which we have revealed the existence of a novel instability of
spiral states towards spin-multipolar phases. The basic idea is that many spin-multipolar
order parameters are finite in the magnetically ordered spiral state, but that under a suit-
able amount of fluctuations the primary spin order is lost, while a spin-multipolar order
parameter survives. The frustrated ferromagnetic spin-1/2 Heisenberg chain is defined by
the hamiltonian

H = J1

∑
i

Si · Si+1 + J2

∑
i

Si · Si+2 − h
∑

i

Sz
i (2.1)

where Si is a spin-1/2 operator at site i, J1 < 0 (we set J1 := −1) and J2 > 0 (free
parameter) are respectively ferromagnetic and antiferromagnetic coupling parameters, and
h (free parameter) denotes a uniform magnetic field.

The classical ground state of hamiltonian (2.1) is ferromagnetic for J2 < 1/4, and a
spiral with monotonically increasing pitch angle with J2 otherwise. The Lifshitz point2 is
located at J2 = 1/4. In a magnetic field the spins develop a uniform component along the
field, while the pitch angle in the plane transverse to the field axis is unaltered.

The zero field quantum mechanical phase diagram for S = 1/2 is still unsettled. Field
theoretical work predicts a finite, but tiny gap accompanied by dimerization [40; 41] for
J2 > 1/4, which present numerical approaches are unable to resolve. The classical Lifshitz
point J2 = 1/4 is not renormalized for S = 1/2, and the transition point manifests itself
on finite systems as a level crossing between the ferromagnetic multiplet and an exactly
known singlet state [42]. The theoretical phase diagram at finite field has recently received
considerable attention [43–45], triggered by experiments on quasi-1D cuprate helimagnets,
like LiCuVO4 (J2 = 2.2) [27]3, Li2ZrCuO4 (J2 = 0.3) [28], and Rb2Cu2Mo3O12 (J2 = 0.37)
[29]. As shown in Fig. 2.1, exchange interactions between the Cu2+ ions in CuO2 chains
building those compounds are well approximated by Eq. (2.1), assuming that the cou-
plings beyond next nearest neighbors are neglected. One of the most peculiar features of
the finite size magnetization process is the appearance of elementary magnetization steps
of ∆Sz = 2, 3, 4 in certain J2 and h regions. This has been attributed to the formation of
bound states of spin flips, leading to dominant spin-multipolar correlations close to satu-
ration. A detailed phase diagram was however still lacking.

In this chapter, we first present the overall phase diagram of hamiltonian Eq. (2.1) and
2In a magnetic system, the Lifshitz point is a triple point where paramagnetic, ferromagnetic, and

helicoidal phases meet [39]. The paramagnetic phase shows up if the phase diagram is extended to the
finite temperature region, it meets the two other phases in the limit T ↘ 0.

3The values J1 = −1.6 meV and J2 = 3.56 meV from [27] are controversial: Ref. [46] claims that
J2/J1 > −1, in agreement with the neutron scattering data and findings of independent theoretical studies.
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Figure 2.1: Structure of LiCuVO4 from Ref. [27] (left) and Li2ZrCuO4 from Ref. [28] (right).
In both compounds, interactions between the Cu2+ ions in the brown CuO2 chains are described
by hamiltonian Eq. (2.1).

characterize in details the multipolar Luttinger liquid (high field) and vector chiral phases
(low field) we have obtained. We show that the multipolar and chiral correlations in the
analytically known singlet ground state at the Lifshitz point agree qualitatively and even
quantitatively well with a classical spiral, and put forward the novel point of view that the
multipolar Luttinger liquid phases arising at high field are due to the destabilization of
a spiral state. We provide evidences by revealing the mechanism driving this destabiliza-
tion, and by showing that from the zero field physics of the model, this mechanism allows
to predict the kind of multipolar phase that is realized at higher field. We finally show
that this result sheds new light on previously discovered [19; 20] spin-multipolar phases in
two-dimensional S = 1/2 quantum magnets in a magnetic field.

2.2 Phase diagram
In Fig. 2.2, we present the overall numerical phase diagram [21; 47] of hamiltonian Eq. (2.1)
as a function of J2/J1 and the magnetization m (normalized by the saturation magneti-
zation msat). It was obtained by Exact Diagonalization (ED) on systems with up to
L = 64 sites, complemented by Density Matrix Renormalization Group (DMRG) simu-
lations on open systems with maximally 384 sites, retaining up to 800 basis states (refer
to Appendix A for details about these numerical methods). On these finite systems, the
magnetization is defined as m := (1/L)

∑
i S

z
i .

The phase diagram shows five different phases. The low magnetization region consists
of a single vector chiral (or p-type spin nematic, see description in Chapter 1) phase (gray)
with broken parity symmetry, long-range vector chiral order, and incommensurate spin
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study. Finally the multipolar Luttinger liquids are separated
from the vector chiral phase by a metamagnetic transition,
which occupies a larger and larger fraction of m as
J2→1 /4+, leading to an absence of multipolar liquids com-
posed of five or more spin flips. In the following we will
characterize these phases in more detail and put forward an
explanation for the occurrence and locations of the spin-
multipolar phases.

For m!0 we reveal a contiguous phase sustaining long
range vector chiral order21 !breaking discrete parity symme-
try", similar to phases recently discovered for J1 ,J2!0.22,23

Direct evidence for the presence of this phase is obtained
from measurements of the squared vector chiral order param-
eter,

"2!r,d" ª #$S0 # Sd%z$Sr # Sr+d%z& . !2"

In Fig. 2 we display DMRG results for long distance corre-
lations between J1 bonds !d=1, black symbols" and J2 bonds
!d=2, red symbols" obtained on a L=192 system. The three
chosen values of J2 reflect positions underneath each of the
three spin-multipolar Luttinger liquids shown in Fig. 1. The
non-monotonic behavior of the correlations at very small m
is probably a finite size artifact or convergence issue. Beyond
the long range order in the vector chirality, the system be-
haves as a single channel Luttinger liquid !with central
charge c=1, confirmed by our DMRG based entanglement
entropy analysis24" with critical incommensurate transverse
spin correlation functions.22 The transition to the spin-

multipolar phases at larger m seems to occur generically via
metamagnetic behavior !cf. left and right panels of Fig. 2".
For the parameter set in the middle panel we expect the same
behavior, but it can’t be resolved based on the system sizes
used.

Hamiltonian !1" presents unusual elementary step sizes
$Sz!1 in some extended J2 / 'J1' and m domains, where $Sz

is independent of the system size.15 This phenomenon has
been explained based on the formation of bound states of
p=$Sz magnons in the completely saturated state, and at
finite m /msat a description in terms of a single component
Luttinger liquid of bound states has been put forward.16,17

We have determined the extension of the $Sz=2,3 ,4 regions
in Fig. 1, based on exact diagonalizations on systems sizes
up to 32 sites and DMRG simulations on systems up to 192
sites. The boundaries are in very good agreement with pre-
vious results15 where available. The $Sz=3 and 4 domains
form lobes which are widest at msat and whose tips do not
extend down to zero magnetization. The higher lobes are
successively narrower in the J2 direction. We have also
searched for $Sz=5 and higher regions, but found them to be
unstable against a direct metamagnetic transition from the
vector chiral phase to full saturation. Individual bound states
of p%5 magnons do exist !see below", but they experience a
too strong mutual attraction to be thermodynamically stable.

An exciting property of the Luttinger liquids of p bound
magnon states17 is that the transverse spin correlations are
exponentially decaying as a function of distance due to the
binding, while p-multipolar spin correlations

()
n=0

p−1

S0+n
+ )

n=0

p−1

Sr+n
− * + !− 1"r,1

r
-1/K

!3"

are critical with wave vector & !multipolar correlations with
p!' p also decay exponentially". p=2,3 ,4 correspond to
quadrupolar, octupolar, and hexadecupolar correlations, re-
spectively. Therefore they can be considered as one-
dimensional analogs of spin multipolar ordered phases found
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FIG. 1. !Color online" Phase diagram of the frustrated ferromag-
netic chain !1" in the J1 /J2 vs m /msat plane. The gray low-m region
exhibits vector chiral long range order. The colored regions denote
spin-multipolar Luttinger liquids of bound states of p=2,3 ,4 spin
flips. Close to saturation the dominant correlations are multipolar,
while below the dashed crossover lines, the dominant correlations
are of SDW!p" type. The tiny cyan colored region corresponds to an
incommensurate p=2 phase. The white region denotes a metamag-
netic jump. Finally the scribbled region close to the transition
J1 /J2→−4 has not been studied here, but consists most likely of a
low field vector chiral phase, followed by a metamagnetic region
extending up to saturation magnetization. The inset shows the same
diagram in the J1 /J2 vs h /hsat plane.
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FIG. 2. !Color online" Squared vector chirality order parameter
"2 $Eq. !2"% in the low magnetization phase for different values of
J2 / 'J1' as a function of m /msat: !a" J2 / 'J1'=0.27, !b" J2 / 'J1'=0.32,
and !c" J2 / 'J1'=0.38. The order parameter vanishes in the multipo-
lar Luttinger liquids.
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Figure 2.2: Phase diagram of the frustrated ferromagnetic chain [Eq. (2.1)] in the J1/J2 vs.
m/msat plane. The gray low-m region exhibits vector chiral long-range order. The colored
regions denote spin-multipolar Luttinger liquids of bound states of p = 2, 3, 4 spin flips. Close
to saturation the dominant correlations are multipolar, while below the dashed crossover lines,
the dominant correlations are of SDW(p)-type. The tiny cyan colored region corresponds to an
incommensurate p = 2 phase. The white region denotes a metamagnetic jump. Finally the
scribbled region close to the transition J2/|J1| ↘ 1/4 has not been studied here, but consists
most likely of a low field vector chiral phase, followed by a metamagnetic region extending up to
saturation magnetization. The inset shows the same diagram in the J1/J2 vs. h/hsat plane.

correlations. Below the saturation magnetization we confirm the presence of three different
multipolar Luttinger liquid phases (red, green and blue, see description in Chapter 1). The
red phase extends up to J2 →∞ [44], and its lower border approaches m = 0+ in that limit.
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All three multipolar liquids present a crossover as a function of m, where the dominant
correlations change from spin-multipolar close to saturation to spin density wave (SDW)4

character at lower magnetization. One also expects a tiny incommensurate p = 2 phase
close to the p = 3 phase [45]. Finally, the multipolar Luttinger liquids are separated from
the vector chiral phase by a metamagnetic transition, which occupies a larger and larger
fraction of m as J2 ↘ 1/4, leading to an absence of multipolar liquids with p ≥ 5.

2.2.1 Vector chiral phase

For m > 0 we reveal a contiguous phase sustaining long-range vector chiral order [48]
breaking discrete parity symmetry5, similar to phases recently discovered for J1, J2 > 0
[49; 50]. The chiral correlator

κ2(r, d) := 〈[S0 × Sd]
z[Sr × Sr+d]

z〉 (2.2)

obtained by DMRG on a L = 192 system is displayed in the left panel of Fig. 2.3 for long
distance correlations (r = L/2) between J1 bonds (d = 1, black symbols) and J2 bonds
(d = 2, red symbols). It is an order parameter for this phase, and thus provides direct
evidence of vector chiral order in the low magnetization region. The three chosen values of
J2 reflect positions underneath each of the three spin-multipolar Luttinger liquids shown
in Fig. 2.2. The non-monotonic behavior of the correlations at very small m is probably a
finite size artifact or convergence issue. Beyond the long-range order in the vector chirality,
the system behaves as a single channel Luttinger liquid (with central charge c = 1)6 with
critical incommensurate transverse spin correlation functions [49]. The transition to the
spin-multipolar phases at larger m seems to occur via metamagnetic behavior.

4SDW is a low-energy ordered state of solids consisting of a spatial modulation of collinear spins. It
occurs at low temperature in anisotropic, low-dimensional materials or in metals that have high densities
of states at the Fermi level. While in conventional antiferromagnets the magnetic moments have opposite
orientation and are located at two crystallographic sublattices, the SDW is a many-particle phenomenon
of an itinerant magnetism which is not fixed to the crystal lattice.

5Classically, states with chiral order emerge only together with a helical long-range order and simply
distinguish left and right spirals. In 1D systems however, existence of a true helical order is prohibited
by the Mermin-Wagner theorem (see Appendix B). In contrast to the helical spin order, the chiral order
breaks only a discrete symmetry between left and right (parity), and can thus survive even in 1D. So, one
can view the chiral order as a remnant of the classical helical order in a 1D spin system.

6The central charge c of a model characterizes its universality class. Roughly speaking, the central
charge counts the number of gapless degrees of freedom, and c = 1 means that we deal with Luttinger
liquids having a single component.
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Figure 2.3: (Left panel) chiral order parameter κ2(r = L/2, d) [Eq. (2.2)] obtained from DMRG
calculations on a 192-site system. Black and red symbols correspond to d = 1, 2 respectively. The
three chosen values of J2 reflect positions underneath each of the three spin-multipolar Luttinger
liquids shown in Fig. 2.2. (Right panel) Luttinger parameters K for several magnetizations.
At K = 1, along the dashed turquoise line, multipolar correlations of order p [Eq. (2.3)] and
longitudinal spin correlations [Eq. (2.4)] decay with the same exponent.

2.2.2 Multipolar Luttinger liquid phases

Hamiltonian Eq. (2.1) presents unusual elementary step sizes ∆Sz > 1 in some extended
J2 and m domains, where ∆Sz is independent on the system size [43]. This phenomenon
has been explained based on the formation of bound states of p = ∆Sz magnons in the
completely saturated state, and at finite m a description in terms of a single component
Luttinger liquid of bound states has been put forward [44; 45]. We have determined the
extension of the ∆Sz = 2, 3, 4 regions in Fig. 2.2, based on ED simulations on systems
sizes up to 32 sites and DMRG simulations on systems up to 192 sites. The boundaries
are in very good agreement with previous results [43] where available. The ∆Sz = 3 and
4 domains form lobes which are widest at m = msat and whose tips do not extend down
to zero magnetization. The higher lobes are successively narrower in the J2 direction. We
have also searched for ∆Sz = 5 and higher regions, but found them to be unstable against a
direct metamagnetic transition from the vector chiral phase to full saturation7. Individual

7After the publication of our results, Heidrich-Meisner, McCulloch, and Kolezhuk [51] have shown that
the length (in the m direction in Fig. 2.2) of the multipolar lobes can actually be tuned by considering an
anisotropy ∆ in the z-direction, which is the same for the J1 and J2 couplings (i.e. the new couplings in
the z-direction are ∆J1S

z
i S

z
i+1 and ∆J2S

z
i S

z
i+2). ∆ < 1 moves the tip of the lobes upwards, while ∆ > 1

moves them downwards. We have tried (by ED on systems up to size L = 30) to make the p = 5 lobe
appear with a small ∆ > 1 anisotropy but did not succeed, the p = 5 lobe is – as in the isotropic ∆ = 1
case – covered by the metamagnetic transition.
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bound states of p ≥ 5 magnons do exist (see Fig. 2.5), but they experience a too strong
mutual attraction to be thermodynamically stable.

An exciting property of the Luttinger liquids of p bound magnon states [45] is that the
transverse spin correlations are exponentially decaying as a function of distance due to the
binding, while p-multipolar spin correlations

Mp(r) :=

〈
p−1∏
n=0

S+
0+n

p−1∏
n=0

S−r+n

〉
∼ (−1)r

(
1

r

)1/K

(2.3)

(K is the Luttinger parameter) are critical with propagation vector π (multipolar cor-
relations with p′ < p also decay exponentially). p = 2, 3, 4 correspond to quadrupolar,
octupolar, and hexadecupolar correlations respectively. Therefore they can be considered
as 1D analogues of spin-multipolar ordered phases found in higher dimensions. Another
important correlation function is the longitudinal spin correlator, which is also critical [45]

〈Sz
0S

z
r 〉 −m2 ∼ cos

[
(1−m/msat)πr

p

](
1

r

)K

. (2.4)

We verified numerically c = 1 and determined the Luttinger parameter K as a function of
m and J2 by fits to the local Sz profile (Friedel oscillations) in DMRG simulations.

An important information is contained in the crossover line K = 1 where p-multipolar
and longitudinal spin correlations decay with the same exponent. This crossover line is
shown for the three lobes in Fig. 2.2. Close to saturation the spin-multipolar correlations
dominate while towards the tip of the lobes the longitudinal spin correlations decay more
slowly, characterizing a spin density wave [SDW(p) phase]. The analogy with a Luttinger
liquid of hardcore bosons of bound states is useful: the Luttinger parameter is K = 2 at
m = msat and decreases with the concentration of hardcore bosons of bound states. For
a fixed J2 value for instance, this concentration decreases with the magnetization, K is
thus increasing with m. On the contrary, the Luttinger liquid of hardcore bosons of bound
states becomes more dilute when increasing p at constant m (the number of magnons in the
bound states increases, hence the number of bound states decreases). One can therefore
understand why the crossover line K = 1 is rather flat in the J2 direction, but drops to
lower m values when going from p = 2 to 3 and 4.

Very recently, Zhitomirsky and Tsunetsugu [52] have developed an analytical approach
to study the zero-temperature properties as well as the low-energy magnetic excitations
of a condensate of two-magnon bound states (p = 2), exploiting the analogy with bound
electron pairs in a BCS superconductor.
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2.2.3 Experimental relevance

If probed by neutron scattering experiments, the phases we point out are in principle
distinguishable. The following responses are expected:

• a transverse Bragg peak in the vector chiral phase (low field) due to the criticality of
the transverse spin correlations,

• no transverse peak, but a longitudinal peak at wave vector (π/p)(1 − m/msat) in
SDW(p) phases (intermediate field) due to the criticality of the longitudinal spin
correlations (transverse correlations are gapped),

• no peak in the nematic-like p-multipolar phases (high field).

Recently, Sato, Momoi, and Furusaki [53; 54] showed that multipolar Luttinger liquids are
also detectable by nuclear magnetic resonance (NMR) experiments. The relaxation rate
in a multipolar Luttinger liquid decreases with lowering temperature (due to the gapped
nature of transverse spin correlations), while it diverges in a more conventional Luttinger
liquid (e.g. the spin-1/2 antiferromagnetic chain and ladder in a magnetic field).

One must keep in mind that in quasi-1D compounds the single spin chains Eq. (2.1) still ex-
perience a weak – but nonetheless non-vanishing – interchain coupling (IC) between them,
which we neglect. However, this IC can have important consequences on the physics of
multipolar phases we have described above: using DMRG combined with other techniques,
Nishimoto and collaborators [55] showed that an (even weak) IC can readily eliminate
them, especially for p ≥ 3. In fact, they predict that for most CuO2 chain systems studied
so far, except probably LiCuVO4, the IC is too strong to allow for multipolar phases. These
predictions agree with experimental data available so far: strong signals of the stabilization
of a quadrupolar phase in LiCuVO4 were indeed reported by Svistov and collaborators [56]
very recently8, whereas evidences of the stabilization of multipolar phases in other kinds
of CuO2 chains have never been reported yet.

8Ref. [56] actually determines the magnetic field hquad above which the quadrupolar phase is believed
to be entered (SDW to quadrupolar crossover). hquad is defined as the field at which the magnetic suscep-
tibility (measured on LiCuVO4 with a pulse field technique) exhibits a peak, the magnetization increases
very fast upon approaching hquad and reaches 95% of the saturation value at hquad. The field difference
hsat−hquad they obtain agrees with the theoretical estimations of Ref. [52], which strengthens the opinion
of the authors that the new phase between hquad and hsat they point out may indeed be identified with a
quadrupolar phase.
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2.3 Comparison between classical and quantum cor-
relations in a spiral state

In order to understand how a classical spiral can be destabilized towards quantum multi-
polar phases, it is in a first step necessary to realize that remnants of the classical spiral
survive to the quantum fluctuations. This is the aim of this section.

2.3.1 Chiral & multipolar correlators in a classical spiral
We consider a classical spiral with spins of length S, parametrized by

Sj = S

 cos(qj) cos(ϑ)
sin(qj) cos(ϑ)

sin(ϑ)

 (2.5)

with propagation vector q and canting angle ϑ due to the magnetic field. The ground state
of hamiltonian Eq. (2.1) is a ferromagnet for J2 < 1/4. Otherwise, the energy is minimized
for

q = arccos

(
1

4J2

)
∈ [0, π/2] and ϑ = arcsin

[
4hJ2

S(4J2 − 1)2

]
∈ [0, π/2].

Using the substitution S±j → Sx
j ±iS

y
j , the classical spiral displays vector chiral correlations

of the form
〈[S0 × Sd]

z[Sr × Sd+r]
z〉 → S4 cos4(ϑ) sin2(qd), (2.6)

and multipolar correlations of order p = 1 (spin, dipolar), p = 2 (quadrupolar), p = 3
(octupolar), and p = 4 (hexadecupolar)

〈S+
0 S

−
r + h.c.〉 = 2〈Sx

0S
x
r 〉+ 2〈Sy

0S
y
r 〉 → 2S2 cos2(ϑ) cos(qr)

〈S+
0 S

+
1 S

−
r S

−
r+1 + h.c.〉 → 2S4 cos4(ϑ) cos(2qr)

〈S+
0 S

+
1 S

+
2 S

−
r S

−
r+1S

−
r+2 + h.c.〉 → 2S6 cos6(ϑ) cos(3qr)

〈S+
0 S

+
1 S

+
2 S

+
3 S

−
r S

−
r+1S

−
r+2S

−
r+3 + h.c.〉 → 2S8 cos8(ϑ) cos(4qr) (2.7)

Note that if the in-plane spin correlations have propagation vector q, then the in-plane
multipolar correlations of order p propagate with vector qp = pq.

2.3.2 A quantum spiral: the uniformly distributed resonating
valence bond (UDRVB) state

Let us now consider the effect of quantum fluctuations. At the Lifshitz point J2 = 1/4,
the singlet ground state (that is degenerate with the ferromagnetic one) is analytically
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explicitly known [42] to be the uniformly distributed resonating valence bond (UDRVB)
state given by

|UDRVB〉 :=
1

N
∑

[i, j][k, l][m,n] · · ·

where [i, j] denotes two sites i and j that are paired up in a singlet state. The summation
runs over all combinations of ordered pairs of spins i < j, k < l,m < n, · · · , and N is some
normalizing factor such that 〈UDRVB|UDRVB〉 = 1. The spin correlations of the UDRVB
state have been obtained analytically [42] in the thermodynamic limit

lim
L→∞

〈UDRVB|S+
i S

−
i+r|UDRVB〉 =

1

6
cos

(
2π

L
r

)
, (2.8)

suggesting that this state should be considered as a quantum analog of a long wavelength
spiral with an L-dependent propagation vector q = 2π/L. To study this analogy in more
details, we have numerically computed the vector chiral correlations κ2(r, d) Eq. (2.2) and
the spin-multipolar correlations Mp(r) Eq. (2.3) up to order p = 4 in the UDRVB state.
These results are presented in the left panel of Fig. 2.4. For comparison, the exact result

0 3.75 7.5 11.25 15 18.75 22.5 26.25 30
r

-0.4

-0.2

0

0.2

0.4

0.6

M
p
(r

)

1/6 cos(2!/30*r)

p=1

p=2

p=3

p=4

0

0.002

0.004

"
2
(r

,d
)

x4

x64

x16

d=1

d=2

30 15107.5

1 2 3 4 5 6 7 8 9 10

Block Length

0

1

2

3

4

v
o

n
 N

e
u

m
a

n
n

 B
lo

c
k
 E

n
tr

o
p

y

AF HB, L=12

AF HB, L=16

AF HB, L=20

UDRVB, L=12

UDRVB, L=16

UDRVB, L=20

Figure 3. Left plot: Vector chiral (upper panel) and spin multipolar correlators (lower panel)
of the UDRVB state for L = 30 from ED (full symbols) compared to selected analytical results
[Eqs. (7),(8)]. The multipolar correlator of order p has a wave vector qp = p q (periods are
given on the bottom), q being the wave vector of the UDRVB spiral. Right plot: Comparison
of the von Neumann entropy of a block of 1 ≤ l ≤ L/2 consecutive spins for the unfrustrated
antiferromagnetic Heisenberg chain and the UDRVB state.

where [i, j] denotes two sites i and j that are paired up in a singlet state. The summation runs
over all combinations of ordered pairs of spins (i < j, k < l, m < n, . . . ).

In the limit of large L, the spin correlations of the UDRVB state have been obtained
analytically [12]

lim
L→∞

〈UDRVB|S+
i S−i+r|UDRVB〉 =

1
6

cos
2π
L

r , (9)

suggesting that this state should be considered as a quantum analog of a long wavelength spiral
with an L-dependent propagation vector q = 2π/L. To study this analogy in more detail,
we have numerically computed the vector chiral correlations κ2(r, d) [Eq. (2)] and the spin
multipolar correlations Mp(r) [Eq. (3)] up to order p = 4 in the UDRVB state. These results
are presented on the left panel of Fig. 3. For comparison, the exact result of Eq. (9) for p = 1 is
drawn as well. Our aim is not to describe the higher order correlation functions of the UDRVB
state quantitatively 2, but to point out that the simple relations between the wave vectors of
multipolar correlation functions in a classical spiral state are also obeyed in the quantum analog,
i.e. in the UDRVB state.

We first note that vector chiral correlations (Fig. 3, left plot, upper panel) of the UDRVB state
are independent of the distance r, which – as shown by Eq. (7) – is in complete agreement with
a spiral state. Furthermore, the multipolar correlations (Fig. 3, left plot, lower panel) indeed
follow the phenomenology of the classical spiral, where the p−multipolar correlations have a wave
vector p q for a spiral with wave vector q. A quantitative comparison would be more involved
due to the sizable finite size effects at distance ∼ L/2, and the fact that the UDRVB state is
a singlet, which requires a contraction of all components of the SU(2) multipolar operators of
rank p.

We close this section by presenting the peculiar entanglement entropy of the UDRVB state
in comparison to the well studied unfrustrated antiferromagnetic Heisenberg chain (right plot
of Fig. 3) for periodic systems. First of all, the UDRVB state has a much larger entanglement
entropy for large blocks than the Heisenberg chain for the same block length [13]. Second, the

2 Although this would be possible, it is somewhat too technical to be detailed here.

Highly Frustrated Magnetism 2008 (HFM 2008) IOP Publishing
Journal of Physics: Conference Series 145 (2009) 012057 doi:10.1088/1742-6596/145/1/012057

5

Figure 2.4: (Left) Vector chiral (upper panel) and spin-multipolar (lower panel) correlators of
the UDRVB state for L = 30 from ED (full symbols). They behave qualitatively as those of the
classical spiral Eqs. (2.6) and (2.7). The multipolar correlator of order p has a propagation vector
qp = pq (periods are given on the bottom), q being the propagation vector of the UDRVB spiral.
(Right) Comparison of the von Neumann entropy of a block of l (1 ≤ l ≤ L/2) consecutive spins
for the unfrustrated antiferromagnetic Heisenberg chain and the UDRVB state.

Eq. (2.8) for p = 1 is drawn as well. We aim to stress that the simple relations between the
propagation vectors of multipolar correlation functions in a classical spiral are also obeyed
in the quantum analog, i.e. in the UDRVB state.
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We first notice that vector chiral correlations (Fig. 2.4, left plot, upper panel) of the
UDRVB state are small and independent on the distance r, which – as shown by Eq. (2.6) –
is in complete agreement with a spiral. Furthermore, the multipolar correlations (Fig. 2.4,
left plot, lower panel) indeed follow the phenomenology of the classical spiral, where the p-
multipolar correlations have a propagation vector pq for a spiral with propagation vector q.
A quantitative comparison is more involved due to the sizable finite size effects at distance
∼ L/2, and the fact that the UDRVB state is a singlet, which requires a contraction of all
components of the SU(2) multipolar operators of rank p. Such a comparison is performed
in Appendix C, which shows that the spin-multipolar correlations in the UDRVB state are
in good quantitative agreement with the spin-multipolar correlations in a classical spiral
with propagation vector q = 2π/L.

We close this section by presenting the peculiar entanglement entropy of the UDRVB
state in comparison to the well studied unfrustrated antiferromagnetic Heisenberg chain
(right plot of Fig. 2.4) for periodic systems. First of all, the UDRVB state has a much
larger entanglement entropy for large blocks than the Heisenberg chain for the same block
length [57]. Secondly, the finite size behavior of the entanglement entropy for a given block
size is not monotonous in the UDRVB state, again in contrast to the pure Heisenberg
chain. This might be due to the fact that its propagation vector q = 2π/L depends on the
system size, so that the local structure of the spiral changes as L is increased.

2.4 Interpretation: a locking rule driving spiral states
towards multipolar phases

Let us first investigate how the longitudinal and transverse equal-time spin structure factors
Szz(q) and Sxx(q) evolve as a function of the magnetization m. In the left plot of Fig. 2.5
we display the location of the maximum of Szz(q) and Sxx(q) (disregarding the q = 0 peak
in Szz(q) due to the total magnetization) for three representative values of J2. At m = 0,
it is known that S(q) has a maximum at an incommensurate position qmax(J2), which
is strongly renormalized compared to the classical expectation qclass

max (J2) = arccos[1/(4J2)],
see also lower right panel of Fig. 2.5. In the low magnetization region, corresponding to the
vector chiral phase, the location of the maxima of both structure factors are only weakly
dependent on m, and in a first approximation remains the same as for m = 0. However as
m is increased, the qmax of Szz(q) locks onto a straight line with slope −π/p. It seems that
if qmax(J2)/π > 1/3 at m = 0, the magnetization process enters the (p = 2)-multipolar
phase at larger m. If instead 1/3 > qmax(J2)/π > 1/4 at m = 0, the system will enter the
(p = 3)-multipolar phase. Based on an extended analysis including many J2, we are led to
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Our considerations presented above are not restricted to
one dimension. Indeed the recently reported quadrupolar9

and octupolar phases10 in frustrated S= 1
2 ferromagnets in a

field also allow an interpretation as fluctuation destabilized
magnetic states. In the J1-J2 model on the square lattice there
is a magnetically ordered striped phase !Q= "! ,0#$ in the
neighborhood of the “bond nematic” phase. The nearest
neighbor bond quadrupolar correlation functions in such a
classical striped state have momentum "0,0# and are odd un-
der a ! /2 rotation of one bond. Interestingly this is exactly
the signature of the correlation function reported in the mag-

netically disordered, “bond nematic” phase. Similarly for the
“triatic” or octupolar phase, there is a canted magnetic three-
sublattice state !Q= "4! /3,0#$ neighboring the “triatic”
phase at high fields.10 The derivation of the octupolar corre-
lations on a triangle in the classical state again yields octu-
polar correlations matching the symmetry of the bound states
reported in the “triatic” phase. Based on the success of our
considerations we speculate that it could be possible to sta-
bilize a uniform hexadecupolar phase in the square lattice
J1-J3 model with ferromagnetic nearest neighbor interac-
tions.

The different phases we found should be detectable ex-
perimentally in the quasi-1D compounds studied in Refs.
18–20. In neutron scattering experiments these phases are
expected to manifest as follows: "i# a Bragg peak at low
magnetizations corresponding to spiral order in the plane
transverse to the magnetic field, "ii# a Bragg peak at interme-
diate magnetizations at wave vector !"1−m /msat# / p corre-
sponding to SDW"p# magnetic order modulated along the
field, and "iii# the absence of nontrivial magnetic Bragg
peaks at high fields in the spin multipolar ordered phases.

We have established the phase diagram of the frustrated
ferromagnetic S= 1

2 Heisenberg chain in a uniform magnetic
field. We provided an explanation for the appearance of a
large number of bound states upon approaching the Lifshitz
point at J2=1 /4, based on a locking mechanism leading to
spin multipolar phases. It is an open problem whether these
fluctuation driven multipolar phases and the locking mecha-
nism also appear for S" 1

2 . In a recent paper by Hikihara et
al.27 a phase diagram very similar to ours has been obtained.
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Figure 2.5: (Left) Propagating vector qmax maximizing the longitudinal (inset: transverse)
spin structure factor as a function of the magnetization m for selected values of J2, each one
belonging to a different p sector at high m. The straight lines are guides to the eye and show
(π/p)(1−m/msat). The different symbols denote ED results on system sizes ranging from 18 up
to 28 sites. (Right) Upper panel: ED results for the domain of stability of bound states of p spin
flips above the saturated ferromagnetic state. Lower panel: Location qmax of the maximum of the
zero field spin structure factor S(q) as a function of J2. The colored lines indicate the construction
of the domain boundaries from the zero field physics, based on the locking rule Eq. (2.9). The
thin dashed line displays qclass

max for the classical model.

conjecture that if

1/p > qmax(J2)/π > 1/(p+ 1) at m = 0, (2.9)

then qmax locks onto the line with slope −π/p at higher magnetizations. According to the
behavior of the longitudinal spin correlations in multipolar Luttinger liquids Eq. (2.4), the
multipolar liquid of order p leads precisely to a slope of −π/p. Regarding the transverse
spin correlations, Eqs. (2.3) and (2.9) now show that while qmax(J2) of Sxx(q) approximately
equals π/p, the spin-multipolar correlations of order p are accurately locked to π, i.e. to a
propagation vector p times as large as the propagation vector of transverse spin correlations,
as in the spiral. Note that while the above considerations devoted to the classical spiral
showed that many multipolar correlations are finite without actually selecting a specific
one, in the frustrated ferromagnetic chain in a field, it is the additional locking mechanism
pqmax(J2) = π, which is responsible for the selection of p.

Despite the fact that there are no stable multipolar Luttinger liquids with p > 4, it is
possible to examine the process of individual bound state formation by pushing previous
calculations from p ≤ 4 in Ref. [45] to p = 8. We have performed ED without truncation
on system sizes up to L = 64, calculated the binding energy of p flipped spins [expressed
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as hsat(p)/hsat(p = 1)]9 and displayed it in the upper panel of Fig. 2.5. A surprising series
of stable bound states up to p = 8 is obtained, which are successively smaller in their
J2 extent, suggesting that J2 = 1/4 is an accumulation point of p → ∞ bound states.
We now proceed to a comparison of the stability domain of the bound states to those
predicted by locking rule Eq. (2.9) applied to the zero field structure factor. We fit a power
law qmax(J2) ∝ (J2 − 1/4)γ (with γ ≈ 0.29) to the finite size transition points, as shown
by the bold black line in the lower panel of Fig. 2.5. This fitted line is used to construct
the boundaries, giving rise to the lower color bar. The agreement between the transition
boundaries in the upper and lower panels is excellent (apart from the p = 2 to p = 3
transition). It is striking that we are able to reproduce the domain of stability of bound
states of magnons at the saturation magnetization, based solely on the spin structure
factor obtained at zero field. This constitutes strong evidence for an approximate validity
of locking rule Eq. (2.9) and the presence of a locking mechanism which pins the multipolar
correlations to π at larger m as opposed to incommensurate transverse spin correlations
for lower m. The transition from p = 2 to p = 3 is somewhat shifted compared to the
prediction, and we attribute this discrepancy to the formation of a peculiar incommensurate
p = 2 bound state [45; 58], leading to a collapse of the kinetic energy of the p = 2 bound
state.

We furthermore stress that in the multipolar Luttinger liquid phase, our results predict a
soft mode at the Fermi wave vector (π/p)(1−m/msat) of the Luttinger liquid. A prominent
property of Luttinger liquids is that they have soft modes at multiples of their Fermi
wave vector, the Oshikawa-Yamanaka-Affleck (OYA) theorem (see Appendix B) stating the
existence of a soft mode at momentum π(1−m/msat) is thus fulfilled. In the vector chiral
phase however, it is unclear to us how this OYA soft mode appears. Fig. 2.6 illustrates
these soft modes in the (p = 2)- and (p = 3)-multipolar phases (left and right panel
respectively) in the energy spectra for different system sizes for J2 = 0.4 (case p = 2) and
J2 = 0.32 (case p = 3) at half-saturation m/msat = 1/2. Soft modes at momenta multiple
of (π/2)(1 − 1/2) = π/4 (case p = 2) and (π/3)(1 − 1/2) = π/6 (case p = 3) are visible
(dashed magenta lines), they are peaked downwards in the spectrum. These “reversed
peaks” approach the zero excitation energy when increasing the system size.

9The quantity hsat(p) is defined as hsat(p) := [EGS(Sz = L/2)−EGS(Sz = L/2− p)]/p where EGS(Sz)
is the ground state energy in the Sz magnetization sector. hsat(p) has the units of a magnetic field and
quantifies how energetically favorable it is to destabilize the ferromagnetic phase (as the field is decreased)
by flipping p spins. Note that hsat(p)/hsat(1) > 1∀p ≥ 2 means that it is never favorable for the system to
go directly from the ferromagnetic phase to a phase characterized by ∆Sz = 1 steps (like the vector chiral
one).
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Figure 2.6: (Left) excitation energy spectra (the ground state energy of the magnetization
sector is subtracted) of different chain lengths L for J2 = 0.4 at m/msat = 1/2. The system is
in the (p = 2)-multipolar phase. For every L, the lowest energy levels of every momentum sector
are joined together by solid lines, revealing that the spectra are peaked downwards at momenta
multiple of π/4 (dashed magenta lines). These “reversed peaks” approach the zero excitation
energy as L increases, making the soft modes well visible. (Right) the same in the case of the
(p = 3)-multipolar phase for J2 = 0.32 at m/msat = 1/2. The soft modes lie at momenta multiple
of π/6. Notice that finite size effects prevent the reversed peak at k = 5π/6 from showing up,
even for the largest system L = 36.

2.5 A new approach to previously discovered multi-
polar phases

The idea that spin-multipolar phases can result from instabilities of spiral ordering is
rather appealing, and not limited to 1D. It sheds new light on previously discovered spin-
multipolar phases in two-dimensional spin-1/2 quantum magnets in a magnetic field. For
instance, for the Heisenberg model on the square lattice with ferromagnetic nearest neigh-
bor couplings, antiferromagnetic next-nearest neighbor couplings, and ring exchange in a
magnetic field, it has been shown by Shannon, Momoi, and Sindzingre [19] that a bond
quadrupolar phase exists close to the ferromagnetic state. The bond quadrupolar order is
explained by a condensation of two-magnon bound states from the ferromagnetic side. Our
results provide a complementary view as a destabilization of the neighboring antiferromag-
netic striped collinear phase with momentum (π, 0), see Fig. 2.7: in the striped collinear
phase [panel (a)], the direction of the magnetic moments (i.e. the expectation value of
Sz) is horizontally staggered and vertically uniform [panel (b)], this results in negative
(red) bond quadrupolar expectation values for horizontal bonds and positive (black) bond
quadrupolar expectation values for vertical bonds [panel (c)]. Once the quadrupolar phase
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is entered [panel (c)→panel (d)], one observes that bond quadrupolar expectation values
are indeed negative for horizontal bonds and positive for vertical ones [panel (d)]: the
(π, 0)-spiral [panel (a)] has been destabilized towards the quadrupolar phase [panel (e)]. A
similar process occurs in the multiple-spin exchange model on the triangular lattice, where
an octupolar phase is surrounded by both a ferromagnetic and a canted antiferromagnetic
spiral phase [20].

2.6 Conclusion
We have established the phase diagram of the frustrated ferromagnetic spin-1/2 Heisenberg
chain in a uniform magnetic field. A vector chirally ordered phase, metamagnetic behavior
and a sequence of spin multipolar Luttinger liquid phases up to hexadecupolar order have
been identified. We have shown that the peculiar valence bond state at the Lifshitz point
J2 = 1/4 can be regarded as the quantum analog of the classical spiral ground state, in
which multipolar correlations naturally occur. We have argued that above a certain mag-
netic field, spiral ordering is destabilized by quantum fluctuations via a locking mechanism,
giving rise to higher order multipolar spin correlations. This point of view is consistent
with existing phase diagrams exhibiting such phases. It might therefore be used to predict
multipolar phases in models with some form of spiral ordering. It is an open question
whether these fluctuation driven multipolar phases and the locking mechanism also appear
for spins S > 1/2.
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Figure 2.7: Illustration of the process we point out to drive the (π, 0) spiral towards the
quadrupolar (or n-type nematic) phase in the J1 < 0, J2 > 0 Heisenberg model on the square
lattice with ring exchange K in a magnetic field. In the magnetically ordered (π, 0) spiral state
on the square lattice [panel (a)], the spins are arranged in collinear stripes [panel (b)]. The
bond quadrupolar expectation values in this spiral state are shown in panel (c), where the black
and red colors denote positive and negative expectation values (uniform d-wave configuration).
Quadrupolar correlations become dominant as the quadrupolar phase is entered, exhibiting the
bond quadrupolar correlation pattern shown in panel (d), with the same uniform d-wave config-
uration. The quadrupolar phase [panel (e)] is reached, the magnetic spin ordering is lost.



CHAPTER 3

The correlation density matrix
(CDM) tool for extracting dominant
correlations

3.1 Introduction

The nature of a state of a strongly interacting quantum many-body system in general –
of a quantum spin system in particular – is governed by its dominant correlations. In
some models, the type of dominant correlations we are likely to encounter is intuitive and
can sometimes be easily foreseen. In bosonic systems for instance, one straightforwardly
understands why the Mott insulating phase is stabilized in the Bose-Hubbard model at
commensurate filling when the hopping term is small [59]1. Regarding spin systems, typical
phases of quantum dimer models naturally tend to be valence bond crystals [8] (even though
topological order can appear as well [60; 61]). The type of Néel phases that are realized
in non-frustrated, or weakly frustrated models (with weak quantum fluctuations) is also
generally easy to guess. With the aid of a simple sketch, it is for instance natural to
suspect that at zero temperature the q = 0 Néel order is stabilized in the Heisenberg J1–J2

1This model was indeed originally introduced in order to describe the superfluid to insulator phase
transition in 4He, but is generally applicable to any system of interacting bosons on a lattice.
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(J1 = J2 > 0) model on the kagomé lattice [62], or that the Heisenberg J1–J2 (J1, J2 >
0) model on the square lattice sustains order with wave vectors (π, π) and (0, π)/(π, 0)
respectively “well below” and “well above” the point of maximal frustration J2/J1 = 1/2
[3]. On the other hand if the frustration is high, or if the coordination number of the
lattice is particularly low (resulting in large quantum fluctuations), the guess of relevant
order parameters is a challenging task most of the time, even if it is sometimes possible by
comparison with similar models, or using theoretical arguments [13; 18–21; 49; 63]. Highly
frustrated magnets are good candidates for displaying exotic – thus unexpected – phases,
which renders the choice of relevant operators very difficult and subtle.

In some cases, one does not have any a priori knowledge about the correlations which
may dominate in a quantum system. In order to circumvent this problem, the idea of
extracting those dominant correlations between any two disjoint blocks by singular value
decomposing the correlation density matrix (CDM) between these blocks has been put
forward a couple of years ago [25; 64]. This process is unbiased – the relevant correlators
are yielded by the method itself – and does thus not require any a priori knowledge of the
system. Any phase will be detected, however exotic it may be.

This chapter is devoted to the presentation of the features and the mathematical prop-
erties of this novel method, which is then illustrated using some concrete examples. We
first introduce it within a technical framework and generalize it at finite temperature. All
the details are given about how to extract the dominant correlations between two arbitrarily
selected disjoint blocks. Some consequences of lattice or state symmetries are investigated
and illustrated by examples. The link between the CDM and the mutual information –
which is a well known quantity in quantum information theory [65] – is addressed, and
the states providing the maximal correlation between the two blocks (of various sizes) are
identified. Finally, the method is applied for illustrative purposes on the J1–J2 model on a
spin-1/2 chain at zero and finite temperature, and on its 2D analog on a square lattice at
zero temperature. In this latter case, the poorly understood regime around the maximal
frustration point J2/J1 = 1/2 is investigated as well.

3.2 The correlation density matrix object

We start with the definition of the correlation density matrix object which can be computed
in any pure state of a system as well as in mixed thermal states. The properties and features
of this tool are then given in a next step. We finally explain how to – and why – singular
value decompose it in order to extract the dominant correlations.
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3.2.1 Definition & properties of the correlation density matrix
Let a quantum many-body system be formed by two disjoint blocks A and B, and by their
environment E, as shown in Fig. 3.1. Consider some state |ψ〉 (not necessarily the ground
state) of this system whose dominant correlations we ignore. The reduced density matrices
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Figure 3.1: (Color online) The two disjoint blocks A and B and their environment E form a
many-body system, which is in the pure state |ψ〉.

of blocks A, B and of the superblock A∪B are constructed by forming the density matrix
of the global system |ψ〉〈ψ| and tracing out the irrelevant degrees of freedom

ρA := TrB∪E|ψ〉〈ψ|
ρB := TrA∪E|ψ〉〈ψ|
ρA∪B := TrE|ψ〉〈ψ|. (3.1)

The correlation density matrix (CDM) between A and B is defined as

ρc
AB := ρA∪B − ρA ⊗ ρB. (3.2)

If the two blocks are completely uncorrelated, we then have ρA∪B = ρA ⊗ ρB and thus
ρc

AB = 0. ρc
AB captures all informations about how block A is correlated to B and vice

versa (it is symmetric in A and B). Indeed, in the same way that the density matrix ρA∪B

allows to compute the correlation between any pair of operators OA and OB acting within
A and B

〈OAOB〉 = Tr(A∪B) [ρA∪BOAOB] ,

the CDM yields the corresponding connected correlation (see Appendix D for a detailed
proof)

〈OAOB〉 − 〈OA〉〈OB〉 = Tr(A∪B) [ρc
ABOAOB] . (3.3)

In particular if OA = 1IA and OB = 1IB we have

〈1IA1IB〉 − 〈1IA〉〈1IB〉 = 0 = Tr(A∪B)ρ
c
AB,

ρc
AB must therefore be traceless.
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This formalism can also be adapted for the investigation of the finite temperature physics
of a quantum model. In this case, the density matrices Eq. (3.1) have to be replaced by
thermal density matrices of (mixed) thermal states

ρA(β) :=
1

Z

∑
n

e−βEnρ
(n)
A

ρB(β) :=
1

Z

∑
n

e−βEnρ
(n)
B

ρA∪B(β) :=
1

Z

∑
n

e−βEnρ
(n)
A∪B,

in Eq. (3.2). The sums run over the entire spectrum of the whole quantum many-body
system, β := 1/(kBT ) is the inverse temperature, ρ(n)

A , ρ(n)
B , and ρ

(n)
A∪B are the density

matrices computed in the eigenstate of energy En, and Z :=
∑

n e
−βEn . The thermal CDM

is then given by
ρc

AB(β) := ρA∪B(β)− ρA(β)⊗ ρB(β)

and can be singular value decomposed following the same procedure as for the zero tem-
perature case.

Notation: from now on, ρc
AB can refer as well to the finite temperature case ρc

AB(β) as
to the zero temperature one ρc

AB = ρc
AB(β = ∞).

3.2.2 Singular value decomposition of the correlation density ma-
trix: technical details

Once the CDM between the two selected disjoint blocks A and B is known, the purpose
is to extract the dominant correlations between A and B from this matrix. Each index of
the dimH(A) dimH(B) × dimH(A) dimH(B)2 matrix ρc

AB refers to basis elements of block
A and to basis elements of block B at once. The first step if we want informations about
how A is correlated to B, is to transform ρc

AB into a new dim2
H(A) × dim2

H(B) matrix –
say K – whose first index refers to basis elements of block A only, and whose second index
refers to basis elements of block B only.

Indices without prime symbol refer to block A, those with a prime symbol refer to
block B, and commas separate the two indices of a matrix. Underlined indices that are not

2dimH(∗) denotes the dimensionality of the Hilbert subspace which spans block ∗ (and not the number
of sites inside ∗).
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separated by a comma must be considered as fused indices. We introduce the operators
X̃ij and Ỹi′j′ – acting within A and B respectively – with the matrix elements

〈k|X̃ij|l〉 = δi,kδj,l and 〈k′|Ỹi′j′|l′〉 = δi′,k′δj′,l′ ,

X̃ij are dimH(A)×dimH(A)-matrices and Ỹi′j′ are dimH(B)×dimH(B)-matrices. It is then
easy to realize that the CDM can be written as

ρc
AB =

dimH(A)∑
i,j=1

dimH(B)∑
i′,j′=1

Kij,i′j′X̃ij ⊗ Ỹi′j′ (3.4)

provided that elements of ρc
AB are related to those of K as

(ρc
AB)kk′,ll′ = Kkl,k′l′ .

Thus, ρc
AB and K have the same matrix elements, which are just ordered differently: the

first index of K refers to basis elements of block A and the second one to those of block
B. Unlike ρc

AB, K is generally not square unless dimH(A) = dimH(B).
The idea is now to perform a (numerical) singular value decomposition (SVD) of K,

i.e. to write it in the form
K = UΣV †, (3.5)

where Σ = diag(σAB
1 , σAB

2 , · · · , σAB
D2 ) is a dim2

H(A)× dim2
H(B) diagonal matrix containing

the non-negative singular values (SVs) sorted in decreasing order σ1 ≥ σ2 ≥ σ3 ≥ . . . ≥
σD2 ≥ 0, and D2 := min{dim2

H(A), dim2
H(B)}. U is a unitary dim2

H(A)× dim2
H(A) matrix,

and V is a unitary dim2
H(B) × dim2

H(B) matrix. By plugging Eq. (3.5) into Eq. (3.4) we
get

ρc
AB =

D2∑
i=1

σAB
i X

(A)
i ⊗ Y

(B)†
i , (3.6)

where we have introduced the operators

X
(A)
i :=

dimH(A)∑
k,l=1

Ukl,iX̃kl and Y
(B)†
j :=

dimH(B)∑
k′,l′=1

V †
j,k′l′Ỹk′l′

(i = 1, · · · , dim2
H(A) and j = 1, · · · , dim2

H(B)) which act within A and B respectively, and
are orthonormalized with respect to the Frobenius norm (follows from unitarity of U and
V )

Tr
(
X

(A)
i X

(A)†
j

)
= δi,j and Tr

(
Y

(B)
i Y

(B)†
j

)
= δi,j. (3.7)
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Remark: from now on, index “AB” of σAB
i will be dropped any time this omission does not

confuse the reader.

Eq. (3.6) is of central importance: one can check that the SVs “quantify” the strength
of the connected correlations between the X and the Y operators since

〈X†(A)
i Y

(B)
j 〉 − 〈X†(A)

i 〉〈Y (B)
j 〉 = δi,j σi (3.8)

(this relation is derived using the property Eq. (3.3) and the decomposition Eq. (3.6) of
the CDM, as well as the orthogonality relation Eq. (3.7)), in that sense, the decomposition
Eq. (3.6) allows to identify the strongest correlations (corresponding to the highest SVs)
without requiring any a priori knowledge about the quantum state under study. The
dominant correlation is therefore given by

〈X†(A)
1 Y

(B)
1 〉 − 〈X†(A)

1 〉〈Y (B)
1 〉 = σ1 ≥ 0.

Note that the signs and the phases are absorbed in the definition of X(A)
1 and Y

(B)
1 (σi ≥

0 ∀i).
Once the decomposition Eq. (3.6) is numerically performed, the resulting operators

X
(A)
i and Y (B)†

i are well defined (up to some phase factor), and determined in an unbiased
way by the SVD. In order to understand their physical meaning it is however often useful
to decompose them in a complete basis given by physically meaningful operators. Bases of
the spaces spanned by the operators acting on two and three spins S = 1/2 are given in
Appendix E.

3.3 Upper and lower bounds on singular values

3.3.1 Upper bound on total and on individual correlations

For a given configuration of blocks A and B, the sum of the squared SVs resulting from
the SVD provides a natural measure of the total correlation between A and B. This sum
is proven in Ref. [25] to have as upper bound

D2∑
i=1

σ2
i =‖ ρc

AB ‖2
F≤ 1− 1/D2, (3.9)

it is thus not an extensive quantity in the size of A and B. The equality between the sum of
the squared SVs and the squared Frobenius norm of the CDM ‖ ρc

AB ‖2
F := Tr(ρc

AB ρ
c†
AB) can
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be shown easily. The upper bound Eq. (3.9) is reached in the case of maximally correlated
blocks, such kinds of block configurations are identified and discussed in Section 3.5.

We do not have any analytical result for an upper bound on every individual SV. We
have performed a numerical simulation of 71.700.000 CDMs between two blocks A and B,
each containing one spin-1/2, see the right panel of Fig. 3.4 in Section 3.5. It turns out that
the largest SV we have simulated was 0.4954. Furthermore for two blocks containing one
site, the largest SV of the state identified in Section 3.5 that reaches the bound Eq. (3.9) is
indeed 1/2. This is therefore the largest value of SV we have observed so far, and it seems
that σi ≤ 1/2 ∀i is an upper bound on the individual SVs, but this is only a hypothesis
and should be considered with care.

3.3.2 Lower bound on the highest singular value of enlarged
blocks

Let A and B be two disjoint blocks with the same size (i.e. number of sites) in a spin-S
system, and let the highest SV corresponding to this configuration be σAB

1 . If A and B are

�
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��

Figure 3.2: Two disjoint blocks A and B enclosing the same number of spin-S sites are each
enlarged by one site, resulting in A′ and B′. The dominant singular value between A and B yields
the lower bound Eq. (3.10) for the dominant singular value between A′ and B′.

both enlarged by one site to A′ and B′ (such that A′ and B′ are still disjoint) – as depicted
in Fig. 3.2 – then the previously largest SV σAB

1 enters a lower bound for the new one σA′B′
1

σA′B′

1 ≥ σAB
1

2S + 1
, (3.10)

as proven in Appendix D. It is of course intuitive that any correlation – the dominant one
as well – between A and B can still be measured between A′ and B′. The 1/(2S+1) factor
in the right term of Eq. (3.10) is due to the fact that the dominant correlator between A
and B has to be Frobenius-renormalized to 1 when going to the enlarged blocks.
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3.4 Symmetries

The consequences of two kinds of symmetries that can arise when performing the CDM
analysis are discussed here. We shall firstly consider the particular case of two blocks
at maximal distance, each of which consisting of two neighboring sites on a closed spin-
1/2 chain (with an even number of sites) and we shall see that if the state under study
is SU(2)-symmetric, the operators X(A)

i and Y
(B)
i resulting from the SVD have special

properties which simplify the CDM analysis in this case. We shall secondly consider the
intrinsic symmetries of a state disregarding the configuration of the blocks. Those latter
symmetries have consequences on the degeneracies of the SVs.

3.4.1 Correlations between two blocks at maximal distance on a
closed spin chain

We have empirically observed that if blocks A and B are such that they enclose two sites
each, and such that they are arranged at maximal distance one from another on a closed
spin-1/2 chain with an even number of sites, as depicted in Fig. 3.3, then provided that the

B

A
2

1

1

2

Figure 3.3: Closed spin chain with 12 sites. Blocks A and B have two neighboring sites and are
at maximal distance.

system is in a SU(2)-symmetric state, any of the operators X(A)
i and Y

(B)
i resulting from

the SVD gets a contribution from only one single element of the following set of operators{
1

2
1Ikl,

2√
3
(Sk · Sl),

1√
2
(Sk + Sl),

1√
2
(Sk − Sl),

√
2Sk × Sl, Qkl

}
, (3.11)

which is a Frobenius-orthonormalized basis for the space of operators acting on two spin-
1/2 sites (here k and l). The contribution from more than one element of this operator
set in any of the X(A)

i ’s or Y (B)
i ’s is forbidden. The meaning of the operators in the set

Eq. (3.11) is clear, except for the last one which is a quadrupolar object defined in Eq. (E.1),
Appendix E. It is symmetric under the k ↔ l exchange. Basis Eq. (3.11) has two singlet
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operators (with one component), three triplet operators (with three components), and one
quintet operator (with five components).

3.4.2 Intrinsic symmetries of the state

The symmetry properties of the quantum state which is investigated have repercussions
on the triples (σi, Xi, Yi) that result from a SVD, in particular on the degeneracies of the
SVs. Consider two blocks A and B in a spin-S system, which enclose the same number n
of sites. These 2n spins-S live in the space

(S ⊗ S ⊗ · · · ⊗ S)︸ ︷︷ ︸
n terms

⊗ (S ⊗ S ⊗ · · · ⊗ S)︸ ︷︷ ︸
n terms

. (3.12)

Case of a SU(2)-symmetric state – We treat here the case of rotationally invariant
states, i.e. SU(2)-symmetric states. Singlet (Stot = 0) eigenstates or mixed thermal states
(with a contribution from the full spectrum and thus all the spin multiplets) of rotationally
invariant Heisenberg hamiltonians for instance have this property.

It is very useful to classify all the possible operators acting within A or B into different
sets such that operators belonging to the same set can be mapped one onto another by a
SU(2) rotation operation. The number of sets and their size is obtained by determining
the irreducible representations of the SU(2) group of operations acting within the space
Eq. (3.12). This is done by performing a Clebsch-Gordan decomposition of Eq. (3.12), i.e.
by writing this space in terms of a direct sum of individual subspaces that are globally
invariant under SU(2) operations. Such a subspace with spin j corresponds to a set of
2j + 1 operators which only differ by SU(2) operations. It is a rank-j tensor with 2j + 1
components that can be written as

∆jz = −j,−j + 1,−j + 2, · · · , j

operators3, where a ∆jz-operator is defined such that if applied to an eigenstate of Sz
tot

with Sz
tot = jz, it returns a new eigenstate of Sz

tot with Sz
tot = jz + ∆jz.

In the case of a SU(2)-symmetric state, the 2j+1 components within every spin-j sub-
space have the same correlation functions, and a spin-j subspace thus results in a 2j + 1
degenerate SV whose associated X and Y operators have a well defined spin-j, i.e. de-
compose onto basis operators of Table E.1 or E.2 (Appendix E) having a fixed number of

3The operators we have intuitively determined (i.e. without using the formula Eq. (C.2) of Appendix C)
in Tables E.1 and E.2 of Appendix E are not necessarily ∆jz-operators. This would nevertheless be the
case if they were derived using Eq. (C.2), as it is the case for the quadrupolar Qkl operator in Table E.1 [see
Eq. (E.1)], and for the quadrupolar Qklm(i) and the octupolar Seklm operators in Table E.2 [Eq. (E.2)].
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components 2j + 1.

Case of a U(1)-symmetric state – We treat here the case of states which are
invariant under rotations about the z-axis. This is for instance the case for eigenstates of
Heisenberg hamiltonians that were originally rotationally invariant, but to which a mag-
netic field (pointing in the z-direction in the spin space) Zeeman term has been added.
Such a hamiltonian conserves Sz

tot, and its eigenstates are invariant under rotations in the
xy-plane.

The 2j + 1 components of a spin-j subspace do no longer have the same correlation
functions. Instead, only those with the same |∆jz| do, due to the U(1) in-plane symmetry.
Hence, degeneracies in the SV spectrum can be derived by first performing the Clebsch-
Gordan decomposition of Eq. (3.12) and then considering that every spin-j sector gives

• j + 1
2

SVs which are 2-fold degenerate

if j is half-integer, and

• j SVs which are 2-fold degenerate (|∆jz| 6= 0 components)

• 1 SV which is non-degenerate (|∆jz| = 0 component)

if j is integer.
In contrast to the SU(2)-symmetric case, the X and Y operators associated to a given

SV are here |∆jz|-operators, i.e. decompose onto |∆jz|-components of basis operators
that do not necessarily have the same spin, for instance a given SV may simultaneously
decompose onto 1√

2
(Sx

k ± Sx
l ), 1√

2
(Sy

k ± Sy
l ), and Q

(±1)
kl = ∓(S±k S

z
l + Sz

kS
±
l ) of Table E.1

(Appendix E), since all of them are |∆jz| = 1.

The diagram below shows pictorially the evolution of the SV degeneracies if the SU(2)
symmetry is broken down to U(1) if both A and B enclose 2 sites (spins-1/2). Every filled
circle • is a SV, there are D2 = min{dim2

H(A), dim2
H(B)} = (22)2 = 16 SVs.(

1
2
⊗ 1

2

)
⊗
(

1
2
⊗ 1

2

)
= 02 ⊕ 13 ⊕ 21

↓ ↓ ↓

SU(2)-symm. state
1× deg.
••

3× deg.
• • •

5× deg.
•

↓ ↓ ↙↘ ↙↓↘

U(1)-symm. state
1× deg.
••

1× deg.
• • •

2× deg.
• • •

1× deg.
•

2× deg.
•

2× deg.
•

The notation jm means that the subspace of spin j occurs m times in the Clebsch-Gordan
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decomposition.

Illustration with blocks of two sites in a spin-1/2 system – Let us illustrate
how state symmetries can be exploited in the particular case of two blocks A and B contain-
ing two sites each, in a spin-1/2 system. The Clebsch-Gordan decomposition of Eq. (3.12)
in this case is given in the above picture, i.e. there are 2 singlet j = 0 subspaces, 3 triplet
j = 1 subspaces, and one quintet j = 2 subspace.

Case of a SU(2)-invariant state – In the case of a SU(2)-invariant state, every j = 0
subspace gives one non-degenerate SV, every j = 1 subspace gives one 3-fold degenerate
SV, and every j = 2 subspace gives one 5-fold degenerate SV. If the multiplicities are taken
into account, we have

• two non-degenerate SVs,

• three 3-fold degenerate SVs,

• one 5-fold degenerate SV.

The number of SVs thus matches the dimensionality (24 = 16) of the space spanned by four
spins-1/2. Regarding the basis Table E.1 of Appendix E, the X and Y operators associated
to the non-degenerate SVs can simultaneously decompose onto 1

2
1Ikl and 2√

3
(Sk ·Sl) (singlet

operators), the X and Y operators associated to the 3-fold degenerate SVs can simultane-
ously decompose onto 1√

2
(Sk +Sl), 1√

2
(Sk−Sl), and

√
2Sk×Sl (triplet operators), and the

X and Y operators associated to the 5-fold degenerate SV decompose onto Qkl (quintet
operator).

Case of a U(1)-invariant state – If the state under study is U(1)-invariant, every j = 0
subspace gives one non-degenerate SV, every j = 1 subspace gives one 2-fold degenerate
SV and one non-degenerate SV, and every j = 2 subspace gives two 2-fold degenerate SVs
and one non-degenerate SV. If the multiplicities are taken into account, we have

• six non-degenerate SVs,

• five 2-fold degenerate SVs.

Thus a total of 16 SVs, as before. The non-degenerate SVs can get simultaneous contribu-
tions from |∆jz| = 0 operators only, i.e. 1

2
1Ikl, 2√

3
(Sk · Sl), 1√

2
(Sz

k ± Sz
l ),
√

2[Sk × Sl]
z, and

Q
(3)
kl . The 2-fold degenerate SVs can either get simultaneous contributions from |∆jz| = 1

operators, i.e. 1√
2
(Sx

k ± Sx
l ), 1√

2
(Sy

k ± Sy
l ),

√
2[Sk × Sl]

x,
√

2[Sk × Sl]
y, Q(2)

kl , and Q
(4)
kl ; or

from |∆jz| = 2 operators, i.e. Q(1)
kl and Q

(5)
kl .
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3.5 Correlation density matrix vs mutual information
Consider two disjoint blocks A and B enclosing the same number N of spins-S. Within our
framework, it is natural to quantify the total correlation between A and B by the squared
Frobenius norm (SFN) of their CDM (which is actually given by the sum of the squared
SVs)

‖ ρc
AB ‖2

F =
D2∑
i=1

σ2
i . (3.13)

Another quantity has been introduced in quantum information theory in order to measure
the total correlation between the two blocks, namely the mutual information [65] (MI)4

MI(A,B) := S(A) + S(B)− S(A ∪B),

where S(B) := −Tr(ρB ln ρB) is the von Neumann entropy of block B, quantifying the
entanglement of this block with its environment. S(B) ranges from 0 if B is disentangled
to its environment, up to NB ln(2S + 1) – where NB is the number of spins-S inside B – if
the entanglement is maximal.

Both the SFN and the MI vanish if blocks A and B are uncorrelated. In the other
hand if A and B are maximally correlated one to another, each of these two correlation
measures does reach its upper bound (refer to Eq. (3.9) for SFN)

‖ ρc
AB ‖2

F≤ 1− 1/D2, (3.14)

MI(A,B) ≤ 2N ln(2S + 1) = 2 lnD. (3.15)

In a first approach, we identify the states for which the upper bounds Eqs. (3.14) and (3.15)
are reached, we shall in a next step study how SFN and MI are related one to another. Let

{|1〉A, |2〉A, · · · , | dimH(A)〉A} and {|1〉B, |2〉B, · · · , | dimH(B)〉B}

be orthonormalized bases of A and B respectively (dimH(A) = dimH(B) = (2S + 1)N). It
turns out that the maximal correlation between the two blocks is realized by the state

|max. corr.(N)〉 :=
1√

(2S + 1)N

(2S+1)N∑
i=1

|i〉A|i〉B ⊗ |env〉, (3.16)

as intuitively expected, where |env〉 is the arbitrary (normalized) configuration of the en-
vironment of A ∪B.

4The quantity we define as “mutual information” is sometimes also called “correlation entropy”.
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It is straightforward to realize that the state Eq. (3.16) reaches the bound Eq. (3.15):
S(A) and S(B) are both maximal and equal to N ln(2S + 1), while S(A ∪ B) vanishes
since A∪B is uncorrelated to its environment. Regarding the way how bound Eq. (3.14) is
reached, it can be shown that apart from the SV which is identically zero5, the remaining
D2 − 1 SVs are the same and have the value 1/D resulting in a squared Frobenius norm
(D2 − 1)(1/D2) = 1− 1/D2 = 1− 1/(2S + 1)2N .

Coordinates representing the state Eq. (3.16) in the “SFN vs MI” plane for cases N =
1, 2, 3, 4 and spins S = 1/2 are shown in the left panel of Fig. 3.4 (brown filled circles). It

Figure 3.4: (Left) Mutual information (MI) vs squared Frobenius norm (SFN) for selected paths
joining selected states of particular interest. Brown filled circles correspond to the maximally
correlated state Eq. (3.16) for various sizes of blocks. The color of the curves is a function of
the number of enclosed spins-1/2 inside the blocks. The inset shows the (SFN,MI)-coordinates
of uniformly distributed random correlation density matrices (71.700.000 simulations for N = 1,
3.080.000 simulations for N = 2, 132.800 simulations for N = 3, 10.360 simulations for N = 4).
(Right) Frequencies of occurrence of the singular values corresponding to the correlations density
matrices that have been randomly generated in the left panel (i.e. the number of occurrence
has been divided by the number of simulations). The colors have the same meaning as in the
left panel. For the sake of clarity, the frequencies of occurrence have been rescaled: they are
multiplied by 1000 for N = 1, by 100 for N = 2, and by 10 for N = 3. Singular values are peaked
at small values for large blocks, and spread over a larger range of values for small blocks.

turns out that the brown filled circle corresponding to the maximal correlation for N = 1
i.e. (3/4, 2 ln 2) is also reachable for blocks with N = 2, 3 and 4 sites, although it is not a

5Any configuration of blocks has a vanishing singular value corresponding to the connected correlation
between identity operators, which cannot be different from zero, whatever A and B.
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point of maximal correlation for those values of N . Similarly, the brown filled circle corre-
sponding to maximal correlation for N = 2 i.e. (15/16, 4 ln 2) is also reachable for blocks
with N = 3 and 4 sites; and the brown filled circle corresponding to maximal correlation
for N = 3 i.e. (63/64, 6 ln 2) is also reachable for blocks with N = 4 sites.

Hence, for a fixed number N of sites inside A and B, it is a general fact that – whatever
the value of n ≤ N – the brown filled circle (1 − 1/(2S + 1)2n, 2n ln(2S + 1)) in the left
panel of Fig. 3.4 is realized by the state

|n〉 :=
1√

(2S + 1)n

(2S+1)n∑
i=1

|i〉A|i〉B ⊗ |env〉, n ≤ N,

corresponding to Eq. (3.16) with the sum truncated to the (2S + 1)n th term. Note that
the origin (0, 0) (A and B are uncorrelated) is reached for the state |n = 0〉, and that if
n = N we get |n = N〉 = |max. corr.(N)〉 [Eq. (3.16)] and the correlation is maximal.

In order to visualize how the regions attached to the different values of N look like in
the left panel of Fig. 3.4, the curve corresponding to states

α2|n = 0〉+ (1− α2)|max. corr.(N)〉 for α ∈ [0, 1]

i.e. joining the minimally correlated state to the maximally correlated one, is drawn
(dashed lines) for N = 1 (black), N = 2 (red), N = 3 (blue), and N = 4 (green). Curves
corresponding to states

α2|n = 1〉+ (1− α2)|max. corr.(N)〉 for α ∈ [0, 1]

for N = 2 (red), N = 3 (blue), and N = 4 (green), to states

α2|n = 2〉+ (1− α2)|max. corr.(N)〉 for α ∈ [0, 1]

for N = 3 (blue) and N = 4 (green), and to states

α2|n = 3〉+ (1− α2)|max. corr.(N)〉 for α ∈ [0, 1]

for N = 4 (green) are shown as well (solid lines).

The four dashed curves joining |n = 0〉 to |max. corr.(N)〉 in the left panel of Fig. 3.4
might be naively interpreted as upper bounds on the MI as a function of the SFN for
N = 1, 2, 3, and 4. We have numerically simulated random CDMs (see inset in the left
panel of Fig. 3.4) from uniformly distributed density matrices, and shown that this is not
the case: at small SFNs the MIs are higher than these dashed curves, this is at least clearly



3.6. Applications of the method for illustrative purposes 39

visible for the red, blue, and green regions. These randomly simulated CDMs also show on
the one hand that MI is correlated to SFN (the higher one of them, the higher the other),
and on the other hand that there is a propensity for every color to lie in the lower left part
of the “SFN vs MI” plane, i.e. far away from the brown filled circles. The regions close
to the brown filled circles (where the correlation between A and B is particularly high)
presumably correspond to atypical states that have a small measure in the whole space of
the physical states.

Frequencies of occurrence of the SVs corresponding to the CDMs we have generated in
the left panel of Fig. 3.4 are shown in its right panel. For small blocks, the frequencies
have been vertically rescaled for the sake of legibility. It appears from that figure that the
occurrence of the SVs are peaked at very small values for large blocks (for N = 4, no SV
larger than ∼ 0.01 was obtained), whereas they are spread over a much larger range of
values for small blocks (for N = 1, SVs beyond ∼ 0.4 were generated); this is indeed due
to the very low probability of generating atypical states.

3.6 Applications of the method for illustrative pur-
poses

3.6.1 Heisenberg J1–J2 spin-1/2 antiferromagnetic chain
We use the CDM method for investigating a well understood model: the spin-1/2 chain
with antiferromagnetic (AF) J1 > 0 and J2 > 0 interactions between nearest and next
nearest neighbors (nn and nnn) respectively. Its hamiltonian reads

H = J1

∑
i

Si · Si+1 + J2

∑
i

Si · Si+2 (3.17)

where Si is a spin-1/2 operator at site i.
The idea is – in a first step – to show that the method allows to recover the (known)

phase diagram of hamiltonian Eq. (3.17) at zero temperature with a high precision; in
a next step the CDM tool will be used for revealing its dominant correlations at finite
temperature. In all cases, the states are computed using Exact Diagonalization (ED).

At zero temperature

The AF J1–J2 chain is known to undergo a phase transition as J2/J1 crosses 0.241167 [66]
from a critical to a dimerized gapped phase. It is known to be two-fold degenerate at
J2/J1 = 1/2 [67] (Majumdar-Ghosh point), with a ground state consisting of a superimpo-
sition of two dimerized states. Furthermore, spin correlations exhibit an incommensurate
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behavior for J2/J1 > 1/2, and the dimerization (dimer-dimer correlations) is found to be
maximal at J2/J1 = 0.5781 [68].

We compute the ground state of a chain of length L = 30 sites with periodic boundary
conditions, and perform a SVD of the CDM between two blocks – each of which containing
two nn sites – at maximal distance. This configuration is the one we chose for the examples
in Section 3.4 (we are in the situation of Fig. 3.3), hence the Xi and Yi operators associated
to every resulting SV only differ by a phase factor, and have a well defined parity under
the site-exchange within each block. Moreover since the ground state is a singlet (i.e.
SU(2)-symmetric) there are only 6 independent SVs. As explained in Section 3.4, every
SV decomposes onto a single element of the basis Eq. (3.11) in this case. These SVs are
shown in the left panel of Fig. 3.5 for J2/J1 ∈ [0, 2]. The SV decomposing onto 2√

3
(Sk ·Sl)

is denoted by dimerization and non-degenerate, the SV decomposing onto 1√
2
(Sk + Sl) is

denoted by F correlations and 3-fold degenerate, the SV decomposing onto 1√
2
(Sk − Sl) is

denoted by AF correlations and 3-fold degenerate, the SV decomposing onto
√

2Sk × Sl

is denoted by twist and 3-fold degenerate, and the SV decomposing onto the quadrupolar
operator Qkl is denoted by quadrupolar correlations and 5-fold degenerate.

As expected, for small J2/J1 AF spin correlations dominate. As J2/J1 is increased, it
is surpassed by the SV corresponding to the dimerization, which reaches its maximum at
J2/J1 = 0.577. At large J2/J1 AF spin correlations dominate again, but several others also
grow in value.

The higher (lower) right panel of Fig. 3.5 shows the J2,R/J1 (J2,L/J1) value above
(below) which the dimer SV no longer dominates, as a function of the system size (L =
8, 12, 16, ..., 32). As we can see:

• J2,R/J1 diverges with L, being well described by an exponential fit J2,R/J1 ≈ a0 +
a1 exp(a2L), indicating that in the thermodynamic limit, the model is dimerized up
to J2/J1 = ∞.

• J2,L/J1 exhibits a quite different behavior: it is well fitted by a polynomial function
J2,L/J1 ≈ a0 + a1/L+ a2/L

2 converging to a0 = 0.249 in the thermodynamic limit.

Our CDM approach thus predicts a system that is dimerized in the J2/J1 ∈ [0.249,∞[
regime, which agrees well with [0.241167,∞[. The method has therefore succeeded in
providing a surprisingly accurate phase diagram of the AF J1–J2 chain at zero temperature.

At finite temperature

We now switch to the study of the J1–J2 spin-1/2 AF chain at finite temperature. We
perform a full diagonalization of hamiltonian Eq. (3.17) on systems ranging from L = 6



3.6. Applications of the method for illustrative purposes 41

0 0.5 1 1.5 2
J2/J1

0

0.05

0.1

0.15

0.2

si
ng

ul
ar

 v
al

ue
s

0 0.05 0.1
1/L

1

1.1

1.2

1.3

1.4

J 2,
R
/J

1

0 0.05 0.1
1/L

0.24

0.25

0.26

0.27

J 2,
L/J

1

dimerization

AF correlations

F correlations

twist

quadrupolar correlations

exponential fit

polynomial fit

0.249

J2,R

J2,L

Figure 3.5: (Left) The 6 independent singular values for blocks at maximal distance containing
two nn sites on the chain L = 30 (periodic boundary conditions) obtained by Exact Diagonal-
ization. (Right, top) Extrapolation of the J2/J1 value above which the dimer singular value no
longer dominates, with sizes L = 8, 12, 16, ..., 32. The extrapolated value diverges as L → ∞.
(Right, bottom) Extrapolation of the J2/J1 value below which the dimer singular value no longer
dominates, with sizes L = 8, 12, 16, ..., 32. The extrapolated value goes to 0.249 as L→∞. Error
bars on the J2/J1 values of the right panels are due to the discreteness of the J2/J1 space for the
numerical simulations.

up to L = 14 using the LAPACK library. We stress that a diagonalization of the full
spectrum can be performed beyond L = 14, but we do not intend to provide a deep study
of the finite temperature properties of the J1–J2 spin-1/2 AF chain here. Our results are
presented for illustrative purposes only.

We consider here the same block configuration as in the zero temperature case. Even if
each individual state contributing to the thermal CDM is generally not a singlet, the SU(2)
symmetry is recovered in the thermal CDM, since the entire spectrum does contribute. The
SVD thus yields only 6 independent SVs (including the identically zero one), as in the zero
temperature case.

The squared Frobenius norm (SFN) Eq. (3.13) – which, we recall, can be seen as a bound
on the total correlation between A and B – is shown as a function of J2/J1 and of the
temperature T in Fig. 3.6 for systems L = 6, 8, 10, 12, 14. The J2/J1 parameter is extended
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Figure 3.6: Squared Frobenius norm Eq. (3.13) as a function of J2/J1 and of the temperature
T for L = 6, 8, 10, 12, 14. T ranges from 0 up to J1/kB, and the J2/J1 parameter is extended to
the J2 < 0 side in this figure for the sake of completeness and ranges from −1 up to 1.2.
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to the J2 < 0 side in that figure for the sake of completeness (J1 is kept positive), but
we focus our investigations on the J2 > 0 side. The SFN exhibits a monotonic decrease
with the temperature. Furthermore, as the size L increases, it develops a peak at low
temperature around J2/J1 ∼ 0.6 that is roughly the maximally dimerized point at zero
temperature.
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Figure 3.7: The 5 non-zero independent singular values in a chain L = 14 for various values of
the J2/J1 parameter. The non-degenerate singular value is in black, the three 3-fold degenerate
singular values are in green, and the 5-fold degenerate singular value is in red.

The individual evolution of the 5 non-zero independent SVs with the temperature is
shown in Fig. 3.7 for L = 14 for various values of the J2/J1 parameter. The color of the
different SVs is a function of their degeneracy. There are one non-degenerate SV (black),
three 3-fold degenerate SVs (green), and one 5-fold degenerate SV (red), as it should be in
the case of a SU(2)-invariance. The low temperature behavior of the SVs resembles the zero
temperature one: the non-degenerate (decomposing onto the dimer operator) black SV is
dominant for J2/J1 = 0.4, 0.6, 0.8, and 1, and it is surpassed by a green 3-fold degenerate
SV at lower J2/J1 = 0 and 0.2 values. At higher temperatures however, the behavior
changes: there is a crossover around T ∼ 0.4J1/kB

6 above which a 3-fold degenerate green

6As J2 becomes comparable to J1, the crossover occurs below T ∼ 0.4J1/kB in Fig. 3.7. This is an
artifact due to the fact that the size L = 14 is not multiple of 4, and thus not well adapted for describing
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SV is dominant whatever the value of J2/J1. For any value of the J2/J1 parameter and any
temperature the 5-fold degenerate red SV remains very weak, indicating that correlations
between quadrupolar objects are not important in that model.

By now varying the distance separating the blocks, each SV exhibits an exponential
decay with the distance for fixed temperature7. We have extracted the correlation length
ξ 8 of each of the 5 independent SVs by performing least squares fits of them over all
distances separating the blocks, going from the minimal one up to one step before the
maximal distance (since correlations are overestimated at maximal distance in closed sys-
tems) in systems L = 12 and L = 14. These correlation lengths are shown as a function
of the temperature for the black non-degenerate (dimer) SV, the largest among the green
3-fold degenerate SVs, and the red 5-fold degenerate SV in Fig. 3.8 for J2/J1 = 0, 0.4, 0.6,
and 1. The little peaks in red curves are finite-size effect, they are thus not representative
of the L = ∞ physics9.

Low temperature behavior of Fig. 3.8 – Notice that ξ is ill-defined for a cor-
relator which is long-ranged or critical at T = 0. At J2/J1 = 0 (critical phase at zero
temperature), a 3-fold degenerate green SV has the largest correlation length, which is
nevertheless of a comparable order of magnitude to the correlation length of the black SV,
namely a couple of lattice spacings. As the J2/J1 parameter enters the regime for which
the model is dimerized at zero temperature (J2/J1 >∼ 0.24), the correlation length of the
black (dimer) SV becomes larger and larger: it is ∼ 10 lattice spacings at J2/J1 = 0.4, and
even ∼ 100 lattice spacings10 close the point of maximal dimerization (which is so at zero
temperature) J2/J1 ∼ 0.6. If J2/J1 is increased further, the correlation length of the black
SV decreases – remaining the largest one – and becomes a couple of lattice spacings again
at J2/J1 = 1.

High temperature behavior of Fig. 3.8 – The crossover around T ∼ 0.4J1/kB

which has been pointed out from Fig. 3.7 also appears in Fig. 3.8: above this tempera-
ture, a green SV has the largest correlation length, whatever the J2/J1 parameter. As

the physics in the regime of large J2/J1. We have checked that for L = 8 and 12, the crossover still occurs
at T ∼ 0.4J1/kB for J2/J1 = 1.

7If the distance separating the blocks is no longer maximal, the SVs do no longer decompose onto one
single element of basis Eq. (3.11).

8The correlation length of an exponentially decaying SV σ(r) is the constant ξ such that σ(r) ∝ e−r/ξ.
9Peaks in red curves of Fig. 3.8 are finite-size effects due to the fact that the red SV does sometimes

exhibit slight local increases with the distance in our finite systems, which is clearly not physical and not
representative of the thermodynamic limit.

10There is no doubt that our approach yields much more accurate values of ξ at high temperature where
the length scale of ξ is a couple of lattice spacings, than for T ↘ 0 where ξ may become quite large (it is
even infinitely large at T = 0 for long-ranged or critical SVs), thus difficult to extract from a L = 14 chain.
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Figure 3.8: Correlation lengths of the non-degenerate singular value (black), the largest among
the three 3-fold degenerate singular values (green), and the 5-fold degenerate singular value (red)
for 4 different J2/J1 parameters as a function of the temperature. The dashed (solid) line refers
to length L = 12 (L = 14).

argued above, L = 12 suits better than L = 14 for describing the large-J2/J1 physics, this
explains why the crossover point decreases from T ∼ 0.4J1/kB at J2/J1 = 0.6 down to
T ∼ 0.25J1/kB at J2/J1 = 1 for L = 14 whereas it is still T ∼ 0.4J1/kB at J2/J1 = 1 for
L = 12.

Finally, the correlation length of the red 5-fold degenerate SV (that decomposes onto
the quadrupolar operator) is low whatever the temperature and the value of the J2/J1

parameter: about one lattice spacing.

3.6.2 Heisenberg J1–J2 spin-1/2 antiferromagnet on the square
lattice

We use here the CDM tool for investigating the dominant correlations at zero temperature
in the 2D analog of the J1–J2 chain, namely the J1–J2 (J1, J2 > 0) antiferromagnet on a
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square lattice. The hamiltonian is thus still given by Eq. (3.17), and ground states are
still computed by ED with periodic boundary conditions. The interest of performing CDM
investigations of this 2D system does not only reside in illustrative purposes, it is actually
enhanced by the fact that – in contrast to its 1D analog – the nature of the ground state
of this model is not understood around the phase of maximal frustration J2/J1 = 1/2.

The ground state of the 2D version of hamiltonian Eq. (3.17) is known to be a spin
liquid in the intermediate phase Jc1 < J2/J1 < Jc2 [3] with Jc1 ≈ 0.4 and Jc2 ≈ 0.6,
whereas it has Néel magnetic long-range order (LRO) with the propagation wave vector
(π, π) in the J2/J1 < Jc1 regime, and collinear magnetic LRO with the propagation wave
vectors (π, 0) and (0, π) for J2/J1 > Jc2 . It is commonly believed that the ground state in
the intermediate disordered phase is a valence bond crystal (VBC), but the nature of this
VBC (plaquette or columnar) is still under debate [69–74].

We have performed a SVD for extracting the dominant correlations between horizontal
and vertical blocks consisting of two nn sites in the ground state of the square 6 × 6-site
sample on the square lattice for the parameters J2/J1 = 0.3, 0.55, and 1 (corresponding to
each of the three phases). For each of these three J2/J1 values, the left column of Fig. 3.9
shows the spin correlation patterns (the reference site is black, and blue/red sites indicate
positive/negative correlations), while the middle and the right columns respectively show
the X(A)

1 ’s and Y
(B)
1 ’s associated to the largest SV σ1.

Description of the SVD figure – In the middle and the right columns of Fig. 3.9,
block A is fixed and shown in black11, while block B is let free to move. Symbols (and their
size) show the contribution of the basis operators Eq. (3.11) to the X(A)

1 ’s and Y
(B)
1 ’s, the

significance of the symbols is given in Table 3.1. Symbols associated to a horizontal or ver-
tical block built on two nn sites are aligned on the straight line joining those sites. Fig. 3.9
shows that for each of the three values of the J2/J1 parameter, the only contribution to
the highest SV is from the ferromagnetic (F) (triangle up), the antiferromagnetic (AF)
(triangle down), and the dimer (circle) operators. Signs of the contributions (blue/red
symbols mean positive/negative contribution) are only given for the dimer operator, since
it is even under the k ↔ l exchange (see Table 3.1) and does not contribute together
with other operators. For a given configuration of blocks, the AF operator can contribute
together with the F one in the highest SV, and since the AF operator is odd under the
k ↔ l exchange and we do not arrange the sites in an ordered way, it would not make any
sense to give the signs of the contributions for those operators.

We furthermore stress that hamiltonian Eq. (3.17) is rotationally invariant, and that
its ground states are singlets (as in the 1D case). Thus according to Section 3.4, there are

11The sample has the translations and the rotations by π/2 as symmetries. It is thus possible to fix
block A with an arbitrary orientation.
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2√
3
(Sk · Sl)

1√
2
(Sk + Sl)

1√
2
(Sk − Sl)

© 4 5

Table 3.1: One-to-one correspondence between symbols appearing in the singular value decom-
position Fig. 3.9 and elements of the orthonormalized basis Eq. (3.11).

only 6 independent SVs for each configuration of blocks: for every non-singlet operator of
basis Eq. (3.11), all the components contribute with the same weight.

Interpretation of the results – Spin correlations exhibit the expected structures:
they are long-ranged and staggered in both direction for J2/J1 = 0.3 in accordance with
the magnetic (π, π) ordering, they are short-ranged in the disordered phase J2/J1 = 0.55,
and they correspond to the superimposition of two correlation patterns for J2/J1 = 1, the
first one being staggered in one direction, the second one in the other direction (superim-
position of (π, 0) and (0, π) orderings). Notice that in the disordered phase J2/J1 = 0.55,
the spin correlations do not decay isotropically around the black reference site. Instead,
they are much stronger and are staggered along the shortest loops joining one black refer-
ence site to its closest images (in the horizontal and vertical directions) than in the other
directions. The consequences of this “loop effect” will be discussed in Chapter 4, where
the spin correlation patterns of the kagomé antiferromagnet are studied.

The X(A)
1 ’s and Y (B)

1 ’s associated to the highest SV only consist of F and AF operators
(triangles up and down) in the two ordered phases J2/J1 = 0.3 and 1, which is indeed
what is expected for magnetically ordered states. Although F and AF correlations are also
dominant for certain configurations of blocks in the disordered ground state (J2/J1 = 0.55),
most of them turn out to be dominated by dimer correlations (circles) – see the columns
highlighted in light green in Fig. 3.9 – which is in agreement with the fact that dimerization
is believed to be the relevant instability for that value of the J2/J1 parameter.

3.7 Conclusion

We have introduced a method which allows to extract the dominant correlations between
two disjoint blocks in a strongly interacting system in an unbiased way. It consists of
performing a singular value decomposition of the correlation density matrix between those
blocks. We have derived the properties of this method and investigated the consequences
of some lattice and state symmetries. The relation with mutual information has been
discussed in details, and the maximally correlated states have been identified.

In a second step, we have applied the method to the J1–J2 Heisenberg antiferromagnetic
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spin-1/2 chain for illustration. Its phase diagram at zero temperature has been recovered
with a good precision, and a crossover from the dimerized phase to a phase with dominant
spin correlations has been revealed at finite temperature. The 2D analog of this model,
i.e. the J1–J2 Heisenberg model on the square lattice has been investigated as well, at
zero temperature. In its region of maximal frustration, dimerization is pointed out as the
relevant instability, as expected.

This method has thus proven itself to be a useful tool for revealing the nature of strongly
interacting systems (at zero or finite temperature) and should be considered as a serious
alternative to other numerical methods for sheding light on the physics of models that are
yet not completely understood.
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Figure 3.9: Spin-1/2 J1–J2 Heisenberg model on the square lattice (square 6×6-site sample) for
parameters J2/J1 = 0.3, 0.55, and 1, corresponding to each of the three phases of this model. (Left
column) spin correlations: the reference site is black, and blue/red sites mean positive/negative
correlations. (Middle and right columns) decomposition of the X(A)

1 ’s and Y
(B)
1 ’s – associated

to the highest singular values – in the basis Eq. (3.11). Horizontal and vertical blocks with two
nn sites are considered. Block A is fixed (black), while block B is let free to move. Symbols
associated to a given block built on two nn sites are aligned on the straight line joining those
sites, and defined in Table 3.1.





CHAPTER 4

Antiferromagnetic spin-1/2
Heisenberg model on the kagomé
lattice

4.1 Introduction

The kagomé lattice – whose name originates from a japanese basket – is depicted in Fig. 4.1.
It is a non-Bravais 2D lattice of corner-sharing triangles, or a “triangular lattice of trian-
gles”. The spin-1/2 kagomé antiferromagnet (KAF) is defined by the hamiltonian

H = J
∑
〈i,j〉

Si · Sj (4.1)

where Si is a spin-1/2 operator at site i, and J > 0 is an antiferromagnetic coupling
constant. The sum runs over all the pairs of nearest neighboring sites on the kagomé
lattice.

Let us first discuss the classical version of hamiltonian Eq. (4.1). While the continuous
degeneracy of this model on the triangular lattice is only the trivial global one, classical
ground states of the kagomé structure have a local continuous degeneracy. They are ob-
tained whenever the sum of the three spins around each elementary triangle is zero. Two



52 Antiferromagnetic spin-1/2 Heisenberg model on the kagomé lattice

typical ground state structures are generally considered, namely the q = 0 type 120◦ spin
alignment and the

√
3×

√
3 type 120◦ spin alignment, both are shown in Fig. 4.1 and are

distinguishable one from the other via the vectorial chirality, which is defined as

κ =
2

3
√

3
(S1 × S2 + S2 × S3 + S3 × S1) ,

where S1, S2, and S3 are spins on the corners of an elementary triangle. As spins are
numbered clockwise around the triangle, the chirality is +1 when the spins rotate clockwise
by 120◦ steps, and is −1 when the spins rotate counterclockwise by 120◦ steps. The q = 0
type configuration is composed of triangles having either a chirality of +1 or −1, while
the

√
3×

√
3 type configuration contains both chiralities, as shown in Fig. 4.1. If thermal
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Figure 4.1: Three classical states on the kagomé lattice: (left) q = 0 type with +1 chirality,
(middle) q = 0 type with −1 chirality, and (right)

√
3×

√
3 type. Plus and minus signs indicate

the chirality of spins on the elementary triangles.

fluctuations are incorporated to the classical hamiltonian Eq. (4.1), the model develops an
octupolar order parameter [75], selecting coplanar spin configurations of the

√
3×

√
3 type

[76–78] (right panel of Fig. 4.1).
We now turn to the quantum version of hamiltonian Eq. (4.1) which sustains a large

part of mystery, despite twenty years of theoretical investigations [63; 79–98]. The spin-1/2
KAF is the 2D model which offers the largest stabilization due to quantum fluctuations:
the energy per spin in the quantum model is ∼ 1.74 times as large as the energy per spin in
the classical one, this ratio is higher than in any other 2D magnet. The low coordination
number and low spin value of the spin-1/2 KAF both favor quantum fluctuations and work
against spin ordering. While hamiltonian Eq. (4.1) on the triangular lattice (coordination
number 6) has long-ranged spin correlations [99; 100], the KAF (coordination number
4) seems to be a spin liquid [63; 79–85]. Spectra of spin-1/2 KAF samples exhibit an
unconventional behavior: a continuum of singlet excitations has been revealed just above
the ground state [80; 85] and somewhat clarified [89; 90], but the mechanism responsible for
this high density of singlet states is not completely understood yet. A physical consequence
of this exceptional density of low-lying singlets can be observed in the specific heat: at low
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temperature the specific heat of this spin system is unusually large, with a double peak
structure [101–105], insensitive to relatively large magnetic fields [81] (singlet states are
non-magnetic). Regarding the spin gap, the issue is still under debate. Many theoretical
studies [79–84] (including a DMRG study of this 2D model [84]) have concluded to a small
spin gap of the order of ∼ J/20, but the scenario of a gapless spin liquid has been put
forward recently [87; 88]. The nature of the ground state (and of the low-lying singlet
excitations) is also unclear. C. Lhuillier et al. [4] have classified the spin-1/2 KAF as
a special type of short-range resonating valence bond spin liquid (superposition of an
exponential number of valence bond configurations that are roughly equally favorable,
leading to a continuum of singlet states that are adjacent to the ground state), but the
scenario of a valence bond crystal (VBC) is about to be considered as the most relevant
one nowadays [92–98; 106–108]. The near criticality of the model as well as its location at
a first order phase transition between two VBCs [108] also contribute to these conflicting
theoretical results, and to the difficulty of selecting the VBC that could possibly be relevant.

From the experimental side it has long been – and is still – a challenge to synthesize
materials that have both the good value of spin S = 1/2, and whose structure is close to
the kagomé. Some materials, like the jarosites AM3(OH)6(SO4)2 [109] for instance have
the magnetic M =Cr3+ or Fe3+ ions on a perfect kagomé lattice, but with spins S > 1/2
(A = K, Rb, Na, or NH4 are located between the kagomé planes). Other have S = 1/2 but
with a non-perfect kagomé structure, such as the magnetic Cu2+ ions in the volborthite1

Cu3V2O7(OH)2·2H2O [111]. A third class of materials such as SrCr9pGa12−9pO19
2 (quasi-

2D insulator with the magnetoplumbite structure, where 2/3 of the Cr3+ (S = 3/2) ions
lie in kagomé planes) and Ba2Sn2ZnGa10−7pCr7pO22 were hampered by disorder or strong
third direction interaction or many factors combined. Moreover, additional Dzyaloshinskii-
Moriya (DM) interactions are present in these compounds due to the spin-orbit coupling.
The herbertsmithite ZnCu3(OH)6Cl2 [113] has S = 1/2 and structurally perfect kagomé
planes, but has been found to have impurities (about 6% of the Cu2+ are replaced by
Zn2+ within the kagomé planes) [114; 115], DM interactions (of about D = 0.08J mag-
nitude) [116–118], as well as anisotropies [119]. It is the x = 1 end compound of the
Zn-paratacamite family ZnxCu4−x(OH)6Cl2 (0 ≤ x ≤ 1) [120], whose crystal symmetry is
monoclinic (P21/n) for x < 0.33 resulting in a distorted kagomé lattice. Around x = 0.33,
the crystal symmetry increases to rhombohedral (R3m) and the Cu triangular plaquettes
become equilateral. For 0.33 ≤ x ≤ 1 due to a more favorable electrostatic environment,

1From DFT calculation results, the authors of the recent paper Ref. [110] actually claim that a coupled
spin chain model with orbital order provides a better description of the volborthite Cu3V2O7(OH)2·2H2O
than the kagomé model does.

2The theoretically expected very small field dependence in the specific heat has been experimentally
confirmed by measurements on SrCr9pGa12−9pO19 [112] (notice that this compound has S > 1/2). Its
specific heat around 5 K has an extremely low sensitivity to magnetic fields up to 10 T.
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Cu2+ is expected to preferentially occupy the distorted octahedral kagomé sites only. When
x = 1 the S = 1/2 ions should therefore form structurally perfect kagomé layers that are
themselves well separated by diamagnetic Zn2+. The crystal structure of the compound
with 33% Zn occupancy is shown in Fig. 4.2.

A Structurally Perfect S ) 1/2 Kagomé Antiferromagnet
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Nearly two decades ago, Anderson proposed that the resonating
valence bond (RVB) state may explain the scatterless hole transport
encountered in doped rare-earth cuprates.1 The quantum spin liquid
phase responsible for RVB is most likely to be found in low-
dimensional, low-spin, and geometrically frustrated systems.2

Accordingly, most theoretical investigations of RVB have concen-
trated on S ) 1/2 antiferromagnets in kagomé (corner-sharing
triangular) lattices due to the higher degree of geometric frustration.3

Materials featuring such lattices are predicted to display no long-
range magnetic order due to competing antiferromagnetic interac-
tions between nearest-neighbor spin centers. Though long sought,
“no perfect S ) 1/2 Kagomé antiferromagnet has been up to now
synthesized”,4 and accordingly, most theoretical predictions of such
a lattice remain untested. Herein, we report the synthesis and
preliminary magnetic properties of a rare, phase-pure, copper
hydroxide chloride mineral featuring structurally perfect S ) 1/2
kagomé layers separated by diamagnetic Zn(II) cations.
We have employed a redox-based hydrothermal protocol to

prepare pure, single-crystal jarosite-based materials (AM3(OH)6-
(SO4)2, A ) alkali metal ion, M ) V, Cr, Fe).5 These compounds
feature kagomé lattices composed of M3(OH)6 triangles; when M
) Fe(III), spins are antiferromagnetically coupled and frustrated.6

Substitution of the magnetic ion of Fe(III) (S ) 5/2) by Cu(II) (S )
1/2) was attempted, but charge imbalance on the kagomé layers
appears to prevent the preparation of a Cu(II) jarosite. We therefore
turned our attention to developing hydrothermal methods for the
preparation of the topologically similar kagomé series composed
of Cu(II) ionssthe atacamitessof general formula MCu3(OH)6Cl2
(M ) Co, Ni, Cu, Zn).7 Our initial attempts to prepare these rare
minerals in pure form began with the treatment of malachite
(Cu2(OH)2CO3) with NaCl and HBF4 under hydrothermal conditions
to form a blue microcrystalline compound whose powder X-ray
diffraction pattern is consistent with that of the mineral claringbullite
(PDF 86-0899),8 where Cu(II) ions occupy the interlayer M site
of MCu3(OH)6Cl2. Further hydrothermal treatment of this solid with
a large excess of ZnCl2 afforded a green powder interdispersed
with triangular plate crystals of MCu3(OH)6Cl2 possessing a mixed
M-site occupancy of Zn2+ and Cu2+.
It is known that a solid solution exists for naturally occurring

ZnxCu4-x(OH)6Cl2 specimens, such that even macroscopically
“single” crystals may exhibit variable Cu/Zn composition at the
interlayer site.7 For x < 0.33, the crystal symmetry is monoclinic,
resulting in a distorted kagomé lattice. At x ) 0.33, the crystal
symmetry increases to rhombohedral, and the Cu triangular
plaquettes become equilateral. This high symmetry phase of
intermediate Zn occupancy (0.33 e x < 1) is known as Zn-
paratacamite (1).10 The compositional end members are known as
clinoatacamite9 (x ) 0) and herbertsmithite (2) (x ) 1).10

The single-crystal X-ray structure of the compound with 33%
Zn occupancy is shown in Figure 1. Details of the structure solution

and refinement are provided in the Supporting Information. Two
geometrically distinct metal sites are found. On the first site, a Cu-
(II) ion is surrounded by four equatorial hydroxide ligands and two
distant axial chloride ligands. The hydroxide ligands bridge copper
centers to form a kagomé lattice composed of {Cu3(OH)6} triangles.
On the other site, a Zn(II) ion is ligated by six hydroxide ligands
in a trigonally compressed octahedral geometry. This site serves
to link the kagomé layers into a dense three-dimensional structure.
Although it is difficult to differentiate Cu and Zn by standard X-ray
analysis, the two sites’ distinct coordination environments suggest
that the Jahn-Teller distorted Cu(II) ion should rest on the
tetragonally elongated intralayer site, whereas the d10 Zn(II) ion
should reside on the higher symmetry interlayer site. In support of
this contention, several refinements of the structure were carried
out in which either Zn or a Cu/Zn mixture was included on the
intralayer site; all resulted in a significant increase in refinement
residuals. Thus, Zn occupancy on the intralayer site is not
reasonable. Upon refinement of the interlayer site, however, it was
found that there was a slight but statistically significant preference11

for a Cu/Zn mixture rather than Zn alone, such that Zn site
occupancy refined to 33%. Best refinements of other crystals
harvested from batch reactions show that Zn occupancy varies from
crystal to crystal. These results highlight the difficulty of using
X-ray diffraction to determine Zn/Cu composition. All materials
used in these studies were therefore subject to chemical analysis
to ascertain the Zn/Cu stoichiometry.
The presence of Cu(II) ions in intra- and interlayer sites

contributes to the overall magnetic susceptibility. To unravel the
magnetic contributions of Cu(II) in the different sites, a series of

Figure 1. Crystal structure of Zn-paratacamite (1), Zn0.33Cu3.67(OH)6Cl2.
Left: local coordination environment of intralayer Cu3(OH)3 triangles and
interlayer Zn2+/Cu2+ ion; the projection is parallel to the crystallographic
c axis. Right: the {Cu3(OH)6} kagomé lattice, projected perpendicular to
the c axis. The pure Zn2+-substituted compound 2 is isostructural to 1.
Selected interatomic distances (Å) and angles (deg) for 2: Zn-O, 2.101-
(5); Cu-O, 1.982(2); Cu-Cl, 2.7698(17); Zn‚‚‚Cu, 3.05967(16); O-Zn-
O, 76.21(18), 103.79(18), 180.00(19); O-Cu-O, 81.7(3), 98.3(3), 180.0;
O-Cu-Cl, 82.31(11), 97.68(11); Cl-Cu-Cl, 180.0; Cu-O-Cu, 119.1-
(2); Cu-O-Zn, 97.04(15).
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Figure 4.2: Structure of Zn-paratacamite Zn0.33Cu3.67(OH)6Cl2 (identical as the structure of
the herbertsmithite) from Ref. [113]. (Left) Spatial structure. (Right) Simple sketch of the
structure where Zn and Cu sites only have been represented. The violet Cu triangular plaquettes
are equilateral for x ≥ 0.33.

Almost all the experiments with the imperfect kagomé compounds we have listed have
concluded to a gapless spin liquid [111; 114; 115; 121–126], including for the herbertsmithite
in which the impurities do presumably not have significant consequences on its magnetic
behavior3. Recently, the organometallic hybrid compound Cu(1,3-benzenedicarboxylate)
with structurally perfect S = 1/2 copper kagomé planes separated by pure organic linkers
has been synthesized [30], and spin resonance confirms [128] that it can serve as a model
kagomé compound, but no experimental data are available yet for this new compound.

The first section of this chapter is devoted to the application of the tool which was
introduced in the previous Chapter 3 – allowing to extract the dominant correlations in
a spin system – to the spin-1/2 KAF. We study correlations between blocks of 1, 2, 3,
and 6 sites and we show that at large distance, correlations of the dimer type dominate in
most of its lowest-lying states; the scenario of a valence bond crystal (VBC) is therefore
of primary importance. It is then more deeply investigated in the second section, were
the compatibility between the symmetries of the low-lying singlet states of the spin-1/2
KAF and those of some VBCs (proposed in the literature or ad hoc) is analyzed. Finally,
an analysis of the entanglement entropy of various kinds of blocks is performed in the

3Ref. [127] studies the magnetic properties of the new series of compounds MgxCu4−x(OH)6Cl2 which
are isostructural with paratacamite. They have less than 3% impurities (i.e. Cu2+ replaced by Mg2+

within the kagomé planes) – thus about twice as less as in the herbertsmithite – and are also disordered
within the kagomé planes. The disorder in materials with this structure type is therefore not due to
impurities, but indeed to the high spin frustration within the kagomé planes.
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third section. Blocks realizing the minimal entropies are identified, and the question of the
scaling law governing entanglement entropies is addressed.

4.2 The samples and their characteristics

Our ED studies are performed on the seven samples depicted in Fig. 4.3. They have 12,
18 (2x), 24 (2x), 30, and 36 sites and are referred to as s12, s181, s182, s241, s242, s30,
and s364 respectively. Notice that we study two samples with 18 and 24 sites which are
topologically different one from another. A particular attention is paid to sample s36 which

12

182

242

36

30

181

241

Figure 4.3: Unit cells of samples s12, s181, s182, s241, s242, s30, and s36 we use for perform-
ing Exact Diagonalization. Periodic boundary conditions are chosen. The light green squares
illustrate how every sample are repeated in space.

is interesting in two respects: firstly it is the largest size one can reach performing ED, and

4It is also possible to construct a 36-site sample which is parallelogram-like and consists of 4 × 3
elementary triangles. Such a sample would nevertheless not have the symmetries of the infinite lattice, in
contrast to s36.
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secondly among the studies concluding that the low-energy physics of the spin-1/2 KAF
is a VBC, many of them [92; 96–98; 107] point out a unit cell that is compatible with s36.

For every sample, the commensurate momenta within the hexagonal first Brillouin zone
(BZ) are shown in Fig. 4.4. In each of the panels of Fig. 4.4, momenta that are related one

s12 s181 s182 s241

s242 s30

Γ

Mc

a

d

b

s36

Γ

X

K

M

Figure 4.4: Commensurate momenta within the hexagonal first Brillouin zone (BZ) for every
sample. Momenta which can be mapped one onto another by a symmetry of the BZ are shown
with the same color. Among the momenta with the same color, those which are nonequivalent
are shown with different symbols. Ground state momentum sectors are circled in black. s30 has
a (twice) degenerate ground state. Only s12 and s36 have the full symmetry of the infinite lattice
(C6v).

to another by a symmetry of the BZ are shown with the same color. Among the momenta
with the same color, those which are nonequivalent5 are shown with different symbols. For
every color, it is thus enough to numerically investigate in one momentum sector only.
The ground state (GS) momentum sectors are circled in black in Fig. 4.4. The GS of

5Two momenta are said to be nonequivalent if they do not differ by a reciprocal vector of the (infinite)
kagomé lattice.
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a given sample is degenerate if it belongs to momentum sectors which can be mapped
one onto another by a symmetry of the BZ, but are nonequivalent (momenta with the
same color, but different symbols); or if it belongs to a representation of the little group
of a momentum sector which is not one-dimensional6 (refer to Appendix A for detailed
explanations about the notion of “little group”). From those arguments, it turns out that
only s30 has a (twice) degenerate GS, belonging to two nonequivalent momentum sectors.
Although they are orthogonal one to another, the two GSs of s30 have symmetry related
physical properties. We shall therefore refer to both of them at once as the GS of s30.

For illustration and further use, we display the singlet levels within the spin gap for
samples s30 and s36 in Fig. 4.5. For the numerical investigation of sample s36, we use
the full space group (including the point group, see Appendix A). The four nonequivalent
momenta of s36 that are labelled and colored differently in Fig. 4.4 have the following
little groups, each with its own irreducible representations (IRREPs): Γ has little group
C6v, M has little group C2v, K has little group C3v, and X has little group C1h. We shall
refer to some particular symmetry sector (or IRREP) of s36 using a tuple containing both
the momentum and the point group symmetry in question, e.g. [Γ, A1] refers to the A1

representation of the zero-momentum sector (trivial representation). If the momentum
degeneracies are taken into account, we have counted 97 singlet states within the spin gap
for sample s30, and 210 (in agreement with Ref. [91]) for s36. The lowest energy obtained
for s36 by Ref. [98] with the MERA (Multi-scale Entanglement Renormalization Ansatz)
variational wave function is shown in red in the right-hand side of Fig. 4.5: even if the
relative error with the energy of the GS is small, s36 has 85 states below the lowest MERA
energy.

The samples we consider for investigating the spin-1/2 KAF have their own topological
characteristics that it is important to know in order to distinguish between a result which is
really reflecting the physics of the thermodynamic limit, and an artifact due to topological
finite size effects. Their magnetic and non-magnetic energy gaps as well as their GS
energy per site strongly depend on how far from a 1D system they are. J.-B. Fouet et al.
[7] have shown that the GS energy per site in the spin-1/2 Heisenberg model on the 2D
checkerboard lattice is underestimated for quasi-1D samples. Regarding magnetic and non-
magnetic energy gaps, they are overestimated in those samples. The left panel of Fig. 4.6
shows that this is also the case in the spin-1/2 KAF. The GS energy per site (top) and the
energy gaps (bottom) are displayed as a function of the inverse size of every sample. In all
cases, the dependence is roughly linear, and reasonably well described by the least-squares
fits (dotted lines)7. Only sample s241 seems to behave differently and strongly deviates

6The little groups of the GS momentum sectors are C6v (for s12), C2 (s181), C2v (s182), C2v (s241), C2v

(s242), C1 (s30), and C6v (s36). These groups have only one-dimensional representations except C6v, but
the GSs of s12 and s36 are in the respective representations B2 and A1 of C6v, which are one-dimensional.

7Notice that the non-magnetic energy gap – which is known to vanish in the thermodynamic limit – is
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Figure 4.5: Singlet states within the spin gap arranged according to symmetry sectors in the
spectra of samples s30 (left) and s36 (right). Momenta sectors are defined in Fig. 4.4. For both
samples, the black dashed horizontal line denoted by “spin gap” shows the energy of the lowest
triplet state, and the light gray dashed line separates the 8 lowest-lying states from the rest of
the singlet spectrum. The lowest energy obtained for s36 by Ref. [98] with the MERA variational
wave function is shown in red on the right hand side.

from these linear laws for the energy per site (it is well below the line) and the magnetic
gap (it is well above the line). In order to understand in which respects s241 is particular,
it is necessary to pay some attention to the cause of finite size effects in the samples, i.e. to
closed loops. Closed loops are already present in the infinite lattice, the shortest of which
has a length of 6 lattice spacings and is drawn along an elementary hexagon. The point
is that in finite samples, periodic boundary conditions can artificially create closed loops
that are shorter than 6 lattice spacings. Such loops will be “felt” by the system and will
affect it.

On the kagomé lattice, one goes from any site to one of its four nearest neighbors
(nn) by following one of these three directions (or their opposite): −→≡ (1, 0) (direction
A), ↗≡

(
1/2,

√
3/2
)

(direction B), or ↖≡
(
−1/2,

√
3/2
)

(direction C). Let us define by
LLX ≤ 6 (X = A,B,C) the Manhattan length8 of the shortest closed loop starting in
direction X (and then free to continue in any direction). LLA, LLB, and LLC are given
in Table 4.1 for every sample. Closed loops shortest than 6 lattice spacings are present
in samples s12, s181, s182, and s241. In s181 and s241, the closed loops are shorter in one
(preferred) direction (B and C respectively) than in the two others. It turns out that these

extrapolated to a negative value, which is not physical.
8The Manhattan length of a path is defined as the number of sites that are crossed when following it.
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Figure 4.6: (Left) Energy per site, and magnetic (red) as well as non-magnetic (black) energy
gaps as a function of the inverse size of the samples. (Right) Absolute value of spin correlations
between two spins aligned along each possible direction A, B, and C for every sample as a function
of the length of the shortest closed loop starting along those directions. Short loops favor strong
spin correlations.

preferred directions have consequences on the structure of spin correlations and strongly
affect them, whence the particular behavior of s241 we have pointed out when analyzing
Fig. 4.6 (the particularity of s181 is less marked in that figure). Spin correlations between
two nn spins that are aligned along direction X are shown as a function of LLX in the
right panel of Fig. 4.6 for X = A,B,C. It appears that the shortest the closed loop,
the largest the strength of the correlation, i.e. spin correlations are favored (stronger)
along short closed loops. Since the total energy Eq. (4.1) is given by the sum of the spin
correlations between all nn spin pairs, one easily understand why the GS energy per site

sample LLA LLB LLC

s12 4 4 4
s181 5 4 5
s182 5 4 4
s241 5 5 4
s242 6 6 6
s30 6 6 6
s36 6 6 6

Table 4.1: LLX (X = A,B,C) distances for every sample.
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is underestimated in small samples, or in samples with a preferred direction like s241.

4.3 Investigation of the lowest-lying states by means
of the CDM tool

This section is devoted to the correlation density matrix (CDM) analysis of the spin-1/2
KAF. The nature of dominant correlations between blocks of 2 nn sites, blocks of 3 sites
arranged on elementary triangles, and blocks of 6 sites arranged on elementary hexagons
are investigated in its low-lying states. A particular attention is paid to spin correlations
as well. Finally, the CDM analysis is performed on a small system at finite temperature
for illustrative purposes.

4.3.1 Blocks with one site

The CDM analysis of correlations between blocks of one site actually amounts to analyzing
spin correlations, which are well known to decrease quite fast in the spin-1/2 KAF [63; 79].
We wish to show here that their structure is nevertheless very sensitive to closed loops in
the various samples we consider, i.e. depend on the topology of those samples.

Spin correlations are shown in Fig. 4.7 in the ground states of the seven samples under
study9. Reference sites are black, and blue/red sites denote positive/negative correlations,
their widths are proportional to the strength of the correlations. For samples s12 and
s36 which have the symmetries of the infinite lattice, all the independent spin correlations
can be shown in one panel (it is enough to fix the reference site on one single arbitrary
vertex of a selected elementary triangle). For samples s181, s182, s241, and s242 that have
mirror reflections and a π-rotation as symmetries it is necessary to consider the reference
site on two different vertices of a selected elementary triangle in order to generate all the
independent correlations10, two panels are thus drawn. Regarding s30, there is only the
π-rotation symmetry, therefore each of the three vertices of a selected elementary triangle
have to be successively chosen as reference site in order to generate all the independent
correlations. Notice that we have strongly zoomed in on the colored sites for revealing the
structures in Fig. 4.7. Correlations between nn sites are dropped for the sake of clarity.

On every sample, the system gains energy by allowing spin correlations to be noticeably
stronger along paths going from one black reference site to its closest image (i.e. to another
black site) than elsewhere, see for illustration the green path in the panel corresponding

9The closed loop effects we shall describe occur in a similar way in the low-lying states.
10Sample s181 has no mirror reflection as symmetry, but due to “hidden” topological symmetries it is

enough to consider two reference sites in order to generate all the independent spin correlations.
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Figure 4.7: Spin correlations in the ground state of every sample. For s12 and s36, only one
panel is necessary for showing all the independent correlations, while for s181, s182, s241, and
s242 two panels are necessary, and for s30 three panels are necessary. The reference site is black,
and blue/red sites denote positive/negative correlations, their diameter is proportional to the
strength of the correlation. Correlations between nearest neighboring sites are skipped (empty
circles with fixed width) for the sake of clarity.

to s36 (right panel on the bottom of Fig. 4.7). Spin correlations furthermore exhibit a
propensity to be staggered along these favored paths. They are biased by closed loops,
which have important consequences, even in the largest sample s36. Notice that the phe-
nomenon – which has already been pointed out in Fig. 4.6 (right panel) of the previous
section – is also visible in the spin correlations of the disordered J2/J1 = 0.55 phase of
the spin-1/2 Heisenberg model on the square lattice Fig. 3.9: in the middle left panel of
that figure, the spin correlations do not decrease isotropically from a reference black site:
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they are strong and staggered along the horizontal and vertical directions (shortest loops
between two black sites), and decrease much faster along diagonals.

From this spin correlations study, we draw the conclusion that the measurement of
physical quantities on finite size samples are somewhat biased by their topology as well and
should be considered with care. The phenomenon must nevertheless not be exaggerated:
we recall that spin correlation in Fig. 4.7 have been zoomed substantially in order to make
these structures visible. One could nevertheless imagine that – due to closed loop effects
– the VBC which could be realized in the thermodynamic limit would not be selected in a
finite size sample even though the sample would have the size of the unit cell of the crystal
and would be commensurate with it. This could for instance explain why the MERA
variational wave function used in Ref. [98] does not converge towards the 36-site unit cell
VBC by Marston & Zeng Ref. [92] on the s36 topology, while it does in the infinite lattice.

4.3.2 Blocks with two sites

We compute here the SV spectrum for all possible configurations where both blocks are
built on nn spin pairs. As hamiltonian Eq. (4.1) has the SU(2) symmetry and we study
singlet states, only 6 SVs among 16 are independent for every configuration of blocks,
according to Subsection 3.4.2. One of the two singlet SVs – corresponding to correlations
between identity operators – is always zero.

The study is restricted to the eight lowest-lying states (without taking their degeneracy
into account) of the two largest samples s30 and s36. They are separated from the highest
states by a dashed gray line in the energy spectra of s30 and s36, Fig. 4.5 in Section 4.2.
The SV spectra of s30 and s36 are displayed in Fig. 4.8, the panels are arranged from
the left to the right and from the top to the bottom in the order of increasing energy.
The translational invariance due to periodic boundary conditions allows to fix one of the
blocks successively on each of the three edges of an arbitrarily chosen elementary triangle
for performing the SVD (the three edges are directed differently). For s36, the number of
edges that must be taken into account among the three possible ones for generating all the
independent CDMs depends on the symmetry properties of the IRREP we consider. All
the IRREPs of sector Γ for instance have the rotation by 2π/6 as symmetry, allowing to
map every edge onto the two others. In these IRREPs, it is thus enough to consider the
fixed block on one arbitrary edge only; which is also the case in the IRREPs of sector K.
IRREPs of sector M have rotations by π/2 and two reflections as symmetries, and the only
symmetry of sector X is one reflection. In these cases, two edges can be mapped one onto
another, but cannot be mapped onto the third one: it is necessary to consider the fixed
block on two edges in order to generate all the independent CDMs.

The base 10 logarithm of the SVs is represented in Fig. 4.8 as a function of the Man-
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Figure 4.8: The base 10 logarithm of the singular values is shown as a function of the Manhattan
distance between the blocks for all possible configurations of blocks built on nn spin pairs for the 8
lowest-lying states of s30 and s36. Only integer Manhattan distances appear, but the symbols are
horizontally shifted regarding their color for the sake of clarity. Blue symbols (circles) represent
singular values that decompose onto the singlet operator (Sk · Sl), green symbols (triangles up)
represent singular values that decompose onto triplet operators (Sk+Sl, Sk−Sl, and Sk×Sl), and
red symbols (triangles down) represent singular values that decompose onto the quintet operator
(Qkl). Gray squares show the large distance-large SV domains of particular interest.
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hattan distance between the two blocks11. The color of the SVs is function of the spin
of the basis operator Eq. (3.11) they decompose onto. Operators with different spins are
forbidden to contribute to the same SV. Blue symbols (circles) denote singlet SVs (i.e. the
only possible contribution is from Sk · Sl), green symbols (triangles up) denote triplet SVs
(i.e. possible contributions from Sk +Sl, Sk −Sl, and Sk ×Sl), and red symbols (triangles
down) denote quintet SVs (i.e. the only possible contribution is from Qkl). The panels
in Fig. 4.8 all share a common property: red symbols (triangles down) lie on the lower
part, indicating that correlations between quadrupolar objects are irrelevant for describing
the low-energy physics of the spin-1/2 KAF. The competition is between blue and green
SVs. The large distance-large SV domains (see gray squares in Fig. 4.8) are of particular
interest. In those domains, all panels together, either blue (circles) and green (triangles
up) symbols have the same order of magnitude, or blue (circles) symbols are dominant.
Fig. 4.8 is thus of central importance: it reveals that even if they are weak in the ground
states of s30 and s36, correlations of the form

〈(Sk · Sl)(Sk′ · Sl′)〉 − 〈Sk · Sl〉〈Sk′ · Sl′〉 where (k, l), (k′, l′) are nn (4.2)

appear to dominate in some of their low-lying states which hence seem to be dimerized (the
fact that correlations Eq. (4.2) are very strong in certain states will be shown in Section 4.4).
This sustains the common belief that a VBC is a good candidate for describing the low-
energy physics of the spin-1/2 KAF [92; 93; 95]. Furthermore, the smallness of the red SVs
tells us that quadrupolar, or n-type nematic correlations are quite weak. The difference in
behavior between a non-dimerized and a dimerized state is also shown in Fig. 4.9, which
displays the squared Frobenius norm Eq. (3.13) of the correlation density matrices in the
ground state of s36 (left panel) and in the first state of IRREP [Γ, B1] (right panel), which
is dimerized. The ground state is short-ranged in 2-body correlators, which is obviously
not the case for the first state of [Γ, B1]. For illustration, Fig. 4.10 compares the SV spectra
of these two states when a next nearest neighbor interaction J2 = J has been added in the
ground state in order to stabilize the q = 0 Néel order12 [62]. While in the first state of
[Γ, B1] the largest green SVs decrease with the distance and are of the order of ∼ 10−2 at
maximal distance, they are roughly constant (∼ 10−1) in the ground state with stabilized
q = 0 order. The largest blue SVs are moreover not too much affected by the distance
in the dimerized state (roughly 10−1.5), while they are decreasing in the Néel ordered
state (< 10−2 at maximal distance). Regarding the red SVs, they fall off very fast in the

11The Manhattan distance between two blocks is defined as the minimal number of bonds a path going
from one block to the other has to cross.

12We just stress the fact that in contrast to Fig. 4.7, we do not zoom in on spin correlations in Fig. 4.10,
and correlations between nn spins are not hidden; spin correlations in both figures must therefore not be
compared one to another, the scales are different.
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Figure 4.9: Squared Frobenius norm Eq. (3.13) in the ground state (left panel) of sample s36,
and in the first state of IRREP [Γ, B1] (right panel). The black bond is the reference block.
Squared norms corresponding to blocks in the vicinity of the black block are skipped (such blocks
are shown in red) for the sake of clarity. The second state does have strong correlations between
operators acting on 2 sites (2-body operators) while the first one does not.
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Figure 4.10: SV spectra (top) and spin correlations (bottom) in sample s36 in the first level
of [Γ, B1] (left column), and in the first level of [Γ, A1] with an additional J2 = J interaction
stabilizing q = 0 Néel order (right column). In the first case, the state is dimerized (i.e. dimer
correlation survive the distance) and the blue singlet SVs dominate in the large distance-large SV
domain (gray square). In the latter case, the state has Néel order and the green SVs dominate in
the large distance-large SV domain. None of the spectra in Fig. 4.8 resembles this Néel ordered
one. Notice that the proportionality factor between spin correlations and widths is not the same
as in Fig. 4.7, both figures cannot be compared one to another.
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dimerized state and stay around ∼ 10−2 in the ordered state. It is presumably artificially
“high” in this latter case due to the Néel order, but is not a relevant order parameter in
a Néel ordered state. Notice that the SV spectrum of the ordered state resembles none of
the spectra of Fig. 4.8.

An interesting fact should finally be stressed: short closed loops were shown in Subsec-
tion 4.3.1 to favor strong and staggered spin correlations; they actually also favor strong
and staggered dimer correlations as illustrated in Fig. 4.11, which shows the X1 and Y1

operators related to the largest SV in the ground state of samples s36 and s241 for all block
configurations. Symbols are defined as in Fig. 3.9 and Table 3.1 of Chapter 3, i.e. posi-
tive/negative contributions of dimer operators are denoted by blue/red circles. In Table 4.1
in Section 4.2, sample s241 was shown to have a particularly short loop along direction ↖,
whereas the three directions of s36 are equivalent. This is indeed visible in Fig. 4.11: stag-
gered dimer correlations dominate along direction ↖ in sample s241 (see light green lines)
while they only dominate at large distance in s36 (see light green spot). Notice that the
ground state of s36 is in IRREP [Γ, A1] which has the symmetries of the infinite lattice,
we would thus get identical patterns for s36 if the black reference bond would have been
directed differently.

4.3.3 Blocks with three sites

The choice of blocks consisting of triangles is natural on the kagomé lattice, which is a
“triangular lattice of triangles”. In the same spirit as what was done with blocks containing
two nn sites, we show here the results of the CDM analysis of correlations between two
disjoint blocks built on elementary triangles. A Frobenius-orthonormalized complete basis
– consisting of operators with more obvious physical meanings – of the space spanned
by the operators acting on three spins S = 1/2 is given in Appendix E. There are five
singlet operators, nine triplet operators, five quintet operators, and one septuplet operator.
In singlet states, the number of independent SVs is limited to 20 among 64 for a given
configuration of blocks, accordingly to part 3.4.2 of Section 3.4. One of the five singlet SVs
– corresponding to correlations between identity operators – is always zero.

The results are illustrated in Fig. 4.12 for the eight lowest-lying states of s30 and
s36. Colors of the SVs again depend on the spin of the basis operator they decompose
onto. In the spectrum Fig. 4.12, blue symbols (circles) denote singlet SVs (i.e. possible
contributions from singlet operators only), green symbols (triangles up) denote triplet SVs
(possible contributions from triplet operators), red symbols (triangles down) denote quintet
SVs (possible contributions from quintet operators), and cyan symbols (squares) denote
septuplet SVs (possible contributions from septuplet operators).

Red quintet (triangles down) and cyan septuplet (squares) SVs are quite small. The
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Figure 4.11: X1 and Y1 operators related to the largest SV in the ground state of samples s36
and s241. Symbols are defined as in Fig. 3.9 and Table 3.1 of Chapter 3, i.e. positive/negative
contributions of dimer operators are denoted by blue/red circles. Staggered dimer correlations are
favored along the shortest loop direction ↖ in s241 (see Table 4.1 in Section 4.2), while they only
dominate at large distance in s36, which has no “preferred direction” in terms of loop lengths.
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Figure 4.12: Analog of Fig. 4.8 for all possible configurations of blocks built on elementary
triangles. Singular values smaller than 10−5 are not shown for the sake of clarity. Blue sym-
bols (circles) represent singular values that decompose onto the singlet operator, green symbols
(triangles up) represent singular values that decompose onto triplet operators, red symbols (tri-
angles down) represent singular values that decompose onto quintet operators, and cyan symbols
(squares) represent singular values that decompose onto the septuplet operator. Gray squares
show the large distance-large SV domains of particular interest.
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gray square on Fig. 4.12 shows that the competition is again between blue singlet (circles)
and green triplet (triangles up) SVs in the large distance-large SV domain. Note that unlike
in the previous analysis with 2-site blocks, blue singlet (circles) SVs can get contributions
from more than one type of operator (there are 5 singlet operators). It turns out that in
each of the eight lowest-lying states of s30 and s36 which are studied in Fig. 4.12, the main
contribution (squared overlap > 0.97 for s30 and > 0.99 for s36 all states together) in the
highest blue SV at maximal distance is from operators

1

3

[(
Sk · Sle

i 2π
3 + Sk · Sme

−i 2π
3 + Sl · Sm

)
± h.c.

]
. (4.3)

In particular, the contribution from the scalar chirality operator 2√
3
Sk · (Sl × Sm) is low

(< 0.03 for s30 and< 0.001 for s36 all states together). The sharp decrease of this correlator
was already pointed out in Ref. [80]. The emergence of dominating correlations of type
Eq. (4.3) – which is the 3-site analog of Eq. (4.2) – again favors the VBC scenario.

Fig. 4.13 displays the squared Frobenius norm for the same two states as it was done
in Fig. 4.9 for blocks with two sites. One notices that the message which was provided by
Fig. 4.9 is somewhat buried in too many details in Fig. 4.13: particularly strong correlations
in 2-body operators are much more difficult to detect in Fig. 4.13 than in Fig. 4.9 because
of the “noise” that is due to the addition of one site. In Fig. 4.13, the squared Frobenius
norms are slightly larger in the first state of [Γ, B1] than in the the ground state, but
decrease quite fast in both cases.

��������������������� ���������������������

Figure 4.13: Squared Frobenius norm Eq. (3.13) in the ground state (left panel) of sample s36,
and in the first state of IRREP [Γ, B1] (right panel). The reference elementary triangle is marked
by a cross ×.
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4.3.4 Blocks on hexagons
Another natural choice for constructing blocks on the kagomé lattice is to choose elementary
hexagons (blocks with 6 sites). Unfortunately this study is hampered by the fact that
there are only a few possibilities of constructing two disjoint hexagonal blocks on the small
samples we study. CDM computations on hexagonal blocks have been performed in the
ground state of samples s182 (1 way of constructing the two disjoint blocks), s241 (2 ways),
s242 (1 way), and s30 (3 ways, 2 of which are nonequivalent), and the resulting SV spectra
are shown in Fig. 4.14. There is no way of constructing two disjoint hexagonal blocks on
s12 and s181. In Fig. 4.14, we only distinguish between singlet and nonsinglet SVs. It
appears that for every configuration of blocks, the dominant SVs are singlet ones.
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Figure 4.14: Singular values for blocks built on elementary hexagons in the ground states of
s182, s241, s242, and s30. There are 1/2/1/3 ways of constructing disjoint hexagons on samples
s182/s241 /s242/s30 respectively. Among the three ways of constructing them on s30, only two
are nonequivalent. In every case, singlet singular values are shown in blue (triangles up) on the
right hand side and nonsinglet ones are shown in green (triangles down) on the left hand side;
singlet singular values are always dominant.

The number of operators in the different spin spaces is determined by computing the
Clebsch-Gordan decomposition(

1

2
⊗ 1

2
⊗ 1

2
⊗ 1

2
⊗ 1

2
⊗ 1

2

)
⊗
(

1

2
⊗ 1

2
⊗ 1

2
⊗ 1

2
⊗ 1

2
⊗ 1

2

)
= 0132 ⊕ 1297 ⊕ 2275 ⊕ 3154 ⊕ 454 ⊕ 511 ⊕ 61. (4.4)
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The construction of a complete basis of physical meaningful singlet operators looks to be a
cumbersome task: 132 operators have to be found. Instead of constructing the entire set of
singlet basis operators, we aim to investigate to which extent products of (S ·S) operators
i.e. elements of the set

{(Sk · Sl)1Imnpq|k < l}∪
{(Sk · Sl)(Sm · Sn)1Ipq|k < l,m < n, and k < m}∪
{(Sk · Sl)(Sm · Sn)(Sp · Sq)|k < l,m < n, p < q, and k < m < p} (4.5)

contribute to the dominant singlet SVs that are numbered in Fig. 4.14. The set Eq. (4.5)
has 75 elements, each of which is even under the time reversal operation t 7→ −t (resulting
in Si 7→ −Si ∀i). Singlet basis operators that are odd under this operation are thus
not included in this set. Once the elements of Eq. (4.5) have been orthonormalized w.r.
to the Frobenius scalar product

(
Ô
∣∣Ô′
)

F
:= Tr

(
ÔÔ′†

)
, we have computed for each of

the 8 singlet SVs (blue, triangles up) that are numbered in Fig. 4.14 the sum of the
squared overlaps between the operators resulting from the SVD13, and the elements of this
orthonormalized set. This sum turns out to be 1 for arrows 1 to 5 (samples s182, s241,
and s242) and > 0.94 for arrows 6 to 8 (sample s30), although (S · S)-product operators
represent only about one half of the total number of independent singlet operators acting
within blocks with 6 sites.

This CDM study of correlations between elementary hexagons thus points out two
interesting facts: on the one hand dominant SVs are singlet ones, as it was the case
for the study of correlations between blocks with 2 and 3 sites; on the other hand the
major contribution to these dominant singlet SVs is from products of dimer-like (S · S)
operators, that are even under the time reversal operation. These facts agree with the
VBC scenario and support the idea that dimer correlations (or at least correlations between
singlet operators) are the most relevant for describing the low-energy physics of the spin-1/2
KAF.

4.3.5 Illustration of the CDM method at finite temperature
As we already stressed in Section 3.6 while analyzing the spin-1/2 J1–J2 chain at finite tem-
perature, the SU(2) symmetry is restored in the thermal CDM, which has a contribution
from the entire energy spectrum. The number of independent SVs for a given configuration
of blocks is therefore the same as in the zero temperature case.

Fig. 4.15 shows the evolution of the 5 independent nonzero SVs with the temperature
T for one particular configuration of two disjoint blocks (made of two nn sites) at maximal

13These sums of squared overlaps are actually identical for the X̂ and Ŷ operators.
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Figure 4.15: Evolution of the five nonzero independent singular values for two disjoint blocks
built on nn sites in sample s12 as a function of the temperature, which ranges from 0 up to J/kB.
Colors are defined as in Fig. 4.8. This is a particular case where the two blocks are at maximal
Manhattan distance. There are 4 ways of constructing two such blocks at maximal distance, but
the qualitative behavior of the singular values is the same in the other 3 cases i.e. the blue singlet
singular value is much more sensitive to the temperature increase than the green triplet ones.

Manhattan distance on sample s12. There are 4 ways of constructing such blocks at
maximal distance, but the qualitative behavior of the SVs is the same for all of them: the
blue singlet (dimer) SV dominates at low temperature – in agreement with the results
we have put forward from the zero temperature study – and falls off exponentially fast
as the temperature is increased, whereas green triplet SVs are roughly insensitive to the
temperature. A crossover occurs at T ∼ 0.2J/kB (see arrow in Fig. 4.15), and a triplet
SV becomes dominant above this temperature. Notice that whatever the temperature, the
red quintet SV is quite weak and exhibits a peculiar behavior at very low temperature: as
T goes from 0 up to 0.1J/kB it is first sharply decreasing, and then sharply increasing.
For T > 0.1J/kB, the quintet SV is – like the triplet ones – roughly insensitive to the
temperature. We stress that ED of the full energy spectrum can be performed for spin-1/2
systems containing much more than 12 sites. Hence, Fig. 4.15 should not be considered as
a deep study of the finite temperature properties of the spin-1/2 KAF, but rather as an
illustration of the CDM method at finite temperature.

With the CDM method – which can be used to investigate systems at arbitrarily low
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temperature – we have pointed out here the interesting fact that the physics of the spin-
1/2 KAF at the (albeit very low) temperature T ∼ J/kB is not representative of its
zero-temperature physics: a crossover occurs in between. Temperatures as low as the
order of the coupling constant which are now numerically accessible in the spin-1/2 KAF
using the recently developed nested cluster algorithm [129] (and in other models using the
loop cluster algorithm14) are therefore still too high in order to get a picture of the physics
at zero temperature, one should actually go down to temperatures below one fifth of the
coupling constant for that purpose.

4.3.6 Conclusion
To conclude, the unbiased analyzes of correlations between blocks of 2 nearest-neighboring
sites, 3 sites built on elementary triangles, and 6 sites built on elementary hexagons we
have performed reveal dominant correlations of the dimer type in some of the lowest-lying
singlet states in the spectrum of the spin-1/2 KAF. This result provides strong arguments
for thinking that the low-energy physics of this model may be described by a valence bond
crystal (VBC). Furthermore, a phenomenon which was already pointed out while studying
spin correlations on the square lattice in Subsection 3.6.2 also occurs in the case of the
kagomé: the samples we have considered minimize their energy by allowing very strong
and staggered spin correlations along their shortest closed loops. Even in the largest 36-site
sample we study, spin correlations are biased by closed loops. The 36-site sample should
therefore not be expected to mimic the thermodynamic limit, it might be that some details
of the spin-1/2 KAF are not captured by this sample due to its finite nature.

14In the early nineties, the loop cluster algorithm [130; 131] had been invented to investigate physical
observables in various models at very low temperature, motivated by experimental data. It is fully ergodic,
and autocorrelation times are drastically reduced compared to the quantum Monte-Carlo algorithm –
especially at low temperature – leading to smaller statistical errors of observables. The loop cluster
algorithm has been used in the past to successfully study some models in temperature ranges which were
not accessible with other methods [132–136]. The nested cluster algorithm has been constructed 15 years
later to tackle the cases for which the sign problem is particularly hampering.
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4.4 Dimer correlations and valence bond crystals (VBCs)
in the 36-site sample

4.4.1 Dimer correlations in the lowest-lying states

Although dimer correlations (DCs) Eq. (4.2) fall off fast in the ground state of the spin-1/2
KAF [79], our CDM studies of Section 4.3 have concluded that DCs dominate in some of
its low-lying singlet states. We report here for the first time DC measurements in states
of the entire singlet spectrum of sample s36 within the spin gap, and emphasize that it
is indeed true that some of these singlet states have very large DCs which are insensitive
to the distance and exhibit some periodic structures, i.e. are dimerized. The DCs in two
such states (namely the first state in IRREP [Γ, B1] and the second one in [M,A2]) are
compared to those in the ground state in Fig. 4.16 for illustration. The fixed reference bond

��������������� ��������������� ���������������� ��

Figure 4.16: Dimer correlations Eq. (4.2) in the first level of IRREP [Γ, A1] (ground state) are
quite weak compared to those in both the first level of [Γ, B1] and the second level of [M,A2].
The black bond is taken as fixed reference bond. The width of colored bonds is proportional
to the strength of the correlation, and their color indicates the sign of the correlation (blue/red
bonds denote positive/negative correlations).

is black. Blue and red bonds denote positive and negative DCs respectively, their width
is proportional to the strength of the correlation. It is clearly visible that DCs behave
differently in the ground state and in the two excited states: in the ground state, they
are large in the vicinity of the black reference bond only and become very weak beyond a
distance of 1–2 lattice spacings whereas in the excited states, they are roughly insensitive
to the distance. Furthermore, DCs exhibit interesting structures in the two excited states
in Fig. 4.16: they are staggered with a period of one lattice spacing along every direction
in the first level of [Γ, B1], and with a period of 2 lattice spacings along directions ↗ and
↖ in the second level of [M,A2]. These two properties (strong dimer correlations plus
structure) in a correlation pattern typically originate from a VBC.

In order to quantify the importance DCs play in every state of the spectrum Fig. 4.5 of
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s36, we introduce the mean dimer-dimer correlation (MDDC) defined as (“ref. b.” denotes
the reference black bond and “prob. b.” the blue/red bond which probes the system)

MDDC :=

max
ref. b.

∑
prob. b./∈N (ref. b.)

|〈(Si · Sj)i,j∈ref. b.(Sk · Sl)k,l∈prob. b.〉 − 〈Si · Sj〉i,j∈ref. b.〈Sk · Sl〉k,l∈prob. b.| /60

(4.6)

where the sum runs over all the probing bonds except in the “neighborhood” N (ref. b.)
of the reference bond, where DCs are large whatever the state. The sum runs over 60
elements, whence the /60 term. Each of the three directions −→, ↗, and ↖ could be
chosen as reference bond (the fact that they are equivalent or not depends on the IRREP
we consider). The maxref. b. term in Eq. (4.6) ensures the selection of the direction providing
a maximal mean dimer correlation. The “neighborhood” of a reference bond is pictorially
defined in Fig. 4.17.

ref. b.
∈ N (ref. b.)
/∈ N (ref. b.)

Figure 4.17: The neighborhood N (ref. b.) of the black reference bond is depicted in red. Any
other type of reference bond can be mapped onto this one by applying operations of the space
group of the kagomé lattice. Green bonds do not belong to N (ref. b.) and thus do come into
play in the sum Eq. (4.6).

The MDDC Eq. (4.6) of every state in the singlet spectrum Fig. 4.5 of sample s36 within
the spin gap is displayed on the top of Fig. 4.18: the width of the circles representing each
state is proportional to its MDDC. MDDC values range from MDDC = 0.002 for the fourth
state of IRREP [Γ, E2] (state “0”) with the weakest overall DCs, up to MDDC = 0.012 for
the first state of IRREP [Γ, B1] (state “4”) with the largest overall DCs, the MDDC thus
fluctuates a lot from one singlet state to the other. The 12 states with MDDC > 0.0075
are circled and numbered on the top of Fig. 4.18, and their DCs are compared with those
in the fourth state of IRREP [Γ, E2] (with the weakest MDDC) in the different panels of
Fig. 4.18. These 12 circled states with large MDDCs do not exhibit any decrease in the
DCs with distance. Moreover some of them exhibit periodic structures, as stressed while
commenting Fig. 4.16. Those whose SV spectra have been analyzed in Figs. 4.8 (CDM
analysis of correlations between blocks of 2 sites) and 4.12 (CDM analysis of correlations
between blocks of 3 sites) are identified by an asterisk “∗” in these figures. There is
obviously a large overlap between states with large overall DCs and states dominated by
blue (circles) singlet SVs in Figs. 4.8 and 4.12.
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Figure 4.18: Comparison of the dimer correlations in the state 0 (MDDC = 0.002), with the
dimer correlations in the states 1–12 (MDDC > 0.0075). The black reference bond has the
direction which is selected in the definition of MDDC [Eq. (4.6)]. The correlation patterns are
represented as in Fig. 4.16.
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4.4.2 Analysis of the relevance of several VBCs
As well the CDM studies as the analysis of DCs in the low-lying states put forward the idea
that the low-energy physics of the spin-1/2 KAF is governed by a VBC. In this Subsection
we analyze the compatibility of the ED results on the largest sample s36 with several kinds
of VBCs (allowing certain closed loops to resonate), all of them are commensurate with
the s36 topology.

The different VBCs and their properties

The different VBCs whose relevance we investigate are depicted in Fig. 4.19. Closed loops
(paths) with alternatively arranged dimers can be conjugated (all the dimers are shifted
by one lattice spacing along the loop, the direction of every dimer being unchanged) or can
resonate (superimposition between the initial and the conjugated loop), they are depicted
in color and highlighted by dotted lines. In contrast, fixed dimers are black. Notice that we
have also considered some crystals containing dimer bonds longer than one lattice spacing,
we do not restrict ourselves to paths joining nn sites.

We pointed out in Sections 4.3.1 and 4.3.2 respectively that spin and dimer correlations
are strong and staggered along short closed loops. This fact thus motivates us to analyze
– in addition to well known crystals that have been proposed in the literature – ad hoc
crystals with dimers alternatively arranged on closed loops15.

The VBCs we investigate are listed below; their configurations are denoted by [cn]αβ , where
n = 1, 2, ..., 9 refers to the type of VBC given in Fig. 4.19, α indicates the (colored) closed
loops that are conjugated or that resonate. If a loop is allowed to resonate, β indicates the
parity of the resonance. Colored loops can be conjugated (c), can resonate with even (e)
or with odd (o) parity, or can be frozen in the configuration depicted in Fig. 4.19 (–).

• VBC1 was proposed by Marston & Zeng in Ref. [92]. It consists of a honeycomb
structure of perfect hexagons (H1 and H2) (hexagons are closed loops of length 6)
surrounding a pinwheel (P) (closed loop of length 12). We have considered its con-
figurations below.

15Note that closed loops crossing the whole sample get an infinite length in the thermodynamic limit and
thus we do not have any argument favoring crystals with this kind of loops in that limit, their relevance is
probed in the context of the description of the low-energy physics of sample s36 only.



78 Antiferromagnetic spin-1/2 Heisenberg model on the kagomé lattice

H
1

P

H
1

H
2

VBC
1

H
2

H
1

H
2

P
2

P
1

P
3

P
3

VBC
2

P
2

P
3

P
2

VBC
3

P

VBC
4

P

H

H

VBC
5

fish-

bones

stripes

VBC
6

VBC
7

VBC
8

VBC
9

Figure 4.19: The VBCs whose relevance we analyze. All of them are commensurate with the
topology of s36. The hexagonal unit cell of the s36 sample is displayed in dashed red in every
panel. Dimers are denoted by solid lines joining two sites (that are not necessarily nearest-
neighbors). Black dimers are fixed while colored ones can be conjugated or can resonate along
the closed loops represented by dotted lines.
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H12
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• VBC2 was proposed by Syromyatnikov & Maleyev in Ref. [93]. It consists of three
pinwheels (P1, P2, and P3). We have considered its configurations below.

[c2] [c2]
P2 [c2]

P123
e [c2]

P123
o

P1 – – e o
P2 – c e o
P3 – – e o

• VBC3 consists of one pinwheel (P) surrounded by fixed black dimers. We have
considered its configurations below.

[c3] [c3]
P
e [c3]

P
o

P – e o

• VBC4 consists of one pinwheel (P) and one perfect hexagon (H) surrounded by fixed
black dimers. We have considered its configurations below.

[c4] [c4]
H
e [c4]

H
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P
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P
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ee [c4]
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oe [c4]

HP
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H – e o – – e e o o
P – – – e o e o e o

• VBC5 consists of stripes (s) and “fishbones” (f). We have considered its configura-
tions below.
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• VBC6 consists of dimers arranged along four horizontal lines: the blue (b) and the
green (g) lines cross nn sites while the turquoise (t) and the magenta (m) lines cross
sites that are not nn. We have considered its configurations below.

[c6] [c6]
bg
ee [c6]

bg
oe [c6]

bg
oo [c6]

tm
ee [c6]
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oe [c6]
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oo [c6]
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eeee [c6]

bgtm
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oooo

b – e o o – – – e o e o
g – e e o – – – e o e o
t – – – – e o o e e o o
m – – – – e e o e e o o

• VBC7 and VBC8 consist of green (g) and blue (b) closed loops that cross the sample,
while VBC9 consists of blue (b) closed loops of length 10 that are sandwiched between
green (g) stripes made of dimers joining sites which are not nn. We have considered
the configurations below (n = 7, 8, 9).

[cn] [cn]ge [cn]go [cn]be [cn]bo [cn]gb
ee [cn]gb

oe [cn]gb
eo [cn]gb

oo

g – e o – – e o e o
b – – – e o e e o o

Each of the VBCs we have selected has its own symmetry properties, and therefore its own
set of symmetry sectors with which it is compatible. How does a given VBC decompose
onto the different IRREPs that are considered in the energy spectrum of s36 Fig. 4.5? The
basic idea is explained in details in Ref. [137].

Let |ψ〉 be the wavefunction representing some configuration [cn]αβ of VBCn, and G the
symmetry space group of hamiltonian Eq. (4.1) on the topology of sample s3616. Since |ψ〉
is a broken symmetry state, there exists, by definition, at least one group element g ∈ G
under which |ψ〉 is not invariant: |〈ψ|g|ψ〉| < 1. Hence, the linear space V generated by
all the states V := {g|ψ〉 | g ∈ G} has a dimension d > 1, and defines a (non-trivial) linear
representation Γ of G. Because any g ∈ G commutes with the hamiltonian, all the states of

16G has |G| = 144 elements given by (the 12 point group operations of C6v)×(the 36/3 = 12 translations).



4.4. Dimer correlations and valence bond crystals (VBCs) in the 36-site sample 81

V are degenerate. The multiplicities nα in the decomposition of Γ onto the IRREPs {γα}α

of G: Γ =
⊕

α nαγα may be obtained from the character representation formula

nα =
1

|G|
∑
g∈G

χ∗α(g)
∑
|i〉

〈i|g|i〉, (4.7)

where χα(g) := Tr[γα(g)] is the character of γα for the group element g, and the states |i〉
form an orthonormal basis of the manifold V . These multiplicities can also be written as
nα =

∑
|i〉 ||Πα|i〉||2, where

Πα :=
1√
|G|

∑
g∈G

χα(g)g−1 (4.8)

is the projector onto the subspace which transforms according to γα. Therefore, nα > 0 if
and only if a broken symmetry state has a non-zero projection onto sector α. Multiplicities
{nα}α only depend on the symmetry properties of V , and the sum of the multiplicities over
all IRREPs multiplied by the dimensionalities of the IRREPs in question must match the
number of degenerate configurations∑

α

nα dim(γα) = |V |. (4.9)

In the case of sample s36 we have |V | ≤ |G| = 144, and the maximal degeneracy 144 is
reached for a minimally symmetric configuration (actually without any symmetry).

Since we have only investigated the 4 independent momenta sectors Γ, X, K, and M of
s36 (see definitions in the BZ Fig. 4.4), the multiplicities we compute from Eq. (4.7) must
be multiplied by the number of momentum sectors that are degenerate with each of these
four sectors (same color, but different symbols in Fig. 4.4). A set of degenerate momentum
sectors is called a star, we shall therefore speak of multiplicities of IRREPs in the stars of
momentum sectors Γ, X, K, and M instead of speaking of multiplicities of IRREPs in the
momentum sectors Γ, X, K, and M themselves. Momentum Γ is alone on its star, while
star X has 6 momenta, star K has 2 momenta, and star M has 3 momenta. Multiplicities of
the IRREPs in the stars of the momentum sectors Γ, X, K, and M are given in Tables 4.2
and 4.3 for all configurations of the VBCs of Fig. 4.19. Some of the configurations we
consider here were already decomposed onto symmetry sectors in Table 1 of Ref. [137], our
results agree with theirs whenever the comparison is feasible. The degeneracy Eq. (4.9) of
every configuration is given in the rightmost column of these tables, it is computed using

dim(γα) =

{
2 if γα = [star Γ, E1], [star Γ, E2], or [star K,E],
1 otherwise.
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star Γ star X star K star M
A1 A2 B1 B2 E1 E2 A′ A′′ A1 A2 E A1 A2 B1 B2 |V |

[c1] 1 1 1 1 0 0 12 12 4 4 0 3 3 3 3 48
[c1]

H2/[c1]
H12

e/o 1 1 0 0 0 0 6 6 2 2 0 3 3 0 0 24
[c1]

P
e 1 0 0 1 0 0 6 6 2 2 0 3 0 3 0 24

[c1]
P
o 0 1 1 0 0 0 6 6 2 2 0 0 3 0 3 24

[c1]
H12P
ee/oe 1 0 0 0 0 0 6 0 2 0 0 3 0 0 0 12

[c1]
H12P
eo/oo 0 1 0 0 0 0 0 6 0 2 0 0 3 0 0 12

[c2] 1 1 0 0 0 0 0 0 0 0 0 3 3 0 0 8
[c2]

P2 1 1 0 0 0 0 6 6 2 2 0 3 3 0 0 24
[c2]

P123
e 1 0 0 0 0 0 0 0 0 0 0 3 0 0 0 4

[c2]
P123
o 0 1 0 0 0 0 0 0 0 0 0 0 3 0 0 4

[c3] 1 1 1 1 2 2 36 36 4 4 8 9 9 9 9 144
[c3]

P
e 1 0 0 1 1 1 18 18 2 2 4 6 3 6 3 72

[c3]
P
o 0 1 1 0 1 1 18 18 2 2 4 3 6 3 6 72

[c4]all 1 1 1 1 2 2 36 36 4 4 8 9 9 9 9 144
[c5] 1 1 1 1 2 2 0 0 0 0 0 3 3 3 3 24
[c5]

f
e 1 0 0 1 1 1 0 0 0 0 0 3 0 3 0 12

[c5]
f
o 0 1 1 0 1 1 0 0 0 0 0 0 3 0 3 12

[c5]
s
e 1 0 1 0 1 1 0 0 0 0 0 0 3 3 0 12

[c5]
s
o 0 1 0 1 1 1 0 0 0 0 0 3 0 0 3 12

[c5]
fs
ee 1 0 0 0 0 1 0 0 0 0 0 0 0 3 0 6

[c5]
fs
eo 0 0 0 1 1 0 0 0 0 0 0 3 0 0 0 6

[c5]
fs
oe 0 0 1 0 1 0 0 0 0 0 0 0 3 0 0 6

[c5]
fs
oo 0 1 0 0 0 1 0 0 0 0 0 0 0 0 3 6

Table 4.2: Multiplicities of the different IRREPs in the stars of momentum sectors Γ, X, K,
and M for VBC1 to VBC5. The rightmost column yields the degeneracy Eq. (4.9) of every
configuration. All the configurations of VBC4 we have considered decompose identically.

Since the system has a finite size, the different sectors with nα > 0 will not be exactly
degenerate, but for a large enough system they should become the lowest eigenstates of the
spectrum. This actually does not occur for any of the VBC configurations we study. For
instance taking into account the above described degeneracies (within each momentum
star), the 8 symbols below the dashed gray line in the energy spectrum of s36 Fig. 4.5
(right panel) actually correspond to 24 states: 2 in [Γ, A1], 1 in [Γ, B1], 2 in [Γ, E2], 6
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star Γ star X star K star M
A1 A2 B1 B2 E1 E2 A′ A′′ A1 A2 E A1 A2 B1 B2 |V |

[c6] 1 1 1 1 2 2 0 0 0 0 0 3 3 3 3 24
[c6]

bg
ee/oo 1 1 0 0 0 2 0 0 0 0 0 3 3 0 0 12

[c6]
bg
oe 0 0 1 1 2 0 0 0 0 0 0 6 6 3 3 24

[c6]
tm
ee 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 6

[c6]
tm
oe 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 12

[c6]
tm
oo 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 6

[c6]
bgtm
eeee/ooee 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3

[c6]
bgtm
eeoo/oooo 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 3
[c7] 1 1 1 1 2 2 12 12 4 4 8 3 3 3 3 72

[c7]
g
e/o 1 1 0 0 0 2 6 6 2 2 4 3 3 0 0 36

[c7]
b
e/o 1 1 1 1 2 2 0 0 4 4 8 0 0 0 0 36

[c7]
gb
ee/oe/eo/oo 1 1 0 0 0 2 0 0 2 2 4 0 0 0 0 18

[c8]/[c8]
g
e/o/[c8]

b
e/o 1 1 1 1 2 2 12 12 4 4 8 3 3 3 3 72

[c8]
gb
ee/oe/eo/oo 1 1 0 0 0 2 6 6 2 2 4 0 0 3 3 36
[c9] 1 1 1 1 2 2 0 0 0 0 0 9 9 9 9 48
[c9]

g
e 0 1 1 0 1 1 0 0 0 0 0 3 6 3 6 24

[c9]
g
o 1 0 0 1 1 1 0 0 0 0 0 6 3 6 3 24

[c9]
b
e 0 0 1 1 2 0 0 0 0 0 0 0 0 9 9 24

[c9]
b
o 1 1 0 0 0 2 0 0 0 0 0 9 9 0 0 24

[c9]
gb
ee 0 0 1 0 1 0 0 0 0 0 0 0 0 3 6 12

[c9]
gb
oe 0 0 0 1 1 0 0 0 0 0 0 0 0 6 3 12

[c9]
gb
eo 0 1 0 0 0 1 0 0 0 0 0 3 6 0 0 12

[c9]
gb
oo 1 0 0 0 0 1 0 0 0 0 0 6 3 0 0 12

Table 4.3: Multiplicities of the different IRREPs in the stars of momentum sectors Γ, X, K,
and M for VBC6 to VBC9. The rightmost column yields the degeneracy Eq. (4.9) of every
configuration.

in [X,A′], 6 in [X,A′′], 4 in [K,E], and 3 in [M,A1]
17. This does not match any of the

configurations of Tables 4.2 or 4.3. If only the 4 lowest symbols in the energy spectrum
Fig. 4.5 corresponding to 8 states (2 in [Γ, A1], 2 in [Γ, E2], and 4 in [K,E]) are considered,

17Every symbol appearing at [Γ, E2] or [K,E] in Fig. 4.5 corresponds to 2 degenerate states since these
IRREPs are two-dimensional, and can be split into 2 one-dimensional IRREPs as shown in Fig. A.5 of
Appendix A.
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there is again no crystal configuration that decomposes onto the relevant IRREPs. As
we shall see, some the VBC configurations we have studied nevertheless provide a good
description of the structures of DCs in some of the low-lying states of s36 that have large
overall DCs (i.e. large MDDCs).

Dimer correlations in the VBCs compared to exact ones

We shall see that although they are unable to completely explain the low-energy physics of
sample s36, some of the VBCs in Fig. 4.19 nevertheless allow to recover the main structures
in certain of its DC patterns.

The VBC states belonging to every IRREP (with a multiplicity nα > 0) are determined
using the projector Eq. (4.8). We deal with one-dimensional IRREPs only since two-
dimensional ones are split into two degenerate one-dimensional IRREPs, as illustrated in
Fig. A.5 of Appendix A. These projected states consist of superimpositions of various dimer
patterns, DCs are computed in each of them using the simplification

〈(Si · Sj)(Sk · Sl)〉 =

{
(−3/4)2 if both spin pairs (i, j) and (k, l) form dimers

0 otherwise
and 〈(Si · Sj)〉 = (3/4)f, f = 1/4 (4.10)

and are then averaged over all of them. Here, f is the fraction of nn spin pairs that
form dimers. This simplification amounts to neglecting the overlap between distinct dimer
configurations.

Once for a given VBC configuration the DCs have been computed in every relevant
IRREP, the idea is to probe its relevance by counting the proportion of DCs – among the
strong ones – whose signs are correctly reproduced by the VBC configuration in question.
Such a comparison is performed in Table 4.4: for each of the states that are circled in the
spectrum on the top of Fig. 4.18 and labelled from 1 up to 12 (i.e. with MDDC> 0.0075),
the signs of the exact DCs are compared to those from the VBCs (for every configuration)
only if the absolute value of both of them are> 0.005. Table 4.4 has three columns per state:
the middle one gives the number of DCs that are taken into account for the comparison,
among them the number of DCs with the good sign is given in the left column, and the right
column gives the percentage of correlations with the good sign (i.e. left column divided
by the middle one). For a fixed reference block containing two sites, there are 65 ways
of constructing the second block, assuming that both of them are made of nn spin pairs.
Since the comparison in Table 4.4 is performed by considering the three possible directions
for the reference block18, the maximal number of correlations which are taken into account
for the comparisons (middle columns) is 3× 65 = 195.

18In the IRREPs with multiplicity nα > 1, it is possible to construct more than one state. Those
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state [Γ, A1], 2 [Γ, A2], 1 [Γ, E2], 1 [Γ, B1], 1 [X, A′], 1 [K, A2], 2 [M, A1], 1 [M, A1], 2 [M, A2], 2 [M, A2], 3 [M, B1], 3 [M, B2], 1
label in Fig. 4.18 1 2 3 4 5 6 7 8 9 10 11 12

[c1] 63 123 51 123123100 – – – 57 129 44 55107 51 108141 77 50 86 58 59 105 56 67 113 59 59 107 55 59 123 48 59105 56
[c1]H2 63 147 43 147147100 – – – – – – 55107 51 135141 96 62102 61 75 129 58 83 137 61 61 119 51 – – – – – –
[c1]

H12
e/o

51 105 49 123123100 – – – – – – 41 79 52 93 105 89 46 78 59 55 95 58 59 101 58 53 101 52 – – – – – –

[c1]Pe 63 123 51 – – – – – – – – – 47 91 52 93 117 79 50 86 58 59 105 56 – – – – – – 59 123 48 – – –
[c1]Po – – – 123123100 – – – 57 129 44 47 91 52 93 117 79 – – – – – – 67 113 59 59 107 55 – – – 59105 56

[c1]
H12P
ee/oe

51 105 49 – – – – – – – – – 41 79 52 – – – 46 78 59 55 95 58 – – – – – – – – – – – –

[c1]
H12P
eo/oo

– – – 123123100 – – – – – – – – – 93 105 89 – – – – – – 59 101 58 53 101 52 – – – – – –
[c2] 129147 88 87 147 59 – – – – – – – – – – – – 88102 86 109129 84 115137 84 81 119 68 – – – – – –

[c2]P2 48 147 33 78 147 53 – – – – – – 64107 60 96 141 68 48102 47 54 129 42 64 137 47 56 119 47 – – – – – –
[c2]

P123
e 48 69 70 – – – – – – – – – – – – – – – 44 60 73 50 71 70 – – – – – – – – – – – –

[c2]
P123
o – – – 42 63 67 – – – – – – – – – – – – – – – – – – 56 77 73 34 57 60 – – – – – –

[c3] 63 123 51 72 102 71 21 81 26 57 129 44 55107 51 51 84 61 50 86 58 59 105 56 67 113 59 59 107 55 49 111 44 51 93 55
[c3]Pe 72 102 71 – – – 21 96 22 – – – 44 81 54 51 90 57 48 70 69 43 79 54 69 89 78 45 81 56 43 93 46 41 83 49
[c3]Po – – – 72 102 71 21 96 22 21 96 22 44 81 54 51 90 57 48 70 69 43 79 54 69 89 78 45 81 56 43 93 46 41 83 49
[c4] 57 57 100 57 63 90 39 87 45 27 69 39 60 91 66 21 45 47 44 82 54 103109 94 57 109 52 45 107 42 67 135 50 43 97 44

[c4]He/o 69 75 92 69 75 92 51 105 49 39 93 42 65 95 68 45 84 54 32 56 57 95 99 96 45 75 60 29 77 38 43 101 43 29 77 38
[c4]Pe/o 54 54 100 60 60 100 45 96 47 21 66 32 46 91 51 45 60 75 34 62 55 63 81 78 49 83 59 33 77 43 47 99 47 43 77 56

[c4]HP
ee/eo/oe/oo 54 66 82 72 72 100 36 84 43 27 72 38 44 81 54 57 66 86 30 50 60 57 69 83 45 67 67 21 57 37 31 75 41 37 63 59

[c5] 57 147 39 63 147 43 117141 83 129153 84 – – – – – – 67102 66 51 129 40 89 137 65 101119 85 143151 95 61121 50
[c5]fe 57 147 39 – – – 129141 91 – – – – – – – – – 67102 66 51 129 40 – – – – – – 143151 95 – – –
[c5]fo – – – 63 147 43 129141 91 129153 84 – – – – – – – – – – – – 89 137 65 101119 85 – – – 61121 50
[c5]se 57 147 39 – – – 129141 91 129153 84 – – – – – – – – – – – – 89 137 65 101119 85 143151 95 – – –
[c5]so – – – 63 147 43 129141 91 – – – – – – – – – 67102 66 51 129 40 – – – – – – – – – 61121 50
[c5]fs

ee 57 147 39 – – – 129141 91 – – – – – – – – – – – – – – – – – – – – – 143151 95 – – –
[c5]fs

eo – – – – – – – – – – – – – – – – – – 67102 66 51 129 40 – – – – – – – – – – – –
[c5]fs

oe – – – – – – – – – 129153 84 – – – – – – – – – – – – 89 137 65 101119 85 – – – – – –
[c5]fs

oo – – – 63 147 43 129141 91 – – – – – – – – – – – – – – – – – – – – – – – – 61121 50
[c6] 57 147 39 57 147 39 105141 74 105153 69 – – – – – – 34 76 45 12 38 32 40 86 47 40 74 54 40 60 67 38 56 68

[c6]bg
ee/[c6]bg

oo 63 147 43 63 147 43 87 141 62 – – – – – – – – – 34 76 45 16 38 42 40 86 47 34 74 46 – – – – – –
[c6]bg

oe – – – – – – – – – 87 153 57 – – – – – – 0 0 – 2 7 29 0 5 0 3 3 100 34 60 57 32 56 57
[c6]tm

ee 57 147 39 – – – 105141 74 – – – – – – – – – – – – – – – – – – – – – – – – – – –
[c6]tm

oe – – – – – – – – – – – – – – – – – – 34 76 45 12 38 32 40 86 47 40 74 54 40 60 67 38 56 68
[c6]tm

oo – – – 57 147 39 105141 74 105153 69 – – – – – – – – – – – – – – – – – – – – – – – –
[c6]

bgtm
eeee/ooee

63 147 43 – – – 87 141 62 – – – – – – – – – – – – – – – – – – – – – – – – – – –

[c6]
bgtm
eeoo/oooo

– – – 63 147 43 87 141 62 – – – – – – – – – – – – – – – – – – – – – – – – – – –
[c7] 51 108 47 51 120 43 45 99 45 57 114 50 42107 39 45 120 38 51 98 52 39 113 35 83 129 64 69 119 58 71 139 51 33117 28

[c7]ge/[c7]go 51 99 52 51 111 46 42 102 41 – – – 41103 40 54 117 46 53 98 54 43 105 41 83 125 66 65 115 57 – – – – – –
[c7]be 60 147 41 39 108 36 78 141 55 45 102 44 – – – 51 120 43 – – – – – – – – – – – – – – – – – –
[c7]bo 51 108 47 39 108 36 48 105 46 45 102 44 – – – 51 120 43 – – – – – – – – – – – – – – – – – –

[c7]
gb
ee/oe/eo/oo

51 102 50 39 102 38 45 105 43 – – – – – – 45 108 42 – – – – – – – – – – – – – – – – – –
[c8] 36 66 55 12 54 22 27 57 47 36 66 55 49107 46 21 63 33 63 94 67 37 93 40 85 125 68 79 103 77 91 115 79 27101 27

[c8]ge/[c8]go 51 93 55 15 69 22 51 69 74 63 99 64 63105 60 36 90 40 47 90 52 41 95 43 67 115 58 67 93 72 93 109 85 45 95 47
[c8]be/[c8]bo 48 117 41 36 117 31 66 78 85 93 123 76 32 74 43 36 84 43 57 92 62 41 113 36 85 123 69 87 105 83 123127 97 57107 53

[c8]
gb
ee/oe/eo/oo

48 105 46 12 93 13 39 57 68 – – – 51 97 53 21 81 26 – – – – – – – – – – – – 109123 89 49105 47
[c9] 57 135 42 57 135 42 129129100 129141 91 – – – – – – 49102 48 67 129 52 53 137 39 77 119 65 99 151 66 53121 44
[c9]ge – – – 57 135 42 63 63 100 69 69 100 – – – – – – 50 92 54 38 80 48 13 41 32 33 43 77 114151 75 84121 69
[c9]go 57 135 42 – – – 129129100 – – – – – – – – – 55102 54 58 129 45 64 137 47 84 119 71 114151 75 84121 69

[c9]be/[c9]gb
ee – – – – – – – – – 57 78 73 – – – – – – – – – – – – – – – – – – 49 69 71 43 69 62

[c9]bo 54 82 66 42 66 64 51 60 85 – – – – – – – – – 40 60 67 35 57 61 43 73 59 43 63 68 – – – – – –
[c9]gb

oe – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 49 69 71 43 69 62
[c9]gb

eo – – – 42 66 64 51 60 85 – – – – – – – – – 40 60 67 35 57 61 43 73 59 43 63 68 – – – – – –
[c9]gb

oo 54 84 64 – – – 51 60 85 – – – – – – – – – 40 60 67 35 57 61 43 73 59 43 63 68 – – – – – –

Table 4.4: Relevance of every VBC configuration for describing the 12 states that are circled
in the spectrum on the top of Fig. 4.18. Only the dimer correlations (exact and in the VBC)
stronger than 0.005 are taken into account for the comparison, their number is given in the middle
column for every state. The left column gives the number of times the signs agree, and the right
column gives the proportion [%] of good signs (green if larger than 75%, and in red otherwise).

states may differ one from another (and exhibit different correlation patterns) or not. However, since the
comparison is performed with the reference bond taking all the three possible directions, the result given
in Table 4.4 is the same for all of them.



86 Antiferromagnetic spin-1/2 Heisenberg model on the kagomé lattice

Even if no VBC configuration does exhibit a perfect agreement with the dimerized low-
lying states of sample s36, some of them allow to recover the signs of their strongest dimer
correlations with a high precision19. We wish to emphasize that VBC5 – which consists
of dimer bonds joining nn sites and arranged on closed loops crossing the s36 sample –
provides a particularly good description of the dimer correlations in several states of s36.
For illustration purposes, the dimer correlations in some of the states of s36 are pictorially
compared to correlations in several non-resonating VBC configurations in Fig. 4.20. The
main structures which are highlighted in green are shared by both of them.

���������������� �������������������������������� ����������������

�������������� � �������������� � �������������� � �������������� �

Figure 4.20: Dimer correlations in some of the dimerized states of s36 (top) are compared
to those in the non-resonating configurations of several VBCs (bottom). The main structures
(highlighted in green) are shared by both of them.

Due to the particular role of closed loops that we have pointed out in this Chapter,
a natural question arise: is there a link between the relevance of a crystal configuration
for describing the dimer correlations of s36, and the number of closed nn dimer loops20

(CnnDLs) of a specific length this crystal contains21? In other words, does a “good” crystal
19In some cases, Table 4.4 gives an agreement of 100%. We however stress that if the comparison had

been systematically performed over all the 195 bonds (instead of being restricted to correlations stronger
than 0.005), none of the crystal configurations would have permitted to correctly recover 100% of the signs.

20We call closed nn dimer loop any closed path joining nn sites only, and consisting of an alternation of
dimers and absence of dimers between those nn sites.

21In Ref. [90], it is shown that states consisting of dimers joining nn sites capture the main properties
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require a maximal number of CnnDLs of a specific length? In order to answer this question,
we shall examine the relevance of the non-resonating configurations of the crystals with
dimers between nn sites only (i.e. [c1], [c1]

H2 , [c2], [c2]
P2 , [c3], [c4], and [c5]) as a function

of the number of CnnDLs of lengths of 6, 8, 10, and 12 lattice spacings they contain. We
distinguish between the CnnDLs of type I that go from the starting site back to itself, and
the CnnDLs of type II that go from the starting site to one of its images (belonging to a
copy of the sample the starting site belongs to). This distinction can be important since
CnnDLs of type II are suppressed in the infinite system. Table 4.5 gives the number of loops
of the different lengths and of both types in all the crystal configurations we have listed
above. The next step is to quantify the relevance of a crystal configuration with a relevance

type/length I/6 I/8 I/10 I/12 II/6 II/8 II/10 II/12
[c1] 2 24 6 47 0 3 19 29

[c1]
H2 3 17 6 63 0 0 22 37

[c2] 0 14 0 100 0 0 0 83
[c2]

P2 0 14 0 101 0 0 0 83
[c3] 0 27 4 33 0 2 14 35
[c4] 2 18 8 67 0 0 20 48
[c5] 0 27 10 44 0 0 15 60

Table 4.5: Number of closed dimer loops of type I and II and of length of 6, 8, 10, and 12 lattice
spacings in the non-resonating configurations of the crystals containing dimers between nn sites
only.

parameter. For that purpose, we define the relevance Rel([ci], τ) of some configuration [ci]
as the deviation from one-half of the proportion of connected dimer correlations Eq. (4.2)
having the good sign in the circled states of the spectrum on the top of Fig. 4.18, among
the correlations stronger than some fixed threshold τ

Rel([ci], τ) :=
1

N

∑
s

∣∣∣∣∣∣
∑
〈k,l〉

∑
〈k′,l′〉

Θ [|Cs(k, l, k
′, l′)| − τ ] Θ

[∣∣C[ci](k, l, k
′, l′)

∣∣− τ
]

{
Θ
[
Cs(k, l, k

′, l′)C[ci](k, l, k
′, l′)

]
− 1/2

} ∣∣∣∣∣∣,
∑
〈k,l〉

(4.11)

of the ground state of the spin-1/2 KAF, it makes thus sense to pay a special attention to dimer bonds
joining nn sites only.
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where s runs over those N circled states in the spectrum on the top of Fig. 4.18 belonging
to IRREPs that contribute to the VBC configuration [ci] (N ≤ 12 since there are 12
circled states), Cs(k, l, k

′, l′) is the connected dimer correlation Eq. (4.2) in the circled
state s, C[ci](k, l, k

′, l′) is the connected dimer correlation computed with the approximation
Eq. (4.10) in the crystal configuration [ci], and Θ is the Heaviside step function

Θ(x) :=

{
1 if x > 0
0 if x ≤ 0

, x ∈ R.

The relevances Rel([ci], τ = 0.005) and Rel([ci], τ = 0) are shown in Fig. 4.21 as a function
of the total number of CnnDLs (i.e. CnnDLs of type I and II) for every non-resonating
VBC configuration with nn dimers. Loops of length 6 are referred to with green symbols,
loops of length 8 are referred to with red symbols, loops of length 10 are referred to with
blue symbols, and loops of length 12 are referred to with black symbols; the number of loops
is rescaled in the first three cases for the sake of clarity. The different symbols correspond
to different crystal configurations.

It is difficult to draw a final conclusion from Fig. 4.21. One can nevertheless see that
– provided that the relevance is large enough, i.e. above the black colored region – both
relevances Rel([ci], τ = 0.005) and Rel([ci], τ = 0) exhibit a propensity to increase with
the number of CnnDLs of length of 12 lattice spacings (black dashed lines), but we did
not find any VBC configuration with a particularly high number of such CnnDLs that
could allow us to verify this hypothesis. Notice furthermore that Rel([ci], τ = 0.005) and
Rel([ci], τ = 0) behave quite similarly: the signal is not stronger or significantly different
if correlations weaker than 0.005 are discarded.

4.4.3 Conclusion

Motivated by the results from Section 4.3, in which dominant correlations of the dimer
type have been pointed out, we have identified those lowest-lying singlet states of the
36-site sample of the spin-1/2 KAF which have strong dimer correlations, and probed
the relevance of various VBC configurations for describing the low-energy physics of that
model (including the famous VBC by Marston & Zeng, and the one by Syromyatnikov &
Maleyev). Wherever the cut-off is put in the spectrum of the 36-site sample, the set of
IRREPs corresponding to the lowest-lying states of this sample does match none of the sets
of IRREPs that are compatible with any of the crystal configurations we have studied; this
may be due to the influence of closed loops – we pointed out in the part 4.3.1 of Section 4.3
– which is strong even in the 36-site sample. Some of the VBCs nevertheless provide a good
description of the spatial patterns of dimer correlations in those lowest-lying states having
large overall dimer correlations (i.e. dimerized), revealing that several VBC prototypes are
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Figure 4.21: Relevances Rel([ci], τ = 0.005) (bottom) and Rel([ci], τ = 0) (top) for every non-
resonating VBC configuration with nn dimers as a function of total number of closed dimer loops,
for loops of length of 6 (green), 8 (red), 10 (blue), and 12 (black) lattice spacings. Notice that the
number of loops of lengths 6, 8, and 10 is rescaled (multiplied by 67, 8, and 8 respectively) for
the sake of clarity. The dashed lines are least squares fits performed by discarding the symbols
inside the black region, which correspond to low relevance. Symbols in the region Rel < 10 are
not displayed.

still competing on the largest available sample. It seems moreover – but remains at a quite
speculative stage – that the higher the number of closed dimer loops long by 12 lattice
spacings in a VBC configuration, the higher its relevance.

Note that it remains an open question to understand why in certain IRREPs of the 36-
site sample – for instance [Γ, A1] or [M,A2] – the lowest state does not have strong dimer
correlations while higher ones (within the same IRREP) do. If a VBC was stabilized,
we would actually expect a strong signal in the lowest among the low-lying states of the
compatible IRREPs.
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4.5 Entanglement entropy
This section is devoted to the investigation of the low-energy physics of the spin-1/2 KAF
by probing a fundamental property of quantum states: entanglement (see Ref. [138] for
a detailed introduction). This quite intriguing trait of quantum mechanics is the essence
of correlations in quantum many-body states. Entanglement is also a key concept in
quantum information theory [139], and the problem of measuring and quantifying it is a
field of research of its own; in this section, we shall quantify the entanglement between a
block and its environment using the so-called von Neumann entanglement entropy. Studies
of entanglement entropy have enjoyed a great interest since many years [140–143], which
is benefitting from both the new perspectives of quantum information theory, and the
realization of their efficiency for describing quantum phase transitions, especially in low
dimensional quantum systems (see Refs. [143; 144] and references therein).

Entropy is a concept originally coming from thermodynamics, and applied across in-
formation theory, mathematics, and various fields of physics, including condensed matter
physics. The entanglement between one block and its complement – say A and Ā – can be
measured by the Von Neumann entropy of block A, defined by

S(A) := −Tr(ρA ln ρA),

where ρA is the reduced density matrix of block A. S(A) is identical to S(Ā), and ranges
from 0 if A is uncorrelated to its environment, toN ln(2S+1) (N being the number of spin-S
sites enclosed in A) if the entanglement is maximal. In the case of spins S = 1/2, the upper
bound on the block entropy per site is thus ln 2. Computation of block entropies in some
given quantum state provide important informations about its nature: a significantly high
entropy means that the block is strongly correlated (and thus entangled) to its environment,
whereas a low entropy indicates that the state in question is close to a tensor product
between the block and its environment, i.e. has a large overlap with the set A ⊗ Ā. A
simple illustration of two maximally entangled spins-1/2 is for instance provided by the
singlet state

(| ↑ ⊗ ↓〉 − | ↓ ⊗ ↑〉)/
√

2.

In contrast, the two spins in the triplet state

| ↑ ⊗ ↑〉

are uncorrelated.
Often, one is rather interested in the scaling of the entanglement entropy when the

considered block grows in size. For quantum chains for instance, the scaling of entanglement
reflects to a large extent the critical behavior of the quantum many-body system: critical
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spin chains are known to have entanglement entropy that diverges logarithmically in the
block size [143; 145–147] with an universal coefficient proportional to the central charge
c of the associated conformal field theory. The von Neumann entropy S(A) of a block A
enclosing L sites in a chain of N sites with periodic boundary conditions is [148–150]

S(A) =
c

3
ln

[
N

π
sin

π(L/a)

N

]
+ b

N→∞−→ c

3
ln(L/a) + b D = 1 (4.12)

where a is the lattice spacing and b is a non-universal constant. Away from the critical
point, the entanglement entropy saturates to a finite value Ssat(A) which is related to the
logarithm of the correlation length ξ as [143]

Ssat(A) =
c

3
ln(ξ/a) + b′ D = 1.

There are logarithmic violations of the law Eq. (4.12) in critical 1D systems and some
higher dimensional fermionic systems. The specific manner with which the area law is
violated is tied to certain universal properties of the phase or critical point. In some cases,
important informations about the phase can be revealed by studying the correction to the
area law, for example this is the case for topologically ordered phases [151; 152].

The natural question arising now is how does the entropy scale in higher dimensions?
The scaling of entanglement entropy was in fact formerly studied in the context of quantum
field theory and black hole physics. There, the systems have typical dimensionalities D >
1. There are however only a few results on the behavior of entanglement entropy above
one spatial dimension [153–158]. One might be tempted to think that the entropy of a
distinguished block in a D > 1 system will possess an extensive character in the volume
of the block. Such a behavior – referred to as a volume scaling – is generally observed for
thermal states. Instead typical ground states fulfill an area law22: if a quantum state has a
finite correlation length, then the entropy of a given block in the system is proportional to
the area of the common boundary between the block and its environment (see Ref. [159] for
some rigorous results, and Ref. [160] for a complete review). In a system of dimensionality
D > 1, the von Neumann entropy S(A) of a block A having a boundary of area A obeys
the area law

S(A) = C
A
aD−1

+ b′′ D > 1. (4.13)

In the law Eq. (4.13), the proportionality coefficient C is sensitive to the lattice spacing
a, and is therefore non-universal. So, in contrast to the 1D case Eq. (4.12), the leading
term in Eq. (4.13) for the entanglement entropy in higher dimensions cannot be used to
characterize various critical points.

22Note that the 1D result Eq. (4.12) is also an area law (the area of some block in 1D does not depend
on its length) to which a logarithmic correction has been added. The consequence of this correction is that
entanglement pervades the system at any distance, not staying just at the point-like borders of the block.



92 Antiferromagnetic spin-1/2 Heisenberg model on the kagomé lattice

4.5.1 Block entropies in the low-energy states

Block entropies in the ground state

We study here the entropy of various kinds of blocks with sizes ranging from 2 up to 5 sites
in the ground state of the samples we consider, and identify the configurations of blocks
exhibiting the lowest entropies. This identification work is important since – as explained
above – blocks with a particularly low entropy can be seen as the “elementary bricks” that
“build up” the state.

Fig. 4.22 shows block entropies for all possible blocks containing 2 (upper left panel),
3 (upper right panel), 4 (lower left panel), and 5 (lower right panel) sites in samples
as large as possible (numerically tractable). Colors of the symbols indicate the number
of nn spin pairs among each possible pairing of sites one can imagine within the blocks.
Orange/black/red/green/blue/magenta/brown symbols indicate that there are respectively
0/1/2/3/4/5/6 nn spin pairs. Apart from some exceptions we shall discuss further which
are due to the finite nature of the samples, symbols with the same color collapse onto
a same “pile” showing that the entropy of a given block is essentially a function of the
number of nn spin pairs within it, and is nearly independent on the distance between the
sites as soon as they are not nn. This is at least clear for the largest samples s242, s30,
and s36. Moreover, the piles of some given color are aligned at a similar entropy value all
panels together, and for orange symbols – corresponding to blocks without any nn spin pair
– the entropy per site is close to its upper bound ln 2. This leads to the conclusion that
as long as two spins are not nn, they are very weakly correlated; and that the correlation
length in the system is quite small, less or of the order of one lattice spacing.

In the paragraphs below, we identify the blocks realizing the lowest entropies; their
configurations in space are depicted in turquoise in Fig. 4.22. The peculiarities related
to the topology of every sample – in particular the consequences of closed loops on the
entropy – are discussed as well.

Blocks with 2 sites – Consider the upper left panel in Fig. 4.22. The two sites
forming the blocks do either be nn (black symbols) or do not (orange symbols). In the case
of blocks built on two nn sites – i.e. bond-shaped blocks – the direction the bonds point in
is indicated in the panel (turquoise double arrows). Referring to Table 4.1 of Section 4.2,
one notices that the entropies are particularly low for blocks pointing in the direction of
short closed loops. Spins within such blocks tend to align antiferromagnetically, being
roughly insensitive to the configuration of other spins outside the block, and thus weakly
correlated to the exterior. This fact is strongly marked for samples s181 and s241 which
have only one “preferred” direction. We have also identified the lowest orange symbols for
those two samples s181 and s241, since they exhibit a particularly low entropy. It turns out
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Figure 4.22: Block entropies in the ground state for all possible blocks containing 2 (upper left
panel), 3 (upper right panel), 4 (lower left panel), and 5 (lower right panel) sites. Colors of the
symbols indicate the number of nn spin pairs among each possible pairing of sites within the blocks
(orange/black/red/green/blue/magenta/brown symbols indicate 0/1/2/3/4/5/6 nn spin pairs).
The red dashed lines show the upper bound on the entropy in each panel. The configurations of
particular interest which exhibit a low entropy are depicted in turquoise beside the points they
are attached to. In the upper right panel, turquoise elementary triangles pointing upwards or
downwards are attached to the entire set of green points. Blocks corresponding to the capital
turquoise letters in the lower right panel are defined in Fig. 4.23. It is not possible to build blocks
of 5 sites with 0 or 1 pair of nn sites in s12.

that in both cases, the two sites forming them are located at two opposite corners of an
elementary hexagon (see turquoise draw in the panel). They form a “superbond” (whose
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length is larger than one lattice spacing) that still points in the direction of the shortest
closed loop. We see therefore that the peculiar topologies of s181 and s241 have strong con-
sequences on the block entropies: in those samples, the entropy does not only depend on
the number of nn pairs within the blocks, but the way the blocks are directed is important
as well. Aligning a block in the direction of the (unique) shortest loop significantly lowers
its entropy.

Blocks with 3 sites – Consider the upper right panel in Fig. 4.22. The lowest en-
tropies are realized for blocks represented by green symbols and is roughly independent
on the sample under study. Such blocks correspond to upwards and downwards directed
elementary triangles. Regarding the lowest red symbols on the other hand, they are sig-
nificantly low in entropy for samples s181 and s241, and roughly constant for the other
samples. As expected from the above arguments, the blocks with low entropies for s181

and s241 consist of three sites that are aligned along the direction of the shortest closed
loop (depicted in turquoise).

Blocks with 4 sites – Consider the lower left panel in Fig. 4.22. The lowest blue
symbols representing blocks with minimal entropy are particularly low for s181 and s241,
and roughly at the same height for the other blocks. As shown in turquoise in the panel,
they correspond to blocks containing four sites that are aligned along the direction of the
shortest closed loop in these two samples.

Blocks with 5 sites – Consider the lower right panel in Fig. 4.22. If topological
effects do not (or do only weakly) bias the result, blocks corresponding to the lowest en-
tropies are butterflies directed in each of the three possible directions which are defined in
Fig. 4.23. This is the case for s12, s242, and s30.

A B C

Figure 4.23: Blocks of 5 sites with the highest number of nn spin pairs (6 pairs, brown symbols
in Fig. 4.22). They consist of butterfiles that point in the three possible directions.
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If one direction is preferred – like in s181 or s241 – the ideal block minimizing the en-
tropy would consist of five sites that are aligned along this preferred direction. However,
since the topologies of these two samples do allow the alignment of a maximum of four
sites along the preferred direction ↗ (for s181) or ↖ (for s241), the last site has to be
chosen in another direction, as depicted in turquoise in the panel. Furthermore, the three
butterflies in Fig. 4.23 are no longer equally favored.

Comparison with ordered systems – It is interesting to compare the block en-
tropy results in the ground state of the spin-1/2 KAF with those in ordered systems, like
the ground state of the spin-1/2 J1–J2 model on the square lattice (which has the same
coordination number 4 as the kagomé lattice) – its phase diagram is given in the beginning
of Subsection 3.6.2 – or the spin-1/2 KAF with an additional J2/J1 = 1 interaction stabi-
lizing the q = 0 Néel order [62]. Block entropies in these systems are shown in Fig. 4.24.
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Figure 4.24: Block entropies for all possible blocks containing 4 sites in the ground state of the
J1–J2 model on the square lattice (samples of 32 and 36 sites with diamond-shaped and 6 × 6-
square unit cells respectively) for J2/J1 = 0.3, J2/J1 = 0.55, and J2/J1 = 1 (the three rightmost
panels), and in the ground state of the J1–J2 model on s36 with J2/J1 = 1 (q = 0 Néel order)
and J2/J1 = 0 (“regular” Heisenberg model) (leftmost panels). The dashed red line shows the
location of the upper bound 4 ln 2 on the entropy for blocks with four spins-1/2. The colors are
defined as in Fig. 4.22.

In the case of the square lattice, each of the three phases has its own entropy behavior:
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in the (π, π) Néel ordered phase (J2/J1 = 0.3), the entropy is roughly a function of the
number of nn spin pairs within the blocks, and the upper bound 4 ln 2 is not reached for
blocks without nn spin pairs (orange symbols). The behavior is similar in the disordered
phase (J2/J1 = 0.55), but the piles are narrower for every color, and the entropies are
shifted upwards such that orange symbols do reach the upper bound, as expected in a
phase without order. As in the (π, π) Néel ordered phase, the orange symbols do not reach
the upper bound in the collinear ordered phase (J2/J1 = 1); the behavior is nevertheless
quite different: correlations are strong between nnn spins (instead of nn spins in the (π, π)
phase), resulting in the extent of orange symbols down to very low entropy values, and the
entropy is no longer a function of the number of nn spin pairs within the blocks. This is
easily understood by taking a look at the spin correlation pattern (see for instance Fig. 3.9
in Section 3.6). The behavior of the KAF with stabilized q = 0 order is similar.

Regarding the “regular” J2/J1 = 0 KAF we study, it behaves like the J1–J2 model
on the square lattice in its disordered phase: the entropy is a function of the number of
nn spin pairs within the blocks, and the upper bound is reached by some of the orange
symbols (blocks without nn spins). This comparison therefore sustains the fact that the
KAF is disordered (and potentially a VBC).

Block entropies in the low-lying states

Once the behavior of block entropies in the ground state is understood and the blocks
corresponding to the lowest entropies are identified, it is interesting to investigate whether
a similar behavior is recovered in the low-lying excited states of the spin-1/2 KAF. The
study of the evolution of entropies when going from the ground state to an excited one is
of great interest: as illustrated in Fig. 4.24 with the J1–J2 model on the square lattice,
the overall behavior of the block entropies strongly depends on the type of ordering which
is realized. Similar block entropies would mean that the two states would have the same
“amount of disorder”. In contrast, if the excited state was more disordered than the ground
state, it would have higher block entropies. The left panel of Fig. 4.25 shows block entropies
in the ground state of all samples, but the two largest ones. Entropies are computed for
all possible blocks containing 3 sites one can build in those samples. Colors of the symbols
are defined as in Fig. 4.22. The right panel of Fig. 4.25 displays the same informations
as the left one for the five lowest-lying states belonging to the momentum sector of the
ground state for sample s30, and for the states of s36 in IRREPS [Γ, A1], [Γ, A2], [Γ, B1],
and [Γ, B2] (arbitrary choice) which are within the spin gap.

We put forward the interesting fact that for s30 as well as for s36, block entropies in
the lowest-lying states have roughly the same values as in the ground state for all kinds
of blocks. This result agrees with the conclusion we drew in Section 4.4 that some of the
lowest-lying states of the spin-1/2 KAF are dimerized while others (like the ground state)
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Figure 4.25: Block entropies for all possible blocks containing 3 sites in the ground state of
s12, s181, s182, s241, and s242, and in some low-lying states of s30 (in the momentum sector
of the ground state) and s36 (in IRREPS [Γ, A1], [Γ, A2], [Γ, B1], and [Γ, B2]). The dashed red
line shows the location of the upper bound 3 ln 2 on the entropy for blocks with three spins-1/2.
Colors of the symbols are defined as in Fig. 4.22.

are completely disordered (spin liquids with dimer correlations falling quite fast): in both
cases, the correlation between non-nn spins must be very weak. In that sense, the VBC
scenario is compatible with Fig. 4.25.

Notice that the size effects are visible mostly in the left panel of Fig. 4.25, i.e. for
samples smaller than s30, for which the strength of the correlation between non-nn spins
is noticeable due to the smallness of those samples (in s12, the orange symbols are well
below the red upper bound). As the size of the sample increases, the green, red, black,
and orange piles become more and more narrow and “converge” to the piles of s36. The
piles we get for s36 are thus representative of the thermodynamic limit, and it is a general
property that the low-lying states of our model have a quite short correlation length.
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Evolution of block entropies with the temperature

The lowest-lying excited states of the spin-1/2 KAF are shown above to roughly have the
same block entropies as the ground state. The natural question that now arises is what
happens at finite temperature, i.e. in thermal states23? Block entanglement entropy at
finite temperature was introduced in Ref. [161] (where it is called thermal entanglement)
in 2001 for the study of the 1D isotropic Heisenberg model. Entanglement entropy should
not be confused with the entropy due to the lack of knowledge about the microstates of the
system24 (which – in contrast to entanglement entropy – vanishes at zero temperature).

Fig. 4.26 shows the evolution of the block entropies with the temperature T (the colors
are defined as in Fig. 4.22) on sample s12. T ranges from 0 up to J/kB. Notice that at
T = J/kB, states up to excitation energy J get a nonnegligible Boltzmann weight. This is
well beyond the excitation energy of the states whose block entropies we have displayed in
Fig. 4.25, the highest of which being the 4th excited state of IRREP [Γ, A1] of sample s36
with the excitation energy ∼ 0.15J � 1J (see spectrum Fig. 4.5, right-hand side).

The four panels in Fig. 4.26 resemble one another: the curves are flat just above T = 0,
and exhibit a sharp increase between T = 0.02J/kB and 0.1J/kB. There is an inflection
point around T = 0.1J/kB, and the curves increase much more slowly beyond it. Note
that some of the orange curves even exhibit a slight local maximum around T = 0.1J/kB.
At large temperature, all curves approach the upper bound (dashed red lines).

Physically, an increasing entropy is related to an increasing number of disordered states
having a nonnegligible Boltzmann weight. Thus, the more dense the spectrum (i.e. the
higher the specific heat), the faster the entropy increase. It is thus not surprising if the
specific heat Fig. 4.27 does sharply increase in the same region T ∈ [0.02, 0.1]J/kB as
the block entropies do. The specific heat of the spin-1/2 KAF is well known to exhibit
a double peak structure at low temperature [81; 101; 102; 104; 162], which is insensitive
to large magnetic fields [81] (i.e. is the result of a large density of non-magnetic singlet
states). These two peaks lie at T ≈ 0.1J/kB and T ≈ 0.7J/kB in the case of sample s12,
see Fig. 4.27. The T ≈ 0.1J/kB peak is roughly located at the inflection point of the block
entropies, whereas the T ≈ 0.7J/kB one is not foreseeable from Fig. 4.26. Hence, the high
density of states responsible for the peak at T ≈ 0.7J/kB do not significantly increase the
disorder that was already existing below the T = 0.7J/kB point: there is a huge amount of
disordered states with excitation energies well below T = 0.7J/kB that presumably partly

23Thermal states are mixed states with contributions from the entire spectrum, given by the Boltzmann
weights.

24In statistical mechanics, the entropy quantifies the amount of uncertainty which remains about a
system, after its observable macroscopic quantities (such as temperature, pressure and volume) have been
taken into account. For a given set of macroscopic variables, the entropy measures the degree to which
the probability of the system is spread out over different possible microstates.
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Figure 4.26: Evolution of the Von Neumann block entropies with the temperature for sample
s12 for all possible blocks with 2 sites (upper left panel), 3 sites (upper right panel), 4 sites (lower
left panel), and 5 sites (lower left panel).

“screen” the effect of the disordered states with higher excitation energies.

4.5.2 Scaling of block entropies: relevance of the area law

We aim here to verify the area law Eq. (4.13) governing the scaling of the entanglement
entropy in systems with dimensionality D > 1. The area of the boundary of a given block
is defined as the number of interactions connecting sites inside the block to the exterior.
On the kagomé topology, a block with N sites and P pairs of nn sites has 4N−2P outgoing
interactions (each spin interacts with four nearest neighbors).
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Figure 4.27: Specific heat as a function of the temperature for sample s12, from Ref. [101].

We have computed block entropies in the ground state for all possible blocks with 3 and
4 sites on samples s242, s30, and s36, for all possible blocks with 5 sites on samples s242 and
s30, and for all possible blocks with 6, 7, and 8 sites on the sample s242. These entropies
are shown in Fig. 4.28 as a function of the area of the blocks; the area law is obviously well
verified. Data from the different samples are roughly superimposed. We stress that we
are close to the ideal case where the amount of entropy that is gained by a fixed increase
in area is independent on the block itself, since the slopes of the black, red, green, blue,
magenta, and turquoise dashed straight lines are very similar one to another. The area law
holds if the typical dimensions of the blocks are (much) larger than the correlation length
of the system. Two kinds of blocks are therefore slightly off since they do not fulfill this
requirement: the blocks with the smallest areas on the one hand, and blocks consisting of
several “subblocks”, one (or some) of which having a very small area. Those blocks with
4 sites (red) at area 10 which are below the red dashed line do for instance belong to this
latter category. They are actually made of 3 sites forming a perfect elementary triangle,
plus one isolated site. This isolated site is indeed the “subblock” whose size is of the order
of the correlation length (roughly one lattice spacing), whence the disagreement with the
area law. The fact that blocks with typical dimensions of 2 or 3 lattice spacings fulfill
the area law indeed shows that one lattice spacing is probably a good estimate for the
correlation length in this model. A further necessary requirement for the area law to hold
is that the blocks are much smaller (in term of number of enclosed sites) than the sample
they are built on. This is less and less true as the size of the blocks becomes larger and
larger.

Let us pay some attention to the configurations with maximal areas for every size of
blocks (i.e. for every color). These blocks do not contain any nn spin pair and thus have
area 4N . Sites inside them are therefore minimally correlated (and maximally correlated
to the environment of the block). When enlarging one of these blocks by one site (such
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Figure 4.28: Block entropies vs areas in the ground state for all blocks containing 3 and 4 sites
on s242 (◦), s30 (�), and s36 (4), all blocks containing 5 sites on s242 and s30, and all blocks
containing 6, 7, and 8 sites on s242. Dashed black, red, green, blue, magenta, and turquoise
straight lines are guide to the eye highlighting the linear dependence. The brown dashed-dotted
straight line shows the entropy evolution for minimally entangled blocks through the black, green,
and magenta symbols at minimal areas. The orange dashed-dotted line has equation y = x· ln 2

4 and
is in good agreement with the entropies of maximally entangled blocks (meaning a contribution
to the entropy of ln 2 per site).

that the new block still has a maximal area), the gain in entropy is consequently ∼ ln 2,
i.e. the entropy of one single independent spin S = 1/2. This is confirmed by the fact that
their symbols in Fig. 4.28 are roughly onto the y = x · ln 2

4
dashed-dotted orange straight

line that represents the extreme case of blocks containing uncorrelated sites.
We now switch to configurations with minimal areas, i.e. with area N + 3 for blocks

having an odd number of sites and N+4 for those having an even number of sites. Symbols
representing blocks of 3, 5 and 7 sites are roughly aligned (brown dashed-dotted straight
line in Fig. 4.28) but they are not aligned with symbols representing blocks with even
number of sites (4, 6, and 8), which are thus discarded for drawing the brown line25. Its
slope ∼ 0.39 yields the gain in entropy per additional site26 (such that the new block still

25The slope would nevertheless be similar if only even blocks were considered.
26Actually, it is half the entropy the block gains when two sites are added.
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has a minimal area), which is roughly ln 2
0.39

≈ 1.8 times as less as the gain in entropy per
additional site for blocks with maximal entropies.
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Block A

• area is small

• sites inside the block are weakly
correlated to the exterior, i.e. en-
tanglement with the environment
of the block is small

• hence block entropy is small

• sites inside the block are “strongly”
correlated between them

Block B

• area is large

• sites inside the block are strongly
correlated to the exterior, i.e. en-
tanglement with the environment
of the block is large

• hence block entropy is large

• sites inside the block are separated
by “large” distances and thus are
nearly uncorrelated

Figure 4.29: Case of the spin-1/2 kagomé antiferromagnet. The volumes (i.e. number of sites)
of blocks A and B are identical but the area of block B is much larger than that of block A,
which amounts to a stronger entanglement with the environment and thus a larger block entropy.

A conceptually good picture of the structure of blocks with small and large entropies
is provided by Fig. 4.29: blocks with small entropies look basically like one single compact
block (small area), whereas those with large entropies are composed by a lot of small
subblocks27 (large area). In the extreme case, blocks with maximal entropies consist of

27By “a lot of small subblocks”, we mean that two sites belonging to two different subblocks are not nn.
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subblocks containing one site each. It is always possible to enlarge them by adding one
isolated site – resulting in a gain in entropy of ∼ ln 2 = 0.69315 – for recovering a new
block with maximal entropy. Regarding blocks with minimal entropies, it is physically not
possible to enlarge them by one (or more) site in such a way that an increase in entropy is
avoided. The enlargement of blocks with minimal entropies to larger blocks with minimal
entropies is necessarily accompanied by an increase in the entropy – by 0.39 as seen above –
which is the minimal amount of entropy (i.e. minimal entanglement with the environment)
a block is obligated to gain as one site is added to it.

4.5.3 Conclusion
We have identified the blocks associated to the lowest entropies for various sample topolo-
gies, and shown that in the low-lying singlet states of the spin-1/2 kagomé antiferromagnet,
block entropies essentially depend on the number of pairs of nearest-neighboring sites within
the block in question (revealing a correlation length of the order of one lattice spacing), and
neither depend on the energy of the state which is investigated, nor on the sample. These
results support the VBC scenario that was initially put forward in Section 4.3 and more
deeply investigated in Section 4.4. Moreover, the consequences of closed loops that were
revealed in Section 4.3 also bias block entropy calculations, that turn out to be strongly
dependent on the topology of the sample which is studied. Performing simulations on
blocks containing up to 8 sites, we have shown that entanglement entropy in the spin-1/2
kagomé antiferromagnet scales with the area of the blocks, i.e. the “area law” is fulfilled.
We have also discussed the way the entropy evolves with the temperature, and with the
size of minimally and maximally entangled blocks.





CHAPTER 5

Conclusion & outlook

In this thesis, we have investigated two spin-1/2 Heisenberg models – namely the ferromag-
netic frustrated chain in a magnetic field and the kagomé antiferromagnet – by means of
a novel approach, which consists of extracting the dominant correlations between two dis-
joint blocks in a quantum many-body system from the correlation density matrix (CDM)
between those blocks. The states were obtained by exact diagonalization as well as by
the density matrix renormalization group algorithm. The CDM approach was recently
introduced by Cheong and Henley [25]; it is non-biased and does not require any a priori
knowledge of the system. We have developed a mathematical framework for utilizing this
method, and derived several of its mathematical properties and features, in particular the
consequences of symmetries are discussed. We have also identified the states providing the
maximal correlation between the two blocks, and studied how correlations and entangle-
ment are related one to another. For illustrative purposes, the CDM method is applied to
simple models whose physics is already understood, at zero as well as at finite temperature.

Our study of the ferromagnetic frustrated spin-1/2 Heisenberg chain in a magnetic field
has revealed a vector chiral phase breaking the parity symmetry at low field and a sequence
of spin multipolar Luttinger liquid phases at higher field. This latter phase exhibits a
crossover: it is dominated by spin density wave correlations at intermediate field, and by
multipolar correlations close to the saturation field. Not content with solving the phase
diagram of this model, we have also clarified the underlying mechanism responsible for the
presence of the chiral and the multipolar phases: it turns out that both of them result from
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the destabilization by quantum fluctuations of a spiral state, which is the classical ground
state in the absence of magnetic field. We have moreover shown that the type of multipolar
phase which is realized in the different coupling parameter regimes is predictable from the
zero field physics. It was well known that a spiral phase may destabilize towards a vector
chiral phase, but the idea that it may be responsible for the emergence of multipolar phases
has never been put forward yet, although it is compatible with several phase diagram that
have already been reported, showing a multipolar phase in the neighborhood of a spiral
state. The discovery of this mechanism is crucial since it will permit to possibly predict
the stabilization of multipolar phases in other models which have a spiral-like phase in a
certain regime, but whose phase diagram is not completely understood yet.

Regarding the kagomé antiferromagnet, we have identified the closed loop effect which
is responsible for the structure of the spin correlations in the ground state of the different
samples we have studied, and we have shown that finite size effects due to closed loops are
strong, even in the largest samples. CDM analyses of the dominant correlations between
blocks of 2,3, and 6 sites have pointed out the scenario of a valence bond crystal (VBC) to be
the most credible candidate for governing the low-energy physics of this highly frustrated
model. The comparison of the dimer correlations in the lowest-lying states of its spectrum
with the dimer correlations in different kinds of VBCs has shown a good agreement in sev-
eral cases; we have mentioned the fact that the lack of a perfect agreement might be indeed
due to the finite size effects. We have finally studied the entanglement entropy of blocks of
various sizes in the ground state of the kagomé antiferromagnet, and identified the blocks
corresponding to the lowest entropies, being those which are minimally entangled to their
environment. Paying some attention to block entropies in the lowest-lying states as well,
we have seen that on the one hand – as expected – two sites are nearly disentangled one
to another as long as they are not nearest neighbors, and on the other hand the entropy of
any kind of block is roughly independent on the energy of the state which is investigated,
which agrees with the VBC scenario at low-energy. Furthermore, we have checked that the
ground state of the kagomé antiferromagnet fulfills the area law.

It should be stressed that the CDM approach this thesis is focused on is very promising,
among other things because it is not restricted to spins-1/2 – some higher-spin systems
can be studied as well – and it is moreover not restricted to spin systems themselves. This
systematic CDM method allows to tackle all kinds of quantum many-body systems one
is likely to encounter in condensed matter physics. In his seminal paper introducing the
method [25], C.L. Henley illustrates it with the study of a toy model of spinless fermions
on a two-leg ladder. In another paper [163], Münder and collaborators show how this
method can be used for studying a class of spinless extended Hubbard model for fermions.
There is therefore no doubt that this novel approach is a significant progress in the field of
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computational methods applied to condensed matter physics.





APPENDIX A

Numerical diagonalization techniques

A.1 Exact Diagonalization (ED)

Different kinds of Exact Diagonalization (ED) algorithms are existing, each with its partic-
ularities [Lanczos (C. Lanczos, 1950) [172], “modified Lanczos” (E. Gagliano et al., 1986)
[173], Davidson (E.R. Davidson, 1975) [174], LAPACK libraries for full diagonalizations
(in ALPS)]. The Lanczos and the Davidson methods build up a small set of basis vectors,
and minimize the energy within the basis. The reduced set of basis vectors is systemati-
cally expanded until convergence is reached. They are efficient at finding a few extremal
eigenvalues and eigenstates of a large sparse hamiltonian matrix H. The Davidson method
utilizes the diagonal elements of H in an attempt to generate an improved reduced basis.
Consequently, if the hamiltonian is at all dominated by its diagonal elements, the Davidson
method will probably converge more quickly than the Lanczos method (on which we shall
focus in this section).

ED algorithms become really powerful only when the Hilbert space is divided into
several symmetry sectors, and the spectrum is computed separately in each of them. We
therefore first give a detailed introduction on how to exploit translational and point group
symmetries in Bravais lattices in the subsections below, and then introduce the Lanczos
algorithm in the last part of this section.
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A.1.1 Why use symmetries for performing ED?

The models we study in condensed matter physics consist of interacting quantum magnetic
moments (spins) that are regularly arranged on a lattice. Numerical investigations can
only be performed on finite samples of the lattice, which we wish to be as large as possible
in order to describe our macroscopic world as precisely as possible. Since the study of
large samples is hampered by the dimensionality of the total Hilbert space (dimensionality
(2S + 1)N for a sample with N spins-S, increasing exponentially fast with N), symmetries
have to be taken into account in order to divide this total Hilbert space into subspaces
which are globally invariant under the action of the hamiltonian we investigate.

If the hamiltonian has periodic boundary conditions for instance, translational invari-
ance can be exploited. If the sample has some reflectional or rotational symmetries – called
point group symmetries – the translationally invariant subspaces can themselves be further
divided into smaller subspaces1. The numerical investigation of “reasonably large” samples
then becomes possible.

A.1.2 Translational symmetries

If the hamiltonian has periodic boundary conditions – thus translational invariance – the
total Hilbert space can be decomposed into subspaces, each of which having an additional
quantum number called momentum, and usually denoted by the vector k. A state belonging
to the subspace of momentum k is such that – if translated by a lattice vector R – it is
multiplied by the phase factor eik·R. Hence, a projector onto the subspace of momentum
k is given by

Πk =
1√
|T |

∑
R∈T

e−ik·RTR (A.1)

where the sum runs over the entire group T of translation operations, and the operator
TR translates a state by the lattice vector R.

The momenta are generally chosen inside the first Brillouin zone2 (BZ) in the reciprocal
space (which is the unit cell of the reciprocal lattice). In the thermodynamic limit of an
infinite sample, the whole continuum of momenta inside the BZ is allowed, but in the case
of finite samples, only a finite number of them – equal to the number of sites in the sample3

– are allowed. They are derived from the primitive vectors spanning the superlattice in the
direct space4. Let us consider various kinds of samples on the square lattice as examples.

1(point group symmetries)×(translational symmetries)=space group symmetries
2We shall argue further why the choice of the Wigner-Seitz cell as BZ suits particularly well.
3Or equal to the number of sites in the sample, divided by the number of sites in the unit cell in the

case of a non-Bravais lattice (e.g. the kagomé lattice, that has a unit cell of three sites).
4The superlattice in the direct space is the “lattice of samples”, i.e. the sample itself is taken as unit
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Sample of 4 sites on the square lattice

We consider here the square lattice with a sample containing 4 sites, as shown in Fig. A.1.
The BZ in the reciprocal space can be chosen to be [0, 2π] × [0, 2π], and the 4 different
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Figure A.1: Sample of 4 sites on the square lattice.

allowed momenta are

k1 = (0, 0) ≡ (2π, 0) ≡ (0, 2π) ≡ (2π, 2π); k2 = (π, 0) ≡ (π, 2π); k3 = (0, π) ≡ (2π, π);

and k4 = (π, π).

The translation operations of the sample are the following ones (4 operations as the sample
contains 4 sites): identity (E), translation by one site along x (Tx), translation by one site
along y (Ty), and the combination of both (TyTX).

Each allowed momentum k is also a representation Γk of the group T = {E , Tx, Ty, TyTX}.
The characters of these (one-dimensional) representations are the multiplicative phase fac-
tors acquired under the action of symmetry operations. They are given in Table A.1.

Γk E Tx Ty TyTx

k1 = (0, 0) 1 1 1 1
k2 = (π, 0) 1 -1 1 -1
k3 = (0, π) 1 1 -1 -1
k4 = (π, π) 1 -1 -1 1

Table A.1: Characters corresponding to the translation symmetries.

cell.



112 Numerical diagonalization techniques

The states belonging to every momentum sector can be derived by construction using
the projector Eq. (A.1). If the sample in Fig. A.1 has for instance a spin-1/2 at each site,
the 16 states in the total Hilbert space are shared as follows (apart from the normalization
factor):

k1 = (0, 0) sector (7 states):
{| ↑↑↑↑〉, | ↑↑↑↓〉+ | ↑↑↓↑〉+ | ↑↓↑↑〉+ | ↓↑↑↑〉, | ↑↑↓↓〉+ | ↓↓↑↑〉, | ↑↓↑↓〉+ | ↓↑↓↑〉,
| ↑↓↓↑〉+ | ↓↑↑↓〉, | ↓↓↓↑〉+ | ↓↓↑↓〉+ | ↓↑↓↓〉+ | ↑↓↓↓〉, | ↓↓↓↓〉}

k2 = (π, 0) sector (3 states):
{| ↑↑↑↓〉 − | ↑↑↓↑〉+ | ↑↓↑↑〉 − | ↓↑↑↑〉, | ↑↓↑↓〉 − | ↓↑↓↑〉,
| ↓↓↓↑〉 − | ↓↓↑↓〉+ | ↓↑↓↓〉 − | ↑↓↓↓〉}

k3 = (0, π) sector (3 states):
{| ↑↑↑↓〉+ | ↑↑↓↑〉 − | ↑↓↑↑〉 − | ↓↑↑↑〉, | ↑↑↓↓〉 − | ↓↓↑↑〉,
| ↓↓↓↑〉+ | ↓↓↑↓〉 − | ↓↑↓↓〉 − | ↑↓↓↓〉}

k4 = (π, π) sector (3 states):
{| ↑↑↑↓〉 − | ↑↑↓↑〉 − | ↑↓↑↑〉+ | ↓↑↑↑〉, | ↑↓↓↑〉 − | ↓↑↑↓〉,
| ↓↓↓↑〉 − | ↓↓↑↓〉 − | ↓↑↓↓〉+ | ↑↓↓↓〉}.

The total Hilbert space is thus divided into 4 subspaces.

Sample of 5 sites on the square lattice

We consider the same lattice as above (the BZ is thus identical), and a sample with 5 sites
as depicted in Fig. A.2. In contrast to the sample of 4 sites, it is not obvious here to guess
which k vectors are allowed. One has to derive them from the primitive vectors which span
the superlattice (i.e which translate the sample onto one of its copies)

a1 = (2, 1), a2 = (−1, 2).

A third z-coordinate is artificially added in this 2D system by redefining

a1 = (2, 1, 0), a2 = (−1, 2, 0), a3 = (0, 0, 1),

whose corresponding primitive vectors in the reciprocal space are

a∗1 = 2π
a2 × a3

a1 · (a2 × a3)
=

2π

5
(2, 1, 0), a∗2 = 2π

a3 × a1

a1 · (a2 × a3)
=

2π

5
(−1, 2, 0),



A.1. Exact Diagonalization (ED) 113

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

x

y

a1
a2

Figure A.2: Sample of 5 sites on the square lattice. The primitive vectors a1 and a2 span the
superlattice.

which yields, after removing the artificial z-coordinate

a∗1 =
2π

5
(2, 1), a∗2 =

2π

5
(−1, 2).

One finds the 5 allowed k vectors by adding/subtracting a∗1 and a∗2 in all possible ways

k1 = (0, 0), k2 = a∗1 =

(
4π

5
,
2π

5

)
, k3 = a∗2 =

(
−2π

5
,
4π

5

)
k4 = a∗1 + a∗2 =

(
2π

5
,
6π

5

)
≡
(

2π

5
,−4π

5

)
, k5 = a∗1 − a∗2 =

(
6π

5
,−2π

5

)
≡
(
−4π

5
,−2π

5

)
.

Two momenta k and k′ are equivalent (i.e. have identical projectors Πk = Πk′ , Eq. (A.1))
if they differ by (a multiple of) (2π, 0) or (0, 2π)5.

The translation operations that act on the sample and their characters for every repre-
sentation Γk are given in Table A.2 (5 translations since the sample has 5 sites). The total
Hilbert space is thus divided into 5 subspaces.

A.1.3 Point group symmetries
Only translational symmetries have been used up to now. It is possible to further reduce
the representations of the translational symmetries group by taking into account the point
group operations, i.e. rotational as well as reflectional symmetries. In concrete terms, each
sector will be described by the good quantum number k and an additional good quantum

5They are derived from the primitive vectors of the lattice (1, 0) and (0, 1) in the direct space, not by
those of the superlattice a1 and a2.
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Γk E Tx Ty T 2
x TyTx

k1 = (0, 0) 1 1 1 1 1
k2 = (4π

5
, 2π

5
) 1 ei 4π

5 ei 2π
5 ei 8π

5 ei 6π
5

k3 = (−2π
5
, 4π

5
) 1 e−i 2π

5 ei 4π
5 e−i 4π

5 ei 2π
5

k4 = (2π
5
,−4π

5
) 1 ei 2π

5 e−i 4π
5 ei 4π

5 e−i 2π
5

k5 = (−4π
5
,−2π

5
) 1 e−i 4π

5 e−i 2π
5 e−i 8π

5 e−i 6π
5

Table A.2: Characters corresponding to the translation symmetries.

number that we shall call M . Globally invariant subspaces are therefore labelled by the
pair [k,M ] which denotes an irreducible representation (IRREP) of the spatial symmetries
group. For a given momentum k, those operations in the point group of the Bravais lattice
that leave k invariant (fixed) in the reciprocal space build the so-called little group Gk

of k, whose representations correspond to M . We can understand at this stage why the
Wigner-Seitz cell suits particularly well as BZ: an important property of the Wigner-Seitz
BZ cell is that it has the same point group symmetries as the sample in the direct space,
which simplifies the task. We give below a concrete example with a sample of 12 sites on
the kagomé lattice.

Sample of 12 sites on the kagomé lattice

The sample we consider is displayed in Fig. A.3 (left). In order to perform Exact Diagonal-
ization (ED), all IRREPs and characters must be determined. The kagomé lattice is not
a Bravais lattice. Its underlying Bravais lattice is the triangular lattice, with a triangular
unit cell (of 3 sites). The first step consists in determining the allowed momentum values
by considering the sample of 12/3 = 4 sites on the triangular Bravais lattice shown in
Fig. A.4.

From the primitive vectors a1, a2 of the lattice, and b1, b2 of the superlattice in the
direct space (see Fig. A.4), one derives the corresponding primitive vectors in the reciprocal
space

a∗1 =
2π√

3

(√
3,−1

)
, a∗2 =

2π√
3

(0, 2) , b∗1 = π
(
1,−1/

√
3
)
, b∗2 = π

(
0, 2/

√
3
)
.

The 4 allowed k vectors are found by adding/subtracting the b∗1 and b∗2 vectors, and are
given by

k1 = (0, 0) , k2 =
(
0, 2π/

√
3
)
, k3 =

(
π, π/

√
3
)
, k4 =

(
π,−π/

√
3
)
,
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Figure A.3: (Left) Sample of 5 sites on the square lattice. The 6 reflectional mirror symmetries
are shown in red, and the center of the 5 rotations is shown in blue. (Right) Allowed k points in
the first Brillouin zone. Note that the k2, the k3, and the k4 sectors will display identical energy
spectra, as they can be recovered one from another by a point group symmetry.
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Figure A.4: Triangular lattice with the primitive vectors a1 = (1, 0) and a2 =
(
1/2,

√
3/2
)
,

and those of the superlattice b1 = (2, 0) and b2 =
(
1,
√

3
)
. The sample – shown in red – has 4

(=12/3) sites.

they are represented in Fig. A.3 (right). Two momenta that differ by a multiple of a∗1 or
a∗2 are equivalent. Note that the Brillouin zone (Fig. A.3, right) has the same point group
symmetries as the sample in the direct space (Fig. A.3, left), namely the symmetry group
of the hexagon.

The translational symmetries of the triangular lattice Fig. A.4 are {E , Ta1 , Ta2 , Ta2Ta1},
where the Ta1 and Ta2 operators translate a state by a1 and a2 respectively. These opera-
tions amount to permuting the sites as shown in Table A.3. The corresponding characters
are shown in Table A.4, we recall that for translations, representations are given by the
allowed momenta values.
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initially (E) 1 2 3 4 5 6 7 8 9 10 11 12
Ta1 4 5 6 1 2 3 10 11 12 7 8 9
Ta2 10 11 12 7 8 9 4 5 6 1 2 3

Ta2Ta1 7 8 9 10 11 12 1 2 3 4 5 6

Table A.3: Action of the translation operations.

E Ta1 Ta2 Ta2Ta1

k1 1 eia1·k1 eia2·k1 ei(a1+a2)·k1

k2 1 eia1·k2 eia2·k2 ei(a1+a2)·k2

k3 1 eia1·k3 eia2·k3 ei(a1+a2)·k3

k4 1 eia1·k4 eia2·k4 ei(a1+a2)·k4

=⇒

E Ta1 Ta2 Ta2Ta1

k1 1 1 1 1
k2 1 1 -1 -1
k3 1 -1 -1 1
k4 1 -1 1 -1

Table A.4: Characters corresponding to the translation symmetries.

Let us now move on with the point group (i.e. rotations and reflections) of the sample.
The 6 reflectional (mirror) symmetries are shown in Fig. A.3 (red) as M1,M2,M3,M4,M5,
and M6. They permute the initial combination of sites as shown in Table A.5. In addition

initially 1 2 3 4 5 6 7 8 9 10 11 12
M1 6 11 7 12 5 1 3 8 10 9 2 4
M2 2 1 6 5 4 3 11 10 9 8 7 12
M3 7 3 2 4 12 11 1 9 8 10 6 5
M4 11 7 3 8 10 6 2 4 12 5 1 9
M5 1 6 11 6 9 2 7 12 5 4 3 8
M6 3 2 1 9 8 7 6 5 4 12 11 10

Table A.5: Action of the reflection operations.

to the reflections, the sample in Fig. A.3 has also 5 rotational symmetries whose center of
rotation is shown in blue. We define the rotation operation Ri such that it rotates the sites
by an angle 2π

6
· i in the counterclockwise direction (i = 1, 2, · · · , 5). The action of R1 is

for instance given in Table A.6, and then R2 = R2
1, R3 = R3

1, R4 = R4
1, R5 = R5

1. Taking
into account the identity operation E as symmetry as well, the point group of this sample
is therefore C6v (symmetry group of the hexagon)

point group = C6v = {M1,M2,M3,M4,M5,M6, R1, R2, R3, R4, R5, E}.
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initially 1 2 3 4 5 6 7 8 9 10 11 12
R1 2 3 7 8 9 1 11 12 4 5 6 10

Table A.6: Action of the rotation operation R1.

The little group of the allowed momenta – i.e. those among the point group operations
leaving these momenta invariant – is

Gk1 = {M1,M2,M3,M4,M5,M6, R1, R2, R3, R4, R5, E} = C6v

Gk2 = {M2,M4, R3, E} = C2v

Gk3 = {M3,M5, R3, E} = C2v

Gk4 = {M1,M6, R3, E} = C2v

Thus, only the zero-momentum sector has the full C6v group as little group. For other
momenta sectors, the little group is C2v, which is a subgroup of C6v. Once the little groups
are found, one refers to a book on group theory for finding the characters.

For k1

The little group C6v divides into 6 classes6, namely

3σv = {M1,M2,M3}
3σd = {M4,M5,M6}
2C6 = {R1, R5}
2C3 = {R2, R4}
C2 = {R3}
E = {E}

with the characters in Table A.7, where the Γi denote the different representations. The
last two representations have dimension 2. In order to perform ED, it is requested to deal
with one-dimensional representations only. For circumventing this problem, both Γ5 and Γ6

can actually be split into two one-dimensional representations by reducing the considered
symmetry group from C6v down to C6 (i.e. by discarding the reflectional symmetries). The
characters of C6 are given in Table A.8.

6Elements A and B in a group belong to the same class if there exists an element R in this group such
that A = R−1BR.
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E C2 2C3 2C6 3σd 3σv

Γ1 1 1 1 1 1 1
Γ2 1 1 1 1 -1 -1
Γ3 1 -1 1 -1 -1 1
Γ4 1 -1 1 -1 1 -1
Γ5 2 -2 -1 1 0 0
Γ6 2 2 -1 -1 0 0

Table A.7: Characters of the C6v group.

E C6 C3 C2 C2
3 C5

6

Γ1′ 1 1 1 1 1 1
Γ2′ 1 -1 1 -1 1 -1
Γ3′ 1 ω ω2 ω3 ω4 ω5

Γ4′ 1 ω5 ω4 ω3 ω2 ω
Γ5′ 1 ω2 ω4 ω ω2 ω4

Γ6′ 1 ω4 ω2 ω ω4 ω2

ω := ei 2π
6

Table A.8: Characters of the C6 group.

Fig. A.5 illustrates how C6 and C6v are related one to another. Γ1′ splits into Γ1 and Γ2,
and Γ2′ splits into Γ3 and Γ4 (in both cases characters are identical for the classes E, C2,
C3 and C6 that are shared by both C6 and C6v, and additional characters are considered
for the reflections).

Reciprocally, if the reflections are additionally assumed in the C6 group7 (which is
actually the case, even though they have been put aside for a while, these reflections do
exist), representations Γ3′ and Γ4′ , as well as Γ5′ and Γ6′ of C6 as identical. By summing the
elements of Γ3′ and Γ4′ , we recover Γ5, and by summing those of Γ5′ and Γ6′ , we recover Γ6.
Therefore as depicted in Fig. A.5, the two-dimensional representation Γ5 can be replaced
by the one-dimensional representations Γ3′ and Γ4′ (which will have the same spectrum
due to the reflectional symmetries) for investigations, and Γ6 can be replaced by Γ5′ and
Γ6′ (with the same spectrum again).

For investigating the k1 momentum sector, ED must thus be performed in IRREPs
[k1,Γ1], [k1,Γ2], [k1,Γ3], [k1,Γ4], [k1,Γ3′ ], and [k1,Γ5′ ]: 6 subspaces have to be considered.

Individual characters arising from translational operations (always 1 in the case of k1)
and from point group operations are multiplied one with another to give the resulting char-

7This amounts to assuming the existence of the k → −k (or ω → ω∗) symmetry.
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Γ
Γ
Γ
Γ
Γ
Γ

1
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3

4

5

6

C6v

Γ1’

Γ2’

Γ3’

Γ4’

Γ5’

Γ6’

C6

Figure A.5: Relations between the representations of the C6 group and those of the C6v group.

acter of the resulting space group operation. The character of [k1,Γ3] w.r. to operation
Ta1R2 for instance is 1 · 1 = 1 (refer to Tables A.4 and A.7).

For k2, k3, and k4

The little group (C2v) of those momenta has 4 classes

σv = {M2}
σv′ = {M4}
C2 = {R3}
E = {E}

with the characters given in Table A.9. Since all the representations of C2v have dimension

σv σv′ C2 E
Γ1 1 1 1 1
Γ2 1 -1 -1 1
Γ3 1 1 -1 -1
Γ4 1 -1 1 -1

Table A.9: Characters of the C2v group.

1, characters in Table A.9 can directly be used for performing ED.
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The energy spectra of these last 3 momenta sectors are degenerate (the momenta can be
mapped one onto another with rotation operations), it is therefore enough to investigate for
instance the k2 sector only. ED must hence be performed in the IRREPs [k2,Γ1], [k2,Γ2],
[k2,Γ3], and [k2,Γ4].

Individual characters arising from translational operations and from point group op-
erations are multiplied one with another to give the resulting character of the resulting
space group operation. The character of [k2,Γ3] w.r. to operation Ta2M4 for instance is
(−1) · 1 = −1 (refer to Tables A.4 and A.9).

A.1.4 Concluding discussion on symmetries

Once the characters of every IRREP are determined for every symmetry operation, one
constructs a basis made of “Bloch states” in the spirit of Eq. (A.1) for every globally
invariant subspace (IRREP). The hamiltonian under study thus has to be diagonalized
in every individual subspace, which is a much easier numerical task than performing the
diagonalization in the total Hilbert space.

A.1.5 The Lanczos algorithm

(C. Lanczos, 1950 [172])

The Lanczos algorithm consists of starting from an initial random vector |ψ1〉8, and it-
eratively building an orthonormal basis {|ψ1〉, |ψ2〉, |ψ3〉, ...} (spanning the so-called Krylov
subspace) of the Hilbert space in which H is tridiagonal. This new basis is recursively
determined by the relations

αn := 〈ψn|H|ψn〉
βn := 〈ψn|H|ψn−1〉

βn+1|ψn+1〉 := H|ψn〉 − αn|ψn〉 − βn|ψn−1〉 for n = 1, 2, 3, ...,

where |ψ0〉 := 0. After the nth step, the projection Hn of H onto the subspace spanned by
the basis vectors {|ψ1〉, |ψ2〉, |ψ3〉, ..., |ψn〉} is given by the (real and symmetric) tridiagonal

8This initial random vector must be chosen inside the symmetry sector that is investigated.
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matrix

Hn =


α1 β2 0 . . . 0

β2 α2 β3
. . . ...

0 β3 α3
. . . 0

... . . . . . . . . . βn

0 . . . 0 βn αn


that is numerically much more efficiently diagonalized than a general matrix. Note that at
the nth step, only the non-zero matrix elements of Hn as well as the three vectors |ψn−1〉,
|ψn〉, and |ψn+1〉 need to be stored.

The spectrum of the growing tridiagonal matrix Hn progressively converges to the
spectrum of H, but the interest of this method resides in the fact that the extremal
eigenvalues converge first. In particular, the lowest eigenvalue of the tridiagonal matrices
Hn converges exponentially fast to the true ground state energy. The two first eigenvalues
of a matrix of size 106 are typically obtained with the machine accuracy in about only
100 iterations. Notice that the accumulation of rounding errors can produce spurious
eigenvalues of the tridiagonal matrices.

With the present day limits one can compute in the absence of magnetic field (Sz
tot = 0)

low-energy spectra of spin-1/2 2D systems containing typically about forty spins using
the space group symmetries. For that purpose, numerical diagonalizations have to be
performed within subspaces spanned by about 2 billion basis states (a higher number of
basis states can be taken into account if the symmetries are not used). Of course in
elevated magnetization sectors (Sz

tot . N/2, where N is the total number of spins) much
larger samples become numerically tractable. Note that its size is not the only criterion
coming into play for selecting a sample, one must also take care that the selected sample
is indeed commensurate with the momentum sector(s) one wishes to investigate. Whether
this is the case or not is also influenced by the choice of the type of closed boundary
conditions (periodic, twisted).

A.2 Density matrix renormalization group (DMRG)
(S.R. White, 1992 [175])

DMRG is a numerical technique for finding accurate approximations to the ground state
and low-lying states of strongly interacting quantum lattice systems. Since its inception
by S.R. White in 1992, DMRG has quickly achieved the status of a highly reliable, precise,
and versatile numerical method in the field. It is remarkable in the accuracy that can be
achieved for one-dimensional systems with open boundary conditions. For example, the
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ground state energy of the spin-1 antiferromagnetic Heisenberg chain on lattices of hun-
dreds of sites can be calculated to an accuracy of order 10−12 with a modest amount of
computational effort [176].

In order to understand DMRG, it is useful to first introduce the Wilson renormalization
group (RG) procedure [177]. Consider a one-dimensional quantum lattice model, and isolate
a portion of the system containing L sites. Here, L is chosen to be small enough so that
the corresponding hamiltonian HL can be diagonalized exactly. The Wilson RG procedure
then proceeds as follows:

1. Diagonalize HL numerically, obtaining the m lowest eigenvalues (discard the largest
ones) and eigenvectors.

2. Transform HL and other operators in the “block” of length L to a new basis consisting
of the m lowest eigenvectors of HL, i.e. form H̄L := O†

LHLOL, ĀL := O†
LALOL, etc...,

where the columns of OL contain the m lowest eigenvectors of HL, and AL is an
arbitrary operator in the block. Note that H̄L is a diagonal m×m-matrix.

3. Add a site to H̄L to form HL+1. In order to do this, the interaction between the block
of length L and the additional site added must be reconstructed.

4. Repeat starting with step 1, substituting HL+1 for HL.

The scheme is depicted pictorially in Fig. A.6. Typically, the number of states m kept at

HL

HL+1

Figure A.6: Scheme of the Wilson numerical RG procedure.

each step is held constant, so the time and memory required for each diagonalization stays
the same. The basic idea of this scheme is that only the low-energy eigenstates obtained
for a system of size L will be important in making up the low-energy states of a system of
size L + 1. We do not want to go into details, but it turns out that because of problems
due to the boundary conditions, the Wilson RG procedure breaks down for interacting
quantum lattice systems9.

9The Wilson RG procedure is on the other side very accurate for studying Kondo and Anderson impurity
problems.
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Tracing its roots to Wilson’s RG, DMRG algorithms consider a system block of growing
size, which is embedded in some environment mimicking the thermodynamic limit system.
The system block and the environment block together form the so-called superblock, that
has the total length of the chain investigated. In contrast to the Wilson RG procedure, the
m states we use for projecting the growing hamiltonian matrix are no longer given by the
lowest-lying eigenstates of the growing hamiltonian matrix itself, they instead correspond
to the eigenstates of the reduced density matrix of the system block with the m highest
eigenvalues (i.e. the m most “relevant” eigenstates)10. The environment block mimics the
thermodynamic limit system in the sense that the reduced density matrix of the system
block is obtained by first computing the density matrix of the entire superblock, and then
tracing out the degrees of freedom of the environment. We shall call the superblock state
used to form the reduced density matrix for the system block target state11.

There are two classes of algorithms, depending on how the environment block is cho-
sen to form the superblock: the infinite system algorithm (the size of the superblock –
i.e. the chain size – progressively increases), and the finite system algorithm (the size of
the superblock is held constant). Note that for a given system size L, the finite system
algorithm almost always gives substantially more accurate results than the infinite system
algorithm, and is therefore usually preferred unless there is a specific reason to go to the
thermodynamic limit.

A.2.1 The infinite system algorithm

The infinite system algorithm is the most straightforward extension of the Wilson RG
procedure described above (the system being diagonalized grows at each step) that incor-
porates the superblock concept. We build up the system block one site at a time, just as
in the Wilson procedure, but must choose some sort of environment block. The simplest
way of forming the environment block is to use a reflection of the system block (thus both
have the same size l). The superblock configuration is shown in Fig. A.7. Here, H̄l is the
hamiltonian for the system block in the reduced basis, and the solid dots represent single
sites. The right environment block H̄R

l is formed by relabelling the sites in the system block
H̄l so that they are reflected onto the right part of the lattice. The size of the superblock
is L = 2l + 2. The infinite system algorithm then proceeds as follows:

1. Form a superblock Hsuper
L containing L sites which is small enough to be exactly

diagonalized.
10The sum of the discarded eigenvalues of the density matrix of the system block is called discarded

weight. The smaller the discarded weight, the better the approximation.
11The target states may also consist of more than one state, but for simplicity we assume that only the

ground state is targeted.
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2. Diagonalize Hsuper
L numerically (for instance with the Lanczos or the Davidson algo-

rithm), obtaining the targeted ground state |ψ〉.

3. Form the reduced density matrix ρl+1 for the new system block from |ψ〉 by tracing
out the degrees of freedom of the environment. Note that l + 1 = L/2.

4. Diagonalize ρl+1 with a dense matrix diagonalization routine to obtain the m eigen-
vectors with the largest eigenvalues.

5. Construct Hl+1 and other operators in the new system block and transform them
to the reduced density matrix eigenbasis using H̄l+1 := O†

l+1Hl+1Ol+1, Āl+1 :=

O†
l+1Al+1Ol+1, etc..., where the columns of Ol+1 contain the m highest eigenvectors

of ρl+1, and Al+1 in an operator in the system block.

6. H̄R
l+1 is given by the reflection of H̄l+1.

7. Construct Hsuper
L+2 (corresponding to a superblock of size L+2) using H̄l+1, two single

sites and H̄R
l+1.

8. Repeat starting with step 2, substituting Hsuper
L+2 for Hsuper

L .

Hl H R
l

Hl+1

Figure A.7: The superblock configuration for the infinite system algorithm.

Note that the size of the superblock (i.e. the length of the chain we study) grows by two
sites rather than one site at every step.

A.2.2 The finite system algorithm

The idea of the finite system algorithm is to stop the infinite system algorithm at some
preselected superblock length L which is kept fixed, i.e. L = l + l′ + 2 is fixed, (l and l′

denote the respective size of each block, which are no longer identical in contrast to the
infinite system algorithm). Instead of simultaneous growth of both blocks, growth of one
block is accompanied by shrinkage of the other block. Reduced basis transformations are
carried only for the growing block.
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Suppose that we have run the infinite system algorithm until the superblock reaches
size L, but have stored all the H̄l (or H̄R

l′ ) for l = l′ = 1, ..., L/2 − 1 as well as all the
additional operators needed to connect the blocks at each step. We can then continue to
build up the system block, but keep L = l+ l′+2 fixed by using the appropriate previously
stored H̄R

l′ . The finite system algorithm then proceeds as follows:

1. Carry out the infinite system algorithm until the superblock reaches size L, storing
H̄l and the operators needed to connect the blocks at each step.

2. Carry out steps 3 to 5 of the infinite system algorithm to obtain H̄l+1. Store it. Now
l 6= l′.

3. Form a superblock of size L using H̄l+1, two single sites, and H̄R
l′−1. The superblock

configuration is now given by Fig. A.8, where l′ = L− l − 2.

4. Repeat steps 2 to 3 until l = L− 3 (i.e. l′ has decreased down to 1). This is the left
to right phase of the algorithm, with increasing l and decreasing l′.

5. Carry out steps 3 to 5 of the infinite system algorithm, reversing the roles of H̄l and
H̄R

l′ , i.e. switch directions to build up the right block and obtain H̄R
l′+1. Store it.

6. Form a superblock of size L using H̄l−1, two single sites, and H̄R
l′+1.

7. Repeat steps 5 to 6 until l = 1 (i.e. l′ has increased up to L − 3). This is the right
to left phase of the algorithm, with decreasing l and increasing l′.

8. Repeat starting with step 2.

Hl+1 H R

Hl+2

l’−1

Figure A.8: The superblock configuration at step 3 of the procedure in the left to right phase
of the finite system algorithm.

A useful analogy is to think of this procedure as being like running a zipper repeatedly from
left to right and then right to left through a superblock that is always the same size. Each
time the zipper changes direction, a new set of stored blocks is used as the environment
block. In this way, the representations of the stored blocks are iteratively improved and the
zipping can be repeated until convergence is reached. A complete shrinkage and growth
sequence for both blocks is called a sweep.





APPENDIX B

Important theorems in condensed
matter physics

B.1 Theorems stating the existence of gapless excita-
tions

The more general theorem stating the existence of gapless modes is due to Goldstone in
the early 1960s, and has applications in various fields of physics.

The first theorem focused on condensed matter physics is due to Lieb, Schultz, and
Mattis in 1961, and predicts the existence of gapless excitations in 1D systems. It has been
generalized by Oshikawa, Yamanaka and Affleck in 1997 for 1D systems in a magnetic
field, and generalized again in 2004 to higher dimensional systems by Hastings.

The Goldstone theorem

(Goldstone, 1961 [164]; Lange, 1986 [165])

Consider a system of N spins, and the hamiltonian H =
∑

i,j JijSi · Sj with short-range
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interactions that obey

lim
N→∞

1

N

∑
i,j

|Jij||xi − xj|2 <∞

where xi is the location of spin Si. If a continuous symmetry is broken and the spin
structure factor diverges at some wave vector q, then there exists a Goldstone mode whose
energy vanishes at momentum q.

The Lieb-Schultz-Mattis theorem

(Lieb, Schultz, and Mattis, 1961 [166]; generalized by Affleck and Lieb, 1986 [167])

An antiferromagnetic periodic chain of length L with half-odd integer spins (S = 1/2, 3/2, · · · )
in the unit cell either have gapless excitations (with energy O(1/L)), or degenerate ground
states which spontaneously break the translational invariance, in the thermodynamic limit.

The Oshikawa-Yamanaka-Affleck theorem

(Oshikawa, Yamanaka, and Affleck, 1997 [168])

Any hamiltonian of a spin-S chain of length L, including a magnetic field term, with
short-range interactions, which is invariant under rotation about z-axis and either reflex-
ion about a link or time reversal has at least one excited state with energy O(1/L) and
momentum 2π(S − m), where m := (1/L)

∑L
i=1 S

z
j is the magnetization per site. This

statement does not hold for integer S −m.

The Hastings theorem

(Hastings, 2004 [169])

Consider a d-dimensional spin system with a half-odd integer spin in the unit cell, with fi-
nite range, SU(2) invariant hamiltonian. Define the total number of unit cells in the lattice
to be V . Let L be the (even) number of unit cells in one particular direction; this direction
will be referred to as the length direction. Let the system be periodic and translationally
invariant in the length direction. Let V/Ld be bounded by an arbitrary constant r. Define
V/L to be the “width” of the system, and let this number be odd. Then if the ground
state is unique, the gap to the first excited state behaves as O (ln(L)/L), i.e. vanishes in
the thermodynamic limit.



B.2. Other useful theorems 129

B.2 Other useful theorems
The Mermin-Wagner theorem – which prohibits a continuous symmetry to be sponta-
neously broken at zero temperature in 1D, and at finite temperature in 1D and 2D – is
particularly important.

The Mermin-Wagner theorem
(Mermin and Wagner, 1966 [170])

Consider a system of N spins, and the hamiltonian H(h) =
∑

i,j JijSi ·Sj−hSz
q (including

a magnetic field term) with short-range interactions that obey

lim
N→∞

1

N

∑
i,j

|Jij||xi − xj|2 <∞

where xi is the location of spin Si, and Sz
q :=

∑
i e

iq·xiSz
i is the spin density wave in the

z direction. There is then no spontaneously broken spin symmetry in 1D and 2D at finite
temperature, and in 1D at zero temperature, i.e. in those cases we have

lim
h↘0

lim
N→∞

mq(h,N) = 0 ∀q,

where mq(h,N) :=
Tr
[
e−H(h)/(kBT)(Sz

q/N)
]

Tr
[
e−H(h)/(kBT)

] is the magnetization per site.

The Lieb-Mattis theorem
(Lieb and Mattis, 1962 [171])

Consider a Heisenberg hamiltonian H =
∑

i,j Ji,jSi · Sj on a lattice which can be di-
vided into sublattices A and B in such a way that for all sites {i(A)} of sublattice A and
{i(B)} of sublattice B, there exists a constant g2 ≥ 0 such that

Ji(A),j(A) ≤ g2, Ji(B),j(B) ≤ g2, and Ji(A),j(B) ≥ g2,

SA :=
∑

i(A) Si(A) (SB :=
∑

i(B) Si(B)) is the maximum possible spin value on sublattice A
(B). Then if EGS(S) denotes the lowest energy eigenvalue belonging to total spin sector
S, we have

EGS(S + 1) > EGS(S) ∀S ≥ |SA − SB|,
meaning that the ground state of H belongs at most to total spin S = |SA − SB|, and

EGS(S) > EGS(|SA − SB|) ∀S < |SA − SB| if g2 = 0.





APPENDIX C

Classical vs quantum spin-multipolar
correlations in the UDRVB state

In Subsection 2.3.2 of Chapter 2, a qualitative comparison was performed between the
spin-multipolar correlations in the UDRVB state (which is the singlet ground state of the
frustrated ferromagnetic spin-1/2 Heisenberg chain at the Lifshitz point J2/J1 = −1/4) and
the spin-multipolar correlations in a classical spiral with propagation vector q = 2π/L. We
learnt that the propagation vector of both types of correlations agree, among other things.
This appendix is devoted to a more quantitative comparison.

Since the p-multipolar correlations in Fig. 2.4 are computed in singlet states (the
UDRVB), they are identical for the 2p + 1 components of the SU(2) multipolar tenso-
rial operator of rank p. The quantitative comparison we wish to perform here is hence
valid only if classical correlations are computed between SU(2) invariant objects. We shall
therefore construct the classical analogues of the multipolar operators, and restore their
SU(2) invariance “on average” by deriving their 2p+ 1 components and contracting them
together.

The SU(2) p-multipolar tensorial operator acting on p sites is given by the tensorial oper-
ator of rank Q = p acting on those p sites1. For p = Q = 1, one can check that the dipolar

1In the case of spins S = 1/2, p-multipolar order can only be detected via operators that act on p sites
at least. This is no longer true for S > 1/2.
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tensorial operator (with Frobenius-orthonormalized components) is

Ti(1, q) = (S−i ,
√

2Sz
i ,−S+

i ). (C.1)

For p = Q = 2, 3, 4, ..., the tensorial multipolar operators can be derived iteratively using
Eq. (C.1) and the formula

T (Q, q) ∝ (−1)Q−q

Q1∑
q1=−Q1

Q2∑
q2=−Q2

T ′(Q1, q1)T
′′(Q2, q2)

(
Q1 Q2 Q
q1 q2 −q

)
, (C.2)

(Wigner 3j-symbols have been used) allowing to construct a tensor T (Q, q) of rank Q
(q = −Q,−Q + 1, · · · , Q) from two tensors T ′(Q1, q1) and T ′′(Q2, q2) of respective ranks
Q1 and Q2 (q1 = −Q1,−Q1 + 1, · · · , Q1 and q2 = −Q2,−Q2 + 1, · · · , Q2) as long as
the triangular inequality |Q1 − Q2| ≤ Q ≤ Q1 + Q2 holds. The positive proportionality
constant in Eq. (C.2) is chosen such that the 2Q + 1 components of T are Frobenius-
orthonormalized2. Since multipolar operators whose correlations are shown in Fig. 2.4 are
Frobenius-orthonormalized as well, a quantitative comparison is possible.

Using Eqs. (C.1) and (C.2), we derive the components of the quadrupolar operator

Ti,j(2, q) =

(
S−i S

−
j , S

−
i S

z
j + Sz

i S
−
j ,−

1√
6
(S−i S

+
j + S+

i S
−
j − 4Sz

i S
z
j ),−S+

i S
z
j − Sz

i S
+
j , S

+
i S

+
j

)
note that component q is a raising operator which changes Sz

tot by q. By contracting all
components3, substituting S±l → Sx

l ± iSy
l and replacing the quantum spins by a classical

spiral

Sl = S

 cos(ql)
sin(ql)

0


(which amounts to Eq (2.5) with ϑ→ 0, we do not consider the effect of a magnetic field
in this particular case), we get for the dipolar and the quadrupolar correlators respectively

1

3

1∑
q=−1

T1(1, q)T
†
1+r(1, q) →

S2

3
· 2 cos(qr),

2Components of a rank-p multipolar operator are Frobenius-orthonormalized if Tr
[
T (Q, q)T †(Q, q′)

]
=

δq,q′ .
3We contract the components of a rank-Q tensor by summing the correlators between each of its 2Q+1

components, and dividing the result by 2Q+ 1 in order to get an “averaged SU(2) correlator” which can
be compared to Fig. 2.4).
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and
1

5

2∑
q=−2

T1,2(2, q)T
†
1+r,2+r(2, q) →

S4

5

[
2 cos(2qr) +

2

3
cos2(q)

]
.

Following the same way for the octupolar and hexadecupolar correlators, we find

1

7

3∑
q=−3

T1,2,3(3, q)T
†
1+r,2+r,3+r(3, q) →

S6

7

{
2 cos(3qr) +

2

15
cos(qr) [1 + 2 cos(2q)]2

}

1

9

4∑
q=−4

T1,2,3,4(4, q)T
†
1+r,2+r,3+r,4+r(4, q) →

S8

9

{
2 cos(4qr) +

2

7
cos(2qr) [cos(q) + cos(3q)]2

+
2

35
[1 + cos(2q) + cos(4q)]

}
.
2

7

Note that if p is even the p-multipolar correlator has only even harmonics in qr, while if p
is odd it has only odd harmonics in qr. The first harmonic in every case is given in Eq. (2.7).

Replacing q by the propagation vector of spin correlations q → 2π/L [see Eq. (2.8)] and
the spin by S → 1/2, we have

For the dipolar correlations

1

3

1∑
q=−1

T1(1, q)T
†
1+r(1, q) →

1

6
cos

(
2π

L
r

)
, (C.3)

for the quadrupolar correlations

1

5

2∑
q=−2

T1,2(2, q)T
†
1+r,2+r(2, q) →

1

40
cos

(
2π

L
2r

)
+

1

120
cos2(q), (C.4)

for the octupolar correlations

1

7

3∑
q=−3

T1,2,3(3, q)T
†
1+r,2+r,3+r(3, q) →

1

224
cos

(
2π

L
3r

)
+

1

3360
cos

(
2π

L
r

)
[1 + 2 cos(2q)]2 ,

(C.5)
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and for the hexadecupolar correlations

1

9

4∑
q=−4

T1,2,3,4(4, q)T
†
1+r,2+r,3+r,4+r(4, q) →

1

1152
cos

(
2π

L
4r

)
+

1

8064
cos

(
2π

L
2r

)
[cos(q) + cos(3q)]2 +

1

40320
[1 + cos(2q) + cos(4q)] . (C.6)

Note that the above classical dipolar (spin) correlations Eq. (C.3) match the quantum ones
Eq. (2.8) in the thermodynamic limit.

The quantitative comparison between spin-multipolar correlations of order p = 1, 2, 3,
and 4 [Eq. (2.3), Chapter 2] in the UDRVB state and their classical analogues [Eqs. (C.3),
(C.4), (C.5), (C.6)] is performed in Fig. C.1 for various system sizes. We see that the
agreement between the quantum correlations in the UDRVB state and those in the classi-
cal spiral is of course qualitatively good – as pointed out in Subsection 2.3.2 of Chapter 2 –
but not only: the quantitative agreement is good as well. It is slightly less good at the local
minima and maxima of the correlation curves in Fig. C.1 but notice that size effects are
particularly strong at those points, which allows to guess that in the thermodynamic limit
the quantum correlations will agree very well with the classical ones, and that remnants of
the classical spiral are indeed still present in the quantum UDRVB state as pointed out in
Subsection 2.3.2 of Chapter 2.

The agreement between classical and quantum multipolar correlations in large systems
is particularly well illustrated by Fig. C.2, which shows the multipolar quantum correlations
in the UDRVB state at maximal distance for the same system sizes as in Fig. C.1. Classical
correlations are shown at 1/L = 0 (thermodynamic limit). Classical and quantum p-
multipolar correlations are rescaled – i.e. multiplied by a factor 1/S2p = 22p 4 – along
the y-direction in Fig. C.2. There is also a rescaling in the x-direction: the 1/L values
of p-multipolar correlations are multiplied by p. We thus keep the same ratio between
the wavelength of every multipolar correlator and the lattice spacing. Fig. C.2 exhibits a
data collapse: with the rescaling we perform, the colored spots collapse onto a power law
fit (solid black curve) y ≈ O(x4.1). The agreement between the curve and the spots is
excellent for p = 1 (black spots) and p = 2 (red spots), and fairly good for p = 3 (green
spots) and p = 4 (blue spots).

4For a given system size, the (p+1)-multipolar correlation at maximal distance is roughly 22 = 4 times
as small as the p-multipolar correlation at maximal distance.



135

0 1
distance

-0.2

-0.1

0

0.1

0.2

co
rr

el
at

io
n

L=18
L=20
L=22
L=24
L=26
L=28
L=30
classical

dipolar (p=1)

0 1
distance

-0.04

0

0.04

0.08

co
rr

el
at

io
n

L=18
L=20
L=22
L=24
L=26
L=28
L=30
classical

quadrupolar (p=2)

0 1
distance

-0.04

-0.02

0

0.02

co
rr

el
at

io
n

L=18
L=20
L=22
L=24
L=26
L=28
L=30
classical

octupolar (p=3)

0 1
distance

-0.02

0

0.02

0.04

co
rr

el
at

io
n

L=18
L=20
L=22
L=24
L=26
L=28
L=30
classical

hexadecupolar (p=4)

Figure C.1: The spin-multipolar correlations of order p = 1, 2, 3, and 4 [Eq. (2.3), Chapter 2]
in the UDRVB state for system sizes ranging from L = 18 up to L = 30 (by ED, with periodic
boundary conditions) are compared to the spin-multipolar correlations in a classical spiral with
propagation vector q = 2π/L [Eqs. (C.3), (C.4), (C.5), (C.6)]. The size of every system is
normalized to one for the comparison.
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Figure C.2: The rescaled (by a factor 22p) p-multipolar correlations at maximal distance for
various system sizes collapse onto a power law fit. The 1/L values are also rescaled – by a factor
p – in order to keep the same ratio between the wavelength of every multipolar correlator and
the lattice spacing. Classical correlations at maximal distance are shown at 1/L = 0, they agree
well with quantum correlations in large systems.



APPENDIX D

The correlation density matrix tool
for extracting dominant correlations:
proofs

For the sake of clarity, technical proofs have been skipped in Chapter 3. They are never-
theless important, and are therefore given in details in this appendix.

Proof of Eq. (3.3)

As in Subsection 3.2.2, we adopt for this proof the following convention: indices without
prime symbol refer to block A, those with a prime symbol refer to block B, and commas
separate the two indices of a matrix. Underlined indices that are not separated by a comma
must be considered as fused indices. With the well known property of density matrices

〈OAOB〉 = Tr(A∪B) [ρA∪BOAOB]
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and the individual averages (lower and upper bounds of summation indices are dropped
for the sake of clarity, sums run from 1 up to D2 := min{dim2

H(A), dim2
H(B)})

〈OA〉〈OB〉 = TrA [ρAOA] TrB [ρBOB] = Tr(A∪B) [ρA∪BOA1IB] Tr(A∪B) [ρA∪B1IAOB]

=
∑

i,i′,j,j′

ρ
ii′,jj′

A∪B O
j,i
A 1Ij′,i′

B︸︷︷︸
=δj′,i′

∑
ĩ,̃i′,j̃,j̃′

ρ
ĩ̃i′,j̃j̃′

A∪B 1Ij̃ ,̃i
A︸︷︷︸

=δj̃,̃i

Oj̃′ ,̃i′

B =
∑
i,j,j′

ρ
ij′,jj′

A∪B Oj,i
A

∑
ĩ′,j̃,j̃′

ρ
j̃ĩ′,j̃j̃′

A∪B Oj̃′ ,̃i′

B

=
∑
i,j

ρi,j
A O

j,i
A

∑
ĩ′,j̃′

ρĩ′,j̃′

B Oj̃′ ,̃i′

B =
∑

i,j,̃i′,j̃′

ρi,j
A ρ

ĩ′,j̃′

B Oj,i
A O

j̃′ ,̃i′

B =
∑

i,j,̃i′,j̃′

[ρA ⊗ ρB]ĩi
′,jj̃′ [OAOB]jj̃

′,ĩi′

=
∑
i,̃i′

[ρA ⊗ ρBOAOB]ĩi
′,ĩi′ = TrA∪B [ρA ⊗ ρBOAOB] ,

we get Eq. (3.3)

〈OAOB〉 − 〈OA〉〈OB〉 = Tr(A∪B) [ρA∪BOAOB]− TrA∪B [ρA ⊗ ρBOAOB]

= Tr(A∪B) {[ρA∪B − ρA ⊗ ρB]OAOB} = Tr(A∪B) [ρc
ABOAOB] .

Proof of Eq. (3.10)
Let A and B be two disjoint blocks with the same size (number of sites) in a spin-S system,
and let A′ (B′) consist of blocks A (B) plus one additional spin-S (each initial block is
enlarged by one site), as shown in Fig. 3.2. Eq. (3.10) then states that the highest SV
σAB

1 of ρc
AB provides a lower bound for the highest SV σA′B′

1 of ρc
A′B′ . Let us prove this

statement. The SVD Eq. (3.6) of ρc
AB reads

ρc
AB =

D2∑
i=1

σAB
i X

(A)
i Y

(B)†
i .

where D2 := min{dim2
H(A), dim2

H(B)}. We define the extension O(A′) and O(B′) of the
operators X(A)

1 and Y
(B)
1 corresponding to the dominant SV σAB

1 by

O(A′) := X
(A)
1 ⊗ 1IA′\A and O(B′) := Y

(B)
1 ⊗ 1IB′\B

where A′ \ A and B′ \ B contain the additional spins only. Eq. (3.8) yields the dominant
correlation

〈X(A)†
1 Y

(B)
1 〉 − 〈X(A)†

1 〉〈Y (B)
1 〉 = σAB

1



139

which must be unchanged w.r. to the extended operators

〈O(A′)†O(B′)〉 − 〈O(A′)†〉〈O(B′)〉 = σAB
1 . (D.1)

Neither O(A′) nor O(B′) are Frobenius-normalized, let us thus calculate the squared norm
of O(A′) (the reasoning is the same for the squared norm of O(B′)). We introduce an
orthonormalized basis in block A

{|a1〉, |a2〉, |a3〉, · · · |adimH(A)〉}.

In that basis, let us denote the dimH(A)× dimH(A) matrix of operator X(A)
1 by

X
(A)
1 ⇔

(
�
)
.

We also introduce an orthonormalized basis in A′ \ A [dimH(A′ \ A) = 2S + 1)]

{|1〉, |2〉, |3〉, · · · , |2S + 1〉}.

Then, the matrix of O(A′) with respect to basis

{|a1 ⊗ 1〉, |a2 ⊗ 1〉, |a3 ⊗ 1〉, · · · , |adimH(A) ⊗ 1〉,
|a1 ⊗ 2〉, |a2 ⊗ 2〉, |a3 ⊗ 2〉, · · · , |adimH(A) ⊗ 2〉, · · · ,
|a1 ⊗ 2S + 1〉, |a2 ⊗ 2S + 1〉, |a3 ⊗ 2S + 1〉, · · · ,
|adimH(A) ⊗ 2S + 1〉}

will be [dimH(A) · (2S + 1)]× [dimH(A) · (2S + 1)] and will read

O(A′) =


X

(A)
1 0 0 0

0 X
(A)
1 0 0

0 0
. . . 0

0 0 0 X
(A)
1

⇔


� 0 0 0
0 � 0 0

0 0
. . . 0

0 0 0 �

 .

This matrix has 2S + 1 blocks consisting of X(A)
1 . Hence,

Tr
(
O(A′)O(A′)†

)
= Tr




��† 0 0 0
0 ��† 0 0

0 0
. . . 0

0 0 0 ��†


 = (2S+1)·Tr

(
X

(A)
1 X

(A)†

1

)
= 2S+1.
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Both O(A′) and O(B′) have the squared Frobenius norm 2S + 1. Operators 1√
2S+1

O(A′) and
1√

2S+1
O(B′) are thus Frobenius-normalized, and there exists two sets of coefficients {c(A

′)
i }i

and {c(B
′)

i }i with the constraints

D′2∑
i=1

∣∣∣c(A′)
i

∣∣∣2 = 1 and
D′2∑
i=1

∣∣∣c(B′)
i

∣∣∣2 = 1

[D′2 := dim2
H(A′) = dim2

H(B′)] such that

1√
2S + 1

O(A′) =
D′2∑
i=1

c
(A′)
i X̃

(A′)
i and

1√
2S + 1

O(B′) =
D′2∑
i=1

c
(B′)
i Ỹ

(B′)
i , (D.2)

where {X̃(A′)
i }i and {Ỹ (B′)

i }i are the Frobenius-orthonormalized operators resulting from
the SVD of the CDM between blocks A′ and B′

ρc
A′B′ =

D′2∑
i=1

σA′B′

i X̃
(A′)
i Ỹ

(B′)†
i . (D.3)

The fact that both blocks A′ and B′ have the same size (number of sites) ensures that the
{X̃(A′)

i }i and {Ỹ (B′)
i }i sets provide complete bases of the spaces of operators acting within

A′ and B′ respectively – with min{dim2
H(A′), dim2

H(B′)} = dim2
H(A′) = dim2

H(B′) = D′2

elements – and thus that decompositions Eq. (D.2) are possible. The connected correlator
between O(A′) and O(B′) is〈

1√
2S + 1

O(A′) 1√
2S + 1

O(B′)

〉
−
〈

1√
2S + 1

O(A′)

〉〈
1√

2S + 1
O(B′)

〉
(3.3)
= Tr

(
ρc

A′B′
1

2S + 1
O(A′)O(B′)

)
(D.2)
= Tr

(
ρc

A′B′

D′2∑
j,j′=1

c
(A′)
j c

(B′)
j′ X̃

(A′)†
j Ỹ

(B′)
j′

)

(D.3)
= Tr

(
D′2∑
i=1

σA′B′

i X̃
(A′)
i Ỹ

(B′)†
i

D′2∑
j,j′=1

c
(A′)
j c

(B′)
j′ X̃

(A′)†
j Ỹ

(B′)
j′

)

=
D′2∑
i=1

σA′B′

i

D′2∑
j,j′=1

c
(A′)
j c

(B′)
j′ Tr

(
X̃

(A′)
i X̃

(A′)†
j

)
Tr
(
Ỹ

(B′)†
i Ỹ

(B′)
j′

)
(3.7)
=

D′2∑
i=1

σA′B′

i c
(A′)
i c

(B′)
i .

(D.4)
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Finally, Eqs. (D.1) and (D.4) yield

σAB
1

2S + 1
=

D′2∑
i=1

c
(A′)
i c

(B′)
i σA′B′

i .

The right term of the above equation is necessarily smaller than it would have been if
the whole weight would have been given to the largest SV (i.e. c

(A′)
1 = c

(B′)
1 = 1 and

c
(A′)
i = c

(B′)
i = 0 if i > 1), which can be written as

σAB
1

2S + 1
≤ σA′B′

1 .





APPENDIX E

Complete orthonormalized bases of
operator spaces

The X(A)
i ’s and Y (B)

i ’s operators resulting from the singular value decomposition Eq. (3.6)
in Chapter 3 can generally not be physically interpreted at first sight, and must be decom-
posed onto operators whose physical meaning is obvious. It is the aim of this appendix to
provide complete orthonormalized1 bases of the spaces spanned by the operators acting on
two and three spins S = 1/2, and to explain how bases of operators acting in arbitrarily
large blocks can be obtained.

E.1 Operators acting on two sites

Consider two blocks of two magnetic moments S = 1/2 which live in the space(
1

2
⊗ 1

2

)
⊗
(

1

2
⊗ 1

2

)
= 02 ⊕ 13 ⊕ 21,

where the notation jm means that the subspace of dimension 2j + 1 occurs m times in the
Clebsch-Gordan decomposition. This space is thus the direct sum of two singlet subspaces

1With respect to the Frobenius scalar product
(
Ô
∣∣Ô′
)

F
:= Tr

(
ÔÔ′†

)
.
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(providing two one-component operators), three triplet subspaces (providing three three-
component operators), and one quintet subspace (providing one five-component operator).
A complete orthonormalized basis of the space of operators acting on two spins-1/2 located
at sites k and l is given in Table E.1. All of them can easily be guessed and understood,

operator nb comp. spin
1
2
1Ikl 1 0

2√
3
Sk · Sl 1 0

1√
2
(Sk + Sl) 3 1

1√
2
(Sk − Sl) 3 1√
2Sk × Sl 3 1
Qkl 5 2

Table E.1: Frobenius-orthonormalized basis of the space spanned by the operators acting on
two spins S = 1/2 located at sites k and l.

apart from the quintet operator Qkl (rank-2 tensor) whose components are derived using
the formula Eq (C.2) of Appendix C: the two rank-1 tensors Tk(1, q) and Tl(1, q) of Eq. (C.1)
are coupled into a rank-2 tensor Qkl (quadrupolar object) which turns out to be given by

Qkl =


S−k S

−
l

S−k S
z
l + Sz

kS
−
l

− 1√
6
(S−k S

+
l + S+

k S
−
l − 4Sz

kS
z
l )

−S+
k S

z
l − Sz

kS
+
l

S+
k S

+
l

 . (E.1)

Note that Qkl is symmetric under the k ↔ l exchange.

E.2 Operators acting on three sites
Consider two blocks of three magnetic moments S = 1/2 which live in the space(

1

2
⊗ 1

2
⊗ 1

2

)
⊗
(

1

2
⊗ 1

2
⊗ 1

2

)
= 05 ⊕ 19 ⊕ 25 ⊕ 31,

that is the direct sum of five singlet subspaces (providing five one-component operators),
nine triplet subspaces (providing nine three-component operators), five quintet subspaces
(providing five five-component operators), and one septuplet subspace (providing one
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seven-component operator). A complete orthonormalized basis of the space of operators
acting on three spins-1/2 located at sites k, l, and m is given in Table E.2. The quintet
Qklm(i) and septuplet Seklm operators are not explicitly given since they are complicated
objects. For constructing them, one has to couple – using formula Eq. (C.2) – the rank-0
tensors Tk(0, 0), Tl(0, 0), and Tm(0, 0) defined by

Ti(0, 0) =
1√
2
1Ii,

and the rank-1 tensors Tk(1, q), Tl(1, q), and Tm(1, q) which were already defined in Eq. (C.1)

Ti(1, q) = (S−i ,
√

2Sz
i ,−S+

i )

in all possible ways leading to a final rank-2 [for each of the Qklm(i)’s] or rank-3 [for Seklm]
tensor.

Using the notation (au ⊗ bv) → cuv for denoting a rank-a tensor acting in u that is
coupled with a rank-b tensor acting in v into a rank-c tensor (|a − b| ≤ c ≤ a + b) acting
in u ∪ v (u and v being ordered sets of sites), we have

Qklm(1) constructed by (1k ⊗ 1l)⊗ 0m → 2kl ⊗ 0m → 2klm

Qklm(2) constructed by (0k ⊗ 1l)⊗ 1m → 1kl ⊗ 1m → 2klm

Qklm(3) constructed by (1k ⊗ 0l)⊗ 1m → 1kl ⊗ 1m → 2klm

Qklm(4) constructed by (1k ⊗ 1l)⊗ 1m → 1kl ⊗ 1m → 2klm

Qklm(5) constructed by (1k ⊗ 1l)⊗ 1m → 2kl ⊗ 1m → 2klm

Seklm constructed by (1k ⊗ 1l)⊗ 1m → 2kl ⊗ 1m → 3klm. (E.2)

For spaces spanned by operators acting on a larger and larger number of sites, it becomes
more and more difficult to intuitively guess some of the elements of an orthonormalized
basis, and therefore particularly necessary to use a systematic method. Eqs. (C.2) and
(C.1) provide a starting framework that allows to construct such orthonormalized bases
for an arbitrarily large number of sites.
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operator nb comp. spin
1

2
√

2
1Iklm 1 0

2√
3
Sk · (Sl × Sm) 1 0

√
2

3
(Sk · Sl + Sk · Sm + Sl · Sm) 1 0

1
3
[(Sk · Sle

iα + Sk · Sme
−iα + Sl · Sm) + h.c.] 1 0

1
3
[(Sk · Sle

iα + Sk · Sme
−iα + Sl · Sm)− h.c.] 1 0

1√
6
(Sk + Sl + Sm) 3 1

1
2
√

3
[(Sk + Sle

iα + Sme
−iα) + h.c.] 3 1

1
2
√

3
[(Sk + Sle

iα + Sme
−iα)− h.c.] 3 1

1√
3
(Sk × Sl + Sk × Sm + Sl × Sm) 3 1

√
2

3
{Sk × (Sl × Sm) + Sm × (Sk × Sl)e

iα + Sl × (Sm × Sk)e
−iα + h.c.} 3 1

√
2

3
{Sk × (Sl × Sm) + Sm × (Sk × Sl)e

iα + Sl × (Sm × Sk)e
−iα − h.c.} 3 1

2
√

2
15

[Sk(Sl · Sm) + Sm(Sk · Sl) + Sl(Sm · Sk)] 3 1√
2
3
{(Sk(Sl · Sm) + Sm(Sk · Sl)e

iα + Sl(Sm · Sk)e
−iα) + h.c.} 3 1√

2
3
{(Sk(Sl · Sm) + Sm(Sk · Sl)e

iα + Sl(Sm · Sk)e
−iα)− h.c.} 3 1

Qklm(1) 5 2
Qklm(2) 5 2
Qklm(3) 5 2
Qklm(4) 5 2
Qklm(5) 5 2
Seklm 7 3

Table E.2: Frobenius-orthonormalized basis of the space spanned by the operators acting on
three spins S = 1/2 located at sites k, l, and m. In the above Table, α := 2π/3. Eq. (E.2)
explains in details how to construct the spin-2 quintet and spin-3 septuplet operators.



APPENDIX F

Symmetry breaking in 2D spin-1/2
systems

The breaking of discrete or continuous symmetries generally leads to a degenerate ground
state, whose degeneracy depends on “how much” the symmetry is broken. The conse-
quences of the breaking of discrete (with a concrete application to the square lattice) and
continuous symmetries are reviewed in the first part of this appendix. Its second part is
devoted to explaining how the nature of a broken symmetry can be read in an energy spec-
trum. The origin of the Anderson tower of states emerging when continuous symmetries
are broken is explained.

F.1 Breaking of discrete and continuous symmetries

The existence of a spontaneous symmetry breaking (SSB) at zero temperature in a model
has direct consequences on its low-energy physics. Although the SSB only occurs in the
thermodynamic limit, the signature of a SSB is often visible in “small” systems that are
numerically tractable by Exact Diagonalization (ED), see Ref. [137] for a good overview.
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F.1.1 Broken discrete symmetry: the example of a VBC

If a discrete symmetry is broken, the ground state has a finite degeneracy in the thermo-
dynamic limit, with a finite gap to physical excitations. In a VBC phase for instance, the
number of spatial symmetries which are broken by the realized VBC (i.e. its degeneracy)
can generally be directly read in the spectrum, without computing any correlation func-
tion. The spontaneous symmetry breaking in the thermodynamic limit can be checked by
verifying that the energy splitting between the quasi-degenerate ground states decays with
the size of the sample.

Let us illustrate this point with the Heisenberg model on the checkerboard lattice
which is depicted in Fig. F.1. Exact Diagonalization studies have shown [7] that in the

�� ��

Figure F.1: Checkerboard lattice with the primitive vectors u1 and u2 of the corresponding
Bravais lattice: spins are represented by black bullets, and all pairs of linked spins interact with
the same strength.

thermodynamic limit the ground state of this model is two-fold degenerate with a finite
gap to higher excitations. Four kinds of crystals are candidates as ground state, namely
the columnar and staggered configurations of dimers (see Fig. F.2, first two panels), and
two types of S = 0 four-spin plaquette crystals (Fig. F.2, last two panels). It turns out that
while the columnar and the staggered configurations of dimers are both four-fold degenerate
(translation by U1 and rotation by π/2), each of the plaquette configurations are only two-
fold degenerate (translation by U1 only). It is thus clear that neither the columnar nor
the staggered configuration of dimers suits for describing the ground state, the choice is
restricted to one among the two plaquette configurations. Using symmetry arguments,
Ref. [7] explains why the right plaquette configuration is finally the most favorable.
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Figure F.2: The 4 candidates as ground state of the spin-1/2 checkerboard antiferromagnet:
(from the left to the right) columnar and staggered configurations of dimers, and two kinds of
S = 0 four-spin plaquette VBCs.

F.1.2 Broken continuous symmetry: Néel & nematic phases

Frustrated magnets exhibit a remarkably large variety of phases with broken continu-
ous symmetries, like the semi-classical Néel phase, nematic phases, or much more com-
plex structures with non-collinear and non-coplanar sublattice magnetizations, order-by-
disorder effects,...

The structure of the spectrum is richer for continuous broken symmetries than for dis-
crete ones. First, the existence of gapless Goldstone modes makes the distinction between
ground state and excitations more subtle. Furthermore, since the ground state has an in-
finite degeneracy in the thermodynamic limit (one can perform infinitesimal rotations of
the initial broken symmetry state), the number of quasi-degenerate ground states has to
grow as a function of the system size.

F.2 Analysis of energy spectra

F.2.1 How to read an energy spectrum?

Spectra of finite samples and scaling laws governing them can reveal a lot about the nature
of the phase that is realized in the thermodynamic limit: the study of the symmetries of
the lowest-lying states provides informations about the nature of the symmetries that are
spontaneously broken in the infinite system. Towers of quasi-degenerate states in every
total spin-S sector which collapse onto the ground state as O(S(S+1)/N) (N is the size of
the sample) are for instance the signature of the realization of a SU(2) symmetry breaking
phase (Néel ordered, nematic) in the thermodynamic limit (see the section below). In case
of the realization of a VBC ground state, one expects the unit cell of the realized VBC
to have the spatial symmetries of the lowest levels in the spectrum, and these latter to
be clearly separated from higher energy levels. If all the spatial symmetry representations
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have a low-lying level which is close to the ground state in energy, then no particular
symmetry is preferred and this is a strong indication of the absence of long-range Néel
order (there is no antiferromagnetic order parameter) and also a strong argument against
a VBC phase, one probably deals with another kind of spin liquid in this case.

Ref. [85] shows for instance that those states in the spectrum of the 36-site sample on
the spin-1/2 kagomé antiferromagnet which are compatible with the spatial symmetries of
the

√
3 ×

√
3 Néel order are quite high in energy, this kind of order must thus be ruled

out in that model. Ref. [137] analyzes the compatibility between the spatial symmetries
of the low-lying states in the spectrum of the 36-site sample on the spin-1/2 kagomé
antiferromagnet with those of three types of VBC (namely the 36-sites VBC by Marston &
Zeng [92], the 12-sites VBC by Syromyatnikov & Maleyev [93], and a third VBC by Budnik
& Auerbach [95]). The conclusion they draw is that in the three cases, the compatibility
is not clear: the crystallization would require a reshuffling of the low-energy spectrum.

F.2.2 Anderson tower of states in broken continuous symmetry
phases

We arbitrarily focus our explanations on the mechanism breaking the SU(2) symmetry in
Néel ordered systems, but we wish to stress that the mechanism breaking SU(2) in nematic
ordered states is the same and that spectra exhibit similar tower structures in this latter
case.

In a semi-classical Néel ordered phase, the lattice spontaneously breaks up into sublat-
tices in which all spins point in the same direction (ferromagnetic sublattices). If we denote
by N the (even) number of sites in the sample, by p the number of sublattices, and by Q
the number of sites per sublattice in the sample (N = pQ), every ferromagnetic sublattice
has total spin Q · 1

2
= Q/2. The total spin value S of the entire system is determined by

the coupling of these p spins Q/2, and can take any value between S = 0 and S = N/2.
Indeed, the Néel state (realized in the thermodynamic limit) has a finite overlap on all
total spin sectors between 0 and N/21.

The low-lying energy levels arising from the Néel order in each of these spin sectors
are usually well separated from the first magnon excitations on the spectrum and thus
easily recognizable, one refers to them as Anderson tower of states since Anderson has
first reported their existence in his famous paper on spin-waves in antiferromagnets [178].
The energy E(N,S, l) of the lth level of the Anderson tower in the total spin-S sector of a
sample of size N behaves as E(N,S, l) = O

(
S(S+1)

N

)
. These states hence collapse onto the

1The weight of the different spin sectors nevertheless decreases with increasing S in a Néel state (which
has no net magnetization in any direction).
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ground state in the thermodynamic limit N → ∞, breaking the SU(2) symmetry (since
different spin sectors do contribute) and giving rise to the Néel phase; one also call them
QDJS for quasi-degenerate joint states. The tower structure offers a very efficient way to
recognize systems with continuous broken symmetries, as it already shows up on very small
systems since the energy gaps in the Anderson tower decay more quickly (∼ 1/N) than
the finite-size corrections to the sublattice magnetization (∼ 1/

√
N).

The following 3 features of the QDJS are important:

• the finite-size scaling leading to a clear cut separation from the first inhomogeneous
magnon excitations (the absence of separation between the scaling laws would sign
a quantum critical behavior)

• the number of levels E(N,S, l) in each S sector. For a given S and a given N , this
number of levels is determined by the number p of ferromagnetic sublattices of the
underlying Néel order. Collinear versus non-collinear Néel states can also be readily
discriminated from their spectra. A collinear structure has a tower with exactly
one level per value of S whereas the tower of a non-collinear system (with q ≥ 3
sublattices) contains 2S + 1 levels per total spin sector S

• the spatial symmetries of the levels E(N,S, l): the number and nature of the space
group irreducible representations that appear in each S subspace are uniquely deter-
mined by the geometrical symmetries of the Néel order.
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Figure F.3: Spectrum in the case of a broken SU(2) phase: the Anderson tower of states
collapses like the inverse number of sites in the sample N−1, it is well distinct from the magnon
excitations that collapse like the inverse typical length scale of the sample L−1 = N−1/D (D is
the dimension). The number of QDJS in each total spin-S sector depends on the way SU(2) is
broken: 2S + 1 distinct energy levels appear if the phase fully breaks SU(2), whereas only one
level appears if SU(2) is broken down to U(1) only.
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